mm: revert "page-writeback.c: subtract min_free_kbytes from dirtyable memory"
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.c
blob6e2d2c8f230bea3202896156be9a8196785241aa
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
62 #undef MMU_DEBUG
64 #ifdef MMU_DEBUG
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69 #else
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
74 #endif
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
89 #endif
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136 | shadow_x_mask | shadow_nx_mask)
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 shadow_mmio_mask = mmio_mask;
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
205 #define MMIO_SPTE_GEN_LOW_SHIFT 3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
208 #define MMIO_GEN_SHIFT 19
209 #define MMIO_GEN_LOW_SHIFT 9
210 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
214 static u64 generation_mmio_spte_mask(unsigned int gen)
216 u64 mask;
218 WARN_ON(gen > MMIO_MAX_GEN);
220 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222 return mask;
225 static unsigned int get_mmio_spte_generation(u64 spte)
227 unsigned int gen;
229 spte &= ~shadow_mmio_mask;
231 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233 return gen;
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
239 * Init kvm generation close to MMIO_MAX_GEN to easily test the
240 * code of handling generation number wrap-around.
242 return (kvm_memslots(kvm)->generation +
243 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
255 trace_mark_mmio_spte(sptep, gfn, access, gen);
256 mmu_spte_set(sptep, mask);
259 static bool is_mmio_spte(u64 spte)
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
264 static gfn_t get_mmio_spte_gfn(u64 spte)
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
270 static unsigned get_mmio_spte_access(u64 spte)
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
279 if (unlikely(is_noslot_pfn(pfn))) {
280 mark_mmio_spte(kvm, sptep, gfn, access);
281 return true;
284 return false;
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
289 unsigned int kvm_gen, spte_gen;
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
298 static inline u64 rsvd_bits(int s, int e)
300 return ((1ULL << (e - s + 1)) - 1) << s;
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
314 static int is_cpuid_PSE36(void)
316 return 1;
319 static int is_nx(struct kvm_vcpu *vcpu)
321 return vcpu->arch.efer & EFER_NX;
324 static int is_shadow_present_pte(u64 pte)
326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
329 static int is_large_pte(u64 pte)
331 return pte & PT_PAGE_SIZE_MASK;
334 static int is_rmap_spte(u64 pte)
336 return is_shadow_present_pte(pte);
339 static int is_last_spte(u64 pte, int level)
341 if (level == PT_PAGE_TABLE_LEVEL)
342 return 1;
343 if (is_large_pte(pte))
344 return 1;
345 return 0;
348 static pfn_t spte_to_pfn(u64 pte)
350 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
353 static gfn_t pse36_gfn_delta(u32 gpte)
355 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
357 return (gpte & PT32_DIR_PSE36_MASK) << shift;
360 #ifdef CONFIG_X86_64
361 static void __set_spte(u64 *sptep, u64 spte)
363 *sptep = spte;
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368 *sptep = spte;
371 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
373 return xchg(sptep, spte);
376 static u64 __get_spte_lockless(u64 *sptep)
378 return ACCESS_ONCE(*sptep);
381 static bool __check_direct_spte_mmio_pf(u64 spte)
383 /* It is valid if the spte is zapped. */
384 return spte == 0ull;
386 #else
387 union split_spte {
388 struct {
389 u32 spte_low;
390 u32 spte_high;
392 u64 spte;
395 static void count_spte_clear(u64 *sptep, u64 spte)
397 struct kvm_mmu_page *sp = page_header(__pa(sptep));
399 if (is_shadow_present_pte(spte))
400 return;
402 /* Ensure the spte is completely set before we increase the count */
403 smp_wmb();
404 sp->clear_spte_count++;
407 static void __set_spte(u64 *sptep, u64 spte)
409 union split_spte *ssptep, sspte;
411 ssptep = (union split_spte *)sptep;
412 sspte = (union split_spte)spte;
414 ssptep->spte_high = sspte.spte_high;
417 * If we map the spte from nonpresent to present, We should store
418 * the high bits firstly, then set present bit, so cpu can not
419 * fetch this spte while we are setting the spte.
421 smp_wmb();
423 ssptep->spte_low = sspte.spte_low;
426 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
428 union split_spte *ssptep, sspte;
430 ssptep = (union split_spte *)sptep;
431 sspte = (union split_spte)spte;
433 ssptep->spte_low = sspte.spte_low;
436 * If we map the spte from present to nonpresent, we should clear
437 * present bit firstly to avoid vcpu fetch the old high bits.
439 smp_wmb();
441 ssptep->spte_high = sspte.spte_high;
442 count_spte_clear(sptep, spte);
445 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
447 union split_spte *ssptep, sspte, orig;
449 ssptep = (union split_spte *)sptep;
450 sspte = (union split_spte)spte;
452 /* xchg acts as a barrier before the setting of the high bits */
453 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454 orig.spte_high = ssptep->spte_high;
455 ssptep->spte_high = sspte.spte_high;
456 count_spte_clear(sptep, spte);
458 return orig.spte;
462 * The idea using the light way get the spte on x86_32 guest is from
463 * gup_get_pte(arch/x86/mm/gup.c).
465 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466 * coalesces them and we are running out of the MMU lock. Therefore
467 * we need to protect against in-progress updates of the spte.
469 * Reading the spte while an update is in progress may get the old value
470 * for the high part of the spte. The race is fine for a present->non-present
471 * change (because the high part of the spte is ignored for non-present spte),
472 * but for a present->present change we must reread the spte.
474 * All such changes are done in two steps (present->non-present and
475 * non-present->present), hence it is enough to count the number of
476 * present->non-present updates: if it changed while reading the spte,
477 * we might have hit the race. This is done using clear_spte_count.
479 static u64 __get_spte_lockless(u64 *sptep)
481 struct kvm_mmu_page *sp = page_header(__pa(sptep));
482 union split_spte spte, *orig = (union split_spte *)sptep;
483 int count;
485 retry:
486 count = sp->clear_spte_count;
487 smp_rmb();
489 spte.spte_low = orig->spte_low;
490 smp_rmb();
492 spte.spte_high = orig->spte_high;
493 smp_rmb();
495 if (unlikely(spte.spte_low != orig->spte_low ||
496 count != sp->clear_spte_count))
497 goto retry;
499 return spte.spte;
502 static bool __check_direct_spte_mmio_pf(u64 spte)
504 union split_spte sspte = (union split_spte)spte;
505 u32 high_mmio_mask = shadow_mmio_mask >> 32;
507 /* It is valid if the spte is zapped. */
508 if (spte == 0ull)
509 return true;
511 /* It is valid if the spte is being zapped. */
512 if (sspte.spte_low == 0ull &&
513 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514 return true;
516 return false;
518 #endif
520 static bool spte_is_locklessly_modifiable(u64 spte)
522 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
526 static bool spte_has_volatile_bits(u64 spte)
529 * Always atomicly update spte if it can be updated
530 * out of mmu-lock, it can ensure dirty bit is not lost,
531 * also, it can help us to get a stable is_writable_pte()
532 * to ensure tlb flush is not missed.
534 if (spte_is_locklessly_modifiable(spte))
535 return true;
537 if (!shadow_accessed_mask)
538 return false;
540 if (!is_shadow_present_pte(spte))
541 return false;
543 if ((spte & shadow_accessed_mask) &&
544 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545 return false;
547 return true;
550 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
552 return (old_spte & bit_mask) && !(new_spte & bit_mask);
555 /* Rules for using mmu_spte_set:
556 * Set the sptep from nonpresent to present.
557 * Note: the sptep being assigned *must* be either not present
558 * or in a state where the hardware will not attempt to update
559 * the spte.
561 static void mmu_spte_set(u64 *sptep, u64 new_spte)
563 WARN_ON(is_shadow_present_pte(*sptep));
564 __set_spte(sptep, new_spte);
567 /* Rules for using mmu_spte_update:
568 * Update the state bits, it means the mapped pfn is not changged.
570 * Whenever we overwrite a writable spte with a read-only one we
571 * should flush remote TLBs. Otherwise rmap_write_protect
572 * will find a read-only spte, even though the writable spte
573 * might be cached on a CPU's TLB, the return value indicates this
574 * case.
576 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
578 u64 old_spte = *sptep;
579 bool ret = false;
581 WARN_ON(!is_rmap_spte(new_spte));
583 if (!is_shadow_present_pte(old_spte)) {
584 mmu_spte_set(sptep, new_spte);
585 return ret;
588 if (!spte_has_volatile_bits(old_spte))
589 __update_clear_spte_fast(sptep, new_spte);
590 else
591 old_spte = __update_clear_spte_slow(sptep, new_spte);
594 * For the spte updated out of mmu-lock is safe, since
595 * we always atomicly update it, see the comments in
596 * spte_has_volatile_bits().
598 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
599 ret = true;
601 if (!shadow_accessed_mask)
602 return ret;
604 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
605 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
606 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
607 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
609 return ret;
613 * Rules for using mmu_spte_clear_track_bits:
614 * It sets the sptep from present to nonpresent, and track the
615 * state bits, it is used to clear the last level sptep.
617 static int mmu_spte_clear_track_bits(u64 *sptep)
619 pfn_t pfn;
620 u64 old_spte = *sptep;
622 if (!spte_has_volatile_bits(old_spte))
623 __update_clear_spte_fast(sptep, 0ull);
624 else
625 old_spte = __update_clear_spte_slow(sptep, 0ull);
627 if (!is_rmap_spte(old_spte))
628 return 0;
630 pfn = spte_to_pfn(old_spte);
633 * KVM does not hold the refcount of the page used by
634 * kvm mmu, before reclaiming the page, we should
635 * unmap it from mmu first.
637 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
639 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
640 kvm_set_pfn_accessed(pfn);
641 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
642 kvm_set_pfn_dirty(pfn);
643 return 1;
647 * Rules for using mmu_spte_clear_no_track:
648 * Directly clear spte without caring the state bits of sptep,
649 * it is used to set the upper level spte.
651 static void mmu_spte_clear_no_track(u64 *sptep)
653 __update_clear_spte_fast(sptep, 0ull);
656 static u64 mmu_spte_get_lockless(u64 *sptep)
658 return __get_spte_lockless(sptep);
661 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
664 * Prevent page table teardown by making any free-er wait during
665 * kvm_flush_remote_tlbs() IPI to all active vcpus.
667 local_irq_disable();
668 vcpu->mode = READING_SHADOW_PAGE_TABLES;
670 * Make sure a following spte read is not reordered ahead of the write
671 * to vcpu->mode.
673 smp_mb();
676 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
679 * Make sure the write to vcpu->mode is not reordered in front of
680 * reads to sptes. If it does, kvm_commit_zap_page() can see us
681 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
683 smp_mb();
684 vcpu->mode = OUTSIDE_GUEST_MODE;
685 local_irq_enable();
688 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
689 struct kmem_cache *base_cache, int min)
691 void *obj;
693 if (cache->nobjs >= min)
694 return 0;
695 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
697 if (!obj)
698 return -ENOMEM;
699 cache->objects[cache->nobjs++] = obj;
701 return 0;
704 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
706 return cache->nobjs;
709 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
710 struct kmem_cache *cache)
712 while (mc->nobjs)
713 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
716 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
717 int min)
719 void *page;
721 if (cache->nobjs >= min)
722 return 0;
723 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
724 page = (void *)__get_free_page(GFP_KERNEL);
725 if (!page)
726 return -ENOMEM;
727 cache->objects[cache->nobjs++] = page;
729 return 0;
732 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
734 while (mc->nobjs)
735 free_page((unsigned long)mc->objects[--mc->nobjs]);
738 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
740 int r;
742 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
743 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
744 if (r)
745 goto out;
746 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
747 if (r)
748 goto out;
749 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
750 mmu_page_header_cache, 4);
751 out:
752 return r;
755 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
757 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
758 pte_list_desc_cache);
759 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
760 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
761 mmu_page_header_cache);
764 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
766 void *p;
768 BUG_ON(!mc->nobjs);
769 p = mc->objects[--mc->nobjs];
770 return p;
773 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
775 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
778 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
780 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
783 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
785 if (!sp->role.direct)
786 return sp->gfns[index];
788 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
791 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
793 if (sp->role.direct)
794 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
795 else
796 sp->gfns[index] = gfn;
800 * Return the pointer to the large page information for a given gfn,
801 * handling slots that are not large page aligned.
