1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
45 * 1. slab_mutex (Global Mutex)
47 * 3. slab_lock(page) (Only on some arches and for debugging)
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache
*s
)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
130 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
131 p
+= s
->red_left_pad
;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s
);
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
205 unsigned long addr
; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
209 int cpu
; /* Was running on cpu */
210 int pid
; /* Pid context */
211 unsigned long when
; /* When did the operation occur */
214 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
217 static int sysfs_slab_add(struct kmem_cache
*);
218 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
220 static void sysfs_slab_remove(struct kmem_cache
*s
);
222 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
226 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
229 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
249 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
250 unsigned long ptr_addr
)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache
*s
,
263 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
264 (unsigned long)ptr_addr
);
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return freelist_dereference(s
, object
+ s
->offset
);
272 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
275 prefetch(freelist_dereference(s
, object
+ s
->offset
));
278 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
280 unsigned long freepointer_addr
;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s
, object
);
286 freepointer_addr
= (unsigned long)object
+ s
->offset
;
287 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
288 return freelist_ptr(s
, p
, freepointer_addr
);
291 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
293 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
299 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
316 return (p
- addr
) / s
->size
;
319 static inline unsigned int order_objects(unsigned int order
, unsigned int size
, unsigned int reserved
)
321 return (((unsigned int)PAGE_SIZE
<< order
) - reserved
) / size
;
324 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
325 unsigned int size
, unsigned int reserved
)
327 struct kmem_cache_order_objects x
= {
328 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
336 return x
.x
>> OO_SHIFT
;
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
341 return x
.x
& OO_MASK
;
345 * Per slab locking using the pagelock
347 static __always_inline
void slab_lock(struct page
*page
)
349 VM_BUG_ON_PAGE(PageTail(page
), page
);
350 bit_spin_lock(PG_locked
, &page
->flags
);
353 static __always_inline
void slab_unlock(struct page
*page
)
355 VM_BUG_ON_PAGE(PageTail(page
), page
);
356 __bit_spin_unlock(PG_locked
, &page
->flags
);
359 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
362 tmp
.counters
= counters_new
;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
369 page
->frozen
= tmp
.frozen
;
370 page
->inuse
= tmp
.inuse
;
371 page
->objects
= tmp
.objects
;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s
->flags
& __CMPXCHG_DOUBLE
) {
384 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
385 freelist_old
, counters_old
,
386 freelist_new
, counters_new
))
392 if (page
->freelist
== freelist_old
&&
393 page
->counters
== counters_old
) {
394 page
->freelist
= freelist_new
;
395 set_page_slub_counters(page
, counters_new
);
403 stat(s
, CMPXCHG_DOUBLE_FAIL
);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
412 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
413 void *freelist_old
, unsigned long counters_old
,
414 void *freelist_new
, unsigned long counters_new
,
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s
->flags
& __CMPXCHG_DOUBLE
) {
420 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
421 freelist_old
, counters_old
,
422 freelist_new
, counters_new
))
429 local_irq_save(flags
);
431 if (page
->freelist
== freelist_old
&&
432 page
->counters
== counters_old
) {
433 page
->freelist
= freelist_new
;
434 set_page_slub_counters(page
, counters_new
);
436 local_irq_restore(flags
);
440 local_irq_restore(flags
);
444 stat(s
, CMPXCHG_DOUBLE_FAIL
);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
463 void *addr
= page_address(page
);
465 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
466 set_bit(slab_index(p
, s
, addr
), map
);
469 static inline unsigned int size_from_object(struct kmem_cache
*s
)
471 if (s
->flags
& SLAB_RED_ZONE
)
472 return s
->size
- s
->red_left_pad
;
477 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
479 if (s
->flags
& SLAB_RED_ZONE
)
480 p
-= s
->red_left_pad
;
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
491 static slab_flags_t slub_debug
;
494 static char *slub_debug_slabs
;
495 static int disable_higher_order_debug
;
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
503 static inline void metadata_access_enable(void)
505 kasan_disable_current();
508 static inline void metadata_access_disable(void)
510 kasan_enable_current();
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache
*s
,
519 struct page
*page
, void *object
)
526 base
= page_address(page
);
527 object
= restore_red_left(s
, object
);
528 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
529 (object
- base
) % s
->size
) {
536 static void print_section(char *level
, char *text
, u8
*addr
,
539 metadata_access_enable();
540 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
542 metadata_access_disable();
545 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
546 enum track_item alloc
)
551 p
= object
+ s
->offset
+ sizeof(void *);
553 p
= object
+ s
->inuse
;
558 static void set_track(struct kmem_cache
*s
, void *object
,
559 enum track_item alloc
, unsigned long addr
)
561 struct track
*p
= get_track(s
, object
, alloc
);
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace
;
568 trace
.nr_entries
= 0;
569 trace
.max_entries
= TRACK_ADDRS_COUNT
;
570 trace
.entries
= p
->addrs
;
572 metadata_access_enable();
573 save_stack_trace(&trace
);
574 metadata_access_disable();
576 /* See rant in lockdep.c */
577 if (trace
.nr_entries
!= 0 &&
578 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
581 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
585 p
->cpu
= smp_processor_id();
586 p
->pid
= current
->pid
;
589 memset(p
, 0, sizeof(struct track
));
592 static void init_tracking(struct kmem_cache
*s
, void *object
)
594 if (!(s
->flags
& SLAB_STORE_USER
))
597 set_track(s
, object
, TRACK_FREE
, 0UL);
598 set_track(s
, object
, TRACK_ALLOC
, 0UL);
601 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
608 #ifdef CONFIG_STACKTRACE
611 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
613 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
620 static void print_tracking(struct kmem_cache
*s
, void *object
)
622 unsigned long pr_time
= jiffies
;
623 if (!(s
->flags
& SLAB_STORE_USER
))
626 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
627 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
630 static void print_page_info(struct page
*page
)
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
637 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
639 struct va_format vaf
;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
647 pr_err("-----------------------------------------------------------------------------\n\n");
649 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
653 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
655 struct va_format vaf
;
661 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
665 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
667 unsigned int off
; /* Offset of last byte */
668 u8
*addr
= page_address(page
);
670 print_tracking(s
, p
);
672 print_page_info(page
);
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p
, p
- addr
, get_freepointer(s
, p
));
677 if (s
->flags
& SLAB_RED_ZONE
)
678 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
680 else if (p
> addr
+ 16)
681 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
683 print_section(KERN_ERR
, "Object ", p
,
684 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
685 if (s
->flags
& SLAB_RED_ZONE
)
686 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
687 s
->inuse
- s
->object_size
);
690 off
= s
->offset
+ sizeof(void *);
694 if (s
->flags
& SLAB_STORE_USER
)
695 off
+= 2 * sizeof(struct track
);
697 off
+= kasan_metadata_size(s
);
699 if (off
!= size_from_object(s
))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR
, "Padding ", p
+ off
,
702 size_from_object(s
) - off
);
707 void object_err(struct kmem_cache
*s
, struct page
*page
,
708 u8
*object
, char *reason
)
710 slab_bug(s
, "%s", reason
);
711 print_trailer(s
, page
, object
);
714 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
715 const char *fmt
, ...)
