2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
5 * Copyright (c) 2000 Michael Leslie <mleslie@lineo.com>
6 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
8 * In addition to the individual control of the communication
9 * channels, there are a few functions that globally affect the
10 * communication processor.
12 * Buffer descriptors must be allocated from the dual ported memory
13 * space. The allocator for that is here. When the communication
14 * process is reset, we reclaim the memory available. There is
15 * currently no deallocator for this memory.
16 * The amount of space available is platform dependent. On the
17 * MBX, the EPPC software loads additional microcode into the
18 * communication processor, and uses some of the DP ram for this
19 * purpose. Current, the first 512 bytes and the last 256 bytes of
20 * memory are used. Right now I am conservative and only use the
21 * memory that can never be used for microcode. If there are
22 * applications that require more DP ram, we can expand the boundaries
23 * but then we have to be careful of any downloaded microcode.
28 * Michael Leslie <mleslie@lineo.com>
29 * adapted Dan Malek's ppc8xx drivers to M68360
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/sched.h>
36 #include <linux/kernel.h>
37 #include <linux/param.h>
38 #include <linux/string.h>
40 #include <linux/interrupt.h>
42 #include <asm/m68360.h>
43 #include <asm/commproc.h>
45 /* #include <asm/page.h> */
46 /* #include <asm/pgtable.h> */
47 extern void *_quicc_base
;
48 extern unsigned int system_clock
;
51 static uint dp_alloc_base
; /* Starting offset in DP ram */
52 static uint dp_alloc_top
; /* Max offset + 1 */
55 static void *host_buffer
; /* One page of host buffer */
56 static void *host_end
; /* end + 1 */
59 /* struct cpm360_t *cpmp; */ /* Pointer to comm processor space */
62 /* QUICC *quicc_dpram; */ /* mleslie - temporary; use extern pquicc elsewhere instead */
65 /* CPM interrupt vector functions. */
67 void (*handler
)(void *);
70 static struct cpm_action cpm_vecs
[CPMVEC_NR
];
71 static void cpm_interrupt(int irq
, void * dev
, struct pt_regs
* regs
);
72 static void cpm_error_interrupt(void *);
75 void cpm_install_handler(int vec
, void (*handler
)(), void *dev_id
);
76 void m360_cpm_reset(void);
81 void __init
m360_cpm_reset()
85 pquicc
= (struct quicc
*)(_quicc_base
); /* initialized in crt0_rXm.S */
87 /* Perform a CPM reset. */
88 pquicc
->cp_cr
= (SOFTWARE_RESET
| CMD_FLAG
);
90 /* Wait for CPM to become ready (should be 2 clocks). */
91 while (pquicc
->cp_cr
& CMD_FLAG
);
93 /* On the recommendation of the 68360 manual, p. 7-60
94 * - Set sdma interrupt service mask to 7
95 * - Set sdma arbitration ID to 4
97 pquicc
->sdma_sdcr
= 0x0740;
100 /* Claim the DP memory for our use.
102 dp_alloc_base
= CPM_DATAONLY_BASE
;
103 dp_alloc_top
= dp_alloc_base
+ CPM_DATAONLY_SIZE
;
106 /* Set the host page for allocation.
108 /* host_buffer = host_page_addr; */
109 /* host_end = host_page_addr + PAGE_SIZE; */
111 /* pte = find_pte(&init_mm, host_page_addr); */
112 /* pte_val(*pte) |= _PAGE_NO_CACHE; */
113 /* flush_tlb_page(current->mm->mmap, host_buffer); */
115 /* Tell everyone where the comm processor resides.
117 /* cpmp = (cpm360_t *)commproc; */
121 /* This is called during init_IRQ. We used to do it above, but this
122 * was too early since init_IRQ was not yet called.
125 cpm_interrupt_init(void)
127 /* Initialize the CPM interrupt controller.
128 * NOTE THAT pquicc had better have been initialized!
129 * reference: MC68360UM p. 7-377
132 (CICR_SCD_SCC4
| CICR_SCC_SCC3
| CICR_SCB_SCC2
| CICR_SCA_SCC1
) |
133 (CPM_INTERRUPT
<< 13) |
135 (CPM_VECTOR_BASE
<< 5) |
138 /* mask all CPM interrupts from reaching the cpu32 core: */
139 pquicc
->intr_cimr
= 0;
142 /* mles - If I understand correctly, the 360 just pops over to the CPM
143 * specific vector, obviating the necessity to vector through the IRQ
144 * whose priority the CPM is set to. This needs a closer look, though.