803 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
804 struct kvm_memory_slot *slot,
805 int level)
807 unsigned long idx;
809 idx = gfn_to_index(gfn, slot->base_gfn, level);
810 return &slot->arch.lpage_info[level - 2][idx];
813 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
815 struct kvm_memory_slot *slot;
816 struct kvm_lpage_info *linfo;
817 int i;
819 slot = gfn_to_memslot(kvm, gfn);
820 for (i = PT_DIRECTORY_LEVEL;
821 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822 linfo = lpage_info_slot(gfn, slot, i);
823 linfo->write_count += 1;
825 kvm->arch.indirect_shadow_pages++;
828 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
830 struct kvm_memory_slot *slot;
831 struct kvm_lpage_info *linfo;
832 int i;
834 slot = gfn_to_memslot(kvm, gfn);
835 for (i = PT_DIRECTORY_LEVEL;
836 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
837 linfo = lpage_info_slot(gfn, slot, i);
838 linfo->write_count -= 1;
839 WARN_ON(linfo->write_count < 0);
841 kvm->arch.indirect_shadow_pages--;
844 static int has_wrprotected_page(struct kvm *kvm,
845 gfn_t gfn,
846 int level)
848 struct kvm_memory_slot *slot;
849 struct kvm_lpage_info *linfo;
851 slot = gfn_to_memslot(kvm, gfn);
852 if (slot) {
853 linfo = lpage_info_slot(gfn, slot, level);
854 return linfo->write_count;
857 return 1;
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 unsigned long page_size;
863 int i, ret = 0;
865 page_size = kvm_host_page_size(kvm, gfn);
867 for (i = PT_PAGE_TABLE_LEVEL;
868 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
875 return ret;
878 static struct kvm_memory_slot *
879 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
880 bool no_dirty_log)
882 struct kvm_memory_slot *slot;
884 slot = gfn_to_memslot(vcpu->kvm, gfn);
885 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
886 (no_dirty_log && slot->dirty_bitmap))
887 slot = NULL;
889 return slot;
892 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
897 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
899 int host_level, level, max_level;
901 host_level = host_mapping_level(vcpu->kvm, large_gfn);
903 if (host_level == PT_PAGE_TABLE_LEVEL)
904 return host_level;
906 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
908 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
909 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
910 break;
912 return level - 1;
916 * Pte mapping structures:
918 * If pte_list bit zero is zero, then pte_list point to the spte.
920 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
921 * pte_list_desc containing more mappings.
923 * Returns the number of pte entries before the spte was added or zero if
924 * the spte was not added.
927 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
928 unsigned long *pte_list)
930 struct pte_list_desc *desc;
931 int i, count = 0;
933 if (!*pte_list) {
934 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
935 *pte_list = (unsigned long)spte;
936 } else if (!(*pte_list & 1)) {
937 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
938 desc = mmu_alloc_pte_list_desc(vcpu);
939 desc->sptes[0] = (u64 *)*pte_list;
940 desc->sptes[1] = spte;
941 *pte_list = (unsigned long)desc | 1;
942 ++count;
943 } else {
944 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
945 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
946 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
947 desc = desc->more;
948 count += PTE_LIST_EXT;
950 if (desc->sptes[PTE_LIST_EXT-1]) {
951 desc->more = mmu_alloc_pte_list_desc(vcpu);
952 desc = desc->more;
954 for (i = 0; desc->sptes[i]; ++i)
955 ++count;
956 desc->sptes[i] = spte;
958 return count;
961 static void
962 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
963 int i, struct pte_list_desc *prev_desc)
965 int j;
967 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
969 desc->sptes[i] = desc->sptes[j];
970 desc->sptes[j] = NULL;
971 if (j != 0)
972 return;
973 if (!prev_desc && !desc->more)
974 *pte_list = (unsigned long)desc->sptes[0];
975 else
976 if (prev_desc)
977 prev_desc->more = desc->more;
978 else
979 *pte_list = (unsigned long)desc->more | 1;
980 mmu_free_pte_list_desc(desc);
983 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
985 struct pte_list_desc *desc;
986 struct pte_list_desc *prev_desc;
987 int i;
989 if (!*pte_list) {
990 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
991 BUG();
992 } else if (!(*pte_list & 1)) {
993 rmap_printk("pte_list_remove: %p 1->0\n", spte);
994 if ((u64 *)*pte_list != spte) {
995 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
996 BUG();
998 *pte_list = 0;
999 } else {
1000 rmap_printk("pte_list_remove: %p many->many\n", spte);
1001 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002 prev_desc = NULL;
1003 while (desc) {
1004 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005 if (desc->sptes[i] == spte) {
1006 pte_list_desc_remove_entry(pte_list,
1007 desc, i,
1008 prev_desc);
1009 return;
1011 prev_desc = desc;
1012 desc = desc->more;
1014 pr_err("pte_list_remove: %p many->many\n", spte);
1015 BUG();
1019 typedef void (*pte_list_walk_fn) (u64 *spte);
1020 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1022 struct pte_list_desc *desc;
1023 int i;
1025 if (!*pte_list)
1026 return;
1028 if (!(*pte_list & 1))
1029 return fn((u64 *)*pte_list);
1031 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1032 while (desc) {
1033 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1034 fn(desc->sptes[i]);
1035 desc = desc->more;
1039 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040 struct kvm_memory_slot *slot)
1042 unsigned long idx;
1044 idx = gfn_to_index(gfn, slot->base_gfn, level);
1045 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1049 * Take gfn and return the reverse mapping to it.
1051 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1053 struct kvm_memory_slot *slot;
1055 slot = gfn_to_memslot(kvm, gfn);
1056 return __gfn_to_rmap(gfn, level, slot);
1059 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061 struct kvm_mmu_memory_cache *cache;
1063 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1064 return mmu_memory_cache_free_objects(cache);
1067 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069 struct kvm_mmu_page *sp;
1070 unsigned long *rmapp;
1072 sp = page_header(__pa(spte));
1073 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1074 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1075 return pte_list_add(vcpu, spte, rmapp);
1078 static void rmap_remove(struct kvm *kvm, u64 *spte)
1080 struct kvm_mmu_page *sp;
1081 gfn_t gfn;
1082 unsigned long *rmapp;
1084 sp = page_header(__pa(spte));
1085 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1086 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1087 pte_list_remove(spte, rmapp);
1091 * Used by the following functions to iterate through the sptes linked by a
1092 * rmap. All fields are private and not assumed to be used outside.
1094 struct rmap_iterator {
1095 /* private fields */
1096 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1097 int pos; /* index of the sptep */
1101 * Iteration must be started by this function. This should also be used after
1102 * removing/dropping sptes from the rmap link because in such cases the
1103 * information in the itererator may not be valid.
1105 * Returns sptep if found, NULL otherwise.
1107 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109 if (!rmap)
1110 return NULL;
1112 if (!(rmap & 1)) {
1113 iter->desc = NULL;
1114 return (u64 *)rmap;
1117 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1118 iter->pos = 0;
1119 return iter->desc->sptes[iter->pos];
1123 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 * Returns sptep if found, NULL otherwise.
1127 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 if (iter->desc) {
1130 if (iter->pos < PTE_LIST_EXT - 1) {
1131 u64 *sptep;
1133 ++iter->pos;
1134 sptep = iter->desc->sptes[iter->pos];
1135 if (sptep)
1136 return sptep;
1139 iter->desc = iter->desc->more;
1141 if (iter->desc) {
1142 iter->pos = 0;
1143 /* desc->sptes[0] cannot be NULL */
1144 return iter->desc->sptes[iter->pos];
1148 return NULL;
1151 static void drop_spte(struct kvm *kvm, u64 *sptep)
1153 if (mmu_spte_clear_track_bits(sptep))
1154 rmap_remove(kvm, sptep);
1158 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1160 if (is_large_pte(*sptep)) {
1161 WARN_ON(page_header(__pa(sptep))->role.level ==
1162 PT_PAGE_TABLE_LEVEL);
1163 drop_spte(kvm, sptep);
1164 --kvm->stat.lpages;
1165 return true;
1168 return false;
1171 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1173 if (__drop_large_spte(vcpu->kvm, sptep))
1174 kvm_flush_remote_tlbs(vcpu->kvm);
1178 * Write-protect on the specified @sptep, @pt_protect indicates whether
1179 * spte writ-protection is caused by protecting shadow page table.
1180 * @flush indicates whether tlb need be flushed.
1182 * Note: write protection is difference between drity logging and spte
1183 * protection:
1184 * - for dirty logging, the spte can be set to writable at anytime if
1185 * its dirty bitmap is properly set.
1186 * - for spte protection, the spte can be writable only after unsync-ing
1187 * shadow page.
1189 * Return true if the spte is dropped.
1191 static bool
1192 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1194 u64 spte = *sptep;
1196 if (!is_writable_pte(spte) &&
1197 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 return false;
1200 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202 if (__drop_large_spte(kvm, sptep)) {
1203 *flush |= true;
1204 return true;
1207 if (pt_protect)
1208 spte &= ~SPTE_MMU_WRITEABLE;
1209 spte = spte & ~PT_WRITABLE_MASK;
1211 *flush |= mmu_spte_update(sptep, spte);
1212 return false;
1215 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216 bool pt_protect)
1218 u64 *sptep;
1219 struct rmap_iterator iter;
1220 bool flush = false;
1222 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1223 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1225 sptep = rmap_get_first(*rmapp, &iter);
1226 continue;
1229 sptep = rmap_get_next(&iter);
1232 return flush;
1236 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237 * @kvm: kvm instance
1238 * @slot: slot to protect
1239 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240 * @mask: indicates which pages we should protect
1242 * Used when we do not need to care about huge page mappings: e.g. during dirty
1243 * logging we do not have any such mappings.
1245 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246 struct kvm_memory_slot *slot,
1247 gfn_t gfn_offset, unsigned long mask)
1249 unsigned long *rmapp;
1251 while (mask) {
1252 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1253 PT_PAGE_TABLE_LEVEL, slot);
1254 __rmap_write_protect(kvm, rmapp, false);
1256 /* clear the first set bit */
1257 mask &= mask - 1;
1261 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1263 struct kvm_memory_slot *slot;
1264 unsigned long *rmapp;
1265 int i;
1266 bool write_protected = false;
1268 slot = gfn_to_memslot(kvm, gfn);
1270 for (i = PT_PAGE_TABLE_LEVEL;
1271 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1272 rmapp = __gfn_to_rmap(gfn, i, slot);
1273 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1276 return write_protected;
1279 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280 struct kvm_memory_slot *slot, unsigned long data)
1282 u64 *sptep;
1283 struct rmap_iterator iter;
1284 int need_tlb_flush = 0;
1286 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1287 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1288 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1290 drop_spte(kvm, sptep);
1291 need_tlb_flush = 1;
1294 return need_tlb_flush;
1297 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298 struct kvm_memory_slot *slot, unsigned long data)
1300 u64 *sptep;
1301 struct rmap_iterator iter;
1302 int need_flush = 0;
1303 u64 new_spte;
1304 pte_t *ptep = (pte_t *)data;
1305 pfn_t new_pfn;
1307 WARN_ON(pte_huge(*ptep));
1308 new_pfn = pte_pfn(*ptep);
1310 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1311 BUG_ON(!is_shadow_present_pte(*sptep));
1312 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1314 need_flush = 1;
1316 if (pte_write(*ptep)) {
1317 drop_spte(kvm, sptep);
1318 sptep = rmap_get_first(*rmapp, &iter);
1319 } else {
1320 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1323 new_spte &= ~PT_WRITABLE_MASK;
1324 new_spte &= ~SPTE_HOST_WRITEABLE;
1325 new_spte &= ~shadow_accessed_mask;
1327 mmu_spte_clear_track_bits(sptep);
1328 mmu_spte_set(sptep, new_spte);
1329 sptep = rmap_get_next(&iter);
1333 if (need_flush)
1334 kvm_flush_remote_tlbs(kvm);
1336 return 0;
1339 static int kvm_handle_hva_range(struct kvm *kvm,
1340 unsigned long start,
1341 unsigned long end,
1342 unsigned long data,
1343 int (*handler)(struct kvm *kvm,
1344 unsigned long *rmapp,
1345 struct kvm_memory_slot *slot,
1346 unsigned long data))
1348 int j;
1349 int ret = 0;
1350 struct kvm_memslots *slots;
1351 struct kvm_memory_slot *memslot;
1353 slots = kvm_memslots(kvm);
1355 kvm_for_each_memslot(memslot, slots) {
1356 unsigned long hva_start, hva_end;
1357 gfn_t gfn_start, gfn_end;
1359 hva_start = max(start, memslot->userspace_addr);
1360 hva_end = min(end, memslot->userspace_addr +
1361 (memslot->npages << PAGE_SHIFT));
1362 if (hva_start >= hva_end)
1363 continue;
1365 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1368 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1371 for (j = PT_PAGE_TABLE_LEVEL;
1372 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1373 unsigned long idx, idx_end;
1374 unsigned long *rmapp;
1377 * {idx(page_j) | page_j intersects with
1378 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1380 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1381 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1383 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1385 for (; idx <= idx_end; ++idx)
1386 ret |= handler(kvm, rmapp++, memslot, data);
1390 return ret;
1393 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1394 unsigned long data,
1395 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396 struct kvm_memory_slot *slot,
1397 unsigned long data))
1399 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1402 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1404 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1407 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1409 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1412 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1414 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1417 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418 struct kvm_memory_slot *slot, unsigned long data)
1420 u64 *sptep;
1421 struct rmap_iterator uninitialized_var(iter);
1422 int young = 0;
1425 * In case of absence of EPT Access and Dirty Bits supports,
1426 * emulate the accessed bit for EPT, by checking if this page has
1427 * an EPT mapping, and clearing it if it does. On the next access,
1428 * a new EPT mapping will be established.