721 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
723 slab_bug(s
, "%s", buf
);
724 print_page_info(page
);
728 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
732 if (s
->flags
& SLAB_RED_ZONE
)
733 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
735 if (s
->flags
& __OBJECT_POISON
) {
736 memset(p
, POISON_FREE
, s
->object_size
- 1);
737 p
[s
->object_size
- 1] = POISON_END
;
740 if (s
->flags
& SLAB_RED_ZONE
)
741 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
744 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
745 void *from
, void *to
)
747 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
748 memset(from
, data
, to
- from
);
751 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
752 u8
*object
, char *what
,
753 u8
*start
, unsigned int value
, unsigned int bytes
)
758 metadata_access_enable();
759 fault
= memchr_inv(start
, value
, bytes
);
760 metadata_access_disable();
765 while (end
> fault
&& end
[-1] == value
)
768 slab_bug(s
, "%s overwritten", what
);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault
, end
- 1, fault
[0], value
);
771 print_trailer(s
, page
, object
);
773 restore_bytes(s
, what
, value
, fault
, end
);
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
797 * Meta data starts here.
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
805 * Padding is done using 0x5a (POISON_INUSE)
808 * Nothing is used beyond s->size.
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
815 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
817 unsigned long off
= s
->inuse
; /* The end of info */
820 /* Freepointer is placed after the object. */
821 off
+= sizeof(void *);
823 if (s
->flags
& SLAB_STORE_USER
)
824 /* We also have user information there */
825 off
+= 2 * sizeof(struct track
);
827 off
+= kasan_metadata_size(s
);
829 if (size_from_object(s
) == off
)
832 return check_bytes_and_report(s
, page
, p
, "Object padding",
833 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
846 if (!(s
->flags
& SLAB_POISON
))
849 start
= page_address(page
);
850 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
851 end
= start
+ length
;
852 remainder
= length
% s
->size
;
856 pad
= end
- remainder
;
857 metadata_access_enable();
858 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
859 metadata_access_disable();
862 while (end
> fault
&& end
[-1] == POISON_INUSE
)
865 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
866 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
868 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
872 static int check_object(struct kmem_cache
*s
, struct page
*page
,
873 void *object
, u8 val
)
876 u8
*endobject
= object
+ s
->object_size
;
878 if (s
->flags
& SLAB_RED_ZONE
) {
879 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
880 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
883 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
884 endobject
, val
, s
->inuse
- s
->object_size
))
887 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
888 check_bytes_and_report(s
, page
, p
, "Alignment padding",
889 endobject
, POISON_INUSE
,
890 s
->inuse
- s
->object_size
);
894 if (s
->flags
& SLAB_POISON
) {
895 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
896 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
897 POISON_FREE
, s
->object_size
- 1) ||
898 !check_bytes_and_report(s
, page
, p
, "Poison",
899 p
+ s
->object_size
- 1, POISON_END
, 1)))
902 * check_pad_bytes cleans up on its own.
904 check_pad_bytes(s
, page
, p
);
907 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
916 object_err(s
, page
, p
, "Freepointer corrupt");
918 * No choice but to zap it and thus lose the remainder
919 * of the free objects in this slab. May cause
920 * another error because the object count is now wrong.
922 set_freepointer(s
, p
, NULL
);
928 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
932 VM_BUG_ON(!irqs_disabled());
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Not a valid slab page");
939 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
940 if (page
->objects
> maxobj
) {
941 slab_err(s
, page
, "objects %u > max %u",
942 page
->objects
, maxobj
);
945 if (page
->inuse
> page
->objects
) {
946 slab_err(s
, page
, "inuse %u > max %u",
947 page
->inuse
, page
->objects
);
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s
, page
);
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
959 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
967 while (fp
&& nr
<= page
->objects
) {
970 if (!check_valid_pointer(s
, page
, fp
)) {
972 object_err(s
, page
, object
,
973 "Freechain corrupt");
974 set_freepointer(s
, object
, NULL
);
976 slab_err(s
, page
, "Freepointer corrupt");
977 page
->freelist
= NULL
;
978 page
->inuse
= page
->objects
;
979 slab_fix(s
, "Freelist cleared");
985 fp
= get_freepointer(s
, object
);
989 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
990 if (max_objects
> MAX_OBJS_PER_PAGE
)
991 max_objects
= MAX_OBJS_PER_PAGE
;
993 if (page
->objects
!= max_objects
) {
994 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
995 page
->objects
, max_objects
);
996 page
->objects
= max_objects
;
997 slab_fix(s
, "Number of objects adjusted.");
999 if (page
->inuse
!= page
->objects
- nr
) {
1000 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1001 page
->inuse
, page
->objects
- nr
);
1002 page
->inuse
= page
->objects
- nr
;
1003 slab_fix(s
, "Object count adjusted.");
1005 return search
== NULL
;
1008 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1011 if (s
->flags
& SLAB_TRACE
) {
1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1014 alloc
? "alloc" : "free",
1015 object
, page
->inuse
,
1019 print_section(KERN_INFO
, "Object ", (void *)object
,
1027 * Tracking of fully allocated slabs for debugging purposes.
