2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
96 int _node_numa_mem_
[MAX_NUMNODES
];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex
);
101 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy
;
105 EXPORT_SYMBOL(latent_entropy
);
109 * Array of node states.
111 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
112 [N_POSSIBLE
] = NODE_MASK_ALL
,
113 [N_ONLINE
] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
119 [N_MEMORY
] = { { [0] = 1UL } },
120 [N_CPU
] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states
);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock
);
128 unsigned long totalram_pages __read_mostly
;
129 unsigned long totalreserve_pages __read_mostly
;
130 unsigned long totalcma_pages __read_mostly
;
132 int percpu_pagelist_fraction
;
133 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page
*page
)
148 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
150 page
->index
= migratetype
;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages
);
223 static char * const zone_names
[MAX_NR_ZONES
] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names
[MIGRATE_TYPES
] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor
* const compound_page_dtors
[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes
= 1024;
265 int user_min_free_kbytes
= -1;
266 int watermark_scale_factor
= 10;
268 static unsigned long nr_kernel_pages __meminitdata
;
269 static unsigned long nr_all_pages __meminitdata
;
270 static unsigned long dma_reserve __meminitdata
;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
274 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
275 static unsigned long required_kernelcore __initdata
;
276 static unsigned long required_kernelcore_percent __initdata
;
277 static unsigned long required_movablecore __initdata
;
278 static unsigned long required_movablecore_percent __initdata
;
279 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __meminitdata
;
280 static bool mirrored_kernelcore __meminitdata
;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone
);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
289 int nr_online_nodes __read_mostly
= 1;
290 EXPORT_SYMBOL(nr_node_ids
);
291 EXPORT_SYMBOL(nr_online_nodes
);
294 int page_group_by_mobility_disabled __read_mostly
;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
300 int nid
= early_pfn_to_nid(pfn
);
302 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t
*pgdat
,
313 unsigned long pfn
, unsigned long zone_end
,
314 unsigned long *nr_initialised
)
316 /* Always populate low zones for address-constrained allocations */
317 if (zone_end
< pgdat_end_pfn(pgdat
))
320 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
321 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
322 pgdat
->first_deferred_pfn
= pfn
;
329 static inline bool early_page_uninitialised(unsigned long pfn
)
334 static inline bool update_defer_init(pg_data_t
*pgdat
,
335 unsigned long pfn
, unsigned long zone_end
,
336 unsigned long *nr_initialised
)
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
346 #ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn
)->pageblock_flags
;
349 return page_zone(page
)->pageblock_flags
;
350 #endif /* CONFIG_SPARSEMEM */
353 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
355 #ifdef CONFIG_SPARSEMEM
356 pfn
&= (PAGES_PER_SECTION
-1);
357 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
359 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
360 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
361 #endif /* CONFIG_SPARSEMEM */
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
371 * Return: pageblock_bits flags
373 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
375 unsigned long end_bitidx
,
378 unsigned long *bitmap
;
379 unsigned long bitidx
, word_bitidx
;
382 bitmap
= get_pageblock_bitmap(page
, pfn
);
383 bitidx
= pfn_to_bitidx(page
, pfn
);
384 word_bitidx
= bitidx
/ BITS_PER_LONG
;
385 bitidx
&= (BITS_PER_LONG
-1);
387 word
= bitmap
[word_bitidx
];
388 bitidx
+= end_bitidx
;
389 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
392 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
393 unsigned long end_bitidx
,
396 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
399 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
401 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
412 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
414 unsigned long end_bitidx
,
417 unsigned long *bitmap
;
418 unsigned long bitidx
, word_bitidx
;
419 unsigned long old_word
, word
;
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
423 bitmap
= get_pageblock_bitmap(page
, pfn
);
424 bitidx
= pfn_to_bitidx(page
, pfn
);
425 word_bitidx
= bitidx
/ BITS_PER_LONG
;
426 bitidx
&= (BITS_PER_LONG
-1);
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
430 bitidx
+= end_bitidx
;
431 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
432 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
434 word
= READ_ONCE(bitmap
[word_bitidx
]);
436 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
437 if (word
== old_word
)
443 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
445 if (unlikely(page_group_by_mobility_disabled
&&
446 migratetype
< MIGRATE_PCPTYPES
))
447 migratetype
= MIGRATE_UNMOVABLE
;
449 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
450 PB_migrate
, PB_migrate_end
);
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
458 unsigned long pfn
= page_to_pfn(page
);
459 unsigned long sp
, start_pfn
;
462 seq
= zone_span_seqbegin(zone
);
463 start_pfn
= zone
->zone_start_pfn
;
464 sp
= zone
->spanned_pages
;
465 if (!zone_spans_pfn(zone
, pfn
))
467 } while (zone_span_seqretry(zone
, seq
));
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn
, zone_to_nid(zone
), zone
->name
,
472 start_pfn
, start_pfn
+ sp
);
477 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
479 if (!pfn_valid_within(page_to_pfn(page
)))
481 if (zone
!= page_zone(page
))
487 * Temporary debugging check for pages not lying within a given zone.
489 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
491 if (page_outside_zone_boundaries(zone
, page
))
493 if (!page_is_consistent(zone
, page
))
499 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
505 static void bad_page(struct page
*page
, const char *reason
,
506 unsigned long bad_flags
)
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
523 "BUG: Bad page state: %lu messages suppressed\n",
530 resume
= jiffies
+ 60 * HZ
;
532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
533 current
->comm
, page_to_pfn(page
));
534 __dump_page(page
, reason
);
535 bad_flags
&= page
->flags
;
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags
, &bad_flags
);
539 dump_page_owner(page
);
544 /* Leave bad fields for debug, except PageBuddy could make trouble */
545 page_mapcount_reset(page
); /* remove PageBuddy */
546 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
550 * Higher-order pages are called "compound pages". They are structured thusly:
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
560 * The first tail page's ->compound_order holds the order of allocation.
561 * This usage means that zero-order pages may not be compound.
564 void free_compound_page(struct page
*page
)
566 __free_pages_ok(page
, compound_order(page
));
569 void prep_compound_page(struct page
*page
, unsigned int order
)
572 int nr_pages
= 1 << order
;
574 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
575 set_compound_order(page
, order
);
577 for (i
= 1; i
< nr_pages
; i
++) {
578 struct page
*p
= page
+ i
;
579 set_page_count(p
, 0);
580 p
->mapping
= TAIL_MAPPING
;
581 set_compound_head(p
, page
);
583 atomic_set(compound_mapcount_ptr(page
), -1);
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder
;
588 bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
591 bool _debug_guardpage_enabled __read_mostly
;
593 static int __init
early_debug_pagealloc(char *buf
)
597 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
599 early_param("debug_pagealloc", early_debug_pagealloc
);
601 static bool need_debug_guardpage(void)
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
607 if (!debug_guardpage_minorder())
613 static void init_debug_guardpage(void)
615 if (!debug_pagealloc_enabled())
618 if (!debug_guardpage_minorder())
621 _debug_guardpage_enabled
= true;
624 struct page_ext_operations debug_guardpage_ops
= {
625 .need
= need_debug_guardpage
,
626 .init
= init_debug_guardpage
,
629 static int __init
debug_guardpage_minorder_setup(char *buf
)
633 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
634 pr_err("Bad debug_guardpage_minorder value\n");
637 _debug_guardpage_minorder
= res
;
638 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
643 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
644 unsigned int order
, int migratetype
)
646 struct page_ext
*page_ext
;
648 if (!debug_guardpage_enabled())
651 if (order
>= debug_guardpage_minorder())
654 page_ext
= lookup_page_ext(page
);
655 if (unlikely(!page_ext
))
658 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
660 INIT_LIST_HEAD(&page
->lru
);
661 set_page_private(page
, order
);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
668 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
669 unsigned int order
, int migratetype
)
671 struct page_ext
*page_ext
;
673 if (!debug_guardpage_enabled())
676 page_ext
= lookup_page_ext(page
);
677 if (unlikely(!page_ext
))
680 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
682 set_page_private(page
, 0);
683 if (!is_migrate_isolate(migratetype
))
684 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
687 struct page_ext_operations debug_guardpage_ops
;
688 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
689 unsigned int order
, int migratetype
) { return false; }
690 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
691 unsigned int order
, int migratetype
) {}
694 static inline void set_page_order(struct page
*page
, unsigned int order
)
696 set_page_private(page
, order
);
697 __SetPageBuddy(page
);
700 static inline void rmv_page_order(struct page
*page
)
702 __ClearPageBuddy(page
);
703 set_page_private(page
, 0);
707 * This function checks whether a page is free && is the buddy
708 * we can do coalesce a page and its buddy if
709 * (a) the buddy is not in a hole (check before calling!) &&
710 * (b) the buddy is in the buddy system &&
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
714 * For recording whether a page is in the buddy system, we set ->_mapcount
715 * PAGE_BUDDY_MAPCOUNT_VALUE.
716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
717 * serialized by zone->lock.
719 * For recording page's order, we use page_private(page).
721 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
724 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
725 if (page_zone_id(page
) != page_zone_id(buddy
))
728 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
733 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
735 * zone check is done late to avoid uselessly
736 * calculating zone/node ids for pages that could
739 if (page_zone_id(page
) != page_zone_id(buddy
))
742 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
750 * Freeing function for a buddy system allocator.
752 * The concept of a buddy system is to maintain direct-mapped table
753 * (containing bit values) for memory blocks of various "orders".
754 * The bottom level table contains the map for the smallest allocatable
755 * units of memory (here, pages), and each level above it describes
756 * pairs of units from the levels below, hence, "buddies".
757 * At a high level, all that happens here is marking the table entry
758 * at the bottom level available, and propagating the changes upward
759 * as necessary, plus some accounting needed to play nicely with other
760 * parts of the VM system.
761 * At each level, we keep a list of pages, which are heads of continuous
762 * free pages of length of (1 << order) and marked with _mapcount
763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
765 * So when we are allocating or freeing one, we can derive the state of the
766 * other. That is, if we allocate a small block, and both were
767 * free, the remainder of the region must be split into blocks.
768 * If a block is freed, and its buddy is also free, then this
769 * triggers coalescing into a block of larger size.
774 static inline void __free_one_page(struct page
*page
,
776 struct zone
*zone
, unsigned int order
,
779 unsigned long combined_pfn
;
780 unsigned long uninitialized_var(buddy_pfn
);
782 unsigned int max_order
;
784 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
786 VM_BUG_ON(!zone_is_initialized(zone
));
787 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
789 VM_BUG_ON(migratetype
== -1);
790 if (likely(!is_migrate_isolate(migratetype
)))
791 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
793 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
794 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
797 while (order
< max_order
- 1) {
798 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
799 buddy
= page
+ (buddy_pfn
- pfn
);
801 if (!pfn_valid_within(buddy_pfn
))
803 if (!page_is_buddy(page
, buddy
, order
))
806 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
807 * merge with it and move up one order.
809 if (page_is_guard(buddy
)) {
810 clear_page_guard(zone
, buddy
, order
, migratetype
);
812 list_del(&buddy
->lru
);
813 zone
->free_area
[order
].nr_free
--;
814 rmv_page_order(buddy
);
816 combined_pfn
= buddy_pfn
& pfn
;
817 page
= page
+ (combined_pfn
- pfn
);
821 if (max_order
< MAX_ORDER
) {
822 /* If we are here, it means order is >= pageblock_order.
823 * We want to prevent merge between freepages on isolate
824 * pageblock and normal pageblock. Without this, pageblock
825 * isolation could cause incorrect freepage or CMA accounting.
827 * We don't want to hit this code for the more frequent
830 if (unlikely(has_isolate_pageblock(zone
))) {
833 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
834 buddy
= page
+ (buddy_pfn
- pfn
);
835 buddy_mt
= get_pageblock_migratetype(buddy
);
837 if (migratetype
!= buddy_mt
838 && (is_migrate_isolate(migratetype
) ||
839 is_migrate_isolate(buddy_mt
)))
843 goto continue_merging
;
847 set_page_order(page
, order
);
850 * If this is not the largest possible page, check if the buddy
851 * of the next-highest order is free. If it is, it's possible
852 * that pages are being freed that will coalesce soon. In case,
853 * that is happening, add the free page to the tail of the list
854 * so it's less likely to be used soon and more likely to be merged
855 * as a higher order page
857 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
858 struct page
*higher_page
, *higher_buddy
;
859 combined_pfn
= buddy_pfn
& pfn
;
860 higher_page
= page
+ (combined_pfn
- pfn
);
861 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
862 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
863 if (pfn_valid_within(buddy_pfn
) &&
864 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
865 list_add_tail(&page
->lru
,
866 &zone
->free_area
[order
].free_list
[migratetype
]);
871 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
873 zone
->free_area
[order
].nr_free
++;
877 * A bad page could be due to a number of fields. Instead of multiple branches,
878 * try and check multiple fields with one check. The caller must do a detailed
879 * check if necessary.
881 static inline bool page_expected_state(struct page
*page
,
882 unsigned long check_flags
)
884 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
887 if (unlikely((unsigned long)page
->mapping
|
888 page_ref_count(page
) |
890 (unsigned long)page
->mem_cgroup
|
892 (page
->flags
& check_flags
)))
898 static void free_pages_check_bad(struct page
*page
)
900 const char *bad_reason
;
901 unsigned long bad_flags
;
906 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
907 bad_reason
= "nonzero mapcount";
908 if (unlikely(page
->mapping
!= NULL
))
909 bad_reason
= "non-NULL mapping";
910 if (unlikely(page_ref_count(page
) != 0))
911 bad_reason
= "nonzero _refcount";
912 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
913 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
914 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
917 if (unlikely(page
->mem_cgroup
))
918 bad_reason
= "page still charged to cgroup";
920 bad_page(page
, bad_reason
, bad_flags
);
923 static inline int free_pages_check(struct page
*page
)
925 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
928 /* Something has gone sideways, find it */
929 free_pages_check_bad(page
);
933 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
941 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
943 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
947 switch (page
- head_page
) {
949 /* the first tail page: ->mapping is compound_mapcount() */
950 if (unlikely(compound_mapcount(page
))) {
951 bad_page(page
, "nonzero compound_mapcount", 0);
957 * the second tail page: ->mapping is
958 * page_deferred_list().next -- ignore value.
962 if (page
->mapping
!= TAIL_MAPPING
) {
963 bad_page(page
, "corrupted mapping in tail page", 0);
968 if (unlikely(!PageTail(page
))) {
969 bad_page(page
, "PageTail not set", 0);
972 if (unlikely(compound_head(page
) != head_page
)) {
973 bad_page(page
, "compound_head not consistent", 0);
978 page
->mapping
= NULL
;
979 clear_compound_head(page
);
983 static __always_inline
bool free_pages_prepare(struct page
*page
,
984 unsigned int order
, bool check_free
)
988 VM_BUG_ON_PAGE(PageTail(page
), page
);
990 trace_mm_page_free(page
, order
);
993 * Check tail pages before head page information is cleared to
994 * avoid checking PageCompound for order-0 pages.
996 if (unlikely(order
)) {
997 bool compound
= PageCompound(page
);
1000 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1003 ClearPageDoubleMap(page
);
1004 for (i
= 1; i
< (1 << order
); i
++) {
1006 bad
+= free_tail_pages_check(page
, page
+ i
);
1007 if (unlikely(free_pages_check(page
+ i
))) {
1011 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1014 if (PageMappingFlags(page
))
1015 page
->mapping
= NULL
;
1016 if (memcg_kmem_enabled() && PageKmemcg(page
))
1017 memcg_kmem_uncharge(page
, order
);
1019 bad
+= free_pages_check(page
);
1023 page_cpupid_reset_last(page
);
1024 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1025 reset_page_owner(page
, order
);
1027 if (!PageHighMem(page
)) {
1028 debug_check_no_locks_freed(page_address(page
),
1029 PAGE_SIZE
<< order
);
1030 debug_check_no_obj_freed(page_address(page
),
1031 PAGE_SIZE
<< order
);
1033 arch_free_page(page
, order
);
1034 kernel_poison_pages(page
, 1 << order
, 0);
1035 kernel_map_pages(page
, 1 << order
, 0);
1036 kasan_free_pages(page
, order
);
1041 #ifdef CONFIG_DEBUG_VM
1042 static inline bool free_pcp_prepare(struct page
*page
)
1044 return free_pages_prepare(page
, 0, true);
1047 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1052 static bool free_pcp_prepare(struct page
*page
)
1054 return free_pages_prepare(page
, 0, false);
1057 static bool bulkfree_pcp_prepare(struct page
*page
)
1059 return free_pages_check(page
);
1061 #endif /* CONFIG_DEBUG_VM */
1063 static inline void prefetch_buddy(struct page
*page
)
1065 unsigned long pfn
= page_to_pfn(page
);
1066 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1067 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1083 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1084 struct per_cpu_pages
*pcp
)
1086 int migratetype
= 0;
1088 int prefetch_nr
= 0;
1089 bool isolated_pageblocks
;
1090 struct page
*page
, *tmp
;
1094 struct list_head
*list
;
1097 * Remove pages from lists in a round-robin fashion. A
1098 * batch_free count is maintained that is incremented when an
1099 * empty list is encountered. This is so more pages are freed
1100 * off fuller lists instead of spinning excessively around empty
1105 if (++migratetype
== MIGRATE_PCPTYPES
)
1107 list
= &pcp
->lists
[migratetype
];
1108 } while (list_empty(list
));
1110 /* This is the only non-empty list. Free them all. */
1111 if (batch_free
== MIGRATE_PCPTYPES
)
1115 page
= list_last_entry(list
, struct page
, lru
);
1116 /* must delete to avoid corrupting pcp list */
1117 list_del(&page
->lru
);
1120 if (bulkfree_pcp_prepare(page
))
1123 list_add_tail(&page
->lru
, &head
);
1126 * We are going to put the page back to the global
1127 * pool, prefetch its buddy to speed up later access
1128 * under zone->lock. It is believed the overhead of
1129 * an additional test and calculating buddy_pfn here
1130 * can be offset by reduced memory latency later. To
1131 * avoid excessive prefetching due to large count, only
1132 * prefetch buddy for the first pcp->batch nr of pages.
1134 if (prefetch_nr
++ < pcp
->batch
)
1135 prefetch_buddy(page
);
1136 } while (--count
&& --batch_free
&& !list_empty(list
));
1139 spin_lock(&zone
->lock
);
1140 isolated_pageblocks
= has_isolate_pageblock(zone
);
1143 * Use safe version since after __free_one_page(),
1144 * page->lru.next will not point to original list.