1429 * This has some overhead, but not as much as the cost of swapping
1430 * out actively used pages or breaking up actively used hugepages.
1432 if (!shadow_accessed_mask) {
1433 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1434 goto out;
1437 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438 sptep = rmap_get_next(&iter)) {
1439 BUG_ON(!is_shadow_present_pte(*sptep));
1441 if (*sptep & shadow_accessed_mask) {
1442 young = 1;
1443 clear_bit((ffs(shadow_accessed_mask) - 1),
1444 (unsigned long *)sptep);
1447 out:
1448 /* @data has hva passed to kvm_age_hva(). */
1449 trace_kvm_age_page(data, slot, young);
1450 return young;
1453 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454 struct kvm_memory_slot *slot, unsigned long data)
1456 u64 *sptep;
1457 struct rmap_iterator iter;
1458 int young = 0;
1461 * If there's no access bit in the secondary pte set by the
1462 * hardware it's up to gup-fast/gup to set the access bit in
1463 * the primary pte or in the page structure.
1465 if (!shadow_accessed_mask)
1466 goto out;
1468 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1469 sptep = rmap_get_next(&iter)) {
1470 BUG_ON(!is_shadow_present_pte(*sptep));
1472 if (*sptep & shadow_accessed_mask) {
1473 young = 1;
1474 break;
1477 out:
1478 return young;
1481 #define RMAP_RECYCLE_THRESHOLD 1000
1483 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1485 unsigned long *rmapp;
1486 struct kvm_mmu_page *sp;
1488 sp = page_header(__pa(spte));
1490 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1492 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493 kvm_flush_remote_tlbs(vcpu->kvm);
1496 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1498 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1501 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1503 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1506 #ifdef MMU_DEBUG
1507 static int is_empty_shadow_page(u64 *spt)
1509 u64 *pos;
1510 u64 *end;
1512 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513 if (is_shadow_present_pte(*pos)) {
1514 printk(KERN_ERR "%s: %p %llx\n", __func__,
1515 pos, *pos);
1516 return 0;
1518 return 1;
1520 #endif
1523 * This value is the sum of all of the kvm instances's
1524 * kvm->arch.n_used_mmu_pages values. We need a global,
1525 * aggregate version in order to make the slab shrinker
1526 * faster
1528 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1530 kvm->arch.n_used_mmu_pages += nr;
1531 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1534 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1536 ASSERT(is_empty_shadow_page(sp->spt));
1537 hlist_del(&sp->hash_link);
1538 list_del(&sp->link);
1539 free_page((unsigned long)sp->spt);
1540 if (!sp->role.direct)
1541 free_page((unsigned long)sp->gfns);
1542 kmem_cache_free(mmu_page_header_cache, sp);
1545 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1547 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1550 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551 struct kvm_mmu_page *sp, u64 *parent_pte)
1553 if (!parent_pte)
1554 return;
1556 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1559 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560 u64 *parent_pte)
1562 pte_list_remove(parent_pte, &sp->parent_ptes);
1565 static void drop_parent_pte(struct kvm_mmu_page *sp,
1566 u64 *parent_pte)
1568 mmu_page_remove_parent_pte(sp, parent_pte);
1569 mmu_spte_clear_no_track(parent_pte);
1572 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1573 u64 *parent_pte, int direct)
1575 struct kvm_mmu_page *sp;
1577 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1578 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579 if (!direct)
1580 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1584 * The active_mmu_pages list is the FIFO list, do not move the
1585 * page until it is zapped. kvm_zap_obsolete_pages depends on
1586 * this feature. See the comments in kvm_zap_obsolete_pages().
1588 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1589 sp->parent_ptes = 0;
1590 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1591 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1592 return sp;
1595 static void mark_unsync(u64 *spte);
1596 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1598 pte_list_walk(&sp->parent_ptes, mark_unsync);
1601 static void mark_unsync(u64 *spte)
1603 struct kvm_mmu_page *sp;
1604 unsigned int index;
1606 sp = page_header(__pa(spte));
1607 index = spte - sp->spt;
1608 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609 return;
1610 if (sp->unsync_children++)
1611 return;
1612 kvm_mmu_mark_parents_unsync(sp);
1615 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616 struct kvm_mmu_page *sp)
1618 return 1;
1621 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1625 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1626 struct kvm_mmu_page *sp, u64 *spte,
1627 const void *pte)
1629 WARN_ON(1);
1632 #define KVM_PAGE_ARRAY_NR 16
1634 struct kvm_mmu_pages {
1635 struct mmu_page_and_offset {
1636 struct kvm_mmu_page *sp;
1637 unsigned int idx;
1638 } page[KVM_PAGE_ARRAY_NR];
1639 unsigned int nr;
1642 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1643 int idx)
1645 int i;
1647 if (sp->unsync)
1648 for (i=0; i < pvec->nr; i++)
1649 if (pvec->page[i].sp == sp)
1650 return 0;
1652 pvec->page[pvec->nr].sp = sp;
1653 pvec->page[pvec->nr].idx = idx;
1654 pvec->nr++;
1655 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1658 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1659 struct kvm_mmu_pages *pvec)
1661 int i, ret, nr_unsync_leaf = 0;
1663 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664 struct kvm_mmu_page *child;
1665 u64 ent = sp->spt[i];
1667 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1668 goto clear_child_bitmap;
1670 child = page_header(ent & PT64_BASE_ADDR_MASK);
1672 if (child->unsync_children) {
1673 if (mmu_pages_add(pvec, child, i))
1674 return -ENOSPC;
1676 ret = __mmu_unsync_walk(child, pvec);
1677 if (!ret)
1678 goto clear_child_bitmap;
1679 else if (ret > 0)
1680 nr_unsync_leaf += ret;
1681 else
1682 return ret;
1683 } else if (child->unsync) {
1684 nr_unsync_leaf++;
1685 if (mmu_pages_add(pvec, child, i))
1686 return -ENOSPC;
1687 } else
1688 goto clear_child_bitmap;
1690 continue;
1692 clear_child_bitmap:
1693 __clear_bit(i, sp->unsync_child_bitmap);
1694 sp->unsync_children--;
1695 WARN_ON((int)sp->unsync_children < 0);
1699 return nr_unsync_leaf;
1702 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1703 struct kvm_mmu_pages *pvec)
1705 if (!sp->unsync_children)
1706 return 0;
1708 mmu_pages_add(pvec, sp, 0);
1709 return __mmu_unsync_walk(sp, pvec);
1712 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1714 WARN_ON(!sp->unsync);
1715 trace_kvm_mmu_sync_page(sp);
1716 sp->unsync = 0;
1717 --kvm->stat.mmu_unsync;
1720 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1721 struct list_head *invalid_list);
1722 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1723 struct list_head *invalid_list);
1726 * NOTE: we should pay more attention on the zapped-obsolete page
1727 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1728 * since it has been deleted from active_mmu_pages but still can be found
1729 * at hast list.
1731 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1732 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1733 * all the obsolete pages.
1735 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1736 hlist_for_each_entry(_sp, \
1737 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1738 if ((_sp)->gfn != (_gfn)) {} else
1740 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1741 for_each_gfn_sp(_kvm, _sp, _gfn) \
1742 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1744 /* @sp->gfn should be write-protected at the call site */
1745 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746 struct list_head *invalid_list, bool clear_unsync)
1748 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750 return 1;
1753 if (clear_unsync)
1754 kvm_unlink_unsync_page(vcpu->kvm, sp);
1756 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758 return 1;
1761 kvm_mmu_flush_tlb(vcpu);
1762 return 0;
1765 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1766 struct kvm_mmu_page *sp)
1768 LIST_HEAD(invalid_list);
1769 int ret;
1771 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772 if (ret)
1773 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1775 return ret;
1778 #ifdef CONFIG_KVM_MMU_AUDIT
1779 #include "mmu_audit.c"
1780 #else
1781 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1782 static void mmu_audit_disable(void) { }
1783 #endif
1785 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1786 struct list_head *invalid_list)
1788 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1791 /* @gfn should be write-protected at the call site */
1792 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1794 struct kvm_mmu_page *s;
1795 LIST_HEAD(invalid_list);
1796 bool flush = false;
1798 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799 if (!s->unsync)
1800 continue;
1802 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803 kvm_unlink_unsync_page(vcpu->kvm, s);
1804 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1806 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807 continue;
1809 flush = true;
1812 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813 if (flush)
1814 kvm_mmu_flush_tlb(vcpu);
1817 struct mmu_page_path {
1818 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1819 unsigned int idx[PT64_ROOT_LEVEL-1];
1822 #define for_each_sp(pvec, sp, parents, i) \
1823 for (i = mmu_pages_next(&pvec, &parents, -1), \
1824 sp = pvec.page[i].sp; \
1825 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1826 i = mmu_pages_next(&pvec, &parents, i))
1828 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1829 struct mmu_page_path *parents,
1830 int i)
1832 int n;
1834 for (n = i+1; n < pvec->nr; n++) {
1835 struct kvm_mmu_page *sp = pvec->page[n].sp;
1837 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1838 parents->idx[0] = pvec->page[n].idx;
1839 return n;
1842 parents->parent[sp->role.level-2] = sp;
1843 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1846 return n;
1849 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1851 struct kvm_mmu_page *sp;
1852 unsigned int level = 0;
1854 do {
1855 unsigned int idx = parents->idx[level];
1857 sp = parents->parent[level];
1858 if (!sp)
1859 return;
1861 --sp->unsync_children;
1862 WARN_ON((int)sp->unsync_children < 0);
1863 __clear_bit(idx, sp->unsync_child_bitmap);
1864 level++;
1865 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1868 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1869 struct mmu_page_path *parents,
1870 struct kvm_mmu_pages *pvec)
1872 parents->parent[parent->role.level-1] = NULL;
1873 pvec->nr = 0;
1876 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1877 struct kvm_mmu_page *parent)
1879 int i;
1880 struct kvm_mmu_page *sp;
1881 struct mmu_page_path parents;
1882 struct kvm_mmu_pages pages;
1883 LIST_HEAD(invalid_list);
1885 kvm_mmu_pages_init(parent, &parents, &pages);
1886 while (mmu_unsync_walk(parent, &pages)) {
1887 bool protected = false;
1889 for_each_sp(pages, sp, parents, i)
1890 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1892 if (protected)
1893 kvm_flush_remote_tlbs(vcpu->kvm);
1895 for_each_sp(pages, sp, parents, i) {
1896 kvm_sync_page(vcpu, sp, &invalid_list);
1897 mmu_pages_clear_parents(&parents);
1899 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900 cond_resched_lock(&vcpu->kvm->mmu_lock);
1901 kvm_mmu_pages_init(parent, &parents, &pages);
1905 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1907 int i;
1909 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1910 sp->spt[i] = 0ull;
1913 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1915 sp->write_flooding_count = 0;
1918 static void clear_sp_write_flooding_count(u64 *spte)
1920 struct kvm_mmu_page *sp = page_header(__pa(spte));
1922 __clear_sp_write_flooding_count(sp);
1925 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1927 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1930 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1931 gfn_t gfn,
1932 gva_t gaddr,
1933 unsigned level,
1934 int direct,
1935 unsigned access,
1936 u64 *parent_pte)
1938 union kvm_mmu_page_role role;
1939 unsigned quadrant;
1940 struct kvm_mmu_page *sp;
1941 bool need_sync = false;
1943 role = vcpu->arch.mmu.base_role;
1944 role.level = level;
1945 role.direct = direct;
1946 if (role.direct)
1947 role.cr4_pae = 0;
1948 role.access = access;
1949 if (!vcpu->arch.mmu.direct_map
1950 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1952 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1953 role.quadrant = quadrant;
1955 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956 if (is_obsolete_sp(vcpu->kvm, sp))
1957 continue;
1959 if (!need_sync && sp->unsync)
1960 need_sync = true;
1962 if (sp->role.word != role.word)
1963 continue;
1965 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1966 break;
1968 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1969 if (sp->unsync_children) {
1970 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971 kvm_mmu_mark_parents_unsync(sp);
1972 } else if (sp->unsync)
1973 kvm_mmu_mark_parents_unsync(sp);
1975 __clear_sp_write_flooding_count(sp);
1976 trace_kvm_mmu_get_page(sp, false);
1977 return sp;
1979 ++vcpu->kvm->stat.mmu_cache_miss;
1980 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981 if (!sp)
1982 return sp;
1983 sp->gfn = gfn;
1984 sp->role = role;
1985 hlist_add_head(&sp->hash_link,
1986 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987 if (!direct) {
1988 if (rmap_write_protect(vcpu->kvm, gfn))
1989 kvm_flush_remote_tlbs(vcpu->kvm);
1990 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1991 kvm_sync_pages(vcpu, gfn);
1993 account_shadowed(vcpu->kvm, gfn);
1995 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996 init_shadow_page_table(sp);
1997 trace_kvm_mmu_get_page(sp, true);
1998 return sp;
2001 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2002 struct kvm_vcpu *vcpu, u64 addr)
2004 iterator->addr = addr;
2005 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2006 iterator->level = vcpu->arch.mmu.shadow_root_level;
2008 if (iterator->level == PT64_ROOT_LEVEL &&
2009 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2010 !vcpu->arch.mmu.direct_map)
2011 --iterator->level;
2013 if (iterator->level == PT32E_ROOT_LEVEL) {
2014 iterator->shadow_addr
2015 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2016 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2017 --iterator->level;
2018 if (!iterator->shadow_addr)
2019 iterator->level = 0;
2023 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2025 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2026 return false;
2028 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2029 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2030 return true;
2033 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2034 u64 spte)
2036 if (is_last_spte(spte, iterator->level)) {
2037 iterator->level = 0;
2038 return;
2041 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042 --iterator->level;
2045 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2047 return __shadow_walk_next(iterator, *iterator->sptep);
2050 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2052 u64 spte;
2054 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2055 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2057 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2058 shadow_user_mask | shadow_x_mask;
2060 if (accessed)
2061 spte |= shadow_accessed_mask;
2063 mmu_spte_set(sptep, spte);
2066 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2067 unsigned direct_access)
2069 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2070 struct kvm_mmu_page *child;
2073 * For the direct sp, if the guest pte's dirty bit
2074 * changed form clean to dirty, it will corrupt the
2075 * sp's access: allow writable in the read-only sp,
2076 * so we should update the spte at this point to get
2077 * a new sp with the correct access.