1029 static void add_full(struct kmem_cache
*s
,
1030 struct kmem_cache_node
*n
, struct page
*page
)
1032 if (!(s
->flags
& SLAB_STORE_USER
))
1035 lockdep_assert_held(&n
->list_lock
);
1036 list_add(&page
->lru
, &n
->full
);
1039 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1041 if (!(s
->flags
& SLAB_STORE_USER
))
1044 lockdep_assert_held(&n
->list_lock
);
1045 list_del(&page
->lru
);
1048 /* Tracking of the number of slabs for debugging purposes */
1049 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1051 struct kmem_cache_node
*n
= get_node(s
, node
);
1053 return atomic_long_read(&n
->nr_slabs
);
1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1058 return atomic_long_read(&n
->nr_slabs
);
1061 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1063 struct kmem_cache_node
*n
= get_node(s
, node
);
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1072 atomic_long_inc(&n
->nr_slabs
);
1073 atomic_long_add(objects
, &n
->total_objects
);
1076 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1078 struct kmem_cache_node
*n
= get_node(s
, node
);
1080 atomic_long_dec(&n
->nr_slabs
);
1081 atomic_long_sub(objects
, &n
->total_objects
);
1084 /* Object debug checks for alloc/free paths */
1085 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1088 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1091 init_object(s
, object
, SLUB_RED_INACTIVE
);
1092 init_tracking(s
, object
);
1095 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1097 void *object
, unsigned long addr
)
1099 if (!check_slab(s
, page
))
1102 if (!check_valid_pointer(s
, page
, object
)) {
1103 object_err(s
, page
, object
, "Freelist Pointer check fails");
1107 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1113 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1115 void *object
, unsigned long addr
)
1117 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1118 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1122 /* Success perform special debug activities for allocs */
1123 if (s
->flags
& SLAB_STORE_USER
)
1124 set_track(s
, object
, TRACK_ALLOC
, addr
);
1125 trace(s
, page
, object
, 1);
1126 init_object(s
, object
, SLUB_RED_ACTIVE
);
1130 if (PageSlab(page
)) {
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1136 slab_fix(s
, "Marking all objects used");
1137 page
->inuse
= page
->objects
;
1138 page
->freelist
= NULL
;
1143 static inline int free_consistency_checks(struct kmem_cache
*s
,
1144 struct page
*page
, void *object
, unsigned long addr
)
1146 if (!check_valid_pointer(s
, page
, object
)) {
1147 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1151 if (on_freelist(s
, page
, object
)) {
1152 object_err(s
, page
, object
, "Object already free");
1156 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1159 if (unlikely(s
!= page
->slab_cache
)) {
1160 if (!PageSlab(page
)) {
1161 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1163 } else if (!page
->slab_cache
) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1168 object_err(s
, page
, object
,
1169 "page slab pointer corrupt.");
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline
int free_debug_processing(
1177 struct kmem_cache
*s
, struct page
*page
,
1178 void *head
, void *tail
, int bulk_cnt
,
1181 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1182 void *object
= head
;
1184 unsigned long uninitialized_var(flags
);
1187 spin_lock_irqsave(&n
->list_lock
, flags
);
1190 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1191 if (!check_slab(s
, page
))
1198 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1199 if (!free_consistency_checks(s
, page
, object
, addr
))
1203 if (s
->flags
& SLAB_STORE_USER
)
1204 set_track(s
, object
, TRACK_FREE
, addr
);
1205 trace(s
, page
, object
, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s
, object
, SLUB_RED_INACTIVE
);
1209 /* Reached end of constructed freelist yet? */
1210 if (object
!= tail
) {
1211 object
= get_freepointer(s
, object
);
1217 if (cnt
!= bulk_cnt
)
1218 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1222 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1224 slab_fix(s
, "Object at 0x%p not freed", object
);
1228 static int __init
setup_slub_debug(char *str
)
1230 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1231 if (*str
++ != '=' || !*str
)
1233 * No options specified. Switch on full debugging.
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1247 * Switch off all debugging measures.
1252 * Determine which debug features should be switched on
1254 for (; *str
&& *str
!= ','; str
++) {
1255 switch (tolower(*str
)) {
1257 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1260 slub_debug
|= SLAB_RED_ZONE
;
1263 slub_debug
|= SLAB_POISON
;
1266 slub_debug
|= SLAB_STORE_USER
;
1269 slub_debug
|= SLAB_TRACE
;
1272 slub_debug
|= SLAB_FAILSLAB
;
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1279 disable_higher_order_debug
= 1;
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1289 slub_debug_slabs
= str
+ 1;
1294 __setup("slub_debug", setup_slub_debug
);
1296 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1297 slab_flags_t flags
, const char *name
,
1298 void (*ctor
)(void *))
1301 * Enable debugging if selected on the kernel commandline.