1146 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1147 int mt
= get_pcppage_migratetype(page
);
1148 /* MIGRATE_ISOLATE page should not go to pcplists */
1149 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1150 /* Pageblock could have been isolated meanwhile */
1151 if (unlikely(isolated_pageblocks
))
1152 mt
= get_pageblock_migratetype(page
);
1154 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1155 trace_mm_page_pcpu_drain(page
, 0, mt
);
1157 spin_unlock(&zone
->lock
);
1160 static void free_one_page(struct zone
*zone
,
1161 struct page
*page
, unsigned long pfn
,
1165 spin_lock(&zone
->lock
);
1166 if (unlikely(has_isolate_pageblock(zone
) ||
1167 is_migrate_isolate(migratetype
))) {
1168 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1170 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1171 spin_unlock(&zone
->lock
);
1174 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1175 unsigned long zone
, int nid
)
1177 mm_zero_struct_page(page
);
1178 set_page_links(page
, zone
, nid
, pfn
);
1179 init_page_count(page
);
1180 page_mapcount_reset(page
);
1181 page_cpupid_reset_last(page
);
1183 INIT_LIST_HEAD(&page
->lru
);
1184 #ifdef WANT_PAGE_VIRTUAL
1185 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186 if (!is_highmem_idx(zone
))
1187 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192 static void __meminit
init_reserved_page(unsigned long pfn
)
1197 if (!early_page_uninitialised(pfn
))
1200 nid
= early_pfn_to_nid(pfn
);
1201 pgdat
= NODE_DATA(nid
);
1203 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1204 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1206 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1209 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1212 static inline void init_reserved_page(unsigned long pfn
)
1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1223 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1225 unsigned long start_pfn
= PFN_DOWN(start
);
1226 unsigned long end_pfn
= PFN_UP(end
);
1228 for (; start_pfn
< end_pfn
; start_pfn
++) {
1229 if (pfn_valid(start_pfn
)) {
1230 struct page
*page
= pfn_to_page(start_pfn
);
1232 init_reserved_page(start_pfn
);
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page
->lru
);
1237 SetPageReserved(page
);
1242 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1244 unsigned long flags
;
1246 unsigned long pfn
= page_to_pfn(page
);
1248 if (!free_pages_prepare(page
, order
, true))
1251 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1252 local_irq_save(flags
);
1253 __count_vm_events(PGFREE
, 1 << order
);
1254 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1255 local_irq_restore(flags
);
1258 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1260 unsigned int nr_pages
= 1 << order
;
1261 struct page
*p
= page
;
1265 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1267 __ClearPageReserved(p
);
1268 set_page_count(p
, 0);
1270 __ClearPageReserved(p
);
1271 set_page_count(p
, 0);
1273 page_zone(page
)->managed_pages
+= nr_pages
;
1274 set_page_refcounted(page
);
1275 __free_pages(page
, order
);
1278 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1281 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1283 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1285 static DEFINE_SPINLOCK(early_pfn_lock
);
1288 spin_lock(&early_pfn_lock
);
1289 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1291 nid
= first_online_node
;
1292 spin_unlock(&early_pfn_lock
);
1298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 static inline bool __meminit __maybe_unused
1300 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1301 struct mminit_pfnnid_cache
*state
)
1305 nid
= __early_pfn_to_nid(pfn
, state
);
1306 if (nid
>= 0 && nid
!= node
)
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1314 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1319 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1323 static inline bool __meminit __maybe_unused
1324 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1325 struct mminit_pfnnid_cache
*state
)
1332 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1335 if (early_page_uninitialised(pfn
))
1337 return __free_pages_boot_core(page
, order
);
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1357 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1358 unsigned long end_pfn
, struct zone
*zone
)
1360 struct page
*start_page
;
1361 struct page
*end_page
;
1363 /* end_pfn is one past the range we are checking */
1366 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1369 start_page
= pfn_to_online_page(start_pfn
);
1373 if (page_zone(start_page
) != zone
)
1376 end_page
= pfn_to_page(end_pfn
);
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1385 void set_zone_contiguous(struct zone
*zone
)
1387 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1388 unsigned long block_end_pfn
;
1390 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1391 for (; block_start_pfn
< zone_end_pfn(zone
);
1392 block_start_pfn
= block_end_pfn
,
1393 block_end_pfn
+= pageblock_nr_pages
) {
1395 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1397 if (!__pageblock_pfn_to_page(block_start_pfn
,
1398 block_end_pfn
, zone
))
1402 /* We confirm that there is no hole */
1403 zone
->contiguous
= true;
1406 void clear_zone_contiguous(struct zone
*zone
)
1408 zone
->contiguous
= false;
1411 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 static void __init
deferred_free_range(unsigned long pfn
,
1413 unsigned long nr_pages
)
1421 page
= pfn_to_page(pfn
);
1423 /* Free a large naturally-aligned chunk if possible */
1424 if (nr_pages
== pageblock_nr_pages
&&
1425 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1426 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1427 __free_pages_boot_core(page
, pageblock_order
);
1431 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1432 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1433 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1434 __free_pages_boot_core(page
, 0);
1438 /* Completion tracking for deferred_init_memmap() threads */
1439 static atomic_t pgdat_init_n_undone __initdata
;
1440 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1442 static inline void __init
pgdat_init_report_one_done(void)
1444 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1445 complete(&pgdat_init_all_done_comp
);
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1455 * Then, we check if a current large page is valid by only checking the validity
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1462 static inline bool __init
1463 deferred_pfn_valid(int nid
, unsigned long pfn
,
1464 struct mminit_pfnnid_cache
*nid_init_state
)
1466 if (!pfn_valid_within(pfn
))
1468 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1470 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1479 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1480 unsigned long end_pfn
)
1482 struct mminit_pfnnid_cache nid_init_state
= { };
1483 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1484 unsigned long nr_free
= 0;
1486 for (; pfn
< end_pfn
; pfn
++) {
1487 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1488 deferred_free_range(pfn
- nr_free
, nr_free
);
1490 } else if (!(pfn
& nr_pgmask
)) {
1491 deferred_free_range(pfn
- nr_free
, nr_free
);
1493 touch_nmi_watchdog();
1498 /* Free the last block of pages to allocator */
1499 deferred_free_range(pfn
- nr_free
, nr_free
);
1503 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1507 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1509 unsigned long end_pfn
)
1511 struct mminit_pfnnid_cache nid_init_state
= { };
1512 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1513 unsigned long nr_pages
= 0;
1514 struct page
*page
= NULL
;
1516 for (; pfn
< end_pfn
; pfn
++) {
1517 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1520 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1521 page
= pfn_to_page(pfn
);
1522 touch_nmi_watchdog();
1526 __init_single_page(page
, pfn
, zid
, nid
);
1532 /* Initialise remaining memory on a node */
1533 static int __init
deferred_init_memmap(void *data
)
1535 pg_data_t
*pgdat
= data
;
1536 int nid
= pgdat
->node_id
;
1537 unsigned long start
= jiffies
;
1538 unsigned long nr_pages
= 0;
1539 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1540 phys_addr_t spa
, epa
;
1543 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1546 /* Bind memory initialisation thread to a local node if possible */
1547 if (!cpumask_empty(cpumask
))
1548 set_cpus_allowed_ptr(current
, cpumask
);
1550 pgdat_resize_lock(pgdat
, &flags
);
1551 first_init_pfn
= pgdat
->first_deferred_pfn
;
1552 if (first_init_pfn
== ULONG_MAX
) {
1553 pgdat_resize_unlock(pgdat
, &flags
);
1554 pgdat_init_report_one_done();
1558 /* Sanity check boundaries */
1559 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1560 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1561 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1563 /* Only the highest zone is deferred so find it */
1564 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1565 zone
= pgdat
->node_zones
+ zid
;
1566 if (first_init_pfn
< zone_end_pfn(zone
))
1569 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1572 * Initialize and free pages. We do it in two loops: first we initialize
1573 * struct page, than free to buddy allocator, because while we are
1574 * freeing pages we can access pages that are ahead (computing buddy
1575 * page in __free_one_page()).
1577 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1578 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1579 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1580 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1582 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1583 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1584 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1585 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1587 pgdat_resize_unlock(pgdat
, &flags
);
1589 /* Sanity check that the next zone really is unpopulated */
1590 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1592 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1593 jiffies_to_msecs(jiffies
- start
));
1595 pgdat_init_report_one_done();
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1604 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1621 static noinline
bool __init
1622 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1624 int zid
= zone_idx(zone
);
1625 int nid
= zone_to_nid(zone
);
1626 pg_data_t
*pgdat
= NODE_DATA(nid
);
1627 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1628 unsigned long nr_pages
= 0;
1629 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1630 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1631 phys_addr_t spa
, epa
;
1634 /* Only the last zone may have deferred pages */
1635 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1638 pgdat_resize_lock(pgdat
, &flags
);
1641 * If deferred pages have been initialized while we were waiting for
1642 * the lock, return true, as the zone was grown. The caller will retry
1643 * this zone. We won't return to this function since the caller also
1644 * has this static branch.
1646 if (!static_branch_unlikely(&deferred_pages
)) {
1647 pgdat_resize_unlock(pgdat
, &flags
);
1652 * If someone grew this zone while we were waiting for spinlock, return
1653 * true, as there might be enough pages already.
1655 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1656 pgdat_resize_unlock(pgdat
, &flags
);
1660 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1662 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1663 pgdat_resize_unlock(pgdat
, &flags
);
1667 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1668 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1669 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1671 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1672 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1673 first_deferred_pfn
= min(t
, epfn
);
1674 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1675 first_deferred_pfn
);
1676 spfn
= first_deferred_pfn
;
1679 if (nr_pages
>= nr_pages_needed
)
1683 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1684 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1685 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1686 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1688 if (first_deferred_pfn
== epfn
)
1691 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1692 pgdat_resize_unlock(pgdat
, &flags
);
1694 return nr_pages
> 0;
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1704 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1706 return deferred_grow_zone(zone
, order
);
1709 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1711 void __init
page_alloc_init_late(void)
1715 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1718 /* There will be num_node_state(N_MEMORY) threads */
1719 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1720 for_each_node_state(nid
, N_MEMORY
) {
1721 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1724 /* Block until all are initialised */
1725 wait_for_completion(&pgdat_init_all_done_comp
);
1728 * We initialized the rest of the deferred pages. Permanently disable
1729 * on-demand struct page initialization.
1731 static_branch_disable(&deferred_pages
);
1733 /* Reinit limits that are based on free pages after the kernel is up */
1734 files_maxfiles_init();
1736 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737 /* Discard memblock private memory */
1741 for_each_populated_zone(zone
)
1742 set_zone_contiguous(zone
);
1746 static void __init
adjust_present_page_count(struct page
*page
, long count
)
1748 struct zone
*zone
= page_zone(page
);
1750 /* We don't need to hold a lock since it is boot-up process */
1751 zone
->present_pages
+= count
;
1754 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1755 void __init
init_cma_reserved_pageblock(struct page
*page
)
1757 unsigned i
= pageblock_nr_pages
;
1758 unsigned long pfn
= page_to_pfn(page
);
1759 struct page
*p
= page
;
1760 int nid
= page_to_nid(page
);
1763 * ZONE_MOVABLE will steal present pages from other zones by
1764 * changing page links so page_zone() is changed. Before that,
1765 * we need to adjust previous zone's page count first.
1767 adjust_present_page_count(page
, -pageblock_nr_pages
);
1770 __ClearPageReserved(p
);
1771 set_page_count(p
, 0);
1773 /* Steal pages from other zones */
1774 set_page_links(p
, ZONE_MOVABLE
, nid
, pfn
);
1775 } while (++p
, ++pfn
, --i
);
1777 adjust_present_page_count(page
, pageblock_nr_pages
);
1779 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1781 if (pageblock_order
>= MAX_ORDER
) {
1782 i
= pageblock_nr_pages
;
1785 set_page_refcounted(p
);
1786 __free_pages(p
, MAX_ORDER
- 1);
1787 p
+= MAX_ORDER_NR_PAGES
;
1788 } while (i
-= MAX_ORDER_NR_PAGES
);
1790 set_page_refcounted(page
);
1791 __free_pages(page
, pageblock_order
);
1794 adjust_managed_page_count(page
, pageblock_nr_pages
);
1799 * The order of subdivision here is critical for the IO subsystem.
1800 * Please do not alter this order without good reasons and regression
1801 * testing. Specifically, as large blocks of memory are subdivided,
1802 * the order in which smaller blocks are delivered depends on the order
1803 * they're subdivided in this function. This is the primary factor
1804 * influencing the order in which pages are delivered to the IO
1805 * subsystem according to empirical testing, and this is also justified
1806 * by considering the behavior of a buddy system containing a single
1807 * large block of memory acted on by a series of small allocations.
1808 * This behavior is a critical factor in sglist merging's success.
1812 static inline void expand(struct zone
*zone
, struct page
*page
,
1813 int low
, int high
, struct free_area
*area
,
1816 unsigned long size
= 1 << high
;
1818 while (high
> low
) {
1822 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1825 * Mark as guard pages (or page), that will allow to
1826 * merge back to allocator when buddy will be freed.
1827 * Corresponding page table entries will not be touched,
1828 * pages will stay not present in virtual address space
1830 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1833 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1835 set_page_order(&page
[size
], high
);
1839 static void check_new_page_bad(struct page
*page
)
1841 const char *bad_reason
= NULL
;
1842 unsigned long bad_flags
= 0;
1844 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1845 bad_reason
= "nonzero mapcount";
1846 if (unlikely(page
->mapping
!= NULL
))
1847 bad_reason
= "non-NULL mapping";
1848 if (unlikely(page_ref_count(page
) != 0))
1849 bad_reason
= "nonzero _count";
1850 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1851 bad_reason
= "HWPoisoned (hardware-corrupted)";
1852 bad_flags
= __PG_HWPOISON
;
1853 /* Don't complain about hwpoisoned pages */
1854 page_mapcount_reset(page
); /* remove PageBuddy */
1857 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1858 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1859 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1862 if (unlikely(page
->mem_cgroup
))
1863 bad_reason
= "page still charged to cgroup";
1865 bad_page(page
, bad_reason
, bad_flags
);
1869 * This page is about to be returned from the page allocator
1871 static inline int check_new_page(struct page
*page
)
1873 if (likely(page_expected_state(page
,
1874 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1877 check_new_page_bad(page
);
1881 static inline bool free_pages_prezeroed(void)
1883 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1884 page_poisoning_enabled();
1887 #ifdef CONFIG_DEBUG_VM
1888 static bool check_pcp_refill(struct page
*page
)
1893 static bool check_new_pcp(struct page
*page
)
1895 return check_new_page(page
);
1898 static bool check_pcp_refill(struct page
*page
)
1900 return check_new_page(page
);
1902 static bool check_new_pcp(struct page
*page
)
1906 #endif /* CONFIG_DEBUG_VM */
1908 static bool check_new_pages(struct page
*page
, unsigned int order
)
1911 for (i
= 0; i
< (1 << order
); i
++) {
1912 struct page
*p
= page
+ i
;
1914 if (unlikely(check_new_page(p
)))
1921 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1924 set_page_private(page
, 0);
1925 set_page_refcounted(page
);
1927 arch_alloc_page(page
, order
);
1928 kernel_map_pages(page
, 1 << order
, 1);
1929 kernel_poison_pages(page
, 1 << order
, 1);
1930 kasan_alloc_pages(page
, order
);
1931 set_page_owner(page
, order
, gfp_flags
);
1934 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1935 unsigned int alloc_flags
)
1939 post_alloc_hook(page
, order
, gfp_flags
);
1941 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1942 for (i
= 0; i
< (1 << order
); i
++)
1943 clear_highpage(page
+ i
);
1945 if (order
&& (gfp_flags
& __GFP_COMP
))
1946 prep_compound_page(page
, order
);
1949 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1950 * allocate the page. The expectation is that the caller is taking
1951 * steps that will free more memory. The caller should avoid the page
1952 * being used for !PFMEMALLOC purposes.
1954 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1955 set_page_pfmemalloc(page
);
1957 clear_page_pfmemalloc(page
);
1961 * Go through the free lists for the given migratetype and remove
1962 * the smallest available page from the freelists
1964 static __always_inline
1965 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1968 unsigned int current_order
;
1969 struct free_area
*area
;
1972 /* Find a page of the appropriate size in the preferred list */
1973 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1974 area
= &(zone
->free_area
[current_order
]);
1975 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1979 list_del(&page
->lru
);
1980 rmv_page_order(page
);
1982 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1983 set_pcppage_migratetype(page
, migratetype
);
1992 * This array describes the order lists are fallen back to when
1993 * the free lists for the desirable migrate type are depleted
1995 static int fallbacks
[MIGRATE_TYPES
][4] = {
1996 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1997 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1998 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2000 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2002 #ifdef CONFIG_MEMORY_ISOLATION
2003 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2008 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2011 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2014 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2015 unsigned int order
) { return NULL
; }
2019 * Move the free pages in a range to the free lists of the requested type.
2020 * Note that start_page and end_pages are not aligned on a pageblock
2021 * boundary. If alignment is required, use move_freepages_block()
2023 static int move_freepages(struct zone
*zone
,
2024 struct page
*start_page
, struct page
*end_page
,
2025 int migratetype
, int *num_movable
)
2029 int pages_moved
= 0;
2031 #ifndef CONFIG_HOLES_IN_ZONE
2033 * page_zone is not safe to call in this context when
2034 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2035 * anyway as we check zone boundaries in move_freepages_block().
2036 * Remove at a later date when no bug reports exist related to
2037 * grouping pages by mobility
2039 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2040 pfn_valid(page_to_pfn(end_page
)) &&
2041 page_zone(start_page
) != page_zone(end_page
));
2047 for (page
= start_page
; page
<= end_page
;) {
2048 if (!pfn_valid_within(page_to_pfn(page
))) {
2053 /* Make sure we are not inadvertently changing nodes */
2054 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2056 if (!PageBuddy(page
)) {
2058 * We assume that pages that could be isolated for
2059 * migration are movable. But we don't actually try
2060 * isolating, as that would be expensive.
2063 (PageLRU(page
) || __PageMovable(page
)))
2070 order
= page_order(page
);
2071 list_move(&page
->lru
,
2072 &zone
->free_area
[order
].free_list
[migratetype
]);
2074 pages_moved
+= 1 << order
;
2080 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2081 int migratetype
, int *num_movable
)
2083 unsigned long start_pfn
, end_pfn
;
2084 struct page
*start_page
, *end_page
;
2086 start_pfn
= page_to_pfn(page
);
2087 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2088 start_page
= pfn_to_page(start_pfn
);
2089 end_page
= start_page
+ pageblock_nr_pages
- 1;
2090 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2092 /* Do not cross zone boundaries */
2093 if (!zone_spans_pfn(zone
, start_pfn
))
2095 if (!zone_spans_pfn(zone
, end_pfn
))
2098 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2102 static void change_pageblock_range(struct page
*pageblock_page
,
2103 int start_order
, int migratetype
)
2105 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2107 while (nr_pageblocks
--) {
2108 set_pageblock_migratetype(pageblock_page
, migratetype
);
2109 pageblock_page
+= pageblock_nr_pages
;
2114 * When we are falling back to another migratetype during allocation, try to
2115 * steal extra free pages from the same pageblocks to satisfy further
2116 * allocations, instead of polluting multiple pageblocks.
2118 * If we are stealing a relatively large buddy page, it is likely there will
2119 * be more free pages in the pageblock, so try to steal them all. For
2120 * reclaimable and unmovable allocations, we steal regardless of page size,
2121 * as fragmentation caused by those allocations polluting movable pageblocks
2122 * is worse than movable allocations stealing from unmovable and reclaimable
2125 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2128 * Leaving this order check is intended, although there is
2129 * relaxed order check in next check. The reason is that
2130 * we can actually steal whole pageblock if this condition met,
2131 * but, below check doesn't guarantee it and that is just heuristic
2132 * so could be changed anytime.
2134 if (order
>= pageblock_order
)
2137 if (order
>= pageblock_order
/ 2 ||
2138 start_mt
== MIGRATE_RECLAIMABLE
||
2139 start_mt
== MIGRATE_UNMOVABLE
||
2140 page_group_by_mobility_disabled
)
2147 * This function implements actual steal behaviour. If order is large enough,
2148 * we can steal whole pageblock. If not, we first move freepages in this
2149 * pageblock to our migratetype and determine how many already-allocated pages
2150 * are there in the pageblock with a compatible migratetype. If at least half
2151 * of pages are free or compatible, we can change migratetype of the pageblock
2152 * itself, so pages freed in the future will be put on the correct free list.
2154 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2155 int start_type
, bool whole_block
)
2157 unsigned int current_order
= page_order(page
);
2158 struct free_area
*area
;
2159 int free_pages
, movable_pages
, alike_pages
;
2162 old_block_type
= get_pageblock_migratetype(page
);
2165 * This can happen due to races and we want to prevent broken
2166 * highatomic accounting.
2168 if (is_migrate_highatomic(old_block_type
))
2171 /* Take ownership for orders >= pageblock_order */
2172 if (current_order
>= pageblock_order
) {
2173 change_pageblock_range(page
, current_order
, start_type
);
2177 /* We are not allowed to try stealing from the whole block */
2181 free_pages
= move_freepages_block(zone
, page
, start_type
,
2184 * Determine how many pages are compatible with our allocation.
2185 * For movable allocation, it's the number of movable pages which
2186 * we just obtained. For other types it's a bit more tricky.
2188 if (start_type
== MIGRATE_MOVABLE
) {
2189 alike_pages
= movable_pages
;
2192 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2193 * to MOVABLE pageblock, consider all non-movable pages as
2194 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2195 * vice versa, be conservative since we can't distinguish the
2196 * exact migratetype of non-movable pages.
2198 if (old_block_type
== MIGRATE_MOVABLE
)
2199 alike_pages
= pageblock_nr_pages
2200 - (free_pages
+ movable_pages
);
2205 /* moving whole block can fail due to zone boundary conditions */
2210 * If a sufficient number of pages in the block are either free or of
2211 * comparable migratability as our allocation, claim the whole block.
2213 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2214 page_group_by_mobility_disabled
)
2215 set_pageblock_migratetype(page
, start_type
);
2220 area
= &zone
->free_area
[current_order
];
2221 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2225 * Check whether there is a suitable fallback freepage with requested order.
2226 * If only_stealable is true, this function returns fallback_mt only if
2227 * we can steal other freepages all together. This would help to reduce
2228 * fragmentation due to mixed migratetype pages in one pageblock.
2230 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2231 int migratetype
, bool only_stealable
, bool *can_steal
)
2236 if (area
->nr_free
== 0)
2241 fallback_mt
= fallbacks
[migratetype
][i
];
2242 if (fallback_mt
== MIGRATE_TYPES
)
2245 if (list_empty(&area
->free_list
[fallback_mt
]))
2248 if (can_steal_fallback(order
, migratetype
))
2251 if (!only_stealable
)
2262 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2263 * there are no empty page blocks that contain a page with a suitable order
2265 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2266 unsigned int alloc_order
)
2269 unsigned long max_managed
, flags
;
2272 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2273 * Check is race-prone but harmless.