2079 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2080 if (child->role.access == direct_access)
2081 return;
2083 drop_parent_pte(child, sptep);
2084 kvm_flush_remote_tlbs(vcpu->kvm);
2088 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2089 u64 *spte)
2091 u64 pte;
2092 struct kvm_mmu_page *child;
2094 pte = *spte;
2095 if (is_shadow_present_pte(pte)) {
2096 if (is_last_spte(pte, sp->role.level)) {
2097 drop_spte(kvm, spte);
2098 if (is_large_pte(pte))
2099 --kvm->stat.lpages;
2100 } else {
2101 child = page_header(pte & PT64_BASE_ADDR_MASK);
2102 drop_parent_pte(child, spte);
2104 return true;
2107 if (is_mmio_spte(pte))
2108 mmu_spte_clear_no_track(spte);
2110 return false;
2113 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2114 struct kvm_mmu_page *sp)
2116 unsigned i;
2118 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2119 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2122 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2124 mmu_page_remove_parent_pte(sp, parent_pte);
2127 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2129 u64 *sptep;
2130 struct rmap_iterator iter;
2132 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2133 drop_parent_pte(sp, sptep);
2136 static int mmu_zap_unsync_children(struct kvm *kvm,
2137 struct kvm_mmu_page *parent,
2138 struct list_head *invalid_list)
2140 int i, zapped = 0;
2141 struct mmu_page_path parents;
2142 struct kvm_mmu_pages pages;
2144 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2145 return 0;
2147 kvm_mmu_pages_init(parent, &parents, &pages);
2148 while (mmu_unsync_walk(parent, &pages)) {
2149 struct kvm_mmu_page *sp;
2151 for_each_sp(pages, sp, parents, i) {
2152 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2153 mmu_pages_clear_parents(&parents);
2154 zapped++;
2156 kvm_mmu_pages_init(parent, &parents, &pages);
2159 return zapped;
2162 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163 struct list_head *invalid_list)
2165 int ret;
2167 trace_kvm_mmu_prepare_zap_page(sp);
2168 ++kvm->stat.mmu_shadow_zapped;
2169 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2170 kvm_mmu_page_unlink_children(kvm, sp);
2171 kvm_mmu_unlink_parents(kvm, sp);
2173 if (!sp->role.invalid && !sp->role.direct)
2174 unaccount_shadowed(kvm, sp->gfn);
2176 if (sp->unsync)
2177 kvm_unlink_unsync_page(kvm, sp);
2178 if (!sp->root_count) {
2179 /* Count self */
2180 ret++;
2181 list_move(&sp->link, invalid_list);
2182 kvm_mod_used_mmu_pages(kvm, -1);
2183 } else {
2184 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2187 * The obsolete pages can not be used on any vcpus.
2188 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2190 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2191 kvm_reload_remote_mmus(kvm);
2194 sp->role.invalid = 1;
2195 return ret;
2198 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2199 struct list_head *invalid_list)
2201 struct kvm_mmu_page *sp, *nsp;
2203 if (list_empty(invalid_list))
2204 return;
2207 * wmb: make sure everyone sees our modifications to the page tables
2208 * rmb: make sure we see changes to vcpu->mode
2210 smp_mb();
2213 * Wait for all vcpus to exit guest mode and/or lockless shadow
2214 * page table walks.
2216 kvm_flush_remote_tlbs(kvm);
2218 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2219 WARN_ON(!sp->role.invalid || sp->root_count);
2220 kvm_mmu_free_page(sp);
2224 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2225 struct list_head *invalid_list)
2227 struct kvm_mmu_page *sp;
2229 if (list_empty(&kvm->arch.active_mmu_pages))
2230 return false;
2232 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2233 struct kvm_mmu_page, link);
2234 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2236 return true;
2240 * Changing the number of mmu pages allocated to the vm
2241 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2243 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2245 LIST_HEAD(invalid_list);
2247 spin_lock(&kvm->mmu_lock);
2249 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2250 /* Need to free some mmu pages to achieve the goal. */
2251 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2252 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2253 break;
2255 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2256 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2259 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2261 spin_unlock(&kvm->mmu_lock);
2264 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2266 struct kvm_mmu_page *sp;
2267 LIST_HEAD(invalid_list);
2268 int r;
2270 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2271 r = 0;
2272 spin_lock(&kvm->mmu_lock);
2273 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2274 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2275 sp->role.word);
2276 r = 1;
2277 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2279 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2280 spin_unlock(&kvm->mmu_lock);
2282 return r;
2284 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2287 * The function is based on mtrr_type_lookup() in
2288 * arch/x86/kernel/cpu/mtrr/generic.c
2290 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2291 u64 start, u64 end)
2293 int i;
2294 u64 base, mask;
2295 u8 prev_match, curr_match;
2296 int num_var_ranges = KVM_NR_VAR_MTRR;
2298 if (!mtrr_state->enabled)
2299 return 0xFF;
2301 /* Make end inclusive end, instead of exclusive */
2302 end--;
2304 /* Look in fixed ranges. Just return the type as per start */
2305 if (mtrr_state->have_fixed && (start < 0x100000)) {
2306 int idx;
2308 if (start < 0x80000) {
2309 idx = 0;
2310 idx += (start >> 16);
2311 return mtrr_state->fixed_ranges[idx];
2312 } else if (start < 0xC0000) {
2313 idx = 1 * 8;
2314 idx += ((start - 0x80000) >> 14);
2315 return mtrr_state->fixed_ranges[idx];
2316 } else if (start < 0x1000000) {
2317 idx = 3 * 8;
2318 idx += ((start - 0xC0000) >> 12);
2319 return mtrr_state->fixed_ranges[idx];
2324 * Look in variable ranges
2325 * Look of multiple ranges matching this address and pick type
2326 * as per MTRR precedence
2328 if (!(mtrr_state->enabled & 2))
2329 return mtrr_state->def_type;
2331 prev_match = 0xFF;
2332 for (i = 0; i < num_var_ranges; ++i) {
2333 unsigned short start_state, end_state;
2335 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2336 continue;
2338 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2339 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2340 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2341 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2343 start_state = ((start & mask) == (base & mask));
2344 end_state = ((end & mask) == (base & mask));
2345 if (start_state != end_state)
2346 return 0xFE;
2348 if ((start & mask) != (base & mask))
2349 continue;
2351 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2352 if (prev_match == 0xFF) {
2353 prev_match = curr_match;
2354 continue;
2357 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2358 curr_match == MTRR_TYPE_UNCACHABLE)
2359 return MTRR_TYPE_UNCACHABLE;
2361 if ((prev_match == MTRR_TYPE_WRBACK &&
2362 curr_match == MTRR_TYPE_WRTHROUGH) ||
2363 (prev_match == MTRR_TYPE_WRTHROUGH &&
2364 curr_match == MTRR_TYPE_WRBACK)) {
2365 prev_match = MTRR_TYPE_WRTHROUGH;
2366 curr_match = MTRR_TYPE_WRTHROUGH;
2369 if (prev_match != curr_match)
2370 return MTRR_TYPE_UNCACHABLE;
2373 if (prev_match != 0xFF)
2374 return prev_match;
2376 return mtrr_state->def_type;
2379 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2381 u8 mtrr;
2383 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2384 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2385 if (mtrr == 0xfe || mtrr == 0xff)
2386 mtrr = MTRR_TYPE_WRBACK;
2387 return mtrr;
2389 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2391 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2393 trace_kvm_mmu_unsync_page(sp);
2394 ++vcpu->kvm->stat.mmu_unsync;
2395 sp->unsync = 1;
2397 kvm_mmu_mark_parents_unsync(sp);
2400 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2402 struct kvm_mmu_page *s;
2404 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405 if (s->unsync)
2406 continue;
2407 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2408 __kvm_unsync_page(vcpu, s);
2412 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2413 bool can_unsync)
2415 struct kvm_mmu_page *s;
2416 bool need_unsync = false;
2418 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2419 if (!can_unsync)
2420 return 1;
2422 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2423 return 1;
2425 if (!s->unsync)
2426 need_unsync = true;
2428 if (need_unsync)
2429 kvm_unsync_pages(vcpu, gfn);
2430 return 0;
2433 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2434 unsigned pte_access, int level,
2435 gfn_t gfn, pfn_t pfn, bool speculative,
2436 bool can_unsync, bool host_writable)
2438 u64 spte;
2439 int ret = 0;
2441 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2442 return 0;
2444 spte = PT_PRESENT_MASK;
2445 if (!speculative)
2446 spte |= shadow_accessed_mask;
2448 if (pte_access & ACC_EXEC_MASK)
2449 spte |= shadow_x_mask;
2450 else
2451 spte |= shadow_nx_mask;
2453 if (pte_access & ACC_USER_MASK)
2454 spte |= shadow_user_mask;
2456 if (level > PT_PAGE_TABLE_LEVEL)
2457 spte |= PT_PAGE_SIZE_MASK;
2458 if (tdp_enabled)
2459 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2460 kvm_is_mmio_pfn(pfn));
2462 if (host_writable)
2463 spte |= SPTE_HOST_WRITEABLE;
2464 else
2465 pte_access &= ~ACC_WRITE_MASK;
2467 spte |= (u64)pfn << PAGE_SHIFT;
2469 if (pte_access & ACC_WRITE_MASK) {
2472 * Other vcpu creates new sp in the window between
2473 * mapping_level() and acquiring mmu-lock. We can
2474 * allow guest to retry the access, the mapping can
2475 * be fixed if guest refault.
2477 if (level > PT_PAGE_TABLE_LEVEL &&
2478 has_wrprotected_page(vcpu->kvm, gfn, level))
2479 goto done;
2481 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2484 * Optimization: for pte sync, if spte was writable the hash
2485 * lookup is unnecessary (and expensive). Write protection
2486 * is responsibility of mmu_get_page / kvm_sync_page.
2487 * Same reasoning can be applied to dirty page accounting.