1303 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1304 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1305 flags
|= slub_debug
;
1309 #else /* !CONFIG_SLUB_DEBUG */
1310 static inline void setup_object_debug(struct kmem_cache
*s
,
1311 struct page
*page
, void *object
) {}
1313 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1314 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1316 static inline int free_debug_processing(
1317 struct kmem_cache
*s
, struct page
*page
,
1318 void *head
, void *tail
, int bulk_cnt
,
1319 unsigned long addr
) { return 0; }
1321 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1323 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1324 void *object
, u8 val
) { return 1; }
1325 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1326 struct page
*page
) {}
1327 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1328 struct page
*page
) {}
1329 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1330 slab_flags_t flags
, const char *name
,
1331 void (*ctor
)(void *))
1335 #define slub_debug 0
1337 #define disable_higher_order_debug 0
1339 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1343 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1345 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1348 #endif /* CONFIG_SLUB_DEBUG */
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1354 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1356 kmemleak_alloc(ptr
, size
, 1, flags
);
1357 kasan_kmalloc_large(ptr
, size
, flags
);
1360 static __always_inline
void kfree_hook(void *x
)
1363 kasan_kfree_large(x
, _RET_IP_
);
1366 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1368 kmemleak_free_recursive(x
, s
->flags
);
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1375 #ifdef CONFIG_LOCKDEP
1377 unsigned long flags
;
1379 local_irq_save(flags
);
1380 debug_check_no_locks_freed(x
, s
->object_size
);
1381 local_irq_restore(flags
);
1384 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1385 debug_check_no_obj_freed(x
, s
->object_size
);
1387 /* KASAN might put x into memory quarantine, delaying its reuse */
1388 return kasan_slab_free(s
, x
, _RET_IP_
);
1391 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1392 void **head
, void **tail
)
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing. Thus, catch all relevant config debug options here.
1398 #if defined(CONFIG_LOCKDEP) || \
1399 defined(CONFIG_DEBUG_KMEMLEAK) || \
1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1401 defined(CONFIG_KASAN)
1405 void *old_tail
= *tail
? *tail
: *head
;
1407 /* Head and tail of the reconstructed freelist */
1413 next
= get_freepointer(s
, object
);
1414 /* If object's reuse doesn't have to be delayed */
1415 if (!slab_free_hook(s
, object
)) {
1416 /* Move object to the new freelist */
1417 set_freepointer(s
, object
, *head
);
1422 } while (object
!= old_tail
);
1427 return *head
!= NULL
;
1433 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1436 setup_object_debug(s
, page
, object
);
1437 kasan_init_slab_obj(s
, object
);
1438 if (unlikely(s
->ctor
)) {
1439 kasan_unpoison_object_data(s
, object
);
1441 kasan_poison_object_data(s
, object
);
1446 * Slab allocation and freeing
1448 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1449 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1452 unsigned int order
= oo_order(oo
);
1454 if (node
== NUMA_NO_NODE
)
1455 page
= alloc_pages(flags
, order
);
1457 page
= __alloc_pages_node(node
, flags
, order
);
1459 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1460 __free_pages(page
, order
);
1467 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1468 /* Pre-initialize the random sequence cache */
1469 static int init_cache_random_seq(struct kmem_cache
*s
)
1471 unsigned int count
= oo_objects(s
->oo
);
1474 /* Bailout if already initialised */
1478 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1480 pr_err("SLUB: Unable to initialize free list for %s\n",
1485 /* Transform to an offset on the set of pages */
1486 if (s
->random_seq
) {
1489 for (i
= 0; i
< count
; i
++)
1490 s
->random_seq
[i
] *= s
->size
;
1495 /* Initialize each random sequence freelist per cache */
1496 static void __init
init_freelist_randomization(void)
1498 struct kmem_cache
*s
;
1500 mutex_lock(&slab_mutex
);
1502 list_for_each_entry(s
, &slab_caches
, list
)
1503 init_cache_random_seq(s
);
1505 mutex_unlock(&slab_mutex
);
1508 /* Get the next entry on the pre-computed freelist randomized */
1509 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1510 unsigned long *pos
, void *start
,
1511 unsigned long page_limit
,
1512 unsigned long freelist_count
)
1517 * If the target page allocation failed, the number of objects on the
1518 * page might be smaller than the usual size defined by the cache.
1521 idx
= s
->random_seq
[*pos
];
1523 if (*pos
>= freelist_count
)
1525 } while (unlikely(idx
>= page_limit
));
1527 return (char *)start
+ idx
;
1530 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1531 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1536 unsigned long idx
, pos
, page_limit
, freelist_count
;
1538 if (page
->objects
< 2 || !s
->random_seq
)
1541 freelist_count
= oo_objects(s
->oo
);
1542 pos
= get_random_int() % freelist_count
;
1544 page_limit
= page
->objects
* s
->size
;
1545 start
= fixup_red_left(s
, page_address(page
));
1547 /* First entry is used as the base of the freelist */
1548 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1550 page
->freelist
= cur
;
1552 for (idx
= 1; idx
< page
->objects
; idx
++) {
1553 setup_object(s
, page
, cur
);
1554 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1556 set_freepointer(s
, cur
, next
);
1559 setup_object(s
, page
, cur
);
1560 set_freepointer(s
, cur
, NULL
);
1565 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1569 static inline void init_freelist_randomization(void) { }
1570 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1574 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1576 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1579 struct kmem_cache_order_objects oo
= s
->oo
;
1585 flags
&= gfp_allowed_mask
;
1587 if (gfpflags_allow_blocking(flags
))
1590 flags
|= s
->allocflags
;
1593 * Let the initial higher-order allocation fail under memory pressure
1594 * so we fall-back to the minimum order allocation.
1596 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1597 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1598 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1600 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1601 if (unlikely(!page
)) {
1605 * Allocation may have failed due to fragmentation.