2275 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2276 if (zone
->nr_reserved_highatomic
>= max_managed
)
2279 spin_lock_irqsave(&zone
->lock
, flags
);
2281 /* Recheck the nr_reserved_highatomic limit under the lock */
2282 if (zone
->nr_reserved_highatomic
>= max_managed
)
2286 mt
= get_pageblock_migratetype(page
);
2287 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2288 && !is_migrate_cma(mt
)) {
2289 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2290 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2291 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2295 spin_unlock_irqrestore(&zone
->lock
, flags
);
2299 * Used when an allocation is about to fail under memory pressure. This
2300 * potentially hurts the reliability of high-order allocations when under
2301 * intense memory pressure but failed atomic allocations should be easier
2302 * to recover from than an OOM.
2304 * If @force is true, try to unreserve a pageblock even though highatomic
2305 * pageblock is exhausted.
2307 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2310 struct zonelist
*zonelist
= ac
->zonelist
;
2311 unsigned long flags
;
2318 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2321 * Preserve at least one pageblock unless memory pressure
2324 if (!force
&& zone
->nr_reserved_highatomic
<=
2328 spin_lock_irqsave(&zone
->lock
, flags
);
2329 for (order
= 0; order
< MAX_ORDER
; order
++) {
2330 struct free_area
*area
= &(zone
->free_area
[order
]);
2332 page
= list_first_entry_or_null(
2333 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2339 * In page freeing path, migratetype change is racy so
2340 * we can counter several free pages in a pageblock
2341 * in this loop althoug we changed the pageblock type
2342 * from highatomic to ac->migratetype. So we should
2343 * adjust the count once.
2345 if (is_migrate_highatomic_page(page
)) {
2347 * It should never happen but changes to
2348 * locking could inadvertently allow a per-cpu
2349 * drain to add pages to MIGRATE_HIGHATOMIC
2350 * while unreserving so be safe and watch for
2353 zone
->nr_reserved_highatomic
-= min(
2355 zone
->nr_reserved_highatomic
);
2359 * Convert to ac->migratetype and avoid the normal
2360 * pageblock stealing heuristics. Minimally, the caller
2361 * is doing the work and needs the pages. More
2362 * importantly, if the block was always converted to
2363 * MIGRATE_UNMOVABLE or another type then the number
2364 * of pageblocks that cannot be completely freed
2367 set_pageblock_migratetype(page
, ac
->migratetype
);
2368 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2371 spin_unlock_irqrestore(&zone
->lock
, flags
);
2375 spin_unlock_irqrestore(&zone
->lock
, flags
);
2382 * Try finding a free buddy page on the fallback list and put it on the free
2383 * list of requested migratetype, possibly along with other pages from the same
2384 * block, depending on fragmentation avoidance heuristics. Returns true if
2385 * fallback was found so that __rmqueue_smallest() can grab it.
2387 * The use of signed ints for order and current_order is a deliberate
2388 * deviation from the rest of this file, to make the for loop
2389 * condition simpler.
2391 static __always_inline
bool
2392 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2394 struct free_area
*area
;
2401 * Find the largest available free page in the other list. This roughly
2402 * approximates finding the pageblock with the most free pages, which
2403 * would be too costly to do exactly.
2405 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2407 area
= &(zone
->free_area
[current_order
]);
2408 fallback_mt
= find_suitable_fallback(area
, current_order
,
2409 start_migratetype
, false, &can_steal
);
2410 if (fallback_mt
== -1)
2414 * We cannot steal all free pages from the pageblock and the
2415 * requested migratetype is movable. In that case it's better to
2416 * steal and split the smallest available page instead of the
2417 * largest available page, because even if the next movable
2418 * allocation falls back into a different pageblock than this
2419 * one, it won't cause permanent fragmentation.
2421 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2422 && current_order
> order
)
2431 for (current_order
= order
; current_order
< MAX_ORDER
;
2433 area
= &(zone
->free_area
[current_order
]);
2434 fallback_mt
= find_suitable_fallback(area
, current_order
,
2435 start_migratetype
, false, &can_steal
);
2436 if (fallback_mt
!= -1)
2441 * This should not happen - we already found a suitable fallback
2442 * when looking for the largest page.
2444 VM_BUG_ON(current_order
== MAX_ORDER
);
2447 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2450 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2452 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2453 start_migratetype
, fallback_mt
);
2460 * Do the hard work of removing an element from the buddy allocator.
2461 * Call me with the zone->lock already held.
2463 static __always_inline
struct page
*
2464 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2469 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2470 if (unlikely(!page
)) {
2471 if (migratetype
== MIGRATE_MOVABLE
)
2472 page
= __rmqueue_cma_fallback(zone
, order
);
2474 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2478 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2483 * Obtain a specified number of elements from the buddy allocator, all under
2484 * a single hold of the lock, for efficiency. Add them to the supplied list.
2485 * Returns the number of new pages which were placed at *list.
2487 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2488 unsigned long count
, struct list_head
*list
,
2493 spin_lock(&zone
->lock
);
2494 for (i
= 0; i
< count
; ++i
) {
2495 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2496 if (unlikely(page
== NULL
))
2499 if (unlikely(check_pcp_refill(page
)))
2503 * Split buddy pages returned by expand() are received here in
2504 * physical page order. The page is added to the tail of
2505 * caller's list. From the callers perspective, the linked list
2506 * is ordered by page number under some conditions. This is
2507 * useful for IO devices that can forward direction from the
2508 * head, thus also in the physical page order. This is useful
2509 * for IO devices that can merge IO requests if the physical
2510 * pages are ordered properly.
2512 list_add_tail(&page
->lru
, list
);
2514 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2515 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2520 * i pages were removed from the buddy list even if some leak due
2521 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2522 * on i. Do not confuse with 'alloced' which is the number of
2523 * pages added to the pcp list.
2525 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2526 spin_unlock(&zone
->lock
);
2532 * Called from the vmstat counter updater to drain pagesets of this
2533 * currently executing processor on remote nodes after they have
2536 * Note that this function must be called with the thread pinned to
2537 * a single processor.
2539 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2541 unsigned long flags
;
2542 int to_drain
, batch
;
2544 local_irq_save(flags
);
2545 batch
= READ_ONCE(pcp
->batch
);
2546 to_drain
= min(pcp
->count
, batch
);
2548 free_pcppages_bulk(zone
, to_drain
, pcp
);
2549 local_irq_restore(flags
);
2554 * Drain pcplists of the indicated processor and zone.
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2560 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2562 unsigned long flags
;
2563 struct per_cpu_pageset
*pset
;
2564 struct per_cpu_pages
*pcp
;
2566 local_irq_save(flags
);
2567 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2571 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2572 local_irq_restore(flags
);
2576 * Drain pcplists of all zones on the indicated processor.
2578 * The processor must either be the current processor and the
2579 * thread pinned to the current processor or a processor that
2582 static void drain_pages(unsigned int cpu
)
2586 for_each_populated_zone(zone
) {
2587 drain_pages_zone(cpu
, zone
);
2592 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2594 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2595 * the single zone's pages.
2597 void drain_local_pages(struct zone
*zone
)
2599 int cpu
= smp_processor_id();
2602 drain_pages_zone(cpu
, zone
);
2607 static void drain_local_pages_wq(struct work_struct
*work
)
2610 * drain_all_pages doesn't use proper cpu hotplug protection so
2611 * we can race with cpu offline when the WQ can move this from
2612 * a cpu pinned worker to an unbound one. We can operate on a different
2613 * cpu which is allright but we also have to make sure to not move to
2617 drain_local_pages(NULL
);
2622 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2624 * When zone parameter is non-NULL, spill just the single zone's pages.
2626 * Note that this can be extremely slow as the draining happens in a workqueue.
2628 void drain_all_pages(struct zone
*zone
)
2633 * Allocate in the BSS so we wont require allocation in
2634 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2636 static cpumask_t cpus_with_pcps
;
2639 * Make sure nobody triggers this path before mm_percpu_wq is fully
2642 if (WARN_ON_ONCE(!mm_percpu_wq
))
2646 * Do not drain if one is already in progress unless it's specific to
2647 * a zone. Such callers are primarily CMA and memory hotplug and need
2648 * the drain to be complete when the call returns.
2650 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2653 mutex_lock(&pcpu_drain_mutex
);
2657 * We don't care about racing with CPU hotplug event
2658 * as offline notification will cause the notified
2659 * cpu to drain that CPU pcps and on_each_cpu_mask
2660 * disables preemption as part of its processing
2662 for_each_online_cpu(cpu
) {
2663 struct per_cpu_pageset
*pcp
;
2665 bool has_pcps
= false;
2668 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2672 for_each_populated_zone(z
) {
2673 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2674 if (pcp
->pcp
.count
) {
2682 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2684 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2687 for_each_cpu(cpu
, &cpus_with_pcps
) {
2688 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2689 INIT_WORK(work
, drain_local_pages_wq
);
2690 queue_work_on(cpu
, mm_percpu_wq
, work
);
2692 for_each_cpu(cpu
, &cpus_with_pcps
)
2693 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2695 mutex_unlock(&pcpu_drain_mutex
);
2698 #ifdef CONFIG_HIBERNATION
2701 * Touch the watchdog for every WD_PAGE_COUNT pages.
2703 #define WD_PAGE_COUNT (128*1024)
2705 void mark_free_pages(struct zone
*zone
)
2707 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2708 unsigned long flags
;
2709 unsigned int order
, t
;
2712 if (zone_is_empty(zone
))
2715 spin_lock_irqsave(&zone
->lock
, flags
);
2717 max_zone_pfn
= zone_end_pfn(zone
);
2718 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2719 if (pfn_valid(pfn
)) {
2720 page
= pfn_to_page(pfn
);
2722 if (!--page_count
) {
2723 touch_nmi_watchdog();
2724 page_count
= WD_PAGE_COUNT
;
2727 if (page_zone(page
) != zone
)
2730 if (!swsusp_page_is_forbidden(page
))
2731 swsusp_unset_page_free(page
);
2734 for_each_migratetype_order(order
, t
) {
2735 list_for_each_entry(page
,
2736 &zone
->free_area
[order
].free_list
[t
], lru
) {
2739 pfn
= page_to_pfn(page
);
2740 for (i
= 0; i
< (1UL << order
); i
++) {
2741 if (!--page_count
) {
2742 touch_nmi_watchdog();
2743 page_count
= WD_PAGE_COUNT
;
2745 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2749 spin_unlock_irqrestore(&zone
->lock
, flags
);
2751 #endif /* CONFIG_PM */
2753 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2757 if (!free_pcp_prepare(page
))
2760 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2761 set_pcppage_migratetype(page
, migratetype
);
2765 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2767 struct zone
*zone
= page_zone(page
);
2768 struct per_cpu_pages
*pcp
;
2771 migratetype
= get_pcppage_migratetype(page
);
2772 __count_vm_event(PGFREE
);
2775 * We only track unmovable, reclaimable and movable on pcp lists.
2776 * Free ISOLATE pages back to the allocator because they are being
2777 * offlined but treat HIGHATOMIC as movable pages so we can get those
2778 * areas back if necessary. Otherwise, we may have to free
2779 * excessively into the page allocator
2781 if (migratetype
>= MIGRATE_PCPTYPES
) {
2782 if (unlikely(is_migrate_isolate(migratetype
))) {
2783 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2786 migratetype
= MIGRATE_MOVABLE
;
2789 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2790 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2792 if (pcp
->count
>= pcp
->high
) {
2793 unsigned long batch
= READ_ONCE(pcp
->batch
);
2794 free_pcppages_bulk(zone
, batch
, pcp
);
2799 * Free a 0-order page
2801 void free_unref_page(struct page
*page
)
2803 unsigned long flags
;
2804 unsigned long pfn
= page_to_pfn(page
);
2806 if (!free_unref_page_prepare(page
, pfn
))
2809 local_irq_save(flags
);
2810 free_unref_page_commit(page
, pfn
);
2811 local_irq_restore(flags
);
2815 * Free a list of 0-order pages
2817 void free_unref_page_list(struct list_head
*list
)
2819 struct page
*page
, *next
;
2820 unsigned long flags
, pfn
;
2821 int batch_count
= 0;
2823 /* Prepare pages for freeing */
2824 list_for_each_entry_safe(page
, next
, list
, lru
) {
2825 pfn
= page_to_pfn(page
);
2826 if (!free_unref_page_prepare(page
, pfn
))
2827 list_del(&page
->lru
);
2828 set_page_private(page
, pfn
);
2831 local_irq_save(flags
);
2832 list_for_each_entry_safe(page
, next
, list
, lru
) {
2833 unsigned long pfn
= page_private(page
);
2835 set_page_private(page
, 0);
2836 trace_mm_page_free_batched(page
);
2837 free_unref_page_commit(page
, pfn
);
2840 * Guard against excessive IRQ disabled times when we get
2841 * a large list of pages to free.
2843 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2844 local_irq_restore(flags
);
2846 local_irq_save(flags
);
2849 local_irq_restore(flags
);
2853 * split_page takes a non-compound higher-order page, and splits it into
2854 * n (1<<order) sub-pages: page[0..n]
2855 * Each sub-page must be freed individually.
2857 * Note: this is probably too low level an operation for use in drivers.
2858 * Please consult with lkml before using this in your driver.
2860 void split_page(struct page
*page
, unsigned int order
)
2864 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2865 VM_BUG_ON_PAGE(!page_count(page
), page
);
2867 for (i
= 1; i
< (1 << order
); i
++)
2868 set_page_refcounted(page
+ i
);
2869 split_page_owner(page
, order
);
2871 EXPORT_SYMBOL_GPL(split_page
);
2873 int __isolate_free_page(struct page
*page
, unsigned int order
)
2875 unsigned long watermark
;
2879 BUG_ON(!PageBuddy(page
));
2881 zone
= page_zone(page
);
2882 mt
= get_pageblock_migratetype(page
);
2884 if (!is_migrate_isolate(mt
)) {
2886 * Obey watermarks as if the page was being allocated. We can
2887 * emulate a high-order watermark check with a raised order-0
2888 * watermark, because we already know our high-order page
2891 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2892 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2895 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2898 /* Remove page from free list */
2899 list_del(&page
->lru
);
2900 zone
->free_area
[order
].nr_free
--;
2901 rmv_page_order(page
);
2904 * Set the pageblock if the isolated page is at least half of a
2907 if (order
>= pageblock_order
- 1) {
2908 struct page
*endpage
= page
+ (1 << order
) - 1;
2909 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2910 int mt
= get_pageblock_migratetype(page
);
2911 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2912 && !is_migrate_highatomic(mt
))
2913 set_pageblock_migratetype(page
,
2919 return 1UL << order
;
2923 * Update NUMA hit/miss statistics
2925 * Must be called with interrupts disabled.
2927 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2930 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2932 /* skip numa counters update if numa stats is disabled */
2933 if (!static_branch_likely(&vm_numa_stat_key
))
2936 if (z
->node
!= numa_node_id())
2937 local_stat
= NUMA_OTHER
;
2939 if (z
->node
== preferred_zone
->node
)
2940 __inc_numa_state(z
, NUMA_HIT
);
2942 __inc_numa_state(z
, NUMA_MISS
);
2943 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2945 __inc_numa_state(z
, local_stat
);
2949 /* Remove page from the per-cpu list, caller must protect the list */
2950 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2951 struct per_cpu_pages
*pcp
,
2952 struct list_head
*list
)
2957 if (list_empty(list
)) {
2958 pcp
->count
+= rmqueue_bulk(zone
, 0,
2961 if (unlikely(list_empty(list
)))
2965 page
= list_first_entry(list
, struct page
, lru
);
2966 list_del(&page
->lru
);
2968 } while (check_new_pcp(page
));
2973 /* Lock and remove page from the per-cpu list */
2974 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2975 struct zone
*zone
, unsigned int order
,
2976 gfp_t gfp_flags
, int migratetype
)
2978 struct per_cpu_pages
*pcp
;
2979 struct list_head
*list
;
2981 unsigned long flags
;
2983 local_irq_save(flags
);
2984 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2985 list
= &pcp
->lists
[migratetype
];
2986 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2988 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2989 zone_statistics(preferred_zone
, zone
);
2991 local_irq_restore(flags
);
2996 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2999 struct page
*rmqueue(struct zone
*preferred_zone
,
3000 struct zone
*zone
, unsigned int order
,
3001 gfp_t gfp_flags
, unsigned int alloc_flags
,
3004 unsigned long flags
;
3007 if (likely(order
== 0)) {
3008 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3009 gfp_flags
, migratetype
);
3014 * We most definitely don't want callers attempting to
3015 * allocate greater than order-1 page units with __GFP_NOFAIL.
3017 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3018 spin_lock_irqsave(&zone
->lock
, flags
);
3022 if (alloc_flags
& ALLOC_HARDER
) {
3023 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3025 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3028 page
= __rmqueue(zone
, order
, migratetype
);
3029 } while (page
&& check_new_pages(page
, order
));
3030 spin_unlock(&zone
->lock
);
3033 __mod_zone_freepage_state(zone
, -(1 << order
),
3034 get_pcppage_migratetype(page
));
3036 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3037 zone_statistics(preferred_zone
, zone
);
3038 local_irq_restore(flags
);
3041 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3045 local_irq_restore(flags
);
3049 #ifdef CONFIG_FAIL_PAGE_ALLOC
3052 struct fault_attr attr
;
3054 bool ignore_gfp_highmem
;
3055 bool ignore_gfp_reclaim
;
3057 } fail_page_alloc
= {
3058 .attr
= FAULT_ATTR_INITIALIZER
,
3059 .ignore_gfp_reclaim
= true,
3060 .ignore_gfp_highmem
= true,
3064 static int __init
setup_fail_page_alloc(char *str
)
3066 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3068 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3070 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3072 if (order
< fail_page_alloc
.min_order
)
3074 if (gfp_mask
& __GFP_NOFAIL
)
3076 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3078 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3079 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3082 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3085 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3087 static int __init
fail_page_alloc_debugfs(void)
3089 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3092 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3093 &fail_page_alloc
.attr
);
3095 return PTR_ERR(dir
);
3097 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3098 &fail_page_alloc
.ignore_gfp_reclaim
))
3100 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3101 &fail_page_alloc
.ignore_gfp_highmem
))
3103 if (!debugfs_create_u32("min-order", mode
, dir
,
3104 &fail_page_alloc
.min_order
))
3109 debugfs_remove_recursive(dir
);
3114 late_initcall(fail_page_alloc_debugfs
);
3116 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3118 #else /* CONFIG_FAIL_PAGE_ALLOC */
3120 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3125 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3128 * Return true if free base pages are above 'mark'. For high-order checks it
3129 * will return true of the order-0 watermark is reached and there is at least
3130 * one free page of a suitable size. Checking now avoids taking the zone lock
3131 * to check in the allocation paths if no pages are free.
3133 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3134 int classzone_idx
, unsigned int alloc_flags
,
3139 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3141 /* free_pages may go negative - that's OK */
3142 free_pages
-= (1 << order
) - 1;
3144 if (alloc_flags
& ALLOC_HIGH
)
3148 * If the caller does not have rights to ALLOC_HARDER then subtract
3149 * the high-atomic reserves. This will over-estimate the size of the
3150 * atomic reserve but it avoids a search.
3152 if (likely(!alloc_harder
)) {
3153 free_pages
-= z
->nr_reserved_highatomic
;
3156 * OOM victims can try even harder than normal ALLOC_HARDER
3157 * users on the grounds that it's definitely going to be in
3158 * the exit path shortly and free memory. Any allocation it
3159 * makes during the free path will be small and short-lived.
3161 if (alloc_flags
& ALLOC_OOM
)
3169 * Check watermarks for an order-0 allocation request. If these
3170 * are not met, then a high-order request also cannot go ahead
3171 * even if a suitable page happened to be free.
3173 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3176 /* If this is an order-0 request then the watermark is fine */
3180 /* For a high-order request, check at least one suitable page is free */
3181 for (o
= order
; o
< MAX_ORDER
; o
++) {
3182 struct free_area
*area
= &z
->free_area
[o
];
3188 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3189 if (!list_empty(&area
->free_list
[mt
]))
3194 if (!list_empty(&area
->free_list
[MIGRATE_CMA
]))
3198 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3204 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3205 int classzone_idx
, unsigned int alloc_flags
)
3207 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3208 zone_page_state(z
, NR_FREE_PAGES
));
3211 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3212 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3214 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3217 * Fast check for order-0 only. If this fails then the reserves
3218 * need to be calculated. There is a corner case where the check
3219 * passes but only the high-order atomic reserve are free. If
3220 * the caller is !atomic then it'll uselessly search the free
3221 * list. That corner case is then slower but it is harmless.