2489 if (!can_unsync && is_writable_pte(*sptep))
2490 goto set_pte;
2492 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2493 pgprintk("%s: found shadow page for %llx, marking ro\n",
2494 __func__, gfn);
2495 ret = 1;
2496 pte_access &= ~ACC_WRITE_MASK;
2497 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2501 if (pte_access & ACC_WRITE_MASK)
2502 mark_page_dirty(vcpu->kvm, gfn);
2504 set_pte:
2505 if (mmu_spte_update(sptep, spte))
2506 kvm_flush_remote_tlbs(vcpu->kvm);
2507 done:
2508 return ret;
2511 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512 unsigned pte_access, int write_fault, int *emulate,
2513 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2514 bool host_writable)
2516 int was_rmapped = 0;
2517 int rmap_count;
2519 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2520 *sptep, write_fault, gfn);
2522 if (is_rmap_spte(*sptep)) {
2524 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2525 * the parent of the now unreachable PTE.
2527 if (level > PT_PAGE_TABLE_LEVEL &&
2528 !is_large_pte(*sptep)) {
2529 struct kvm_mmu_page *child;
2530 u64 pte = *sptep;
2532 child = page_header(pte & PT64_BASE_ADDR_MASK);
2533 drop_parent_pte(child, sptep);
2534 kvm_flush_remote_tlbs(vcpu->kvm);
2535 } else if (pfn != spte_to_pfn(*sptep)) {
2536 pgprintk("hfn old %llx new %llx\n",
2537 spte_to_pfn(*sptep), pfn);
2538 drop_spte(vcpu->kvm, sptep);
2539 kvm_flush_remote_tlbs(vcpu->kvm);
2540 } else
2541 was_rmapped = 1;
2544 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2545 true, host_writable)) {
2546 if (write_fault)
2547 *emulate = 1;
2548 kvm_mmu_flush_tlb(vcpu);
2551 if (unlikely(is_mmio_spte(*sptep) && emulate))
2552 *emulate = 1;
2554 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2555 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2556 is_large_pte(*sptep)? "2MB" : "4kB",
2557 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2558 *sptep, sptep);
2559 if (!was_rmapped && is_large_pte(*sptep))
2560 ++vcpu->kvm->stat.lpages;
2562 if (is_shadow_present_pte(*sptep)) {
2563 if (!was_rmapped) {
2564 rmap_count = rmap_add(vcpu, sptep, gfn);
2565 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2566 rmap_recycle(vcpu, sptep, gfn);
2570 kvm_release_pfn_clean(pfn);
2573 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2575 mmu_free_roots(vcpu);
2578 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2579 bool no_dirty_log)
2581 struct kvm_memory_slot *slot;
2583 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2584 if (!slot)
2585 return KVM_PFN_ERR_FAULT;
2587 return gfn_to_pfn_memslot_atomic(slot, gfn);
2590 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2591 struct kvm_mmu_page *sp,
2592 u64 *start, u64 *end)
2594 struct page *pages[PTE_PREFETCH_NUM];
2595 unsigned access = sp->role.access;
2596 int i, ret;
2597 gfn_t gfn;
2599 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2600 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2601 return -1;
2603 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2604 if (ret <= 0)
2605 return -1;
2607 for (i = 0; i < ret; i++, gfn++, start++)
2608 mmu_set_spte(vcpu, start, access, 0, NULL,
2609 sp->role.level, gfn, page_to_pfn(pages[i]),
2610 true, true);
2612 return 0;
2615 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2616 struct kvm_mmu_page *sp, u64 *sptep)
2618 u64 *spte, *start = NULL;
2619 int i;
2621 WARN_ON(!sp->role.direct);
2623 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2624 spte = sp->spt + i;
2626 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2627 if (is_shadow_present_pte(*spte) || spte == sptep) {
2628 if (!start)
2629 continue;
2630 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2631 break;
2632 start = NULL;
2633 } else if (!start)
2634 start = spte;
2638 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2640 struct kvm_mmu_page *sp;
2643 * Since it's no accessed bit on EPT, it's no way to
2644 * distinguish between actually accessed translations
2645 * and prefetched, so disable pte prefetch if EPT is
2646 * enabled.
2648 if (!shadow_accessed_mask)
2649 return;
2651 sp = page_header(__pa(sptep));
2652 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2653 return;
2655 __direct_pte_prefetch(vcpu, sp, sptep);
2658 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2659 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2660 bool prefault)
2662 struct kvm_shadow_walk_iterator iterator;
2663 struct kvm_mmu_page *sp;
2664 int emulate = 0;
2665 gfn_t pseudo_gfn;
2667 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2668 if (iterator.level == level) {
2669 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2670 write, &emulate, level, gfn, pfn,
2671 prefault, map_writable);
2672 direct_pte_prefetch(vcpu, iterator.sptep);
2673 ++vcpu->stat.pf_fixed;
2674 break;
2677 if (!is_shadow_present_pte(*iterator.sptep)) {
2678 u64 base_addr = iterator.addr;
2680 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2681 pseudo_gfn = base_addr >> PAGE_SHIFT;
2682 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2683 iterator.level - 1,
2684 1, ACC_ALL, iterator.sptep);
2686 link_shadow_page(iterator.sptep, sp, true);
2689 return emulate;
2692 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2694 siginfo_t info;
2696 info.si_signo = SIGBUS;
2697 info.si_errno = 0;
2698 info.si_code = BUS_MCEERR_AR;
2699 info.si_addr = (void __user *)address;
2700 info.si_addr_lsb = PAGE_SHIFT;
2702 send_sig_info(SIGBUS, &info, tsk);
2705 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2708 * Do not cache the mmio info caused by writing the readonly gfn
2709 * into the spte otherwise read access on readonly gfn also can
2710 * caused mmio page fault and treat it as mmio access.
2711 * Return 1 to tell kvm to emulate it.
2713 if (pfn == KVM_PFN_ERR_RO_FAULT)
2714 return 1;
2716 if (pfn == KVM_PFN_ERR_HWPOISON) {
2717 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2718 return 0;
2721 return -EFAULT;
2724 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2725 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2727 pfn_t pfn = *pfnp;
2728 gfn_t gfn = *gfnp;
2729 int level = *levelp;
2732 * Check if it's a transparent hugepage. If this would be an
2733 * hugetlbfs page, level wouldn't be set to
2734 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2735 * here.
2737 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2738 level == PT_PAGE_TABLE_LEVEL &&
2739 PageTransCompound(pfn_to_page(pfn)) &&
2740 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2741 unsigned long mask;
2743 * mmu_notifier_retry was successful and we hold the
2744 * mmu_lock here, so the pmd can't become splitting
2745 * from under us, and in turn
2746 * __split_huge_page_refcount() can't run from under
2747 * us and we can safely transfer the refcount from
2748 * PG_tail to PG_head as we switch the pfn to tail to
2749 * head.
2751 *levelp = level = PT_DIRECTORY_LEVEL;
2752 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2753 VM_BUG_ON((gfn & mask) != (pfn & mask));
2754 if (pfn & mask) {
2755 gfn &= ~mask;
2756 *gfnp = gfn;
2757 kvm_release_pfn_clean(pfn);
2758 pfn &= ~mask;
2759 kvm_get_pfn(pfn);
2760 *pfnp = pfn;
2765 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2766 pfn_t pfn, unsigned access, int *ret_val)
2768 bool ret = true;
2770 /* The pfn is invalid, report the error! */
2771 if (unlikely(is_error_pfn(pfn))) {
2772 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2773 goto exit;
2776 if (unlikely(is_noslot_pfn(pfn)))
2777 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2779 ret = false;
2780 exit:
2781 return ret;
2784 static bool page_fault_can_be_fast(u32 error_code)
2787 * Do not fix the mmio spte with invalid generation number which
2788 * need to be updated by slow page fault path.
2790 if (unlikely(error_code & PFERR_RSVD_MASK))
2791 return false;
2794 * #PF can be fast only if the shadow page table is present and it
2795 * is caused by write-protect, that means we just need change the
2796 * W bit of the spte which can be done out of mmu-lock.
2798 if (!(error_code & PFERR_PRESENT_MASK) ||
2799 !(error_code & PFERR_WRITE_MASK))
2800 return false;
2802 return true;
2805 static bool
2806 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2808 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2809 gfn_t gfn;
2811 WARN_ON(!sp->role.direct);
2814 * The gfn of direct spte is stable since it is calculated
2815 * by sp->gfn.
2817 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2819 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2820 mark_page_dirty(vcpu->kvm, gfn);
2822 return true;
2826 * Return value:
2827 * - true: let the vcpu to access on the same address again.
2828 * - false: let the real page fault path to fix it.
2830 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2831 u32 error_code)
2833 struct kvm_shadow_walk_iterator iterator;
2834 bool ret = false;
2835 u64 spte = 0ull;
2837 if (!page_fault_can_be_fast(error_code))
2838 return false;
2840 walk_shadow_page_lockless_begin(vcpu);
2841 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2842 if (!is_shadow_present_pte(spte) || iterator.level < level)
2843 break;
2846 * If the mapping has been changed, let the vcpu fault on the
2847 * same address again.
2849 if (!is_rmap_spte(spte)) {
2850 ret = true;
2851 goto exit;
2854 if (!is_last_spte(spte, level))
2855 goto exit;
2858 * Check if it is a spurious fault caused by TLB lazily flushed.
2860 * Need not check the access of upper level table entries since
2861 * they are always ACC_ALL.
2863 if (is_writable_pte(spte)) {
2864 ret = true;
2865 goto exit;
2869 * Currently, to simplify the code, only the spte write-protected
2870 * by dirty-log can be fast fixed.
2872 if (!spte_is_locklessly_modifiable(spte))
2873 goto exit;
2876 * Currently, fast page fault only works for direct mapping since
2877 * the gfn is not stable for indirect shadow page.
2878 * See Documentation/virtual/kvm/locking.txt to get more detail.
2880 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2881 exit:
2882 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2883 spte, ret);
2884 walk_shadow_page_lockless_end(vcpu);
2886 return ret;
2889 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2890 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2891 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2893 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2894 gfn_t gfn, bool prefault)
2896 int r;
2897 int level;
2898 int force_pt_level;
2899 pfn_t pfn;
2900 unsigned long mmu_seq;
2901 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2903 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2904 if (likely(!force_pt_level)) {
2905 level = mapping_level(vcpu, gfn);
2907 * This path builds a PAE pagetable - so we can map
2908 * 2mb pages at maximum. Therefore check if the level
2909 * is larger than that.
2911 if (level > PT_DIRECTORY_LEVEL)
2912 level = PT_DIRECTORY_LEVEL;
2914 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2915 } else
2916 level = PT_PAGE_TABLE_LEVEL;
2918 if (fast_page_fault(vcpu, v, level, error_code))
2919 return 0;
2921 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2922 smp_rmb();
2924 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2925 return 0;
2927 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2928 return r;
2930 spin_lock(&vcpu->kvm->mmu_lock);
2931 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2932 goto out_unlock;
2933 make_mmu_pages_available(vcpu);
2934 if (likely(!force_pt_level))
2935 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2936 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2937 prefault);
2938 spin_unlock(&vcpu->kvm->mmu_lock);
2941 return r;
2943 out_unlock:
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945 kvm_release_pfn_clean(pfn);
2946 return 0;
2950 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2952 int i;
2953 struct kvm_mmu_page *sp;
2954 LIST_HEAD(invalid_list);
2956 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2957 return;
2959 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2960 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2961 vcpu->arch.mmu.direct_map)) {
2962 hpa_t root = vcpu->arch.mmu.root_hpa;
2964 spin_lock(&vcpu->kvm->mmu_lock);
2965 sp = page_header(root);
2966 --sp->root_count;
2967 if (!sp->root_count && sp->role.invalid) {
2968 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2969 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2971 spin_unlock(&vcpu->kvm->mmu_lock);
2972 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2973 return;
2976 spin_lock(&vcpu->kvm->mmu_lock);
2977 for (i = 0; i < 4; ++i) {
2978 hpa_t root = vcpu->arch.mmu.pae_root[i];
2980 if (root) {
2981 root &= PT64_BASE_ADDR_MASK;
2982 sp = page_header(root);
2983 --sp->root_count;
2984 if (!sp->root_count && sp->role.invalid)
2985 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2986 &invalid_list);
2988 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2990 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2991 spin_unlock(&vcpu->kvm->mmu_lock);
2992 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2995 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2997 int ret = 0;
2999 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3000 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3001 ret = 1;
3004 return ret;
3007 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3009 struct kvm_mmu_page *sp;
3010 unsigned i;
3012 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3013 spin_lock(&vcpu->kvm->mmu_lock);
3014 make_mmu_pages_available(vcpu);
3015 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3016 1, ACC_ALL, NULL);
3017 ++sp->root_count;
3018 spin_unlock(&vcpu->kvm->mmu_lock);
3019 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3020 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3021 for (i = 0; i < 4; ++i) {
3022 hpa_t root = vcpu->arch.mmu.pae_root[i];
3024 ASSERT(!VALID_PAGE(root));
3025 spin_lock(&vcpu->kvm->mmu_lock);
3026 make_mmu_pages_available(vcpu);
3027 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3028 i << 30,
3029 PT32_ROOT_LEVEL, 1, ACC_ALL,
3030 NULL);
3031 root = __pa(sp->spt);
3032 ++sp->root_count;
3033 spin_unlock(&vcpu->kvm->mmu_lock);
3034 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3036 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3037 } else
3038 BUG();
3040 return 0;
3043 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3045 struct kvm_mmu_page *sp;
3046 u64 pdptr, pm_mask;
3047 gfn_t root_gfn;
3048 int i;
3050 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3052 if (mmu_check_root(vcpu, root_gfn))
3053 return 1;
3056 * Do we shadow a long mode page table? If so we need to
3057 * write-protect the guests page table root.