1606 * Try a lower order alloc if possible
1608 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1609 if (unlikely(!page
))
1611 stat(s
, ORDER_FALLBACK
);
1614 page
->objects
= oo_objects(oo
);
1616 order
= compound_order(page
);
1617 page
->slab_cache
= s
;
1618 __SetPageSlab(page
);
1619 if (page_is_pfmemalloc(page
))
1620 SetPageSlabPfmemalloc(page
);
1622 start
= page_address(page
);
1624 if (unlikely(s
->flags
& SLAB_POISON
))
1625 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1627 kasan_poison_slab(page
);
1629 shuffle
= shuffle_freelist(s
, page
);
1632 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1633 setup_object(s
, page
, p
);
1634 if (likely(idx
< page
->objects
))
1635 set_freepointer(s
, p
, p
+ s
->size
);
1637 set_freepointer(s
, p
, NULL
);
1639 page
->freelist
= fixup_red_left(s
, start
);
1642 page
->inuse
= page
->objects
;
1646 if (gfpflags_allow_blocking(flags
))
1647 local_irq_disable();
1651 mod_lruvec_page_state(page
,
1652 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1653 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1656 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1661 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1663 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1664 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1665 flags
&= ~GFP_SLAB_BUG_MASK
;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask
, &invalid_mask
, flags
, &flags
);
1671 return allocate_slab(s
,
1672 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1675 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1677 int order
= compound_order(page
);
1678 int pages
= 1 << order
;
1680 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1683 slab_pad_check(s
, page
);
1684 for_each_object(p
, s
, page_address(page
),
1686 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1689 mod_lruvec_page_state(page
,
1690 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1691 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1694 __ClearPageSlabPfmemalloc(page
);
1695 __ClearPageSlab(page
);
1697 page_mapcount_reset(page
);
1698 if (current
->reclaim_state
)
1699 current
->reclaim_state
->reclaimed_slab
+= pages
;
1700 memcg_uncharge_slab(page
, order
, s
);
1701 __free_pages(page
, order
);
1704 #define need_reserve_slab_rcu \
1705 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1707 static void rcu_free_slab(struct rcu_head
*h
)
1711 if (need_reserve_slab_rcu
)
1712 page
= virt_to_head_page(h
);
1714 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1716 __free_slab(page
->slab_cache
, page
);
1719 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1721 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1722 struct rcu_head
*head
;
1724 if (need_reserve_slab_rcu
) {
1725 int order
= compound_order(page
);
1726 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1728 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1729 head
= page_address(page
) + offset
;
1731 head
= &page
->rcu_head
;
1734 call_rcu(head
, rcu_free_slab
);
1736 __free_slab(s
, page
);
1739 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1741 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1746 * Management of partially allocated slabs.
1749 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1752 if (tail
== DEACTIVATE_TO_TAIL
)
1753 list_add_tail(&page
->lru
, &n
->partial
);
1755 list_add(&page
->lru
, &n
->partial
);
1758 static inline void add_partial(struct kmem_cache_node
*n
,
1759 struct page
*page
, int tail
)
1761 lockdep_assert_held(&n
->list_lock
);
1762 __add_partial(n
, page
, tail
);
1765 static inline void remove_partial(struct kmem_cache_node
*n
,
1768 lockdep_assert_held(&n
->list_lock
);
1769 list_del(&page
->lru
);
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
1777 * Returns a list of objects or NULL if it fails.
1779 static inline void *acquire_slab(struct kmem_cache
*s
,
1780 struct kmem_cache_node
*n
, struct page
*page
,
1781 int mode
, int *objects
)
1784 unsigned long counters
;
1787 lockdep_assert_held(&n
->list_lock
);
1790 * Zap the freelist and set the frozen bit.
1791 * The old freelist is the list of objects for the
1792 * per cpu allocation list.
1794 freelist
= page
->freelist
;
1795 counters
= page
->counters
;
1796 new.counters
= counters
;
1797 *objects
= new.objects
- new.inuse
;
1799 new.inuse
= page
->objects
;
1800 new.freelist
= NULL
;
1802 new.freelist
= freelist
;
1805 VM_BUG_ON(new.frozen
);
1808 if (!__cmpxchg_double_slab(s
, page
,
1810 new.freelist
, new.counters
,
1814 remove_partial(n
, page
);
1819 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1820 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1823 * Try to allocate a partial slab from a specific node.
1825 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1826 struct kmem_cache_cpu
*c
, gfp_t flags
)
1828 struct page
*page
, *page2
;
1829 void *object
= NULL
;
1830 unsigned int available
= 0;
1834 * Racy check. If we mistakenly see no partial slabs then we
1835 * just allocate an empty slab. If we mistakenly try to get a
1836 * partial slab and there is none available then get_partials()
1839 if (!n
|| !n
->nr_partial
)
1842 spin_lock(&n
->list_lock
);
1843 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1846 if (!pfmemalloc_match(page
, flags
))
1849 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1853 available
+= objects
;
1856 stat(s
, ALLOC_FROM_PARTIAL
);
1859 put_cpu_partial(s
, page
, 0);
1860 stat(s
, CPU_PARTIAL_NODE
);
1862 if (!kmem_cache_has_cpu_partial(s
)
1863 || available
> slub_cpu_partial(s
) / 2)
1867 spin_unlock(&n
->list_lock
);
1872 * Get a page from somewhere. Search in increasing NUMA distances.
1874 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1875 struct kmem_cache_cpu
*c
)
1878 struct zonelist
*zonelist
;
1881 enum zone_type high_zoneidx
= gfp_zone(flags
);
1883 unsigned int cpuset_mems_cookie
;
1886 * The defrag ratio allows a configuration of the tradeoffs between
1887 * inter node defragmentation and node local allocations. A lower
1888 * defrag_ratio increases the tendency to do local allocations
1889 * instead of attempting to obtain partial slabs from other nodes.