3223 if (!order
&& free_pages
> mark
+ z
->lowmem_reserve
[classzone_idx
])
3226 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3230 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3231 unsigned long mark
, int classzone_idx
)
3233 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3235 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3236 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3238 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3243 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3245 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3248 #else /* CONFIG_NUMA */
3249 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3253 #endif /* CONFIG_NUMA */
3256 * get_page_from_freelist goes through the zonelist trying to allocate
3259 static struct page
*
3260 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3261 const struct alloc_context
*ac
)
3263 struct zoneref
*z
= ac
->preferred_zoneref
;
3265 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3268 * Scan zonelist, looking for a zone with enough free.
3269 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3271 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3276 if (cpusets_enabled() &&
3277 (alloc_flags
& ALLOC_CPUSET
) &&
3278 !__cpuset_zone_allowed(zone
, gfp_mask
))
3281 * When allocating a page cache page for writing, we
3282 * want to get it from a node that is within its dirty
3283 * limit, such that no single node holds more than its
3284 * proportional share of globally allowed dirty pages.
3285 * The dirty limits take into account the node's
3286 * lowmem reserves and high watermark so that kswapd
3287 * should be able to balance it without having to
3288 * write pages from its LRU list.
3290 * XXX: For now, allow allocations to potentially
3291 * exceed the per-node dirty limit in the slowpath
3292 * (spread_dirty_pages unset) before going into reclaim,
3293 * which is important when on a NUMA setup the allowed
3294 * nodes are together not big enough to reach the
3295 * global limit. The proper fix for these situations
3296 * will require awareness of nodes in the
3297 * dirty-throttling and the flusher threads.
3299 if (ac
->spread_dirty_pages
) {
3300 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3303 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3304 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3309 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3310 if (!zone_watermark_fast(zone
, order
, mark
,
3311 ac_classzone_idx(ac
), alloc_flags
)) {
3314 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3316 * Watermark failed for this zone, but see if we can
3317 * grow this zone if it contains deferred pages.
3319 if (static_branch_unlikely(&deferred_pages
)) {
3320 if (_deferred_grow_zone(zone
, order
))
3324 /* Checked here to keep the fast path fast */
3325 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3326 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3329 if (node_reclaim_mode
== 0 ||
3330 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3333 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3335 case NODE_RECLAIM_NOSCAN
:
3338 case NODE_RECLAIM_FULL
:
3339 /* scanned but unreclaimable */
3342 /* did we reclaim enough */
3343 if (zone_watermark_ok(zone
, order
, mark
,
3344 ac_classzone_idx(ac
), alloc_flags
))
3352 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3353 gfp_mask
, alloc_flags
, ac
->migratetype
);
3355 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3358 * If this is a high-order atomic allocation then check
3359 * if the pageblock should be reserved for the future
3361 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3362 reserve_highatomic_pageblock(page
, zone
, order
);
3366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3367 /* Try again if zone has deferred pages */
3368 if (static_branch_unlikely(&deferred_pages
)) {
3369 if (_deferred_grow_zone(zone
, order
))
3380 * Large machines with many possible nodes should not always dump per-node
3381 * meminfo in irq context.
3383 static inline bool should_suppress_show_mem(void)
3388 ret
= in_interrupt();
3393 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3395 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3396 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3398 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3402 * This documents exceptions given to allocations in certain
3403 * contexts that are allowed to allocate outside current's set
3406 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3407 if (tsk_is_oom_victim(current
) ||
3408 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3409 filter
&= ~SHOW_MEM_FILTER_NODES
;
3410 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3411 filter
&= ~SHOW_MEM_FILTER_NODES
;
3413 show_mem(filter
, nodemask
);
3416 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3418 struct va_format vaf
;
3420 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3421 DEFAULT_RATELIMIT_BURST
);
3423 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3426 va_start(args
, fmt
);
3429 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3430 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3431 nodemask_pr_args(nodemask
));
3434 cpuset_print_current_mems_allowed();
3437 warn_alloc_show_mem(gfp_mask
, nodemask
);
3440 static inline struct page
*
3441 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3442 unsigned int alloc_flags
,
3443 const struct alloc_context
*ac
)
3447 page
= get_page_from_freelist(gfp_mask
, order
,
3448 alloc_flags
|ALLOC_CPUSET
, ac
);
3450 * fallback to ignore cpuset restriction if our nodes
3454 page
= get_page_from_freelist(gfp_mask
, order
,
3460 static inline struct page
*
3461 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3462 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3464 struct oom_control oc
= {
3465 .zonelist
= ac
->zonelist
,
3466 .nodemask
= ac
->nodemask
,
3468 .gfp_mask
= gfp_mask
,
3473 *did_some_progress
= 0;
3476 * Acquire the oom lock. If that fails, somebody else is
3477 * making progress for us.
3479 if (!mutex_trylock(&oom_lock
)) {
3480 *did_some_progress
= 1;
3481 schedule_timeout_uninterruptible(1);
3486 * Go through the zonelist yet one more time, keep very high watermark
3487 * here, this is only to catch a parallel oom killing, we must fail if
3488 * we're still under heavy pressure. But make sure that this reclaim
3489 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3490 * allocation which will never fail due to oom_lock already held.
3492 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3493 ~__GFP_DIRECT_RECLAIM
, order
,
3494 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3498 /* Coredumps can quickly deplete all memory reserves */
3499 if (current
->flags
& PF_DUMPCORE
)
3501 /* The OOM killer will not help higher order allocs */
3502 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3505 * We have already exhausted all our reclaim opportunities without any
3506 * success so it is time to admit defeat. We will skip the OOM killer
3507 * because it is very likely that the caller has a more reasonable
3508 * fallback than shooting a random task.
3510 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3512 /* The OOM killer does not needlessly kill tasks for lowmem */
3513 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3515 if (pm_suspended_storage())
3518 * XXX: GFP_NOFS allocations should rather fail than rely on
3519 * other request to make a forward progress.
3520 * We are in an unfortunate situation where out_of_memory cannot
3521 * do much for this context but let's try it to at least get
3522 * access to memory reserved if the current task is killed (see
3523 * out_of_memory). Once filesystems are ready to handle allocation
3524 * failures more gracefully we should just bail out here.
3527 /* The OOM killer may not free memory on a specific node */
3528 if (gfp_mask
& __GFP_THISNODE
)
3531 /* Exhausted what can be done so it's blame time */
3532 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3533 *did_some_progress
= 1;
3536 * Help non-failing allocations by giving them access to memory
3539 if (gfp_mask
& __GFP_NOFAIL
)
3540 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3541 ALLOC_NO_WATERMARKS
, ac
);
3544 mutex_unlock(&oom_lock
);
3549 * Maximum number of compaction retries wit a progress before OOM
3550 * killer is consider as the only way to move forward.
3552 #define MAX_COMPACT_RETRIES 16
3554 #ifdef CONFIG_COMPACTION
3555 /* Try memory compaction for high-order allocations before reclaim */
3556 static struct page
*
3557 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3558 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3559 enum compact_priority prio
, enum compact_result
*compact_result
)
3562 unsigned int noreclaim_flag
;
3567 noreclaim_flag
= memalloc_noreclaim_save();
3568 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3570 memalloc_noreclaim_restore(noreclaim_flag
);
3572 if (*compact_result
<= COMPACT_INACTIVE
)
3576 * At least in one zone compaction wasn't deferred or skipped, so let's
3577 * count a compaction stall
3579 count_vm_event(COMPACTSTALL
);
3581 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3584 struct zone
*zone
= page_zone(page
);
3586 zone
->compact_blockskip_flush
= false;
3587 compaction_defer_reset(zone
, order
, true);
3588 count_vm_event(COMPACTSUCCESS
);
3593 * It's bad if compaction run occurs and fails. The most likely reason
3594 * is that pages exist, but not enough to satisfy watermarks.
3596 count_vm_event(COMPACTFAIL
);
3604 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3605 enum compact_result compact_result
,
3606 enum compact_priority
*compact_priority
,
3607 int *compaction_retries
)
3609 int max_retries
= MAX_COMPACT_RETRIES
;
3612 int retries
= *compaction_retries
;
3613 enum compact_priority priority
= *compact_priority
;
3618 if (compaction_made_progress(compact_result
))
3619 (*compaction_retries
)++;
3622 * compaction considers all the zone as desperately out of memory
3623 * so it doesn't really make much sense to retry except when the
3624 * failure could be caused by insufficient priority
3626 if (compaction_failed(compact_result
))
3627 goto check_priority
;
3630 * make sure the compaction wasn't deferred or didn't bail out early
3631 * due to locks contention before we declare that we should give up.
3632 * But do not retry if the given zonelist is not suitable for
3635 if (compaction_withdrawn(compact_result
)) {
3636 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3641 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3642 * costly ones because they are de facto nofail and invoke OOM
3643 * killer to move on while costly can fail and users are ready
3644 * to cope with that. 1/4 retries is rather arbitrary but we
3645 * would need much more detailed feedback from compaction to
3646 * make a better decision.
3648 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3650 if (*compaction_retries
<= max_retries
) {
3656 * Make sure there are attempts at the highest priority if we exhausted
3657 * all retries or failed at the lower priorities.
3660 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3661 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3663 if (*compact_priority
> min_priority
) {
3664 (*compact_priority
)--;
3665 *compaction_retries
= 0;
3669 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3673 static inline struct page
*
3674 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3675 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3676 enum compact_priority prio
, enum compact_result
*compact_result
)
3678 *compact_result
= COMPACT_SKIPPED
;
3683 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3684 enum compact_result compact_result
,
3685 enum compact_priority
*compact_priority
,
3686 int *compaction_retries
)
3691 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3695 * There are setups with compaction disabled which would prefer to loop
3696 * inside the allocator rather than hit the oom killer prematurely.
3697 * Let's give them a good hope and keep retrying while the order-0
3698 * watermarks are OK.
3700 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3702 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3703 ac_classzone_idx(ac
), alloc_flags
))
3708 #endif /* CONFIG_COMPACTION */
3710 #ifdef CONFIG_LOCKDEP
3711 struct lockdep_map __fs_reclaim_map
=
3712 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3714 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3716 gfp_mask
= current_gfp_context(gfp_mask
);
3718 /* no reclaim without waiting on it */
3719 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3722 /* this guy won't enter reclaim */
3723 if (current
->flags
& PF_MEMALLOC
)
3726 /* We're only interested __GFP_FS allocations for now */
3727 if (!(gfp_mask
& __GFP_FS
))
3730 if (gfp_mask
& __GFP_NOLOCKDEP
)
3736 void fs_reclaim_acquire(gfp_t gfp_mask
)
3738 if (__need_fs_reclaim(gfp_mask
))
3739 lock_map_acquire(&__fs_reclaim_map
);
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3743 void fs_reclaim_release(gfp_t gfp_mask
)
3745 if (__need_fs_reclaim(gfp_mask
))
3746 lock_map_release(&__fs_reclaim_map
);
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3751 /* Perform direct synchronous page reclaim */
3753 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3754 const struct alloc_context
*ac
)
3756 struct reclaim_state reclaim_state
;
3758 unsigned int noreclaim_flag
;
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
3764 noreclaim_flag
= memalloc_noreclaim_save();
3765 fs_reclaim_acquire(gfp_mask
);
3766 reclaim_state
.reclaimed_slab
= 0;
3767 current
->reclaim_state
= &reclaim_state
;
3769 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3772 current
->reclaim_state
= NULL
;
3773 fs_reclaim_release(gfp_mask
);
3774 memalloc_noreclaim_restore(noreclaim_flag
);
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page
*
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3784 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3785 unsigned long *did_some_progress
)
3787 struct page
*page
= NULL
;
3788 bool drained
= false;
3790 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3791 if (unlikely(!(*did_some_progress
)))
3795 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
3802 if (!page
&& !drained
) {
3803 unreserve_highatomic_pageblock(ac
, false);
3804 drain_all_pages(NULL
);
3812 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3813 const struct alloc_context
*ac
)
3817 pg_data_t
*last_pgdat
= NULL
;
3818 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
3820 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
3822 if (last_pgdat
!= zone
->zone_pgdat
)
3823 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
3824 last_pgdat
= zone
->zone_pgdat
;
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask
)
3831 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3844 if (gfp_mask
& __GFP_ATOMIC
) {
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
3849 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3850 alloc_flags
|= ALLOC_HARDER
;
3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 * comment for __cpuset_node_allowed().
3855 alloc_flags
&= ~ALLOC_CPUSET
;
3856 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3857 alloc_flags
|= ALLOC_HARDER
;
3862 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3864 if (!tsk_is_oom_victim(tsk
))
3868 * !MMU doesn't have oom reaper so give access to memory reserves
3869 * only to the thread with TIF_MEMDIE set
3871 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3878 * Distinguish requests which really need access to full memory
3879 * reserves from oom victims which can live with a portion of it
3881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3883 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3885 if (gfp_mask
& __GFP_MEMALLOC
)
3886 return ALLOC_NO_WATERMARKS
;
3887 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3888 return ALLOC_NO_WATERMARKS
;
3889 if (!in_interrupt()) {
3890 if (current
->flags
& PF_MEMALLOC
)
3891 return ALLOC_NO_WATERMARKS
;
3892 else if (oom_reserves_allowed(current
))
3899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3901 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3905 * Checks whether it makes sense to retry the reclaim to make a forward progress
3906 * for the given allocation request.
3908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3909 * without success, or when we couldn't even meet the watermark if we
3910 * reclaimed all remaining pages on the LRU lists.
3912 * Returns true if a retry is viable or false to enter the oom path.
3915 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3916 struct alloc_context
*ac
, int alloc_flags
,
3917 bool did_some_progress
, int *no_progress_loops
)
3923 * Costly allocations might have made a progress but this doesn't mean
3924 * their order will become available due to high fragmentation so
3925 * always increment the no progress counter for them
3927 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3928 *no_progress_loops
= 0;
3930 (*no_progress_loops
)++;
3933 * Make sure we converge to OOM if we cannot make any progress
3934 * several times in the row.
3936 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3937 /* Before OOM, exhaust highatomic_reserve */
3938 return unreserve_highatomic_pageblock(ac
, true);
3942 * Keep reclaiming pages while there is a chance this will lead
3943 * somewhere. If none of the target zones can satisfy our allocation
3944 * request even if all reclaimable pages are considered then we are
3945 * screwed and have to go OOM.
3947 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3949 unsigned long available
;
3950 unsigned long reclaimable
;
3951 unsigned long min_wmark
= min_wmark_pages(zone
);
3954 available
= reclaimable
= zone_reclaimable_pages(zone
);
3955 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3958 * Would the allocation succeed if we reclaimed all
3959 * reclaimable pages?
3961 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3962 ac_classzone_idx(ac
), alloc_flags
, available
);
3963 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3964 available
, min_wmark
, *no_progress_loops
, wmark
);
3967 * If we didn't make any progress and have a lot of
3968 * dirty + writeback pages then we should wait for
3969 * an IO to complete to slow down the reclaim and
3970 * prevent from pre mature OOM
3972 if (!did_some_progress
) {
3973 unsigned long write_pending
;
3975 write_pending
= zone_page_state_snapshot(zone
,
3976 NR_ZONE_WRITE_PENDING
);
3978 if (2 * write_pending
> reclaimable
) {
3979 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3985 * Memory allocation/reclaim might be called from a WQ
3986 * context and the current implementation of the WQ
3987 * concurrency control doesn't recognize that
3988 * a particular WQ is congested if the worker thread is
3989 * looping without ever sleeping. Therefore we have to
3990 * do a short sleep here rather than calling
3993 if (current
->flags
& PF_WQ_WORKER
)
3994 schedule_timeout_uninterruptible(1);
4006 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4009 * It's possible that cpuset's mems_allowed and the nodemask from
4010 * mempolicy don't intersect. This should be normally dealt with by
4011 * policy_nodemask(), but it's possible to race with cpuset update in
4012 * such a way the check therein was true, and then it became false
4013 * before we got our cpuset_mems_cookie here.
4014 * This assumes that for all allocations, ac->nodemask can come only
4015 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4016 * when it does not intersect with the cpuset restrictions) or the
4017 * caller can deal with a violated nodemask.
4019 if (cpusets_enabled() && ac
->nodemask
&&
4020 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4021 ac
->nodemask
= NULL
;
4026 * When updating a task's mems_allowed or mempolicy nodemask, it is
4027 * possible to race with parallel threads in such a way that our
4028 * allocation can fail while the mask is being updated. If we are about
4029 * to fail, check if the cpuset changed during allocation and if so,
4032 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4038 static inline struct page
*
4039 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4040 struct alloc_context
*ac
)
4042 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4043 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4044 struct page
*page
= NULL
;
4045 unsigned int alloc_flags
;
4046 unsigned long did_some_progress
;
4047 enum compact_priority compact_priority
;
4048 enum compact_result compact_result
;
4049 int compaction_retries
;
4050 int no_progress_loops
;
4051 unsigned int cpuset_mems_cookie
;
4055 * In the slowpath, we sanity check order to avoid ever trying to
4056 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4057 * be using allocators in order of preference for an area that is
4060 if (order
>= MAX_ORDER
) {
4061 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4066 * We also sanity check to catch abuse of atomic reserves being used by
4067 * callers that are not in atomic context.
4069 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4070 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4071 gfp_mask
&= ~__GFP_ATOMIC
;
4074 compaction_retries
= 0;
4075 no_progress_loops
= 0;
4076 compact_priority
= DEF_COMPACT_PRIORITY
;
4077 cpuset_mems_cookie
= read_mems_allowed_begin();
4080 * The fast path uses conservative alloc_flags to succeed only until
4081 * kswapd needs to be woken up, and to avoid the cost of setting up
4082 * alloc_flags precisely. So we do that now.
4084 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4087 * We need to recalculate the starting point for the zonelist iterator
4088 * because we might have used different nodemask in the fast path, or
4089 * there was a cpuset modification and we are retrying - otherwise we
4090 * could end up iterating over non-eligible zones endlessly.
4092 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4093 ac
->high_zoneidx
, ac
->nodemask
);
4094 if (!ac
->preferred_zoneref
->zone
)
4097 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4098 wake_all_kswapds(order
, gfp_mask
, ac
);
4101 * The adjusted alloc_flags might result in immediate success, so try
4104 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4109 * For costly allocations, try direct compaction first, as it's likely
4110 * that we have enough base pages and don't need to reclaim. For non-
4111 * movable high-order allocations, do that as well, as compaction will
4112 * try prevent permanent fragmentation by migrating from blocks of the
4114 * Don't try this for allocations that are allowed to ignore
4115 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4117 if (can_direct_reclaim
&&
4119 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4120 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4121 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4123 INIT_COMPACT_PRIORITY
,
4129 * Checks for costly allocations with __GFP_NORETRY, which
4130 * includes THP page fault allocations
4132 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4134 * If compaction is deferred for high-order allocations,
4135 * it is because sync compaction recently failed. If
4136 * this is the case and the caller requested a THP
4137 * allocation, we do not want to heavily disrupt the
4138 * system, so we fail the allocation instead of entering
4141 if (compact_result
== COMPACT_DEFERRED
)
4145 * Looks like reclaim/compaction is worth trying, but
4146 * sync compaction could be very expensive, so keep
4147 * using async compaction.
4149 compact_priority
= INIT_COMPACT_PRIORITY
;
4154 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4155 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4156 wake_all_kswapds(order
, gfp_mask
, ac
);
4158 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4160 alloc_flags
= reserve_flags
;
4163 * Reset the zonelist iterators if memory policies can be ignored.