3059 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3060 hpa_t root = vcpu->arch.mmu.root_hpa;
3062 ASSERT(!VALID_PAGE(root));
3064 spin_lock(&vcpu->kvm->mmu_lock);
3065 make_mmu_pages_available(vcpu);
3066 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3067 0, ACC_ALL, NULL);
3068 root = __pa(sp->spt);
3069 ++sp->root_count;
3070 spin_unlock(&vcpu->kvm->mmu_lock);
3071 vcpu->arch.mmu.root_hpa = root;
3072 return 0;
3076 * We shadow a 32 bit page table. This may be a legacy 2-level
3077 * or a PAE 3-level page table. In either case we need to be aware that
3078 * the shadow page table may be a PAE or a long mode page table.
3080 pm_mask = PT_PRESENT_MASK;
3081 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3082 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3084 for (i = 0; i < 4; ++i) {
3085 hpa_t root = vcpu->arch.mmu.pae_root[i];
3087 ASSERT(!VALID_PAGE(root));
3088 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3089 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3090 if (!is_present_gpte(pdptr)) {
3091 vcpu->arch.mmu.pae_root[i] = 0;
3092 continue;
3094 root_gfn = pdptr >> PAGE_SHIFT;
3095 if (mmu_check_root(vcpu, root_gfn))
3096 return 1;
3098 spin_lock(&vcpu->kvm->mmu_lock);
3099 make_mmu_pages_available(vcpu);
3100 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3101 PT32_ROOT_LEVEL, 0,
3102 ACC_ALL, NULL);
3103 root = __pa(sp->spt);
3104 ++sp->root_count;
3105 spin_unlock(&vcpu->kvm->mmu_lock);
3107 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3109 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3112 * If we shadow a 32 bit page table with a long mode page
3113 * table we enter this path.
3115 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3116 if (vcpu->arch.mmu.lm_root == NULL) {
3118 * The additional page necessary for this is only
3119 * allocated on demand.
3122 u64 *lm_root;
3124 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3125 if (lm_root == NULL)
3126 return 1;
3128 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3130 vcpu->arch.mmu.lm_root = lm_root;
3133 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3136 return 0;
3139 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3141 if (vcpu->arch.mmu.direct_map)
3142 return mmu_alloc_direct_roots(vcpu);
3143 else
3144 return mmu_alloc_shadow_roots(vcpu);
3147 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3149 int i;
3150 struct kvm_mmu_page *sp;
3152 if (vcpu->arch.mmu.direct_map)
3153 return;
3155 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3156 return;
3158 vcpu_clear_mmio_info(vcpu, ~0ul);
3159 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3160 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3161 hpa_t root = vcpu->arch.mmu.root_hpa;
3162 sp = page_header(root);
3163 mmu_sync_children(vcpu, sp);
3164 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3165 return;
3167 for (i = 0; i < 4; ++i) {
3168 hpa_t root = vcpu->arch.mmu.pae_root[i];
3170 if (root && VALID_PAGE(root)) {
3171 root &= PT64_BASE_ADDR_MASK;
3172 sp = page_header(root);
3173 mmu_sync_children(vcpu, sp);
3176 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3179 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3181 spin_lock(&vcpu->kvm->mmu_lock);
3182 mmu_sync_roots(vcpu);
3183 spin_unlock(&vcpu->kvm->mmu_lock);
3185 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3187 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3188 u32 access, struct x86_exception *exception)
3190 if (exception)
3191 exception->error_code = 0;
3192 return vaddr;
3195 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3196 u32 access,
3197 struct x86_exception *exception)
3199 if (exception)
3200 exception->error_code = 0;
3201 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3204 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3206 if (direct)
3207 return vcpu_match_mmio_gpa(vcpu, addr);
3209 return vcpu_match_mmio_gva(vcpu, addr);
3214 * On direct hosts, the last spte is only allows two states
3215 * for mmio page fault:
3216 * - It is the mmio spte
3217 * - It is zapped or it is being zapped.
3219 * This function completely checks the spte when the last spte
3220 * is not the mmio spte.
3222 static bool check_direct_spte_mmio_pf(u64 spte)
3224 return __check_direct_spte_mmio_pf(spte);
3227 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3229 struct kvm_shadow_walk_iterator iterator;
3230 u64 spte = 0ull;
3232 walk_shadow_page_lockless_begin(vcpu);
3233 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3234 if (!is_shadow_present_pte(spte))
3235 break;
3236 walk_shadow_page_lockless_end(vcpu);
3238 return spte;
3241 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3243 u64 spte;
3245 if (quickly_check_mmio_pf(vcpu, addr, direct))
3246 return RET_MMIO_PF_EMULATE;
3248 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3250 if (is_mmio_spte(spte)) {
3251 gfn_t gfn = get_mmio_spte_gfn(spte);
3252 unsigned access = get_mmio_spte_access(spte);
3254 if (!check_mmio_spte(vcpu->kvm, spte))
3255 return RET_MMIO_PF_INVALID;
3257 if (direct)
3258 addr = 0;
3260 trace_handle_mmio_page_fault(addr, gfn, access);
3261 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3262 return RET_MMIO_PF_EMULATE;
3266 * It's ok if the gva is remapped by other cpus on shadow guest,
3267 * it's a BUG if the gfn is not a mmio page.
3269 if (direct && !check_direct_spte_mmio_pf(spte))
3270 return RET_MMIO_PF_BUG;
3273 * If the page table is zapped by other cpus, let CPU fault again on
3274 * the address.
3276 return RET_MMIO_PF_RETRY;
3278 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3280 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3281 u32 error_code, bool direct)
3283 int ret;
3285 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3286 WARN_ON(ret == RET_MMIO_PF_BUG);
3287 return ret;
3290 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3291 u32 error_code, bool prefault)
3293 gfn_t gfn;
3294 int r;
3296 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3298 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3299 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3301 if (likely(r != RET_MMIO_PF_INVALID))
3302 return r;
3305 r = mmu_topup_memory_caches(vcpu);
3306 if (r)
3307 return r;
3309 ASSERT(vcpu);
3310 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3312 gfn = gva >> PAGE_SHIFT;
3314 return nonpaging_map(vcpu, gva & PAGE_MASK,
3315 error_code, gfn, prefault);
3318 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3320 struct kvm_arch_async_pf arch;
3322 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3323 arch.gfn = gfn;
3324 arch.direct_map = vcpu->arch.mmu.direct_map;
3325 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3327 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3330 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3332 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3333 kvm_event_needs_reinjection(vcpu)))
3334 return false;
3336 return kvm_x86_ops->interrupt_allowed(vcpu);
3339 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3340 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3342 bool async;
3344 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3346 if (!async)
3347 return false; /* *pfn has correct page already */
3349 if (!prefault && can_do_async_pf(vcpu)) {
3350 trace_kvm_try_async_get_page(gva, gfn);
3351 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3352 trace_kvm_async_pf_doublefault(gva, gfn);
3353 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3354 return true;
3355 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3356 return true;
3359 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3361 return false;
3364 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3365 bool prefault)
3367 pfn_t pfn;
3368 int r;
3369 int level;
3370 int force_pt_level;
3371 gfn_t gfn = gpa >> PAGE_SHIFT;
3372 unsigned long mmu_seq;
3373 int write = error_code & PFERR_WRITE_MASK;
3374 bool map_writable;
3376 ASSERT(vcpu);
3377 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3379 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3380 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3382 if (likely(r != RET_MMIO_PF_INVALID))
3383 return r;
3386 r = mmu_topup_memory_caches(vcpu);
3387 if (r)
3388 return r;
3390 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3391 if (likely(!force_pt_level)) {
3392 level = mapping_level(vcpu, gfn);
3393 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3394 } else
3395 level = PT_PAGE_TABLE_LEVEL;
3397 if (fast_page_fault(vcpu, gpa, level, error_code))
3398 return 0;
3400 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3401 smp_rmb();
3403 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3404 return 0;
3406 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3407 return r;
3409 spin_lock(&vcpu->kvm->mmu_lock);
3410 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3411 goto out_unlock;
3412 make_mmu_pages_available(vcpu);
3413 if (likely(!force_pt_level))
3414 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3415 r = __direct_map(vcpu, gpa, write, map_writable,
3416 level, gfn, pfn, prefault);
3417 spin_unlock(&vcpu->kvm->mmu_lock);
3419 return r;
3421 out_unlock:
3422 spin_unlock(&vcpu->kvm->mmu_lock);
3423 kvm_release_pfn_clean(pfn);
3424 return 0;
3427 static void nonpaging_free(struct kvm_vcpu *vcpu)
3429 mmu_free_roots(vcpu);
3432 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3433 struct kvm_mmu *context)
3435 context->new_cr3 = nonpaging_new_cr3;
3436 context->page_fault = nonpaging_page_fault;
3437 context->gva_to_gpa = nonpaging_gva_to_gpa;
3438 context->free = nonpaging_free;
3439 context->sync_page = nonpaging_sync_page;
3440 context->invlpg = nonpaging_invlpg;
3441 context->update_pte = nonpaging_update_pte;
3442 context->root_level = 0;
3443 context->shadow_root_level = PT32E_ROOT_LEVEL;
3444 context->root_hpa = INVALID_PAGE;
3445 context->direct_map = true;
3446 context->nx = false;
3447 return 0;
3450 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3452 ++vcpu->stat.tlb_flush;
3453 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3455 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3457 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3459 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3460 mmu_free_roots(vcpu);
3463 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3465 return kvm_read_cr3(vcpu);
3468 static void inject_page_fault(struct kvm_vcpu *vcpu,
3469 struct x86_exception *fault)
3471 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3474 static void paging_free(struct kvm_vcpu *vcpu)
3476 nonpaging_free(vcpu);
3479 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3480 unsigned access, int *nr_present)
3482 if (unlikely(is_mmio_spte(*sptep))) {
3483 if (gfn != get_mmio_spte_gfn(*sptep)) {
3484 mmu_spte_clear_no_track(sptep);
3485 return true;
3488 (*nr_present)++;
3489 mark_mmio_spte(kvm, sptep, gfn, access);
3490 return true;
3493 return false;
3496 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3498 unsigned index;
3500 index = level - 1;
3501 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3502 return mmu->last_pte_bitmap & (1 << index);
3505 #define PTTYPE_EPT 18 /* arbitrary */
3506 #define PTTYPE PTTYPE_EPT
3507 #include "paging_tmpl.h"
3508 #undef PTTYPE
3510 #define PTTYPE 64
3511 #include "paging_tmpl.h"
3512 #undef PTTYPE
3514 #define PTTYPE 32
3515 #include "paging_tmpl.h"
3516 #undef PTTYPE
3518 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3519 struct kvm_mmu *context)
3521 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3522 u64 exb_bit_rsvd = 0;
3524 context->bad_mt_xwr = 0;
3526 if (!context->nx)
3527 exb_bit_rsvd = rsvd_bits(63, 63);
3528 switch (context->root_level) {
3529 case PT32_ROOT_LEVEL:
3530 /* no rsvd bits for 2 level 4K page table entries */
3531 context->rsvd_bits_mask[0][1] = 0;
3532 context->rsvd_bits_mask[0][0] = 0;
3533 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3535 if (!is_pse(vcpu)) {
3536 context->rsvd_bits_mask[1][1] = 0;
3537 break;
3540 if (is_cpuid_PSE36())
3541 /* 36bits PSE 4MB page */
3542 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3543 else
3544 /* 32 bits PSE 4MB page */
3545 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3546 break;
3547 case PT32E_ROOT_LEVEL:
3548 context->rsvd_bits_mask[0][2] =
3549 rsvd_bits(maxphyaddr, 63) |
3550 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3551 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3552 rsvd_bits(maxphyaddr, 62); /* PDE */
3553 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3554 rsvd_bits(maxphyaddr, 62); /* PTE */
3555 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3556 rsvd_bits(maxphyaddr, 62) |
3557 rsvd_bits(13, 20); /* large page */
3558 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3559 break;
3560 case PT64_ROOT_LEVEL:
3561 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3562 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3563 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3564 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3565 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566 rsvd_bits(maxphyaddr, 51);
3567 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568 rsvd_bits(maxphyaddr, 51);