1891 * If the defrag_ratio is set to 0 then kmalloc() always
1892 * returns node local objects. If the ratio is higher then kmalloc()
1893 * may return off node objects because partial slabs are obtained
1894 * from other nodes and filled up.
1896 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897 * (which makes defrag_ratio = 1000) then every (well almost)
1898 * allocation will first attempt to defrag slab caches on other nodes.
1899 * This means scanning over all nodes to look for partial slabs which
1900 * may be expensive if we do it every time we are trying to find a slab
1901 * with available objects.
1903 if (!s
->remote_node_defrag_ratio
||
1904 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1908 cpuset_mems_cookie
= read_mems_allowed_begin();
1909 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1910 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1911 struct kmem_cache_node
*n
;
1913 n
= get_node(s
, zone_to_nid(zone
));
1915 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1916 n
->nr_partial
> s
->min_partial
) {
1917 object
= get_partial_node(s
, n
, c
, flags
);
1920 * Don't check read_mems_allowed_retry()
1921 * here - if mems_allowed was updated in
1922 * parallel, that was a harmless race
1923 * between allocation and the cpuset
1930 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1936 * Get a partial page, lock it and return it.
1938 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1939 struct kmem_cache_cpu
*c
)
1942 int searchnode
= node
;
1944 if (node
== NUMA_NO_NODE
)
1945 searchnode
= numa_mem_id();
1946 else if (!node_present_pages(node
))
1947 searchnode
= node_to_mem_node(node
);
1949 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1950 if (object
|| node
!= NUMA_NO_NODE
)
1953 return get_any_partial(s
, flags
, c
);
1956 #ifdef CONFIG_PREEMPT
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1962 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1965 * No preemption supported therefore also no need to check for
1971 static inline unsigned long next_tid(unsigned long tid
)
1973 return tid
+ TID_STEP
;
1976 static inline unsigned int tid_to_cpu(unsigned long tid
)
1978 return tid
% TID_STEP
;
1981 static inline unsigned long tid_to_event(unsigned long tid
)
1983 return tid
/ TID_STEP
;
1986 static inline unsigned int init_tid(int cpu
)
1991 static inline void note_cmpxchg_failure(const char *n
,
1992 const struct kmem_cache
*s
, unsigned long tid
)
1994 #ifdef SLUB_DEBUG_CMPXCHG
1995 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1997 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1999 #ifdef CONFIG_PREEMPT
2000 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2001 pr_warn("due to cpu change %d -> %d\n",
2002 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2005 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2006 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007 tid_to_event(tid
), tid_to_event(actual_tid
));
2009 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010 actual_tid
, tid
, next_tid(tid
));
2012 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2015 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2019 for_each_possible_cpu(cpu
)
2020 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2024 * Remove the cpu slab
2026 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2027 void *freelist
, struct kmem_cache_cpu
*c
)
2029 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2030 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2032 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2034 int tail
= DEACTIVATE_TO_HEAD
;
2038 if (page
->freelist
) {
2039 stat(s
, DEACTIVATE_REMOTE_FREES
);
2040 tail
= DEACTIVATE_TO_TAIL
;
2044 * Stage one: Free all available per cpu objects back
2045 * to the page freelist while it is still frozen. Leave the
2048 * There is no need to take the list->lock because the page
2051 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2053 unsigned long counters
;
2056 prior
= page
->freelist
;
2057 counters
= page
->counters
;
2058 set_freepointer(s
, freelist
, prior
);
2059 new.counters
= counters
;
2061 VM_BUG_ON(!new.frozen
);
2063 } while (!__cmpxchg_double_slab(s
, page
,
2065 freelist
, new.counters
,
2066 "drain percpu freelist"));
2068 freelist
= nextfree
;
2072 * Stage two: Ensure that the page is unfrozen while the
2073 * list presence reflects the actual number of objects
2076 * We setup the list membership and then perform a cmpxchg
2077 * with the count. If there is a mismatch then the page
2078 * is not unfrozen but the page is on the wrong list.
2080 * Then we restart the process which may have to remove
2081 * the page from the list that we just put it on again
2082 * because the number of objects in the slab may have
2087 old
.freelist
= page
->freelist
;
2088 old
.counters
= page
->counters
;
2089 VM_BUG_ON(!old
.frozen
);
2091 /* Determine target state of the slab */
2092 new.counters
= old
.counters
;
2095 set_freepointer(s
, freelist
, old
.freelist
);
2096 new.freelist
= freelist
;
2098 new.freelist
= old
.freelist
;
2102 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2104 else if (new.freelist
) {
2109 * Taking the spinlock removes the possiblity
2110 * that acquire_slab() will see a slab page that
2113 spin_lock(&n
->list_lock
);
2117 if (kmem_cache_debug(s
) && !lock
) {
2120 * This also ensures that the scanning of full
2121 * slabs from diagnostic functions will not see
2124 spin_lock(&n
->list_lock
);
2132 remove_partial(n
, page
);
2134 else if (l
== M_FULL
)
2136 remove_full(s
, n
, page
);
2138 if (m
== M_PARTIAL
) {
2140 add_partial(n
, page
, tail
);
2143 } else if (m
== M_FULL
) {
2145 stat(s
, DEACTIVATE_FULL
);
2146 add_full(s
, n
, page
);
2152 if (!__cmpxchg_double_slab(s
, page
,
2153 old
.freelist
, old
.counters
,
2154 new.freelist
, new.counters
,
2159 spin_unlock(&n
->list_lock
);
2162 stat(s
, DEACTIVATE_EMPTY
);
2163 discard_slab(s
, page
);
2172 * Unfreeze all the cpu partial slabs.