4164 * These allocations are high priority and system rather than user
4167 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4168 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
4169 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4170 ac
->high_zoneidx
, ac
->nodemask
);
4173 /* Attempt with potentially adjusted zonelist and alloc_flags */
4174 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4178 /* Caller is not willing to reclaim, we can't balance anything */
4179 if (!can_direct_reclaim
)
4182 /* Avoid recursion of direct reclaim */
4183 if (current
->flags
& PF_MEMALLOC
)
4186 /* Try direct reclaim and then allocating */
4187 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4188 &did_some_progress
);
4192 /* Try direct compaction and then allocating */
4193 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4194 compact_priority
, &compact_result
);
4198 /* Do not loop if specifically requested */
4199 if (gfp_mask
& __GFP_NORETRY
)
4203 * Do not retry costly high order allocations unless they are
4204 * __GFP_RETRY_MAYFAIL
4206 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4209 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4210 did_some_progress
> 0, &no_progress_loops
))
4214 * It doesn't make any sense to retry for the compaction if the order-0
4215 * reclaim is not able to make any progress because the current
4216 * implementation of the compaction depends on the sufficient amount
4217 * of free memory (see __compaction_suitable)
4219 if (did_some_progress
> 0 &&
4220 should_compact_retry(ac
, order
, alloc_flags
,
4221 compact_result
, &compact_priority
,
4222 &compaction_retries
))
4226 /* Deal with possible cpuset update races before we start OOM killing */
4227 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4230 /* Reclaim has failed us, start killing things */
4231 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4235 /* Avoid allocations with no watermarks from looping endlessly */
4236 if (tsk_is_oom_victim(current
) &&
4237 (alloc_flags
== ALLOC_OOM
||
4238 (gfp_mask
& __GFP_NOMEMALLOC
)))
4241 /* Retry as long as the OOM killer is making progress */
4242 if (did_some_progress
) {
4243 no_progress_loops
= 0;
4248 /* Deal with possible cpuset update races before we fail */
4249 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4253 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4256 if (gfp_mask
& __GFP_NOFAIL
) {
4258 * All existing users of the __GFP_NOFAIL are blockable, so warn
4259 * of any new users that actually require GFP_NOWAIT
4261 if (WARN_ON_ONCE(!can_direct_reclaim
))
4265 * PF_MEMALLOC request from this context is rather bizarre
4266 * because we cannot reclaim anything and only can loop waiting
4267 * for somebody to do a work for us
4269 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4272 * non failing costly orders are a hard requirement which we
4273 * are not prepared for much so let's warn about these users
4274 * so that we can identify them and convert them to something
4277 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4280 * Help non-failing allocations by giving them access to memory
4281 * reserves but do not use ALLOC_NO_WATERMARKS because this
4282 * could deplete whole memory reserves which would just make
4283 * the situation worse
4285 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4293 warn_alloc(gfp_mask
, ac
->nodemask
,
4294 "page allocation failure: order:%u", order
);
4299 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4300 int preferred_nid
, nodemask_t
*nodemask
,
4301 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4302 unsigned int *alloc_flags
)
4304 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4305 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4306 ac
->nodemask
= nodemask
;
4307 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4309 if (cpusets_enabled()) {
4310 *alloc_mask
|= __GFP_HARDWALL
;
4312 ac
->nodemask
= &cpuset_current_mems_allowed
;
4314 *alloc_flags
|= ALLOC_CPUSET
;
4317 fs_reclaim_acquire(gfp_mask
);
4318 fs_reclaim_release(gfp_mask
);
4320 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4322 if (should_fail_alloc_page(gfp_mask
, order
))
4328 /* Determine whether to spread dirty pages and what the first usable zone */
4329 static inline void finalise_ac(gfp_t gfp_mask
,
4330 unsigned int order
, struct alloc_context
*ac
)
4332 /* Dirty zone balancing only done in the fast path */
4333 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4336 * The preferred zone is used for statistics but crucially it is
4337 * also used as the starting point for the zonelist iterator. It
4338 * may get reset for allocations that ignore memory policies.
4340 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4341 ac
->high_zoneidx
, ac
->nodemask
);
4345 * This is the 'heart' of the zoned buddy allocator.
4348 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4349 nodemask_t
*nodemask
)
4352 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4353 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4354 struct alloc_context ac
= { };
4356 gfp_mask
&= gfp_allowed_mask
;
4357 alloc_mask
= gfp_mask
;
4358 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4361 finalise_ac(gfp_mask
, order
, &ac
);
4363 /* First allocation attempt */
4364 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4369 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371 * from a particular context which has been marked by
4372 * memalloc_no{fs,io}_{save,restore}.
4374 alloc_mask
= current_gfp_context(gfp_mask
);
4375 ac
.spread_dirty_pages
= false;
4378 * Restore the original nodemask if it was potentially replaced with
4379 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4381 if (unlikely(ac
.nodemask
!= nodemask
))
4382 ac
.nodemask
= nodemask
;
4384 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4387 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4388 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4389 __free_pages(page
, order
);
4393 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4397 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4400 * Common helper functions.
4402 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4407 * __get_free_pages() returns a virtual address, which cannot represent
4410 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4412 page
= alloc_pages(gfp_mask
, order
);
4415 return (unsigned long) page_address(page
);
4417 EXPORT_SYMBOL(__get_free_pages
);
4419 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4421 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4423 EXPORT_SYMBOL(get_zeroed_page
);
4425 void __free_pages(struct page
*page
, unsigned int order
)
4427 if (put_page_testzero(page
)) {
4429 free_unref_page(page
);
4431 __free_pages_ok(page
, order
);
4435 EXPORT_SYMBOL(__free_pages
);
4437 void free_pages(unsigned long addr
, unsigned int order
)
4440 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4441 __free_pages(virt_to_page((void *)addr
), order
);
4445 EXPORT_SYMBOL(free_pages
);
4449 * An arbitrary-length arbitrary-offset area of memory which resides
4450 * within a 0 or higher order page. Multiple fragments within that page
4451 * are individually refcounted, in the page's reference counter.
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments. This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4458 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4461 struct page
*page
= NULL
;
4462 gfp_t gfp
= gfp_mask
;
4464 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4467 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4468 PAGE_FRAG_CACHE_MAX_ORDER
);
4469 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4471 if (unlikely(!page
))
4472 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4474 nc
->va
= page
? page_address(page
) : NULL
;
4479 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4481 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4483 if (page_ref_sub_and_test(page
, count
)) {
4484 unsigned int order
= compound_order(page
);
4487 free_unref_page(page
);
4489 __free_pages_ok(page
, order
);
4492 EXPORT_SYMBOL(__page_frag_cache_drain
);
4494 void *page_frag_alloc(struct page_frag_cache
*nc
,
4495 unsigned int fragsz
, gfp_t gfp_mask
)
4497 unsigned int size
= PAGE_SIZE
;
4501 if (unlikely(!nc
->va
)) {
4503 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4507 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508 /* if size can vary use size else just use PAGE_SIZE */
4511 /* Even if we own the page, we do not use atomic_set().
4512 * This would break get_page_unless_zero() users.
4514 page_ref_add(page
, size
- 1);
4516 /* reset page count bias and offset to start of new frag */
4517 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4518 nc
->pagecnt_bias
= size
;
4522 offset
= nc
->offset
- fragsz
;
4523 if (unlikely(offset
< 0)) {
4524 page
= virt_to_page(nc
->va
);
4526 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530 /* if size can vary use size else just use PAGE_SIZE */
4533 /* OK, page count is 0, we can safely set it */
4534 set_page_count(page
, size
);
4536 /* reset page count bias and offset to start of new frag */
4537 nc
->pagecnt_bias
= size
;
4538 offset
= size
- fragsz
;
4542 nc
->offset
= offset
;
4544 return nc
->va
+ offset
;
4546 EXPORT_SYMBOL(page_frag_alloc
);
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4551 void page_frag_free(void *addr
)
4553 struct page
*page
= virt_to_head_page(addr
);
4555 if (unlikely(put_page_testzero(page
)))
4556 __free_pages_ok(page
, compound_order(page
));
4558 EXPORT_SYMBOL(page_frag_free
);
4560 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4564 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4565 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4567 split_page(virt_to_page((void *)addr
), order
);
4568 while (used
< alloc_end
) {
4573 return (void *)addr
;
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request. alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4585 * This function is also limited by MAX_ORDER.
4587 * Memory allocated by this function must be released by free_pages_exact().
4589 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4591 unsigned int order
= get_order(size
);
4594 addr
= __get_free_pages(gfp_mask
, order
);
4595 return make_alloc_exact(addr
, order
, size
);
4597 EXPORT_SYMBOL(alloc_pages_exact
);
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4609 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4611 unsigned int order
= get_order(size
);
4612 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4615 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4625 void free_pages_exact(void *virt
, size_t size
)
4627 unsigned long addr
= (unsigned long)virt
;
4628 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4630 while (addr
< end
) {
4635 EXPORT_SYMBOL(free_pages_exact
);
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index. For each
4643 * zone, the number of pages is calculated as:
4645 * nr_free_zone_pages = managed_pages - high_pages
4647 static unsigned long nr_free_zone_pages(int offset
)
4652 /* Just pick one node, since fallback list is circular */
4653 unsigned long sum
= 0;
4655 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4657 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4658 unsigned long size
= zone
->managed_pages
;
4659 unsigned long high
= high_wmark_pages(zone
);
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
4673 unsigned long nr_free_buffer_pages(void)
4675 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4677 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4685 unsigned long nr_free_pagecache_pages(void)
4687 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4690 static inline void show_node(struct zone
*zone
)
4692 if (IS_ENABLED(CONFIG_NUMA
))
4693 printk("Node %d ", zone_to_nid(zone
));
4696 long si_mem_available(void)
4699 unsigned long pagecache
;
4700 unsigned long wmark_low
= 0;
4701 unsigned long pages
[NR_LRU_LISTS
];
4705 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4706 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4709 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4712 * Estimate the amount of memory available for userspace allocations,
4713 * without causing swapping.
4715 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4718 * Not all the page cache can be freed, otherwise the system will
4719 * start swapping. Assume at least half of the page cache, or the
4720 * low watermark worth of cache, needs to stay.
4722 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4723 pagecache
-= min(pagecache
/ 2, wmark_low
);
4724 available
+= pagecache
;
4727 * Part of the reclaimable slab consists of items that are in use,
4728 * and cannot be freed. Cap this estimate at the low watermark.
4730 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4731 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4735 * Part of the kernel memory, which can be released under memory
4738 available
+= global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES
) >>
4745 EXPORT_SYMBOL_GPL(si_mem_available
);
4747 void si_meminfo(struct sysinfo
*val
)
4749 val
->totalram
= totalram_pages
;
4750 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4751 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4752 val
->bufferram
= nr_blockdev_pages();
4753 val
->totalhigh
= totalhigh_pages
;
4754 val
->freehigh
= nr_free_highpages();
4755 val
->mem_unit
= PAGE_SIZE
;
4758 EXPORT_SYMBOL(si_meminfo
);
4761 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4763 int zone_type
; /* needs to be signed */
4764 unsigned long managed_pages
= 0;
4765 unsigned long managed_highpages
= 0;
4766 unsigned long free_highpages
= 0;
4767 pg_data_t
*pgdat
= NODE_DATA(nid
);
4769 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4770 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4771 val
->totalram
= managed_pages
;
4772 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4773 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4774 #ifdef CONFIG_HIGHMEM
4775 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4776 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4778 if (is_highmem(zone
)) {
4779 managed_highpages
+= zone
->managed_pages
;
4780 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4783 val
->totalhigh
= managed_highpages
;
4784 val
->freehigh
= free_highpages
;
4786 val
->totalhigh
= managed_highpages
;
4787 val
->freehigh
= free_highpages
;
4789 val
->mem_unit
= PAGE_SIZE
;
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4797 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4799 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4803 * no node mask - aka implicit memory numa policy. Do not bother with
4804 * the synchronization - read_mems_allowed_begin - because we do not
4805 * have to be precise here.
4808 nodemask
= &cpuset_current_mems_allowed
;
4810 return !node_isset(nid
, *nodemask
);
4813 #define K(x) ((x) << (PAGE_SHIFT-10))
4815 static void show_migration_types(unsigned char type
)
4817 static const char types
[MIGRATE_TYPES
] = {
4818 [MIGRATE_UNMOVABLE
] = 'U',
4819 [MIGRATE_MOVABLE
] = 'M',
4820 [MIGRATE_RECLAIMABLE
] = 'E',
4821 [MIGRATE_HIGHATOMIC
] = 'H',
4823 [MIGRATE_CMA
] = 'C',
4825 #ifdef CONFIG_MEMORY_ISOLATION
4826 [MIGRATE_ISOLATE
] = 'I',
4829 char tmp
[MIGRATE_TYPES
+ 1];
4833 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4834 if (type
& (1 << i
))
4839 printk(KERN_CONT
"(%s) ", tmp
);
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4851 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4853 unsigned long free_pcp
= 0;
4858 for_each_populated_zone(zone
) {
4859 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4862 for_each_online_cpu(cpu
)
4863 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4866 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871 " free:%lu free_pcp:%lu free_cma:%lu\n",
4872 global_node_page_state(NR_ACTIVE_ANON
),
4873 global_node_page_state(NR_INACTIVE_ANON
),
4874 global_node_page_state(NR_ISOLATED_ANON
),
4875 global_node_page_state(NR_ACTIVE_FILE
),
4876 global_node_page_state(NR_INACTIVE_FILE
),
4877 global_node_page_state(NR_ISOLATED_FILE
),
4878 global_node_page_state(NR_UNEVICTABLE
),
4879 global_node_page_state(NR_FILE_DIRTY
),
4880 global_node_page_state(NR_WRITEBACK
),
4881 global_node_page_state(NR_UNSTABLE_NFS
),
4882 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4883 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4884 global_node_page_state(NR_FILE_MAPPED
),
4885 global_node_page_state(NR_SHMEM
),
4886 global_zone_page_state(NR_PAGETABLE
),
4887 global_zone_page_state(NR_BOUNCE
),
4888 global_zone_page_state(NR_FREE_PAGES
),
4890 global_zone_page_state(NR_FREE_CMA_PAGES
));
4892 for_each_online_pgdat(pgdat
) {
4893 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4897 " active_anon:%lukB"
4898 " inactive_anon:%lukB"
4899 " active_file:%lukB"
4900 " inactive_file:%lukB"
4901 " unevictable:%lukB"
4902 " isolated(anon):%lukB"
4903 " isolated(file):%lukB"
4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4910 " shmem_pmdmapped: %lukB"
4913 " writeback_tmp:%lukB"
4915 " all_unreclaimable? %s"
4918 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4919 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4920 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4921 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4922 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4923 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4924 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4925 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4926 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4927 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4928 K(node_page_state(pgdat
, NR_SHMEM
)),
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4931 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4933 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4935 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4936 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4937 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4941 for_each_populated_zone(zone
) {
4944 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4948 for_each_online_cpu(cpu
)
4949 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4958 " active_anon:%lukB"
4959 " inactive_anon:%lukB"
4960 " active_file:%lukB"
4961 " inactive_file:%lukB"
4962 " unevictable:%lukB"
4963 " writepending:%lukB"
4967 " kernel_stack:%lukB"
4975 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4976 K(min_wmark_pages(zone
)),
4977 K(low_wmark_pages(zone
)),
4978 K(high_wmark_pages(zone
)),
4979 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4980 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4981 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4982 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4983 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4984 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4985 K(zone
->present_pages
),
4986 K(zone
->managed_pages
),
4987 K(zone_page_state(zone
, NR_MLOCK
)),
4988 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4989 K(zone_page_state(zone
, NR_PAGETABLE
)),
4990 K(zone_page_state(zone
, NR_BOUNCE
)),
4992 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4993 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4994 printk("lowmem_reserve[]:");
4995 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4996 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4997 printk(KERN_CONT
"\n");
5000 for_each_populated_zone(zone
) {
5002 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5003 unsigned char types
[MAX_ORDER
];
5005 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5008 printk(KERN_CONT
"%s: ", zone
->name
);
5010 spin_lock_irqsave(&zone
->lock
, flags
);
5011 for (order
= 0; order
< MAX_ORDER
; order
++) {
5012 struct free_area
*area
= &zone
->free_area
[order
];
5015 nr
[order
] = area
->nr_free
;
5016 total
+= nr
[order
] << order
;
5019 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5020 if (!list_empty(&area
->free_list
[type
]))
5021 types
[order
] |= 1 << type
;
5024 spin_unlock_irqrestore(&zone
->lock
, flags
);
5025 for (order
= 0; order
< MAX_ORDER
; order
++) {
5026 printk(KERN_CONT
"%lu*%lukB ",
5027 nr
[order
], K(1UL) << order
);
5029 show_migration_types(types
[order
]);
5031 printk(KERN_CONT
"= %lukB\n", K(total
));
5034 hugetlb_show_meminfo();
5036 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5038 show_swap_cache_info();
5041 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5043 zoneref
->zone
= zone
;
5044 zoneref
->zone_idx
= zone_idx(zone
);
5048 * Builds allocation fallback zone lists.
5050 * Add all populated zones of a node to the zonelist.
5052 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5055 enum zone_type zone_type
= MAX_NR_ZONES
;
5060 zone
= pgdat
->node_zones
+ zone_type
;
5061 if (managed_zone(zone
)) {
5062 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5063 check_highest_zone(zone_type
);
5065 } while (zone_type
);
5072 static int __parse_numa_zonelist_order(char *s
)
5075 * We used to support different zonlists modes but they turned
5076 * out to be just not useful. Let's keep the warning in place
5077 * if somebody still use the cmd line parameter so that we do
5078 * not fail it silently
5080 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5081 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5087 static __init
int setup_numa_zonelist_order(char *s
)
5092 return __parse_numa_zonelist_order(s
);
5094 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5096 char numa_zonelist_order
[] = "Node";
5099 * sysctl handler for numa_zonelist_order
5101 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5102 void __user
*buffer
, size_t *length
,
5109 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5110 str
= memdup_user_nul(buffer
, 16);
5112 return PTR_ERR(str
);
5114 ret
= __parse_numa_zonelist_order(str
);
5120 #define MAX_NODE_LOAD (nr_online_nodes)
5121 static int node_load
[MAX_NUMNODES
];
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list. The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5137 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5140 int min_val
= INT_MAX
;
5141 int best_node
= NUMA_NO_NODE
;
5142 const struct cpumask
*tmp
= cpumask_of_node(0);
5144 /* Use the local node if we haven't already */
5145 if (!node_isset(node
, *used_node_mask
)) {
5146 node_set(node
, *used_node_mask
);
5150 for_each_node_state(n
, N_MEMORY
) {
5152 /* Don't want a node to appear more than once */
5153 if (node_isset(n
, *used_node_mask
))
5156 /* Use the distance array to find the distance */
5157 val
= node_distance(node
, n
);
5159 /* Penalize nodes under us ("prefer the next node") */
5162 /* Give preference to headless and unused nodes */
5163 tmp
= cpumask_of_node(n
);
5164 if (!cpumask_empty(tmp
))
5165 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5167 /* Slight preference for less loaded node */
5168 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5169 val
+= node_load
[n
];
5171 if (val
< min_val
) {
5178 node_set(best_node
, *used_node_mask
);
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5189 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5192 struct zoneref
*zonerefs
;
5195 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5197 for (i
= 0; i
< nr_nodes
; i
++) {
5200 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5202 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5203 zonerefs
+= nr_zones
;
5205 zonerefs
->zone
= NULL
;
5206 zonerefs
->zone_idx
= 0;
5210 * Build gfp_thisnode zonelists
5212 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5214 struct zoneref
*zonerefs
;
5217 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5218 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5219 zonerefs
+= nr_zones
;
5220 zonerefs
->zone
= NULL
;
5221 zonerefs
->zone_idx
= 0;
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5231 static void build_zonelists(pg_data_t
*pgdat
)
5233 static int node_order
[MAX_NUMNODES
];
5234 int node
, load
, nr_nodes
= 0;
5235 nodemask_t used_mask
;
5236 int local_node
, prev_node
;
5238 /* NUMA-aware ordering of nodes */
5239 local_node
= pgdat
->node_id
;
5240 load
= nr_online_nodes
;
5241 prev_node
= local_node
;
5242 nodes_clear(used_mask
);
5244 memset(node_order
, 0, sizeof(node_order
));
5245 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5247 * We don't want to pressure a particular node.
5248 * So adding penalty to the first node in same
5249 * distance group to make it round-robin.
5251 if (node_distance(local_node
, node
) !=
5252 node_distance(local_node
, prev_node
))
5253 node_load
[node
] = load
;
5255 node_order
[nr_nodes
++] = node
;
5260 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5261 build_thisnode_zonelists(pgdat
);
5264 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5271 int local_memory_node(int node
)
5275 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5276 gfp_zone(GFP_KERNEL
),
5278 return z
->zone
->node
;
5282 static void setup_min_unmapped_ratio(void);
5283 static void setup_min_slab_ratio(void);
5284 #else /* CONFIG_NUMA */
5286 static void build_zonelists(pg_data_t
*pgdat
)
5288 int node
, local_node
;
5289 struct zoneref
*zonerefs
;
5292 local_node
= pgdat
->node_id
;
5294 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5295 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5296 zonerefs
+= nr_zones
;
5299 * Now we build the zonelist so that it contains the zones
5300 * of all the other nodes.
5301 * We don't want to pressure a particular node, so when
5302 * building the zones for node N, we make sure that the
5303 * zones coming right after the local ones are those from
5304 * node N+1 (modulo N)
5306 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5307 if (!node_online(node
))
5309 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5310 zonerefs
+= nr_zones
;
5312 for (node
= 0; node
< local_node
; node
++) {
5313 if (!node_online(node
))
5315 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5316 zonerefs
+= nr_zones
;
5319 zonerefs
->zone
= NULL
;
5320 zonerefs
->zone_idx
= 0;
5323 #endif /* CONFIG_NUMA */
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5340 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5341 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5342 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5344 static void __build_all_zonelists(void *data
)
5347 int __maybe_unused cpu
;
5348 pg_data_t
*self
= data
;
5349 static DEFINE_SPINLOCK(lock
);
5354 memset(node_load
, 0, sizeof(node_load
));
5358 * This node is hotadded and no memory is yet present. So just
5359 * building zonelists is fine - no need to touch other nodes.