3569 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3570 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3571 rsvd_bits(maxphyaddr, 51) |
3572 rsvd_bits(13, 29);
3573 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3574 rsvd_bits(maxphyaddr, 51) |
3575 rsvd_bits(13, 20); /* large page */
3576 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3577 break;
3581 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3582 struct kvm_mmu *context, bool execonly)
3584 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3585 int pte;
3587 context->rsvd_bits_mask[0][3] =
3588 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3589 context->rsvd_bits_mask[0][2] =
3590 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3591 context->rsvd_bits_mask[0][1] =
3592 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3593 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3595 /* large page */
3596 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3597 context->rsvd_bits_mask[1][2] =
3598 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3599 context->rsvd_bits_mask[1][1] =
3600 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3601 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3603 for (pte = 0; pte < 64; pte++) {
3604 int rwx_bits = pte & 7;
3605 int mt = pte >> 3;
3606 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3607 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3608 (rwx_bits == 0x4 && !execonly))
3609 context->bad_mt_xwr |= (1ull << pte);
3613 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3614 struct kvm_mmu *mmu, bool ept)
3616 unsigned bit, byte, pfec;
3617 u8 map;
3618 bool fault, x, w, u, wf, uf, ff, smep;
3620 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3621 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3622 pfec = byte << 1;
3623 map = 0;
3624 wf = pfec & PFERR_WRITE_MASK;
3625 uf = pfec & PFERR_USER_MASK;
3626 ff = pfec & PFERR_FETCH_MASK;
3627 for (bit = 0; bit < 8; ++bit) {
3628 x = bit & ACC_EXEC_MASK;
3629 w = bit & ACC_WRITE_MASK;
3630 u = bit & ACC_USER_MASK;
3632 if (!ept) {
3633 /* Not really needed: !nx will cause pte.nx to fault */
3634 x |= !mmu->nx;
3635 /* Allow supervisor writes if !cr0.wp */
3636 w |= !is_write_protection(vcpu) && !uf;
3637 /* Disallow supervisor fetches of user code if cr4.smep */
3638 x &= !(smep && u && !uf);
3639 } else
3640 /* Not really needed: no U/S accesses on ept */
3641 u = 1;
3643 fault = (ff && !x) || (uf && !u) || (wf && !w);
3644 map |= fault << bit;
3646 mmu->permissions[byte] = map;
3650 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3652 u8 map;
3653 unsigned level, root_level = mmu->root_level;
3654 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3656 if (root_level == PT32E_ROOT_LEVEL)
3657 --root_level;
3658 /* PT_PAGE_TABLE_LEVEL always terminates */
3659 map = 1 | (1 << ps_set_index);
3660 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3661 if (level <= PT_PDPE_LEVEL
3662 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3663 map |= 1 << (ps_set_index | (level - 1));
3665 mmu->last_pte_bitmap = map;
3668 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3669 struct kvm_mmu *context,
3670 int level)
3672 context->nx = is_nx(vcpu);
3673 context->root_level = level;
3675 reset_rsvds_bits_mask(vcpu, context);
3676 update_permission_bitmask(vcpu, context, false);
3677 update_last_pte_bitmap(vcpu, context);
3679 ASSERT(is_pae(vcpu));
3680 context->new_cr3 = paging_new_cr3;
3681 context->page_fault = paging64_page_fault;
3682 context->gva_to_gpa = paging64_gva_to_gpa;
3683 context->sync_page = paging64_sync_page;
3684 context->invlpg = paging64_invlpg;
3685 context->update_pte = paging64_update_pte;
3686 context->free = paging_free;
3687 context->shadow_root_level = level;
3688 context->root_hpa = INVALID_PAGE;
3689 context->direct_map = false;
3690 return 0;
3693 static int paging64_init_context(struct kvm_vcpu *vcpu,
3694 struct kvm_mmu *context)
3696 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3699 static int paging32_init_context(struct kvm_vcpu *vcpu,
3700 struct kvm_mmu *context)
3702 context->nx = false;
3703 context->root_level = PT32_ROOT_LEVEL;
3705 reset_rsvds_bits_mask(vcpu, context);
3706 update_permission_bitmask(vcpu, context, false);
3707 update_last_pte_bitmap(vcpu, context);
3709 context->new_cr3 = paging_new_cr3;
3710 context->page_fault = paging32_page_fault;
3711 context->gva_to_gpa = paging32_gva_to_gpa;
3712 context->free = paging_free;
3713 context->sync_page = paging32_sync_page;
3714 context->invlpg = paging32_invlpg;
3715 context->update_pte = paging32_update_pte;
3716 context->shadow_root_level = PT32E_ROOT_LEVEL;
3717 context->root_hpa = INVALID_PAGE;
3718 context->direct_map = false;
3719 return 0;
3722 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3723 struct kvm_mmu *context)
3725 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3728 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3730 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3732 context->base_role.word = 0;
3733 context->new_cr3 = nonpaging_new_cr3;
3734 context->page_fault = tdp_page_fault;
3735 context->free = nonpaging_free;
3736 context->sync_page = nonpaging_sync_page;
3737 context->invlpg = nonpaging_invlpg;
3738 context->update_pte = nonpaging_update_pte;
3739 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3740 context->root_hpa = INVALID_PAGE;
3741 context->direct_map = true;
3742 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3743 context->get_cr3 = get_cr3;
3744 context->get_pdptr = kvm_pdptr_read;
3745 context->inject_page_fault = kvm_inject_page_fault;
3747 if (!is_paging(vcpu)) {
3748 context->nx = false;
3749 context->gva_to_gpa = nonpaging_gva_to_gpa;
3750 context->root_level = 0;
3751 } else if (is_long_mode(vcpu)) {
3752 context->nx = is_nx(vcpu);
3753 context->root_level = PT64_ROOT_LEVEL;
3754 reset_rsvds_bits_mask(vcpu, context);
3755 context->gva_to_gpa = paging64_gva_to_gpa;
3756 } else if (is_pae(vcpu)) {
3757 context->nx = is_nx(vcpu);
3758 context->root_level = PT32E_ROOT_LEVEL;
3759 reset_rsvds_bits_mask(vcpu, context);
3760 context->gva_to_gpa = paging64_gva_to_gpa;
3761 } else {
3762 context->nx = false;
3763 context->root_level = PT32_ROOT_LEVEL;
3764 reset_rsvds_bits_mask(vcpu, context);
3765 context->gva_to_gpa = paging32_gva_to_gpa;
3768 update_permission_bitmask(vcpu, context, false);
3769 update_last_pte_bitmap(vcpu, context);
3771 return 0;
3774 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3776 int r;
3777 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3778 ASSERT(vcpu);
3779 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3781 if (!is_paging(vcpu))
3782 r = nonpaging_init_context(vcpu, context);
3783 else if (is_long_mode(vcpu))
3784 r = paging64_init_context(vcpu, context);
3785 else if (is_pae(vcpu))
3786 r = paging32E_init_context(vcpu, context);
3787 else
3788 r = paging32_init_context(vcpu, context);
3790 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3791 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3792 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3793 vcpu->arch.mmu.base_role.smep_andnot_wp
3794 = smep && !is_write_protection(vcpu);
3796 return r;
3798 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3800 int kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3801 bool execonly)
3803 ASSERT(vcpu);
3804 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3806 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3808 context->nx = true;
3809 context->new_cr3 = paging_new_cr3;
3810 context->page_fault = ept_page_fault;
3811 context->gva_to_gpa = ept_gva_to_gpa;
3812 context->sync_page = ept_sync_page;
3813 context->invlpg = ept_invlpg;
3814 context->update_pte = ept_update_pte;
3815 context->free = paging_free;
3816 context->root_level = context->shadow_root_level;
3817 context->root_hpa = INVALID_PAGE;
3818 context->direct_map = false;
3820 update_permission_bitmask(vcpu, context, true);
3821 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3823 return 0;
3825 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3827 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3829 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3831 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3832 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3833 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3834 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3836 return r;
3839 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3841 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3843 g_context->get_cr3 = get_cr3;
3844 g_context->get_pdptr = kvm_pdptr_read;
3845 g_context->inject_page_fault = kvm_inject_page_fault;
3848 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3849 * translation of l2_gpa to l1_gpa addresses is done using the
3850 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3851 * functions between mmu and nested_mmu are swapped.
3853 if (!is_paging(vcpu)) {
3854 g_context->nx = false;
3855 g_context->root_level = 0;
3856 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3857 } else if (is_long_mode(vcpu)) {
3858 g_context->nx = is_nx(vcpu);
3859 g_context->root_level = PT64_ROOT_LEVEL;
3860 reset_rsvds_bits_mask(vcpu, g_context);
3861 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3862 } else if (is_pae(vcpu)) {
3863 g_context->nx = is_nx(vcpu);
3864 g_context->root_level = PT32E_ROOT_LEVEL;
3865 reset_rsvds_bits_mask(vcpu, g_context);
3866 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3867 } else {
3868 g_context->nx = false;
3869 g_context->root_level = PT32_ROOT_LEVEL;
3870 reset_rsvds_bits_mask(vcpu, g_context);
3871 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3874 update_permission_bitmask(vcpu, g_context, false);
3875 update_last_pte_bitmap(vcpu, g_context);
3877 return 0;
3880 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3882 if (mmu_is_nested(vcpu))
3883 return init_kvm_nested_mmu(vcpu);
3884 else if (tdp_enabled)
3885 return init_kvm_tdp_mmu(vcpu);
3886 else
3887 return init_kvm_softmmu(vcpu);
3890 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3892 ASSERT(vcpu);
3893 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3894 /* mmu.free() should set root_hpa = INVALID_PAGE */
3895 vcpu->arch.mmu.free(vcpu);
3898 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3900 destroy_kvm_mmu(vcpu);
3901 return init_kvm_mmu(vcpu);
3903 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3905 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3907 int r;
3909 r = mmu_topup_memory_caches(vcpu);
3910 if (r)
3911 goto out;
3912 r = mmu_alloc_roots(vcpu);
3913 kvm_mmu_sync_roots(vcpu);
3914 if (r)
3915 goto out;
3916 /* set_cr3() should ensure TLB has been flushed */
3917 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3918 out:
3919 return r;
3921 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3923 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3925 mmu_free_roots(vcpu);
3927 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3929 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3930 struct kvm_mmu_page *sp, u64 *spte,
3931 const void *new)
3933 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3934 ++vcpu->kvm->stat.mmu_pde_zapped;
3935 return;
3938 ++vcpu->kvm->stat.mmu_pte_updated;
3939 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3942 static bool need_remote_flush(u64 old, u64 new)
3944 if (!is_shadow_present_pte(old))
3945 return false;
3946 if (!is_shadow_present_pte(new))
3947 return true;
3948 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3949 return true;
3950 old ^= shadow_nx_mask;
3951 new ^= shadow_nx_mask;
3952 return (old & ~new & PT64_PERM_MASK) != 0;
3955 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3956 bool remote_flush, bool local_flush)
3958 if (zap_page)
3959 return;
3961 if (remote_flush)
3962 kvm_flush_remote_tlbs(vcpu->kvm);
3963 else if (local_flush)
3964 kvm_mmu_flush_tlb(vcpu);
3967 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3968 const u8 *new, int *bytes)
3970 u64 gentry;
3971 int r;
3974 * Assume that the pte write on a page table of the same type
3975 * as the current vcpu paging mode since we update the sptes only
3976 * when they have the same mode.
3978 if (is_pae(vcpu) && *bytes == 4) {
3979 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3980 *gpa &= ~(gpa_t)7;
3981 *bytes = 8;
3982 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3983 if (r)
3984 gentry = 0;
3985 new = (const u8 *)&gentry;
3988 switch (*bytes) {
3989 case 4:
3990 gentry = *(const u32 *)new;
3991 break;
3992 case 8:
3993 gentry = *(const u64 *)new;
3994 break;
3995 default:
3996 gentry = 0;
3997 break;
4000 return gentry;
4004 * If we're seeing too many writes to a page, it may no longer be a page table,
4005 * or we may be forking, in which case it is better to unmap the page.
4007 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4010 * Skip write-flooding detected for the sp whose level is 1, because
4011 * it can become unsync, then the guest page is not write-protected.
4013 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4014 return false;
4016 return ++sp->write_flooding_count >= 3;
4020 * Misaligned accesses are too much trouble to fix up; also, they usually
4021 * indicate a page is not used as a page table.