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
2178 static void unfreeze_partials(struct kmem_cache
*s
,
2179 struct kmem_cache_cpu
*c
)
2181 #ifdef CONFIG_SLUB_CPU_PARTIAL
2182 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2183 struct page
*page
, *discard_page
= NULL
;
2185 while ((page
= c
->partial
)) {
2189 c
->partial
= page
->next
;
2191 n2
= get_node(s
, page_to_nid(page
));
2194 spin_unlock(&n
->list_lock
);
2197 spin_lock(&n
->list_lock
);
2202 old
.freelist
= page
->freelist
;
2203 old
.counters
= page
->counters
;
2204 VM_BUG_ON(!old
.frozen
);
2206 new.counters
= old
.counters
;
2207 new.freelist
= old
.freelist
;
2211 } while (!__cmpxchg_double_slab(s
, page
,
2212 old
.freelist
, old
.counters
,
2213 new.freelist
, new.counters
,
2214 "unfreezing slab"));
2216 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2217 page
->next
= discard_page
;
2218 discard_page
= page
;
2220 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2221 stat(s
, FREE_ADD_PARTIAL
);
2226 spin_unlock(&n
->list_lock
);
2228 while (discard_page
) {
2229 page
= discard_page
;
2230 discard_page
= discard_page
->next
;
2232 stat(s
, DEACTIVATE_EMPTY
);
2233 discard_slab(s
, page
);
2240 * Put a page that was just frozen (in __slab_free) into a partial page
2241 * slot if available.
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2246 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2248 #ifdef CONFIG_SLUB_CPU_PARTIAL
2249 struct page
*oldpage
;
2257 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2260 pobjects
= oldpage
->pobjects
;
2261 pages
= oldpage
->pages
;
2262 if (drain
&& pobjects
> s
->cpu_partial
) {
2263 unsigned long flags
;
2265 * partial array is full. Move the existing
2266 * set to the per node partial list.
2268 local_irq_save(flags
);
2269 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2270 local_irq_restore(flags
);
2274 stat(s
, CPU_PARTIAL_DRAIN
);
2279 pobjects
+= page
->objects
- page
->inuse
;
2281 page
->pages
= pages
;
2282 page
->pobjects
= pobjects
;
2283 page
->next
= oldpage
;
2285 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2287 if (unlikely(!s
->cpu_partial
)) {
2288 unsigned long flags
;
2290 local_irq_save(flags
);
2291 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2292 local_irq_restore(flags
);
2298 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2300 stat(s
, CPUSLAB_FLUSH
);
2301 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2303 c
->tid
= next_tid(c
->tid
);
2309 * Called from IPI handler with interrupts disabled.
2311 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2313 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2319 unfreeze_partials(s
, c
);
2323 static void flush_cpu_slab(void *d
)
2325 struct kmem_cache
*s
= d
;
2327 __flush_cpu_slab(s
, smp_processor_id());
2330 static bool has_cpu_slab(int cpu
, void *info
)
2332 struct kmem_cache
*s
= info
;
2333 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2335 return c
->page
|| slub_percpu_partial(c
);
2338 static void flush_all(struct kmem_cache
*s
)
2340 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2347 static int slub_cpu_dead(unsigned int cpu
)
2349 struct kmem_cache
*s
;
2350 unsigned long flags
;
2352 mutex_lock(&slab_mutex
);
2353 list_for_each_entry(s
, &slab_caches
, list
) {
2354 local_irq_save(flags
);
2355 __flush_cpu_slab(s
, cpu
);
2356 local_irq_restore(flags
);
2358 mutex_unlock(&slab_mutex
);
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2366 static inline int node_match(struct page
*page
, int node
)
2369 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2375 #ifdef CONFIG_SLUB_DEBUG
2376 static int count_free(struct page
*page
)
2378 return page
->objects
- page
->inuse
;
2381 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2383 return atomic_long_read(&n
->total_objects
);
2385 #endif /* CONFIG_SLUB_DEBUG */
2387 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388 static unsigned long count_partial(struct kmem_cache_node
*n
,
2389 int (*get_count
)(struct page
*))
2391 unsigned long flags
;
2392 unsigned long x
= 0;
2395 spin_lock_irqsave(&n
->list_lock
, flags
);
2396 list_for_each_entry(page
, &n
->partial
, lru
)
2397 x
+= get_count(page
);
2398 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2401 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2403 static noinline
void
2404 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2406 #ifdef CONFIG_SLUB_DEBUG
2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2408 DEFAULT_RATELIMIT_BURST
);
2410 struct kmem_cache_node
*n
;
2412 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 nid
, gfpflags
, &gfpflags
);
2417 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2421 if (oo_order(s
->min
) > get_order(s
->object_size
))
2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2425 for_each_kmem_cache_node(s
, node
, n
) {
2426 unsigned long nr_slabs
;
2427 unsigned long nr_objs
;
2428 unsigned long nr_free
;
2430 nr_free
= count_partial(n
, count_free
);
2431 nr_slabs
= node_nr_slabs(n
);
2432 nr_objs
= node_nr_objs(n
);
2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435 node
, nr_slabs
, nr_objs
, nr_free
);
2440 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2441 int node
, struct kmem_cache_cpu
**pc
)
2444 struct kmem_cache_cpu
*c
= *pc
;
2447 freelist
= get_partial(s
, flags
, node
, c
);
2452 page
= new_slab(s
, flags
, node
);
2454 c
= raw_cpu_ptr(s
->cpu_slab
);
2459 * No other reference to the page yet so we can
2460 * muck around with it freely without cmpxchg
2462 freelist
= page
->freelist
;
2463 page
->freelist
= NULL
;
2465 stat(s
, ALLOC_SLAB
);
2474 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2476 if (unlikely(PageSlabPfmemalloc(page
)))
2477 return gfp_pfmemalloc_allowed(gfpflags
);
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2486 * The page is still frozen if the return value is not NULL.
2488 * If this function returns NULL then the page has been unfrozen.
2490 * This function must be called with interrupt disabled.