5361 if (self
&& !node_online(self
->node_id
)) {
5362 build_zonelists(self
);
5364 for_each_online_node(nid
) {
5365 pg_data_t
*pgdat
= NODE_DATA(nid
);
5367 build_zonelists(pgdat
);
5370 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5372 * We now know the "local memory node" for each node--
5373 * i.e., the node of the first zone in the generic zonelist.
5374 * Set up numa_mem percpu variable for on-line cpus. During
5375 * boot, only the boot cpu should be on-line; we'll init the
5376 * secondary cpus' numa_mem as they come on-line. During
5377 * node/memory hotplug, we'll fixup all on-line cpus.
5379 for_each_online_cpu(cpu
)
5380 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5387 static noinline
void __init
5388 build_all_zonelists_init(void)
5392 __build_all_zonelists(NULL
);
5395 * Initialize the boot_pagesets that are going to be used
5396 * for bootstrapping processors. The real pagesets for
5397 * each zone will be allocated later when the per cpu
5398 * allocator is available.
5400 * boot_pagesets are used also for bootstrapping offline
5401 * cpus if the system is already booted because the pagesets
5402 * are needed to initialize allocators on a specific cpu too.
5403 * F.e. the percpu allocator needs the page allocator which
5404 * needs the percpu allocator in order to allocate its pagesets
5405 * (a chicken-egg dilemma).
5407 for_each_possible_cpu(cpu
)
5408 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5410 mminit_verify_zonelist();
5411 cpuset_init_current_mems_allowed();
5415 * unless system_state == SYSTEM_BOOTING.
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5420 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5422 if (system_state
== SYSTEM_BOOTING
) {
5423 build_all_zonelists_init();
5425 __build_all_zonelists(pgdat
);
5426 /* cpuset refresh routine should be here */
5428 vm_total_pages
= nr_free_pagecache_pages();
5430 * Disable grouping by mobility if the number of pages in the
5431 * system is too low to allow the mechanism to work. It would be
5432 * more accurate, but expensive to check per-zone. This check is
5433 * made on memory-hotadd so a system can start with mobility
5434 * disabled and enable it later
5436 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5437 page_group_by_mobility_disabled
= 1;
5439 page_group_by_mobility_disabled
= 0;
5441 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5443 page_group_by_mobility_disabled
? "off" : "on",
5446 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5455 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5456 unsigned long start_pfn
, enum memmap_context context
,
5457 struct vmem_altmap
*altmap
)
5459 unsigned long end_pfn
= start_pfn
+ size
;
5460 pg_data_t
*pgdat
= NODE_DATA(nid
);
5462 unsigned long nr_initialised
= 0;
5464 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465 struct memblock_region
*r
= NULL
, *tmp
;
5468 if (highest_memmap_pfn
< end_pfn
- 1)
5469 highest_memmap_pfn
= end_pfn
- 1;
5472 * Honor reservation requested by the driver for this ZONE_DEVICE
5475 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5476 start_pfn
+= altmap
->reserve
;
5478 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5480 * There can be holes in boot-time mem_map[]s handed to this
5481 * function. They do not exist on hotplugged memory.
5483 if (context
!= MEMMAP_EARLY
)
5486 if (!early_pfn_valid(pfn
))
5488 if (!early_pfn_in_nid(pfn
, nid
))
5490 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5495 * Check given memblock attribute by firmware which can affect
5496 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5497 * mirrored, it's an overlapped memmap init. skip it.
5499 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5500 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5501 for_each_memblock(memory
, tmp
)
5502 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5506 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5507 memblock_is_mirror(r
)) {
5508 /* already initialized as NORMAL */
5509 pfn
= memblock_region_memory_end_pfn(r
);
5516 page
= pfn_to_page(pfn
);
5517 __init_single_page(page
, pfn
, zone
, nid
);
5518 if (context
== MEMMAP_HOTPLUG
)
5519 SetPageReserved(page
);
5522 * Mark the block movable so that blocks are reserved for
5523 * movable at startup. This will force kernel allocations
5524 * to reserve their blocks rather than leaking throughout
5525 * the address space during boot when many long-lived
5526 * kernel allocations are made.
5528 * bitmap is created for zone's valid pfn range. but memmap
5529 * can be created for invalid pages (for alignment)
5530 * check here not to call set_pageblock_migratetype() against
5533 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534 * because this is done early in sparse_add_one_section
5536 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5537 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5543 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5545 unsigned int order
, t
;
5546 for_each_migratetype_order(order
, t
) {
5547 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5548 zone
->free_area
[order
].nr_free
= 0;
5552 #ifndef __HAVE_ARCH_MEMMAP_INIT
5553 #define memmap_init(size, nid, zone, start_pfn) \
5554 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5557 static int zone_batchsize(struct zone
*zone
)
5563 * The per-cpu-pages pools are set to around 1000th of the
5564 * size of the zone. But no more than 1/2 of a meg.
5566 * OK, so we don't know how big the cache is. So guess.
5568 batch
= zone
->managed_pages
/ 1024;
5569 if (batch
* PAGE_SIZE
> 512 * 1024)
5570 batch
= (512 * 1024) / PAGE_SIZE
;
5571 batch
/= 4; /* We effectively *= 4 below */
5576 * Clamp the batch to a 2^n - 1 value. Having a power
5577 * of 2 value was found to be more likely to have
5578 * suboptimal cache aliasing properties in some cases.
5580 * For example if 2 tasks are alternately allocating
5581 * batches of pages, one task can end up with a lot
5582 * of pages of one half of the possible page colors
5583 * and the other with pages of the other colors.
5585 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5590 /* The deferral and batching of frees should be suppressed under NOMMU
5593 * The problem is that NOMMU needs to be able to allocate large chunks
5594 * of contiguous memory as there's no hardware page translation to
5595 * assemble apparent contiguous memory from discontiguous pages.
5597 * Queueing large contiguous runs of pages for batching, however,
5598 * causes the pages to actually be freed in smaller chunks. As there
5599 * can be a significant delay between the individual batches being
5600 * recycled, this leads to the once large chunks of space being
5601 * fragmented and becoming unavailable for high-order allocations.
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5620 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5621 unsigned long batch
)
5623 /* start with a fail safe value for batch */
5627 /* Update high, then batch, in order */
5634 /* a companion to pageset_set_high() */
5635 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5637 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5640 static void pageset_init(struct per_cpu_pageset
*p
)
5642 struct per_cpu_pages
*pcp
;
5645 memset(p
, 0, sizeof(*p
));
5649 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5650 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5653 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5656 pageset_set_batch(p
, batch
);
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5663 static void pageset_set_high(struct per_cpu_pageset
*p
,
5666 unsigned long batch
= max(1UL, high
/ 4);
5667 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5668 batch
= PAGE_SHIFT
* 8;
5670 pageset_update(&p
->pcp
, high
, batch
);
5673 static void pageset_set_high_and_batch(struct zone
*zone
,
5674 struct per_cpu_pageset
*pcp
)
5676 if (percpu_pagelist_fraction
)
5677 pageset_set_high(pcp
,
5678 (zone
->managed_pages
/
5679 percpu_pagelist_fraction
));
5681 pageset_set_batch(pcp
, zone_batchsize(zone
));
5684 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5686 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5689 pageset_set_high_and_batch(zone
, pcp
);
5692 void __meminit
setup_zone_pageset(struct zone
*zone
)
5695 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5696 for_each_possible_cpu(cpu
)
5697 zone_pageset_init(zone
, cpu
);
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5704 void __init
setup_per_cpu_pageset(void)
5706 struct pglist_data
*pgdat
;
5709 for_each_populated_zone(zone
)
5710 setup_zone_pageset(zone
);
5712 for_each_online_pgdat(pgdat
)
5713 pgdat
->per_cpu_nodestats
=
5714 alloc_percpu(struct per_cpu_nodestat
);
5717 static __meminit
void zone_pcp_init(struct zone
*zone
)
5720 * per cpu subsystem is not up at this point. The following code
5721 * relies on the ability of the linker to provide the
5722 * offset of a (static) per cpu variable into the per cpu area.
5724 zone
->pageset
= &boot_pageset
;
5726 if (populated_zone(zone
))
5727 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5728 zone
->name
, zone
->present_pages
,
5729 zone_batchsize(zone
));
5732 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5733 unsigned long zone_start_pfn
,
5736 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5738 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5740 zone
->zone_start_pfn
= zone_start_pfn
;
5742 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5743 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5745 (unsigned long)zone_idx(zone
),
5746 zone_start_pfn
, (zone_start_pfn
+ size
));
5748 zone_init_free_lists(zone
);
5749 zone
->initialized
= 1;
5752 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5758 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5759 struct mminit_pfnnid_cache
*state
)
5761 unsigned long start_pfn
, end_pfn
;
5764 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5765 return state
->last_nid
;
5767 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5769 state
->last_start
= start_pfn
;
5770 state
->last_end
= end_pfn
;
5771 state
->last_nid
= nid
;
5776 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5787 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5789 unsigned long start_pfn
, end_pfn
;
5792 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5793 start_pfn
= min(start_pfn
, max_low_pfn
);
5794 end_pfn
= min(end_pfn
, max_low_pfn
);
5796 if (start_pfn
< end_pfn
)
5797 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5798 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5810 void __init
sparse_memory_present_with_active_regions(int nid
)
5812 unsigned long start_pfn
, end_pfn
;
5815 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5816 memory_present(this_nid
, start_pfn
, end_pfn
);
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5830 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5831 unsigned long *start_pfn
, unsigned long *end_pfn
)
5833 unsigned long this_start_pfn
, this_end_pfn
;
5839 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5840 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5841 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5844 if (*start_pfn
== -1UL)
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5853 static void __init
find_usable_zone_for_movable(void)
5856 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5857 if (zone_index
== ZONE_MOVABLE
)
5860 if (arch_zone_highest_possible_pfn
[zone_index
] >
5861 arch_zone_lowest_possible_pfn
[zone_index
])
5865 VM_BUG_ON(zone_index
== -1);
5866 movable_zone
= zone_index
;
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5879 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5880 unsigned long zone_type
,
5881 unsigned long node_start_pfn
,
5882 unsigned long node_end_pfn
,
5883 unsigned long *zone_start_pfn
,
5884 unsigned long *zone_end_pfn
)
5886 /* Only adjust if ZONE_MOVABLE is on this node */
5887 if (zone_movable_pfn
[nid
]) {
5888 /* Size ZONE_MOVABLE */
5889 if (zone_type
== ZONE_MOVABLE
) {
5890 *zone_start_pfn
= zone_movable_pfn
[nid
];
5891 *zone_end_pfn
= min(node_end_pfn
,
5892 arch_zone_highest_possible_pfn
[movable_zone
]);
5894 /* Adjust for ZONE_MOVABLE starting within this range */
5895 } else if (!mirrored_kernelcore
&&
5896 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5897 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5898 *zone_end_pfn
= zone_movable_pfn
[nid
];
5900 /* Check if this whole range is within ZONE_MOVABLE */
5901 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5902 *zone_start_pfn
= *zone_end_pfn
;
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5910 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5911 unsigned long zone_type
,
5912 unsigned long node_start_pfn
,
5913 unsigned long node_end_pfn
,
5914 unsigned long *zone_start_pfn
,
5915 unsigned long *zone_end_pfn
,
5916 unsigned long *ignored
)
5918 /* When hotadd a new node from cpu_up(), the node should be empty */
5919 if (!node_start_pfn
&& !node_end_pfn
)
5922 /* Get the start and end of the zone */
5923 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5924 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5925 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5926 node_start_pfn
, node_end_pfn
,
5927 zone_start_pfn
, zone_end_pfn
);
5929 /* Check that this node has pages within the zone's required range */
5930 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5933 /* Move the zone boundaries inside the node if necessary */
5934 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5935 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5937 /* Return the spanned pages */
5938 return *zone_end_pfn
- *zone_start_pfn
;
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5945 unsigned long __meminit
__absent_pages_in_range(int nid
,
5946 unsigned long range_start_pfn
,
5947 unsigned long range_end_pfn
)
5949 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5950 unsigned long start_pfn
, end_pfn
;
5953 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5954 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5955 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5956 nr_absent
-= end_pfn
- start_pfn
;
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5966 * It returns the number of pages frames in memory holes within a range.
5968 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5969 unsigned long end_pfn
)
5971 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5974 /* Return the number of page frames in holes in a zone on a node */
5975 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5976 unsigned long zone_type
,
5977 unsigned long node_start_pfn
,
5978 unsigned long node_end_pfn
,
5979 unsigned long *ignored
)
5981 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5982 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5983 unsigned long zone_start_pfn
, zone_end_pfn
;
5984 unsigned long nr_absent
;
5986 /* When hotadd a new node from cpu_up(), the node should be empty */
5987 if (!node_start_pfn
&& !node_end_pfn
)
5990 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5991 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5993 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5994 node_start_pfn
, node_end_pfn
,
5995 &zone_start_pfn
, &zone_end_pfn
);
5996 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5999 * ZONE_MOVABLE handling.
6000 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6003 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6004 unsigned long start_pfn
, end_pfn
;
6005 struct memblock_region
*r
;
6007 for_each_memblock(memory
, r
) {
6008 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6009 zone_start_pfn
, zone_end_pfn
);
6010 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6011 zone_start_pfn
, zone_end_pfn
);
6013 if (zone_type
== ZONE_MOVABLE
&&
6014 memblock_is_mirror(r
))
6015 nr_absent
+= end_pfn
- start_pfn
;
6017 if (zone_type
== ZONE_NORMAL
&&
6018 !memblock_is_mirror(r
))
6019 nr_absent
+= end_pfn
- start_pfn
;
6026 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6028 unsigned long zone_type
,
6029 unsigned long node_start_pfn
,
6030 unsigned long node_end_pfn
,
6031 unsigned long *zone_start_pfn
,
6032 unsigned long *zone_end_pfn
,
6033 unsigned long *zones_size
)
6037 *zone_start_pfn
= node_start_pfn
;
6038 for (zone
= 0; zone
< zone_type
; zone
++)
6039 *zone_start_pfn
+= zones_size
[zone
];
6041 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6043 return zones_size
[zone_type
];
6046 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6047 unsigned long zone_type
,
6048 unsigned long node_start_pfn
,
6049 unsigned long node_end_pfn
,
6050 unsigned long *zholes_size
)
6055 return zholes_size
[zone_type
];
6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6060 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
6061 unsigned long node_start_pfn
,
6062 unsigned long node_end_pfn
,
6063 unsigned long *zones_size
,
6064 unsigned long *zholes_size
)
6066 unsigned long realtotalpages
= 0, totalpages
= 0;
6069 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6070 struct zone
*zone
= pgdat
->node_zones
+ i
;
6071 unsigned long zone_start_pfn
, zone_end_pfn
;
6072 unsigned long size
, real_size
;
6074 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6080 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6081 node_start_pfn
, node_end_pfn
,
6084 zone
->zone_start_pfn
= zone_start_pfn
;
6086 zone
->zone_start_pfn
= 0;
6087 zone
->spanned_pages
= size
;
6088 zone
->present_pages
= real_size
;
6091 realtotalpages
+= real_size
;
6094 pgdat
->node_spanned_pages
= totalpages
;
6095 pgdat
->node_present_pages
= realtotalpages
;
6096 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6100 #ifndef CONFIG_SPARSEMEM
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6108 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6110 unsigned long usemapsize
;
6112 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6113 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6114 usemapsize
= usemapsize
>> pageblock_order
;
6115 usemapsize
*= NR_PAGEBLOCK_BITS
;
6116 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6118 return usemapsize
/ 8;
6121 static void __init
setup_usemap(struct pglist_data
*pgdat
,
6123 unsigned long zone_start_pfn
,
6124 unsigned long zonesize
)
6126 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6127 zone
->pageblock_flags
= NULL
;
6129 zone
->pageblock_flags
=
6130 memblock_virt_alloc_node_nopanic(usemapsize
,
6134 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6135 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6136 #endif /* CONFIG_SPARSEMEM */
6138 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6140 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141 void __paginginit
set_pageblock_order(void)
6145 /* Check that pageblock_nr_pages has not already been setup */
6146 if (pageblock_order
)
6149 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6150 order
= HUGETLB_PAGE_ORDER
;
6152 order
= MAX_ORDER
- 1;
6155 * Assume the largest contiguous order of interest is a huge page.
6156 * This value may be variable depending on boot parameters on IA64 and
6159 pageblock_order
= order
;
6161 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6169 void __paginginit
set_pageblock_order(void)
6173 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6175 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6176 unsigned long present_pages
)
6178 unsigned long pages
= spanned_pages
;
6181 * Provide a more accurate estimation if there are holes within
6182 * the zone and SPARSEMEM is in use. If there are holes within the
6183 * zone, each populated memory region may cost us one or two extra
6184 * memmap pages due to alignment because memmap pages for each
6185 * populated regions may not be naturally aligned on page boundary.
6186 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6188 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6189 IS_ENABLED(CONFIG_SPARSEMEM
))
6190 pages
= present_pages
;
6192 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6196 * Set up the zone data structures:
6197 * - mark all pages reserved
6198 * - mark all memory queues empty
6199 * - clear the memory bitmaps
6201 * NOTE: pgdat should get zeroed by caller.
6203 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6206 int nid
= pgdat
->node_id
;
6207 unsigned long node_end_pfn
= 0;
6209 pgdat_resize_init(pgdat
);
6210 #ifdef CONFIG_NUMA_BALANCING
6211 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6212 pgdat
->numabalancing_migrate_nr_pages
= 0;
6213 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6216 spin_lock_init(&pgdat
->split_queue_lock
);
6217 INIT_LIST_HEAD(&pgdat
->split_queue
);
6218 pgdat
->split_queue_len
= 0;
6220 init_waitqueue_head(&pgdat
->kswapd_wait
);
6221 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6222 #ifdef CONFIG_COMPACTION
6223 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6225 pgdat_page_ext_init(pgdat
);
6226 spin_lock_init(&pgdat
->lru_lock
);
6227 lruvec_init(node_lruvec(pgdat
));
6229 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6231 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6232 struct zone
*zone
= pgdat
->node_zones
+ j
;
6233 unsigned long size
, realsize
, freesize
, memmap_pages
;
6234 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6235 unsigned long movable_size
= 0;
6237 size
= zone
->spanned_pages
;
6238 realsize
= freesize
= zone
->present_pages
;
6239 if (zone_end_pfn(zone
) > node_end_pfn
)
6240 node_end_pfn
= zone_end_pfn(zone
);
6244 * Adjust freesize so that it accounts for how much memory
6245 * is used by this zone for memmap. This affects the watermark
6246 * and per-cpu initialisations
6248 memmap_pages
= calc_memmap_size(size
, realsize
);
6249 if (!is_highmem_idx(j
)) {
6250 if (freesize
>= memmap_pages
) {
6251 freesize
-= memmap_pages
;
6254 " %s zone: %lu pages used for memmap\n",
6255 zone_names
[j
], memmap_pages
);
6257 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6258 zone_names
[j
], memmap_pages
, freesize
);
6261 /* Account for reserved pages */
6262 if (j
== 0 && freesize
> dma_reserve
) {
6263 freesize
-= dma_reserve
;
6264 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6265 zone_names
[0], dma_reserve
);
6268 if (!is_highmem_idx(j
))
6269 nr_kernel_pages
+= freesize
;
6270 /* Charge for highmem memmap if there are enough kernel pages */
6271 else if (nr_kernel_pages
> memmap_pages
* 2)
6272 nr_kernel_pages
-= memmap_pages
;
6273 nr_all_pages
+= freesize
;
6276 * Set an approximate value for lowmem here, it will be adjusted
6277 * when the bootmem allocator frees pages into the buddy system.
6278 * And all highmem pages will be managed by the buddy system.
6280 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6284 zone
->name
= zone_names
[j
];
6285 zone
->zone_pgdat
= pgdat
;
6286 spin_lock_init(&zone
->lock
);
6287 zone_seqlock_init(zone
);
6288 zone_pcp_init(zone
);
6291 * The size of the CMA area is unknown now so we need to
6292 * prepare the memory for the usemap at maximum.
6294 if (IS_ENABLED(CONFIG_CMA
) && j
== ZONE_MOVABLE
&&
6295 pgdat
->node_spanned_pages
) {
6296 movable_size
= node_end_pfn
- pgdat
->node_start_pfn
;
6299 if (!size
&& !movable_size
)
6302 set_pageblock_order();
6304 zone
->zone_start_pfn
= pgdat
->node_start_pfn
;
6305 zone
->spanned_pages
= movable_size
;
6306 setup_usemap(pgdat
, zone
,
6307 pgdat
->node_start_pfn
, movable_size
);
6308 init_currently_empty_zone(zone
,
6309 pgdat
->node_start_pfn
, movable_size
);
6311 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6312 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6314 memmap_init(size
, nid
, j
, zone_start_pfn
);
6318 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6319 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6321 unsigned long __maybe_unused start
= 0;
6322 unsigned long __maybe_unused offset
= 0;
6324 /* Skip empty nodes */
6325 if (!pgdat
->node_spanned_pages
)
6328 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6329 offset
= pgdat
->node_start_pfn
- start
;
6330 /* ia64 gets its own node_mem_map, before this, without bootmem */
6331 if (!pgdat
->node_mem_map
) {
6332 unsigned long size
, end
;
6336 * The zone's endpoints aren't required to be MAX_ORDER
6337 * aligned but the node_mem_map endpoints must be in order
6338 * for the buddy allocator to function correctly.