147 /* Set our interrupt handler with the core CPU. */
148 /* if (request_irq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) */
149 /* panic("Could not allocate CPM IRQ!"); */
151 /* Install our own error handler.
153 /* I think we want to hold off on this one for the moment - mles */
154 /* cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); */
156 /* master CPM interrupt enable */
157 /* pquicc->intr_cicr |= CICR_IEN; */ /* no such animal for 360 */
162 /* CPM interrupt controller interrupt.
165 cpm_interrupt(int irq
, void * dev
, struct pt_regs
* regs
)
169 /* mles: Note that this stuff is currently being performed by
170 * M68360_do_irq(int vec, struct pt_regs *fp), in ../ints.c */
172 /* figure out the vector */
173 /* call that vector's handler */
174 /* clear the irq's bit in the service register */
176 #if 0 /* old 860 stuff: */
177 /* Get the vector by setting the ACK bit and then reading
180 ((volatile immap_t
*)IMAP_ADDR
)->im_cpic
.cpic_civr
= 1;
181 vec
= ((volatile immap_t
*)IMAP_ADDR
)->im_cpic
.cpic_civr
;
185 if (cpm_vecs
[vec
].handler
!= 0)
186 (*cpm_vecs
[vec
].handler
)(cpm_vecs
[vec
].dev_id
);
188 ((immap_t
*)IMAP_ADDR
)->im_cpic
.cpic_cimr
&= ~(1 << vec
);
190 /* After servicing the interrupt, we have to remove the status
193 ((immap_t
*)IMAP_ADDR
)->im_cpic
.cpic_cisr
|= (1 << vec
);
198 /* The CPM can generate the error interrupt when there is a race condition
199 * between generating and masking interrupts. All we have to do is ACK it
200 * and return. This is a no-op function so we don't need any special
201 * tests in the interrupt handler.
204 cpm_error_interrupt(void *dev
)
208 /* Install a CPM interrupt handler.
211 cpm_install_handler(int vec
, void (*handler
)(), void *dev_id
)
214 request_irq(vec
, handler
, 0, "timer", dev_id
);
216 /* if (cpm_vecs[vec].handler != 0) */
217 /* printk(KERN_INFO "CPM interrupt %x replacing %x\n", */
218 /* (uint)handler, (uint)cpm_vecs[vec].handler); */
219 /* cpm_vecs[vec].handler = handler; */
220 /* cpm_vecs[vec].dev_id = dev_id; */
222 /* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); */
223 /* pquicc->intr_cimr |= (1 << vec); */
227 /* Free a CPM interrupt handler.
230 cpm_free_handler(int vec
)
232 cpm_vecs
[vec
].handler
= NULL
;
233 cpm_vecs
[vec
].dev_id
= NULL
;
234 /* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); */
235 pquicc
->intr_cimr
&= ~(1 << vec
);
241 /* Allocate some memory from the dual ported ram. We may want to
242 * enforce alignment restrictions, but right now everyone is a good
246 m360_cpm_dpalloc(uint size
)
250 if ((dp_alloc_base
+ size
) >= dp_alloc_top
)
251 return(CPM_DP_NOSPACE
);
253 retloc
= dp_alloc_base
;
254 dp_alloc_base
+= size
;
260 #if 0 /* mleslie - for now these are simply kmalloc'd */
261 /* We also own one page of host buffer space for the allocation of
262 * UART "fifos" and the like.
265 m360_cpm_hostalloc(uint size
)
269 if ((host_buffer
+ size
) >= host_end
)
272 retloc
= host_buffer
;
280 /* Set a baud rate generator. This needs lots of work. There are
281 * four BRGs, any of which can be wired to any channel.
282 * The internal baud rate clock is the system clock divided by 16.
283 * This assumes the baudrate is 16x oversampled by the uart.
285 /* #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq * 1000000) */
286 #define BRG_INT_CLK system_clock
287 #define BRG_UART_CLK (BRG_INT_CLK/16)
290 m360_cpm_setbrg(uint brg
, uint rate
)
294 /* This is good enough to get SMCs running.....
296 /* bp = (uint *)&cpmp->cp_brgc1; */
297 bp
= (volatile uint
*)(&pquicc
->brgc
[0].l
);
299 *bp
= ((BRG_UART_CLK
/ rate
- 1) << 1) | CPM_BRG_EN
;