4023 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4024 int bytes)
4026 unsigned offset, pte_size, misaligned;
4028 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4029 gpa, bytes, sp->role.word);
4031 offset = offset_in_page(gpa);
4032 pte_size = sp->role.cr4_pae ? 8 : 4;
4035 * Sometimes, the OS only writes the last one bytes to update status
4036 * bits, for example, in linux, andb instruction is used in clear_bit().
4038 if (!(offset & (pte_size - 1)) && bytes == 1)
4039 return false;
4041 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4042 misaligned |= bytes < 4;
4044 return misaligned;
4047 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4049 unsigned page_offset, quadrant;
4050 u64 *spte;
4051 int level;
4053 page_offset = offset_in_page(gpa);
4054 level = sp->role.level;
4055 *nspte = 1;
4056 if (!sp->role.cr4_pae) {
4057 page_offset <<= 1; /* 32->64 */
4059 * A 32-bit pde maps 4MB while the shadow pdes map
4060 * only 2MB. So we need to double the offset again
4061 * and zap two pdes instead of one.
4063 if (level == PT32_ROOT_LEVEL) {
4064 page_offset &= ~7; /* kill rounding error */
4065 page_offset <<= 1;
4066 *nspte = 2;
4068 quadrant = page_offset >> PAGE_SHIFT;
4069 page_offset &= ~PAGE_MASK;
4070 if (quadrant != sp->role.quadrant)
4071 return NULL;
4074 spte = &sp->spt[page_offset / sizeof(*spte)];
4075 return spte;
4078 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4079 const u8 *new, int bytes)
4081 gfn_t gfn = gpa >> PAGE_SHIFT;
4082 union kvm_mmu_page_role mask = { .word = 0 };
4083 struct kvm_mmu_page *sp;
4084 LIST_HEAD(invalid_list);
4085 u64 entry, gentry, *spte;
4086 int npte;
4087 bool remote_flush, local_flush, zap_page;
4090 * If we don't have indirect shadow pages, it means no page is
4091 * write-protected, so we can exit simply.
4093 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4094 return;
4096 zap_page = remote_flush = local_flush = false;
4098 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4100 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4103 * No need to care whether allocation memory is successful
4104 * or not since pte prefetch is skiped if it does not have
4105 * enough objects in the cache.
4107 mmu_topup_memory_caches(vcpu);
4109 spin_lock(&vcpu->kvm->mmu_lock);
4110 ++vcpu->kvm->stat.mmu_pte_write;
4111 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4113 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4114 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4115 if (detect_write_misaligned(sp, gpa, bytes) ||
4116 detect_write_flooding(sp)) {
4117 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4118 &invalid_list);
4119 ++vcpu->kvm->stat.mmu_flooded;
4120 continue;
4123 spte = get_written_sptes(sp, gpa, &npte);
4124 if (!spte)
4125 continue;
4127 local_flush = true;
4128 while (npte--) {
4129 entry = *spte;
4130 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4131 if (gentry &&
4132 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4133 & mask.word) && rmap_can_add(vcpu))
4134 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4135 if (need_remote_flush(entry, *spte))
4136 remote_flush = true;
4137 ++spte;
4140 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4141 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4142 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4143 spin_unlock(&vcpu->kvm->mmu_lock);
4146 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4148 gpa_t gpa;
4149 int r;
4151 if (vcpu->arch.mmu.direct_map)
4152 return 0;
4154 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4156 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4158 return r;
4160 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4162 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4164 LIST_HEAD(invalid_list);
4166 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4167 return;
4169 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4170 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4171 break;
4173 ++vcpu->kvm->stat.mmu_recycled;
4175 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4178 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4180 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4181 return vcpu_match_mmio_gpa(vcpu, addr);
4183 return vcpu_match_mmio_gva(vcpu, addr);
4186 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4187 void *insn, int insn_len)
4189 int r, emulation_type = EMULTYPE_RETRY;
4190 enum emulation_result er;
4192 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4193 if (r < 0)
4194 goto out;
4196 if (!r) {
4197 r = 1;
4198 goto out;
4201 if (is_mmio_page_fault(vcpu, cr2))
4202 emulation_type = 0;
4204 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4206 switch (er) {
4207 case EMULATE_DONE:
4208 return 1;
4209 case EMULATE_USER_EXIT:
4210 ++vcpu->stat.mmio_exits;
4211 /* fall through */
4212 case EMULATE_FAIL:
4213 return 0;
4214 default:
4215 BUG();
4217 out:
4218 return r;
4220 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4222 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4224 vcpu->arch.mmu.invlpg(vcpu, gva);
4225 kvm_mmu_flush_tlb(vcpu);
4226 ++vcpu->stat.invlpg;
4228 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4230 void kvm_enable_tdp(void)
4232 tdp_enabled = true;
4234 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4236 void kvm_disable_tdp(void)
4238 tdp_enabled = false;
4240 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4242 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4244 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4245 if (vcpu->arch.mmu.lm_root != NULL)
4246 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4249 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4251 struct page *page;
4252 int i;
4254 ASSERT(vcpu);
4257 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4258 * Therefore we need to allocate shadow page tables in the first
4259 * 4GB of memory, which happens to fit the DMA32 zone.
4261 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4262 if (!page)
4263 return -ENOMEM;
4265 vcpu->arch.mmu.pae_root = page_address(page);
4266 for (i = 0; i < 4; ++i)
4267 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4269 return 0;
4272 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4274 ASSERT(vcpu);
4276 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4277 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4278 vcpu->arch.mmu.translate_gpa = translate_gpa;
4279 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4281 return alloc_mmu_pages(vcpu);
4284 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4286 ASSERT(vcpu);
4287 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4289 return init_kvm_mmu(vcpu);
4292 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4294 struct kvm_memory_slot *memslot;
4295 gfn_t last_gfn;
4296 int i;
4298 memslot = id_to_memslot(kvm->memslots, slot);
4299 last_gfn = memslot->base_gfn + memslot->npages - 1;
4301 spin_lock(&kvm->mmu_lock);
4303 for (i = PT_PAGE_TABLE_LEVEL;
4304 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4305 unsigned long *rmapp;
4306 unsigned long last_index, index;
4308 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4309 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4311 for (index = 0; index <= last_index; ++index, ++rmapp) {
4312 if (*rmapp)
4313 __rmap_write_protect(kvm, rmapp, false);
4315 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4316 kvm_flush_remote_tlbs(kvm);
4317 cond_resched_lock(&kvm->mmu_lock);
4322 kvm_flush_remote_tlbs(kvm);
4323 spin_unlock(&kvm->mmu_lock);
4326 #define BATCH_ZAP_PAGES 10
4327 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4329 struct kvm_mmu_page *sp, *node;
4330 int batch = 0;
4332 restart:
4333 list_for_each_entry_safe_reverse(sp, node,
4334 &kvm->arch.active_mmu_pages, link) {
4335 int ret;
4338 * No obsolete page exists before new created page since
4339 * active_mmu_pages is the FIFO list.
4341 if (!is_obsolete_sp(kvm, sp))
4342 break;
4345 * Since we are reversely walking the list and the invalid
4346 * list will be moved to the head, skip the invalid page
4347 * can help us to avoid the infinity list walking.
4349 if (sp->role.invalid)
4350 continue;
4353 * Need not flush tlb since we only zap the sp with invalid
4354 * generation number.
4356 if (batch >= BATCH_ZAP_PAGES &&
4357 cond_resched_lock(&kvm->mmu_lock)) {
4358 batch = 0;
4359 goto restart;
4362 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4363 &kvm->arch.zapped_obsolete_pages);
4364 batch += ret;
4366 if (ret)
4367 goto restart;
4371 * Should flush tlb before free page tables since lockless-walking
4372 * may use the pages.
4374 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4378 * Fast invalidate all shadow pages and use lock-break technique
4379 * to zap obsolete pages.
4381 * It's required when memslot is being deleted or VM is being
4382 * destroyed, in these cases, we should ensure that KVM MMU does
4383 * not use any resource of the being-deleted slot or all slots
4384 * after calling the function.
4386 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4388 spin_lock(&kvm->mmu_lock);
4389 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4390 kvm->arch.mmu_valid_gen++;
4393 * Notify all vcpus to reload its shadow page table
4394 * and flush TLB. Then all vcpus will switch to new
4395 * shadow page table with the new mmu_valid_gen.
4397 * Note: we should do this under the protection of
4398 * mmu-lock, otherwise, vcpu would purge shadow page
4399 * but miss tlb flush.
4401 kvm_reload_remote_mmus(kvm);
4403 kvm_zap_obsolete_pages(kvm);
4404 spin_unlock(&kvm->mmu_lock);
4407 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4409 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4412 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4415 * The very rare case: if the generation-number is round,
4416 * zap all shadow pages.
4418 if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4419 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4420 kvm_mmu_invalidate_zap_all_pages(kvm);
4424 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4426 struct kvm *kvm;
4427 int nr_to_scan = sc->nr_to_scan;
4429 if (nr_to_scan == 0)
4430 goto out;
4432 raw_spin_lock(&kvm_lock);
4434 list_for_each_entry(kvm, &vm_list, vm_list) {
4435 int idx;
4436 LIST_HEAD(invalid_list);
4439 * Never scan more than sc->nr_to_scan VM instances.
4440 * Will not hit this condition practically since we do not try
4441 * to shrink more than one VM and it is very unlikely to see
4442 * !n_used_mmu_pages so many times.
4444 if (!nr_to_scan--)
4445 break;
4447 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4448 * here. We may skip a VM instance errorneosly, but we do not
4449 * want to shrink a VM that only started to populate its MMU
4450 * anyway.
4452 if (!kvm->arch.n_used_mmu_pages &&
4453 !kvm_has_zapped_obsolete_pages(kvm))
4454 continue;
4456 idx = srcu_read_lock(&kvm->srcu);
4457 spin_lock(&kvm->mmu_lock);
4459 if (kvm_has_zapped_obsolete_pages(kvm)) {
4460 kvm_mmu_commit_zap_page(kvm,
4461 &kvm->arch.zapped_obsolete_pages);
4462 goto unlock;
4465 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4466 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4468 unlock:
4469 spin_unlock(&kvm->mmu_lock);
4470 srcu_read_unlock(&kvm->srcu, idx);
4472 list_move_tail(&kvm->vm_list, &vm_list);
4473 break;
4476 raw_spin_unlock(&kvm_lock);
4478 out:
4479 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4482 static struct shrinker mmu_shrinker = {
4483 .shrink = mmu_shrink,
4484 .seeks = DEFAULT_SEEKS * 10,
4487 static void mmu_destroy_caches(void)
4489 if (pte_list_desc_cache)
4490 kmem_cache_destroy(pte_list_desc_cache);
4491 if (mmu_page_header_cache)
4492 kmem_cache_destroy(mmu_page_header_cache);
4495 int kvm_mmu_module_init(void)
4497 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4498 sizeof(struct pte_list_desc),
4499 0, 0, NULL);
4500 if (!pte_list_desc_cache)
4501 goto nomem;
4503 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4504 sizeof(struct kvm_mmu_page),
4505 0, 0, NULL);
4506 if (!mmu_page_header_cache)
4507 goto nomem;
4509 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4510 goto nomem;
4512 register_shrinker(&mmu_shrinker);
4514 return 0;
4516 nomem:
4517 mmu_destroy_caches();
4518 return -ENOMEM;
4522 * Caculate mmu pages needed for kvm.
4524 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4526 unsigned int nr_mmu_pages;
4527 unsigned int nr_pages = 0;
4528 struct kvm_memslots *slots;
4529 struct kvm_memory_slot *memslot;
4531 slots = kvm_memslots(kvm);
4533 kvm_for_each_memslot(memslot, slots)
4534 nr_pages += memslot->npages;
4536 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4537 nr_mmu_pages = max(nr_mmu_pages,
4538 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4540 return nr_mmu_pages;
4543 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4545 struct kvm_shadow_walk_iterator iterator;
4546 u64 spte;
4547 int nr_sptes = 0;
4549 walk_shadow_page_lockless_begin(vcpu);
4550 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4551 sptes[iterator.level-1] = spte;
4552 nr_sptes++;
4553 if (!is_shadow_present_pte(spte))
4554 break;
4556 walk_shadow_page_lockless_end(vcpu);
4558 return nr_sptes;
4560 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4562 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4564 ASSERT(vcpu);
4566 destroy_kvm_mmu(vcpu);
4567 free_mmu_pages(vcpu);
4568 mmu_free_memory_caches(vcpu);
4571 void kvm_mmu_module_exit(void)
4573 mmu_destroy_caches();
4574 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4575 unregister_shrinker(&mmu_shrinker);
4576 mmu_audit_disable();