6340 end
= pgdat_end_pfn(pgdat
);
6341 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6342 size
= (end
- start
) * sizeof(struct page
);
6343 map
= memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
6344 pgdat
->node_mem_map
= map
+ offset
;
6346 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6347 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6348 (unsigned long)pgdat
->node_mem_map
);
6349 #ifndef CONFIG_NEED_MULTIPLE_NODES
6351 * With no DISCONTIG, the global mem_map is just set as node 0's
6353 if (pgdat
== NODE_DATA(0)) {
6354 mem_map
= NODE_DATA(0)->node_mem_map
;
6355 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6356 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6358 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6363 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6364 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6366 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6367 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6369 pg_data_t
*pgdat
= NODE_DATA(nid
);
6370 unsigned long start_pfn
= 0;
6371 unsigned long end_pfn
= 0;
6373 /* pg_data_t should be reset to zero when it's allocated */
6374 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6376 pgdat
->node_id
= nid
;
6377 pgdat
->node_start_pfn
= node_start_pfn
;
6378 pgdat
->per_cpu_nodestats
= NULL
;
6379 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6380 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6381 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6382 (u64
)start_pfn
<< PAGE_SHIFT
,
6383 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6385 start_pfn
= node_start_pfn
;
6387 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6388 zones_size
, zholes_size
);
6390 alloc_node_mem_map(pgdat
);
6392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6394 * We start only with one section of pages, more pages are added as
6395 * needed until the rest of deferred pages are initialized.
6397 pgdat
->static_init_pgcnt
= min_t(unsigned long, PAGES_PER_SECTION
,
6398 pgdat
->node_spanned_pages
);
6399 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6401 free_area_init_core(pgdat
);
6404 #ifdef CONFIG_HAVE_MEMBLOCK
6406 * Only struct pages that are backed by physical memory are zeroed and
6407 * initialized by going through __init_single_page(). But, there are some
6408 * struct pages which are reserved in memblock allocator and their fields
6409 * may be accessed (for example page_to_pfn() on some configuration accesses
6410 * flags). We must explicitly zero those struct pages.
6412 void __paginginit
zero_resv_unavail(void)
6414 phys_addr_t start
, end
;
6419 * Loop through ranges that are reserved, but do not have reported
6420 * physical memory backing.
6423 for_each_resv_unavail_range(i
, &start
, &end
) {
6424 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6425 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
)))
6427 mm_zero_struct_page(pfn_to_page(pfn
));
6433 * Struct pages that do not have backing memory. This could be because
6434 * firmware is using some of this memory, or for some other reasons.
6435 * Once memblock is changed so such behaviour is not allowed: i.e.
6436 * list of "reserved" memory must be a subset of list of "memory", then
6437 * this code can be removed.
6440 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6442 #endif /* CONFIG_HAVE_MEMBLOCK */
6444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6446 #if MAX_NUMNODES > 1
6448 * Figure out the number of possible node ids.
6450 void __init
setup_nr_node_ids(void)
6452 unsigned int highest
;
6454 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6455 nr_node_ids
= highest
+ 1;
6460 * node_map_pfn_alignment - determine the maximum internode alignment
6462 * This function should be called after node map is populated and sorted.
6463 * It calculates the maximum power of two alignment which can distinguish
6466 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6467 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6468 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6469 * shifted, 1GiB is enough and this function will indicate so.
6471 * This is used to test whether pfn -> nid mapping of the chosen memory
6472 * model has fine enough granularity to avoid incorrect mapping for the
6473 * populated node map.
6475 * Returns the determined alignment in pfn's. 0 if there is no alignment
6476 * requirement (single node).
6478 unsigned long __init
node_map_pfn_alignment(void)
6480 unsigned long accl_mask
= 0, last_end
= 0;
6481 unsigned long start
, end
, mask
;
6485 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6486 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6493 * Start with a mask granular enough to pin-point to the
6494 * start pfn and tick off bits one-by-one until it becomes
6495 * too coarse to separate the current node from the last.
6497 mask
= ~((1 << __ffs(start
)) - 1);
6498 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6501 /* accumulate all internode masks */
6505 /* convert mask to number of pages */
6506 return ~accl_mask
+ 1;
6509 /* Find the lowest pfn for a node */
6510 static unsigned long __init
find_min_pfn_for_node(int nid
)
6512 unsigned long min_pfn
= ULONG_MAX
;
6513 unsigned long start_pfn
;
6516 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6517 min_pfn
= min(min_pfn
, start_pfn
);
6519 if (min_pfn
== ULONG_MAX
) {
6520 pr_warn("Could not find start_pfn for node %d\n", nid
);
6528 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6530 * It returns the minimum PFN based on information provided via
6531 * memblock_set_node().
6533 unsigned long __init
find_min_pfn_with_active_regions(void)
6535 return find_min_pfn_for_node(MAX_NUMNODES
);
6539 * early_calculate_totalpages()
6540 * Sum pages in active regions for movable zone.
6541 * Populate N_MEMORY for calculating usable_nodes.
6543 static unsigned long __init
early_calculate_totalpages(void)
6545 unsigned long totalpages
= 0;
6546 unsigned long start_pfn
, end_pfn
;
6549 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6550 unsigned long pages
= end_pfn
- start_pfn
;
6552 totalpages
+= pages
;
6554 node_set_state(nid
, N_MEMORY
);
6560 * Find the PFN the Movable zone begins in each node. Kernel memory
6561 * is spread evenly between nodes as long as the nodes have enough
6562 * memory. When they don't, some nodes will have more kernelcore than
6565 static void __init
find_zone_movable_pfns_for_nodes(void)
6568 unsigned long usable_startpfn
;
6569 unsigned long kernelcore_node
, kernelcore_remaining
;
6570 /* save the state before borrow the nodemask */
6571 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6572 unsigned long totalpages
= early_calculate_totalpages();
6573 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6574 struct memblock_region
*r
;
6576 /* Need to find movable_zone earlier when movable_node is specified. */
6577 find_usable_zone_for_movable();
6580 * If movable_node is specified, ignore kernelcore and movablecore
6583 if (movable_node_is_enabled()) {
6584 for_each_memblock(memory
, r
) {
6585 if (!memblock_is_hotpluggable(r
))
6590 usable_startpfn
= PFN_DOWN(r
->base
);
6591 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6592 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6600 * If kernelcore=mirror is specified, ignore movablecore option
6602 if (mirrored_kernelcore
) {
6603 bool mem_below_4gb_not_mirrored
= false;
6605 for_each_memblock(memory
, r
) {
6606 if (memblock_is_mirror(r
))
6611 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6613 if (usable_startpfn
< 0x100000) {
6614 mem_below_4gb_not_mirrored
= true;
6618 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6619 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6623 if (mem_below_4gb_not_mirrored
)
6624 pr_warn("This configuration results in unmirrored kernel memory.");
6630 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6631 * amount of necessary memory.
6633 if (required_kernelcore_percent
)
6634 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
6636 if (required_movablecore_percent
)
6637 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
6641 * If movablecore= was specified, calculate what size of
6642 * kernelcore that corresponds so that memory usable for
6643 * any allocation type is evenly spread. If both kernelcore
6644 * and movablecore are specified, then the value of kernelcore
6645 * will be used for required_kernelcore if it's greater than
6646 * what movablecore would have allowed.
6648 if (required_movablecore
) {
6649 unsigned long corepages
;
6652 * Round-up so that ZONE_MOVABLE is at least as large as what
6653 * was requested by the user
6655 required_movablecore
=
6656 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6657 required_movablecore
= min(totalpages
, required_movablecore
);
6658 corepages
= totalpages
- required_movablecore
;
6660 required_kernelcore
= max(required_kernelcore
, corepages
);
6664 * If kernelcore was not specified or kernelcore size is larger
6665 * than totalpages, there is no ZONE_MOVABLE.
6667 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6670 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6671 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6674 /* Spread kernelcore memory as evenly as possible throughout nodes */
6675 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6676 for_each_node_state(nid
, N_MEMORY
) {
6677 unsigned long start_pfn
, end_pfn
;
6680 * Recalculate kernelcore_node if the division per node
6681 * now exceeds what is necessary to satisfy the requested
6682 * amount of memory for the kernel
6684 if (required_kernelcore
< kernelcore_node
)
6685 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6688 * As the map is walked, we track how much memory is usable
6689 * by the kernel using kernelcore_remaining. When it is
6690 * 0, the rest of the node is usable by ZONE_MOVABLE
6692 kernelcore_remaining
= kernelcore_node
;
6694 /* Go through each range of PFNs within this node */
6695 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6696 unsigned long size_pages
;
6698 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6699 if (start_pfn
>= end_pfn
)
6702 /* Account for what is only usable for kernelcore */
6703 if (start_pfn
< usable_startpfn
) {
6704 unsigned long kernel_pages
;
6705 kernel_pages
= min(end_pfn
, usable_startpfn
)
6708 kernelcore_remaining
-= min(kernel_pages
,
6709 kernelcore_remaining
);
6710 required_kernelcore
-= min(kernel_pages
,
6711 required_kernelcore
);
6713 /* Continue if range is now fully accounted */
6714 if (end_pfn
<= usable_startpfn
) {
6717 * Push zone_movable_pfn to the end so
6718 * that if we have to rebalance
6719 * kernelcore across nodes, we will
6720 * not double account here
6722 zone_movable_pfn
[nid
] = end_pfn
;
6725 start_pfn
= usable_startpfn
;
6729 * The usable PFN range for ZONE_MOVABLE is from
6730 * start_pfn->end_pfn. Calculate size_pages as the
6731 * number of pages used as kernelcore
6733 size_pages
= end_pfn
- start_pfn
;
6734 if (size_pages
> kernelcore_remaining
)
6735 size_pages
= kernelcore_remaining
;
6736 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6739 * Some kernelcore has been met, update counts and
6740 * break if the kernelcore for this node has been
6743 required_kernelcore
-= min(required_kernelcore
,
6745 kernelcore_remaining
-= size_pages
;
6746 if (!kernelcore_remaining
)
6752 * If there is still required_kernelcore, we do another pass with one
6753 * less node in the count. This will push zone_movable_pfn[nid] further
6754 * along on the nodes that still have memory until kernelcore is
6758 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6762 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6763 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6764 zone_movable_pfn
[nid
] =
6765 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6768 /* restore the node_state */
6769 node_states
[N_MEMORY
] = saved_node_state
;
6772 /* Any regular or high memory on that node ? */
6773 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6775 enum zone_type zone_type
;
6777 if (N_MEMORY
== N_NORMAL_MEMORY
)
6780 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6781 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6782 if (populated_zone(zone
)) {
6783 node_set_state(nid
, N_HIGH_MEMORY
);
6784 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6785 zone_type
<= ZONE_NORMAL
)
6786 node_set_state(nid
, N_NORMAL_MEMORY
);
6793 * free_area_init_nodes - Initialise all pg_data_t and zone data
6794 * @max_zone_pfn: an array of max PFNs for each zone
6796 * This will call free_area_init_node() for each active node in the system.
6797 * Using the page ranges provided by memblock_set_node(), the size of each
6798 * zone in each node and their holes is calculated. If the maximum PFN
6799 * between two adjacent zones match, it is assumed that the zone is empty.
6800 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6801 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6802 * starts where the previous one ended. For example, ZONE_DMA32 starts
6803 * at arch_max_dma_pfn.
6805 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6807 unsigned long start_pfn
, end_pfn
;
6810 /* Record where the zone boundaries are */
6811 memset(arch_zone_lowest_possible_pfn
, 0,
6812 sizeof(arch_zone_lowest_possible_pfn
));
6813 memset(arch_zone_highest_possible_pfn
, 0,
6814 sizeof(arch_zone_highest_possible_pfn
));
6816 start_pfn
= find_min_pfn_with_active_regions();
6818 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6819 if (i
== ZONE_MOVABLE
)
6822 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6823 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6824 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6826 start_pfn
= end_pfn
;
6829 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6830 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6831 find_zone_movable_pfns_for_nodes();
6833 /* Print out the zone ranges */
6834 pr_info("Zone ranges:\n");
6835 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6836 if (i
== ZONE_MOVABLE
)
6838 pr_info(" %-8s ", zone_names
[i
]);
6839 if (arch_zone_lowest_possible_pfn
[i
] ==
6840 arch_zone_highest_possible_pfn
[i
])
6843 pr_cont("[mem %#018Lx-%#018Lx]\n",
6844 (u64
)arch_zone_lowest_possible_pfn
[i
]
6846 ((u64
)arch_zone_highest_possible_pfn
[i
]
6847 << PAGE_SHIFT
) - 1);
6850 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6851 pr_info("Movable zone start for each node\n");
6852 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6853 if (zone_movable_pfn
[i
])
6854 pr_info(" Node %d: %#018Lx\n", i
,
6855 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6858 /* Print out the early node map */
6859 pr_info("Early memory node ranges\n");
6860 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6861 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6862 (u64
)start_pfn
<< PAGE_SHIFT
,
6863 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6865 /* Initialise every node */
6866 mminit_verify_pageflags_layout();
6867 setup_nr_node_ids();
6868 for_each_online_node(nid
) {
6869 pg_data_t
*pgdat
= NODE_DATA(nid
);
6870 free_area_init_node(nid
, NULL
,
6871 find_min_pfn_for_node(nid
), NULL
);
6873 /* Any memory on that node */
6874 if (pgdat
->node_present_pages
)
6875 node_set_state(nid
, N_MEMORY
);
6876 check_for_memory(pgdat
, nid
);
6878 zero_resv_unavail();
6881 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
6882 unsigned long *percent
)
6884 unsigned long long coremem
;
6890 /* Value may be a percentage of total memory, otherwise bytes */
6891 coremem
= simple_strtoull(p
, &endptr
, 0);
6892 if (*endptr
== '%') {
6893 /* Paranoid check for percent values greater than 100 */
6894 WARN_ON(coremem
> 100);
6898 coremem
= memparse(p
, &p
);
6899 /* Paranoid check that UL is enough for the coremem value */
6900 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6902 *core
= coremem
>> PAGE_SHIFT
;
6909 * kernelcore=size sets the amount of memory for use for allocations that
6910 * cannot be reclaimed or migrated.
6912 static int __init
cmdline_parse_kernelcore(char *p
)
6914 /* parse kernelcore=mirror */
6915 if (parse_option_str(p
, "mirror")) {
6916 mirrored_kernelcore
= true;
6920 return cmdline_parse_core(p
, &required_kernelcore
,
6921 &required_kernelcore_percent
);
6925 * movablecore=size sets the amount of memory for use for allocations that
6926 * can be reclaimed or migrated.
6928 static int __init
cmdline_parse_movablecore(char *p
)
6930 return cmdline_parse_core(p
, &required_movablecore
,
6931 &required_movablecore_percent
);
6934 early_param("kernelcore", cmdline_parse_kernelcore
);
6935 early_param("movablecore", cmdline_parse_movablecore
);
6937 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6939 void adjust_managed_page_count(struct page
*page
, long count
)
6941 spin_lock(&managed_page_count_lock
);
6942 page_zone(page
)->managed_pages
+= count
;
6943 totalram_pages
+= count
;
6944 #ifdef CONFIG_HIGHMEM
6945 if (PageHighMem(page
))
6946 totalhigh_pages
+= count
;
6948 spin_unlock(&managed_page_count_lock
);
6950 EXPORT_SYMBOL(adjust_managed_page_count
);
6952 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6955 unsigned long pages
= 0;
6957 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6958 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6959 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6960 if ((unsigned int)poison
<= 0xFF)
6961 memset(pos
, poison
, PAGE_SIZE
);
6962 free_reserved_page(virt_to_page(pos
));
6966 pr_info("Freeing %s memory: %ldK\n",
6967 s
, pages
<< (PAGE_SHIFT
- 10));
6971 EXPORT_SYMBOL(free_reserved_area
);
6973 #ifdef CONFIG_HIGHMEM
6974 void free_highmem_page(struct page
*page
)
6976 __free_reserved_page(page
);
6978 page_zone(page
)->managed_pages
++;
6984 void __init
mem_init_print_info(const char *str
)
6986 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6987 unsigned long init_code_size
, init_data_size
;
6989 physpages
= get_num_physpages();
6990 codesize
= _etext
- _stext
;
6991 datasize
= _edata
- _sdata
;
6992 rosize
= __end_rodata
- __start_rodata
;
6993 bss_size
= __bss_stop
- __bss_start
;
6994 init_data_size
= __init_end
- __init_begin
;
6995 init_code_size
= _einittext
- _sinittext
;
6998 * Detect special cases and adjust section sizes accordingly:
6999 * 1) .init.* may be embedded into .data sections
7000 * 2) .init.text.* may be out of [__init_begin, __init_end],
7001 * please refer to arch/tile/kernel/vmlinux.lds.S.
7002 * 3) .rodata.* may be embedded into .text or .data sections.
7004 #define adj_init_size(start, end, size, pos, adj) \
7006 if (start <= pos && pos < end && size > adj) \
7010 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7011 _sinittext
, init_code_size
);
7012 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7013 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7014 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7015 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7017 #undef adj_init_size
7019 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7020 #ifdef CONFIG_HIGHMEM
7024 nr_free_pages() << (PAGE_SHIFT
- 10),
7025 physpages
<< (PAGE_SHIFT
- 10),
7026 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7027 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7028 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
7029 totalcma_pages
<< (PAGE_SHIFT
- 10),
7030 #ifdef CONFIG_HIGHMEM
7031 totalhigh_pages
<< (PAGE_SHIFT
- 10),
7033 str
? ", " : "", str
? str
: "");
7037 * set_dma_reserve - set the specified number of pages reserved in the first zone
7038 * @new_dma_reserve: The number of pages to mark reserved
7040 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7041 * In the DMA zone, a significant percentage may be consumed by kernel image
7042 * and other unfreeable allocations which can skew the watermarks badly. This
7043 * function may optionally be used to account for unfreeable pages in the
7044 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7045 * smaller per-cpu batchsize.
7047 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7049 dma_reserve
= new_dma_reserve
;
7052 void __init
free_area_init(unsigned long *zones_size
)
7054 free_area_init_node(0, zones_size
,
7055 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7056 zero_resv_unavail();
7059 static int page_alloc_cpu_dead(unsigned int cpu
)
7062 lru_add_drain_cpu(cpu
);
7066 * Spill the event counters of the dead processor
7067 * into the current processors event counters.
7068 * This artificially elevates the count of the current
7071 vm_events_fold_cpu(cpu
);
7074 * Zero the differential counters of the dead processor
7075 * so that the vm statistics are consistent.
7077 * This is only okay since the processor is dead and cannot
7078 * race with what we are doing.
7080 cpu_vm_stats_fold(cpu
);
7084 void __init
page_alloc_init(void)
7088 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7089 "mm/page_alloc:dead", NULL
,
7090 page_alloc_cpu_dead
);
7095 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7096 * or min_free_kbytes changes.
7098 static void calculate_totalreserve_pages(void)
7100 struct pglist_data
*pgdat
;
7101 unsigned long reserve_pages
= 0;
7102 enum zone_type i
, j
;
7104 for_each_online_pgdat(pgdat
) {
7106 pgdat
->totalreserve_pages
= 0;
7108 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7109 struct zone
*zone
= pgdat
->node_zones
+ i
;
7112 /* Find valid and maximum lowmem_reserve in the zone */
7113 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7114 if (zone
->lowmem_reserve
[j
] > max
)
7115 max
= zone
->lowmem_reserve
[j
];
7118 /* we treat the high watermark as reserved pages. */
7119 max
+= high_wmark_pages(zone
);
7121 if (max
> zone
->managed_pages
)
7122 max
= zone
->managed_pages
;
7124 pgdat
->totalreserve_pages
+= max
;
7126 reserve_pages
+= max
;
7129 totalreserve_pages
= reserve_pages
;
7133 * setup_per_zone_lowmem_reserve - called whenever
7134 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7135 * has a correct pages reserved value, so an adequate number of
7136 * pages are left in the zone after a successful __alloc_pages().
7138 static void setup_per_zone_lowmem_reserve(void)
7140 struct pglist_data
*pgdat
;
7141 enum zone_type j
, idx
;
7143 for_each_online_pgdat(pgdat
) {
7144 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7145 struct zone
*zone
= pgdat
->node_zones
+ j
;
7146 unsigned long managed_pages
= zone
->managed_pages
;
7148 zone
->lowmem_reserve
[j
] = 0;
7152 struct zone
*lower_zone
;
7155 lower_zone
= pgdat
->node_zones
+ idx
;
7157 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7158 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7159 lower_zone
->lowmem_reserve
[j
] = 0;
7161 lower_zone
->lowmem_reserve
[j
] =
7162 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7164 managed_pages
+= lower_zone
->managed_pages
;
7169 /* update totalreserve_pages */
7170 calculate_totalreserve_pages();
7173 static void __setup_per_zone_wmarks(void)
7175 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7176 unsigned long lowmem_pages
= 0;
7178 unsigned long flags
;
7180 /* Calculate total number of !ZONE_HIGHMEM pages */
7181 for_each_zone(zone
) {
7182 if (!is_highmem(zone
))
7183 lowmem_pages
+= zone
->managed_pages
;
7186 for_each_zone(zone
) {
7189 spin_lock_irqsave(&zone
->lock
, flags
);
7190 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7191 do_div(tmp
, lowmem_pages
);
7192 if (is_highmem(zone
)) {
7194 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7195 * need highmem pages, so cap pages_min to a small
7198 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7199 * deltas control asynch page reclaim, and so should
7200 * not be capped for highmem.
7202 unsigned long min_pages
;
7204 min_pages
= zone
->managed_pages
/ 1024;
7205 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7206 zone
->watermark
[WMARK_MIN
] = min_pages
;
7209 * If it's a lowmem zone, reserve a number of pages
7210 * proportionate to the zone's size.
7212 zone
->watermark
[WMARK_MIN
] = tmp
;
7216 * Set the kswapd watermarks distance according to the
7217 * scale factor in proportion to available memory, but
7218 * ensure a minimum size on small systems.
7220 tmp
= max_t(u64
, tmp
>> 2,
7221 mult_frac(zone
->managed_pages
,
7222 watermark_scale_factor
, 10000));
7224 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7225 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7227 spin_unlock_irqrestore(&zone
->lock
, flags
);
7230 /* update totalreserve_pages */
7231 calculate_totalreserve_pages();
7235 * setup_per_zone_wmarks - called when min_free_kbytes changes
7236 * or when memory is hot-{added|removed}
7238 * Ensures that the watermark[min,low,high] values for each zone are set
7239 * correctly with respect to min_free_kbytes.
7241 void setup_per_zone_wmarks(void)
7243 static DEFINE_SPINLOCK(lock
);
7246 __setup_per_zone_wmarks();
7251 * Initialise min_free_kbytes.
7253 * For small machines we want it small (128k min). For large machines
7254 * we want it large (64MB max). But it is not linear, because network
7255 * bandwidth does not increase linearly with machine size. We use
7257 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7258 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7274 int __meminit
init_per_zone_wmark_min(void)
7276 unsigned long lowmem_kbytes
;
7277 int new_min_free_kbytes
;
7279 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7280 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7282 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7283 min_free_kbytes
= new_min_free_kbytes
;
7284 if (min_free_kbytes
< 128)
7285 min_free_kbytes
= 128;
7286 if (min_free_kbytes
> 65536)
7287 min_free_kbytes
= 65536;
7289 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7290 new_min_free_kbytes
, user_min_free_kbytes
);
7292 setup_per_zone_wmarks();
7293 refresh_zone_stat_thresholds();
7294 setup_per_zone_lowmem_reserve();
7297 setup_min_unmapped_ratio();
7298 setup_min_slab_ratio();
7303 core_initcall(init_per_zone_wmark_min
)
7306 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7307 * that we can call two helper functions whenever min_free_kbytes
7310 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7311 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7315 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7320 user_min_free_kbytes
= min_free_kbytes
;
7321 setup_per_zone_wmarks();
7326 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7327 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7331 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7336 setup_per_zone_wmarks();
7342 static void setup_min_unmapped_ratio(void)
7347 for_each_online_pgdat(pgdat
)
7348 pgdat
->min_unmapped_pages
= 0;
7351 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7352 sysctl_min_unmapped_ratio
) / 100;
7356 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7357 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7361 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7365 setup_min_unmapped_ratio();
7370 static void setup_min_slab_ratio(void)
7375 for_each_online_pgdat(pgdat
)
7376 pgdat
->min_slab_pages
= 0;
7379 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7380 sysctl_min_slab_ratio
) / 100;
7383 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7384 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7388 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7392 setup_min_slab_ratio();
7399 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7400 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7401 * whenever sysctl_lowmem_reserve_ratio changes.
7403 * The reserve ratio obviously has absolutely no relation with the
7404 * minimum watermarks. The lowmem reserve ratio can only make sense
7405 * if in function of the boot time zone sizes.
7407 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7408 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7410 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7411 setup_per_zone_lowmem_reserve();
7416 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7417 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7418 * pagelist can have before it gets flushed back to buddy allocator.
7420 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7421 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7424 int old_percpu_pagelist_fraction
;
7427 mutex_lock(&pcp_batch_high_lock
);
7428 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7430 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7431 if (!write
|| ret
< 0)
7434 /* Sanity checking to avoid pcp imbalance */
7435 if (percpu_pagelist_fraction
&&
7436 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7437 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7443 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7446 for_each_populated_zone(zone
) {
7449 for_each_possible_cpu(cpu
)
7450 pageset_set_high_and_batch(zone
,
7451 per_cpu_ptr(zone
->pageset
, cpu
));
7454 mutex_unlock(&pcp_batch_high_lock
);
7459 int hashdist
= HASHDIST_DEFAULT
;
7461 static int __init
set_hashdist(char *str
)
7465 hashdist
= simple_strtoul(str
, &str
, 0);
7468 __setup("hashdist=", set_hashdist
);
7471 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7473 * Returns the number of pages that arch has reserved but
7474 * is not known to alloc_large_system_hash().
7476 static unsigned long __init
arch_reserved_kernel_pages(void)
7483 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7484 * machines. As memory size is increased the scale is also increased but at
7485 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7486 * quadruples the scale is increased by one, which means the size of hash table
7487 * only doubles, instead of quadrupling as well.
7488 * Because 32-bit systems cannot have large physical memory, where this scaling
7489 * makes sense, it is disabled on such platforms.
7491 #if __BITS_PER_LONG > 32
7492 #define ADAPT_SCALE_BASE (64ul << 30)
7493 #define ADAPT_SCALE_SHIFT 2
7494 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7498 * allocate a large system hash table from bootmem
7499 * - it is assumed that the hash table must contain an exact power-of-2
7500 * quantity of entries
7501 * - limit is the number of hash buckets, not the total allocation size
7503 void *__init
alloc_large_system_hash(const char *tablename
,
7504 unsigned long bucketsize
,
7505 unsigned long numentries
,
7508 unsigned int *_hash_shift
,
7509 unsigned int *_hash_mask
,
7510 unsigned long low_limit
,
7511 unsigned long high_limit
)
7513 unsigned long long max
= high_limit
;
7514 unsigned long log2qty
, size
;
7518 /* allow the kernel cmdline to have a say */
7520 /* round applicable memory size up to nearest megabyte */
7521 numentries
= nr_kernel_pages
;
7522 numentries
-= arch_reserved_kernel_pages();
7524 /* It isn't necessary when PAGE_SIZE >= 1MB */
7525 if (PAGE_SHIFT
< 20)
7526 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7528 #if __BITS_PER_LONG > 32
7530 unsigned long adapt
;
7532 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7533 adapt
<<= ADAPT_SCALE_SHIFT
)
7538 /* limit to 1 bucket per 2^scale bytes of low memory */
7539 if (scale
> PAGE_SHIFT
)
7540 numentries
>>= (scale
- PAGE_SHIFT
);
7542 numentries
<<= (PAGE_SHIFT
- scale
);
7544 /* Make sure we've got at least a 0-order allocation.. */
7545 if (unlikely(flags
& HASH_SMALL
)) {
7546 /* Makes no sense without HASH_EARLY */
7547 WARN_ON(!(flags
& HASH_EARLY
));
7548 if (!(numentries
>> *_hash_shift
)) {
7549 numentries
= 1UL << *_hash_shift
;
7550 BUG_ON(!numentries
);
7552 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7553 numentries
= PAGE_SIZE
/ bucketsize
;
7555 numentries
= roundup_pow_of_two(numentries
);
7557 /* limit allocation size to 1/16 total memory by default */
7559 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7560 do_div(max
, bucketsize
);
7562 max
= min(max
, 0x80000000ULL
);
7564 if (numentries
< low_limit
)
7565 numentries
= low_limit
;
7566 if (numentries
> max
)
7569 log2qty
= ilog2(numentries
);
7571 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7573 size
= bucketsize
<< log2qty
;
7574 if (flags
& HASH_EARLY
) {
7575 if (flags
& HASH_ZERO
)
7576 table
= memblock_virt_alloc_nopanic(size
, 0);
7578 table
= memblock_virt_alloc_raw(size
, 0);
7579 } else if (hashdist
) {
7580 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7583 * If bucketsize is not a power-of-two, we may free
7584 * some pages at the end of hash table which
7585 * alloc_pages_exact() automatically does
7587 if (get_order(size
) < MAX_ORDER
) {
7588 table
= alloc_pages_exact(size
, gfp_flags
);
7589 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7592 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7595 panic("Failed to allocate %s hash table\n", tablename
);
7597 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7598 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7601 *_hash_shift
= log2qty
;
7603 *_hash_mask
= (1 << log2qty
) - 1;
7609 * This function checks whether pageblock includes unmovable pages or not.
7610 * If @count is not zero, it is okay to include less @count unmovable pages
7612 * PageLRU check without isolation or lru_lock could race so that
7613 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7614 * check without lock_page also may miss some movable non-lru pages at
7615 * race condition. So you can't expect this function should be exact.
7617 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7619 bool skip_hwpoisoned_pages
)
7621 unsigned long pfn
, iter
, found
;
7624 * For avoiding noise data, lru_add_drain_all() should be called
7625 * If ZONE_MOVABLE, the zone never contains unmovable pages
7627 if (zone_idx(zone
) == ZONE_MOVABLE
)
7631 * CMA allocations (alloc_contig_range) really need to mark isolate
7632 * CMA pageblocks even when they are not movable in fact so consider
7633 * them movable here.
7635 if (is_migrate_cma(migratetype
) &&
7636 is_migrate_cma(get_pageblock_migratetype(page
)))
7639 pfn
= page_to_pfn(page
);
7640 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7641 unsigned long check
= pfn
+ iter
;
7643 if (!pfn_valid_within(check
))
7646 page
= pfn_to_page(check
);
7648 if (PageReserved(page
))
7652 * Hugepages are not in LRU lists, but they're movable.
7653 * We need not scan over tail pages bacause we don't
7654 * handle each tail page individually in migration.
7656 if (PageHuge(page
)) {
7657 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7662 * We can't use page_count without pin a page
7663 * because another CPU can free compound page.
7664 * This check already skips compound tails of THP
7665 * because their page->_refcount is zero at all time.
7667 if (!page_ref_count(page
)) {
7668 if (PageBuddy(page
))
7669 iter
+= (1 << page_order(page
)) - 1;
7674 * The HWPoisoned page may be not in buddy system, and
7675 * page_count() is not 0.
7677 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7680 if (__PageMovable(page
))
7686 * If there are RECLAIMABLE pages, we need to check
7687 * it. But now, memory offline itself doesn't call
7688 * shrink_node_slabs() and it still to be fixed.
7691 * If the page is not RAM, page_count()should be 0.
7692 * we don't need more check. This is an _used_ not-movable page.
7694 * The problematic thing here is PG_reserved pages. PG_reserved
7695 * is set to both of a memory hole page and a _used_ kernel
7704 bool is_pageblock_removable_nolock(struct page
*page
)
7710 * We have to be careful here because we are iterating over memory
7711 * sections which are not zone aware so we might end up outside of
7712 * the zone but still within the section.
7713 * We have to take care about the node as well. If the node is offline
7714 * its NODE_DATA will be NULL - see page_zone.
7716 if (!node_online(page_to_nid(page
)))
7719 zone
= page_zone(page
);
7720 pfn
= page_to_pfn(page
);
7721 if (!zone_spans_pfn(zone
, pfn
))
7724 return !has_unmovable_pages(zone
, page
, 0, MIGRATE_MOVABLE
, true);
7727 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7729 static unsigned long pfn_max_align_down(unsigned long pfn
)
7731 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7732 pageblock_nr_pages
) - 1);
7735 static unsigned long pfn_max_align_up(unsigned long pfn
)
7737 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7738 pageblock_nr_pages
));
7741 /* [start, end) must belong to a single zone. */
7742 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7743 unsigned long start
, unsigned long end
)
7745 /* This function is based on compact_zone() from compaction.c. */
7746 unsigned long nr_reclaimed
;
7747 unsigned long pfn
= start
;
7748 unsigned int tries
= 0;
7753 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7754 if (fatal_signal_pending(current
)) {
7759 if (list_empty(&cc
->migratepages
)) {
7760 cc
->nr_migratepages
= 0;
7761 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7767 } else if (++tries
== 5) {
7768 ret
= ret
< 0 ? ret
: -EBUSY
;
7772 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7774 cc
->nr_migratepages
-= nr_reclaimed
;
7776 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7777 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
7780 putback_movable_pages(&cc
->migratepages
);
7787 * alloc_contig_range() -- tries to allocate given range of pages
7788 * @start: start PFN to allocate
7789 * @end: one-past-the-last PFN to allocate
7790 * @migratetype: migratetype of the underlaying pageblocks (either
7791 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7792 * in range must have the same migratetype and it must
7793 * be either of the two.
7794 * @gfp_mask: GFP mask to use during compaction
7796 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7797 * aligned. The PFN range must belong to a single zone.
7799 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7800 * pageblocks in the range. Once isolated, the pageblocks should not
7801 * be modified by others.
7803 * Returns zero on success or negative error code. On success all
7804 * pages which PFN is in [start, end) are allocated for the caller and
7805 * need to be freed with free_contig_range().
7807 int alloc_contig_range(unsigned long start
, unsigned long end
,
7808 unsigned migratetype
, gfp_t gfp_mask
)
7810 unsigned long outer_start
, outer_end
;
7814 struct compact_control cc
= {
7815 .nr_migratepages
= 0,
7817 .zone
= page_zone(pfn_to_page(start
)),
7818 .mode
= MIGRATE_SYNC
,
7819 .ignore_skip_hint
= true,
7820 .no_set_skip_hint
= true,
7821 .gfp_mask
= current_gfp_context(gfp_mask
),
7823 INIT_LIST_HEAD(&cc
.migratepages
);
7826 * What we do here is we mark all pageblocks in range as
7827 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7828 * have different sizes, and due to the way page allocator
7829 * work, we align the range to biggest of the two pages so
7830 * that page allocator won't try to merge buddies from
7831 * different pageblocks and change MIGRATE_ISOLATE to some
7832 * other migration type.
7834 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7835 * migrate the pages from an unaligned range (ie. pages that
7836 * we are interested in). This will put all the pages in
7837 * range back to page allocator as MIGRATE_ISOLATE.
7839 * When this is done, we take the pages in range from page
7840 * allocator removing them from the buddy system. This way
7841 * page allocator will never consider using them.
7843 * This lets us mark the pageblocks back as
7844 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7845 * aligned range but not in the unaligned, original range are
7846 * put back to page allocator so that buddy can use them.
7849 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7850 pfn_max_align_up(end
), migratetype
,
7856 * In case of -EBUSY, we'd like to know which page causes problem.
7857 * So, just fall through. test_pages_isolated() has a tracepoint
7858 * which will report the busy page.
7860 * It is possible that busy pages could become available before
7861 * the call to test_pages_isolated, and the range will actually be
7862 * allocated. So, if we fall through be sure to clear ret so that
7863 * -EBUSY is not accidentally used or returned to caller.
7865 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7866 if (ret
&& ret
!= -EBUSY
)
7871 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7872 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7873 * more, all pages in [start, end) are free in page allocator.
7874 * What we are going to do is to allocate all pages from
7875 * [start, end) (that is remove them from page allocator).
7877 * The only problem is that pages at the beginning and at the
7878 * end of interesting range may be not aligned with pages that
7879 * page allocator holds, ie. they can be part of higher order
7880 * pages. Because of this, we reserve the bigger range and
7881 * once this is done free the pages we are not interested in.
7883 * We don't have to hold zone->lock here because the pages are
7884 * isolated thus they won't get removed from buddy.
7887 lru_add_drain_all();
7888 drain_all_pages(cc
.zone
);
7891 outer_start
= start
;
7892 while (!PageBuddy(pfn_to_page(outer_start
))) {
7893 if (++order
>= MAX_ORDER
) {
7894 outer_start
= start
;
7897 outer_start
&= ~0UL << order
;
7900 if (outer_start
!= start
) {
7901 order
= page_order(pfn_to_page(outer_start
));
7904 * outer_start page could be small order buddy page and
7905 * it doesn't include start page. Adjust outer_start
7906 * in this case to report failed page properly
7907 * on tracepoint in test_pages_isolated()
7909 if (outer_start
+ (1UL << order
) <= start
)
7910 outer_start
= start
;
7913 /* Make sure the range is really isolated. */
7914 if (test_pages_isolated(outer_start
, end
, false)) {
7915 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7916 __func__
, outer_start
, end
);
7921 /* Grab isolated pages from freelists. */
7922 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7928 /* Free head and tail (if any) */
7929 if (start
!= outer_start
)
7930 free_contig_range(outer_start
, start
- outer_start
);
7931 if (end
!= outer_end
)
7932 free_contig_range(end
, outer_end
- end
);
7935 undo_isolate_page_range(pfn_max_align_down(start
),
7936 pfn_max_align_up(end
), migratetype
);
7940 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7942 unsigned int count
= 0;
7944 for (; nr_pages
--; pfn
++) {
7945 struct page
*page
= pfn_to_page(pfn
);
7947 count
+= page_count(page
) != 1;
7950 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7954 #if defined CONFIG_MEMORY_HOTPLUG || defined CONFIG_CMA
7956 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7957 * page high values need to be recalulated.
7959 void __meminit
zone_pcp_update(struct zone
*zone
)
7962 mutex_lock(&pcp_batch_high_lock
);
7963 for_each_possible_cpu(cpu
)
7964 pageset_set_high_and_batch(zone
,
7965 per_cpu_ptr(zone
->pageset
, cpu
));
7966 mutex_unlock(&pcp_batch_high_lock
);
7970 void zone_pcp_reset(struct zone
*zone
)
7972 unsigned long flags
;
7974 struct per_cpu_pageset
*pset
;
7976 /* avoid races with drain_pages() */
7977 local_irq_save(flags
);
7978 if (zone
->pageset
!= &boot_pageset
) {
7979 for_each_online_cpu(cpu
) {
7980 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7981 drain_zonestat(zone
, pset
);
7983 free_percpu(zone
->pageset
);
7984 zone
->pageset
= &boot_pageset
;
7986 local_irq_restore(flags
);
7989 #ifdef CONFIG_MEMORY_HOTREMOVE
7991 * All pages in the range must be in a single zone and isolated
7992 * before calling this.
7995 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7999 unsigned int order
, i
;
8001 unsigned long flags
;
8002 /* find the first valid pfn */
8003 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8008 offline_mem_sections(pfn
, end_pfn
);
8009 zone
= page_zone(pfn_to_page(pfn
));
8010 spin_lock_irqsave(&zone
->lock
, flags
);
8012 while (pfn
< end_pfn
) {
8013 if (!pfn_valid(pfn
)) {
8017 page
= pfn_to_page(pfn
);
8019 * The HWPoisoned page may be not in buddy system, and
8020 * page_count() is not 0.
8022 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8024 SetPageReserved(page
);
8028 BUG_ON(page_count(page
));
8029 BUG_ON(!PageBuddy(page
));
8030 order
= page_order(page
);
8031 #ifdef CONFIG_DEBUG_VM
8032 pr_info("remove from free list %lx %d %lx\n",
8033 pfn
, 1 << order
, end_pfn
);
8035 list_del(&page
->lru
);
8036 rmv_page_order(page
);
8037 zone
->free_area
[order
].nr_free
--;
8038 for (i
= 0; i
< (1 << order
); i
++)
8039 SetPageReserved((page
+i
));
8040 pfn
+= (1 << order
);
8042 spin_unlock_irqrestore(&zone
->lock
, flags
);
8046 bool is_free_buddy_page(struct page
*page
)
8048 struct zone
*zone
= page_zone(page
);
8049 unsigned long pfn
= page_to_pfn(page
);
8050 unsigned long flags
;
8053 spin_lock_irqsave(&zone
->lock
, flags
);
8054 for (order
= 0; order
< MAX_ORDER
; order
++) {
8055 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8057 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8060 spin_unlock_irqrestore(&zone
->lock
, flags
);
8062 return order
< MAX_ORDER
;