2492 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2495 unsigned long counters
;
2499 freelist
= page
->freelist
;
2500 counters
= page
->counters
;
2502 new.counters
= counters
;
2503 VM_BUG_ON(!new.frozen
);
2505 new.inuse
= page
->objects
;
2506 new.frozen
= freelist
!= NULL
;
2508 } while (!__cmpxchg_double_slab(s
, page
,
2517 * Slow path. The lockless freelist is empty or we need to perform
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2535 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2536 unsigned long addr
, struct kmem_cache_cpu
*c
)
2546 if (unlikely(!node_match(page
, node
))) {
2547 int searchnode
= node
;
2549 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2550 searchnode
= node_to_mem_node(node
);
2552 if (unlikely(!node_match(page
, searchnode
))) {
2553 stat(s
, ALLOC_NODE_MISMATCH
);
2554 deactivate_slab(s
, page
, c
->freelist
, c
);
2560 * By rights, we should be searching for a slab page that was
2561 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562 * information when the page leaves the per-cpu allocator
2564 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2565 deactivate_slab(s
, page
, c
->freelist
, c
);
2569 /* must check again c->freelist in case of cpu migration or IRQ */
2570 freelist
= c
->freelist
;
2574 freelist
= get_freelist(s
, page
);
2578 stat(s
, DEACTIVATE_BYPASS
);
2582 stat(s
, ALLOC_REFILL
);
2586 * freelist is pointing to the list of objects to be used.
2587 * page is pointing to the page from which the objects are obtained.
2588 * That page must be frozen for per cpu allocations to work.
2590 VM_BUG_ON(!c
->page
->frozen
);
2591 c
->freelist
= get_freepointer(s
, freelist
);
2592 c
->tid
= next_tid(c
->tid
);
2597 if (slub_percpu_partial(c
)) {
2598 page
= c
->page
= slub_percpu_partial(c
);
2599 slub_set_percpu_partial(c
, page
);
2600 stat(s
, CPU_PARTIAL_ALLOC
);
2604 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2606 if (unlikely(!freelist
)) {
2607 slab_out_of_memory(s
, gfpflags
, node
);
2612 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2615 /* Only entered in the debug case */
2616 if (kmem_cache_debug(s
) &&
2617 !alloc_debug_processing(s
, page
, freelist
, addr
))
2618 goto new_slab
; /* Slab failed checks. Next slab needed */
2620 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
2628 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2629 unsigned long addr
, struct kmem_cache_cpu
*c
)
2632 unsigned long flags
;
2634 local_irq_save(flags
);
2635 #ifdef CONFIG_PREEMPT
2637 * We may have been preempted and rescheduled on a different
2638 * cpu before disabling interrupts. Need to reload cpu area
2641 c
= this_cpu_ptr(s
->cpu_slab
);
2644 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2645 local_irq_restore(flags
);
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2657 * Otherwise we can simply pick the next object from the lockless free list.
2659 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2660 gfp_t gfpflags
, int node
, unsigned long addr
)
2663 struct kmem_cache_cpu
*c
;
2667 s
= slab_pre_alloc_hook(s
, gfpflags
);
2672 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673 * enabled. We may switch back and forth between cpus while
2674 * reading from one cpu area. That does not matter as long
2675 * as we end up on the original cpu again when doing the cmpxchg.
2677 * We should guarantee that tid and kmem_cache are retrieved on
2678 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679 * to check if it is matched or not.
2682 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2683 c
= raw_cpu_ptr(s
->cpu_slab
);
2684 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2685 unlikely(tid
!= READ_ONCE(c
->tid
)));
2688 * Irqless object alloc/free algorithm used here depends on sequence
2689 * of fetching cpu_slab's data. tid should be fetched before anything
2690 * on c to guarantee that object and page associated with previous tid
2691 * won't be used with current tid. If we fetch tid first, object and
2692 * page could be one associated with next tid and our alloc/free
2693 * request will be failed. In this case, we will retry. So, no problem.
2698 * The transaction ids are globally unique per cpu and per operation on
2699 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700 * occurs on the right processor and that there was no operation on the
2701 * linked list in between.
2704 object
= c
->freelist
;
2706 if (unlikely(!object
|| !node_match(page
, node
))) {
2707 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2708 stat(s
, ALLOC_SLOWPATH
);
2710 void *next_object
= get_freepointer_safe(s
, object
);
2713 * The cmpxchg will only match if there was no additional
2714 * operation and if we are on the right processor.
2716 * The cmpxchg does the following atomically (without lock
2718 * 1. Relocate first pointer to the current per cpu area.
2719 * 2. Verify that tid and freelist have not been changed
2720 * 3. If they were not changed replace tid and freelist
2722 * Since this is without lock semantics the protection is only
2723 * against code executing on this cpu *not* from access by
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2729 next_object
, next_tid(tid
)))) {
2731 note_cmpxchg_failure("slab_alloc", s
, tid
);
2734 prefetch_freepointer(s
, next_object
);
2735 stat(s
, ALLOC_FASTPATH
);
2738 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2739 memset(object
, 0, s
->object_size
);
2741 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2746 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2747 gfp_t gfpflags
, unsigned long addr
)
2749 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2752 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2754 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2756 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2761 EXPORT_SYMBOL(kmem_cache_alloc
);
2763 #ifdef CONFIG_TRACING
2764 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2766 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2767 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2768 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2771 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2775 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2777 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2779 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2780 s
->object_size
, s
->size
, gfpflags
, node
);
2784 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2786 #ifdef CONFIG_TRACING
2787 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2789 int node
, size_t size
)
2791 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2793 trace_kmalloc_node(_RET_IP_
, ret
,
2794 size
, s
->size
, gfpflags
, node
);
2796 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2811 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2812 void *head
, void *tail
, int cnt
,
2819 unsigned long counters
;
2820 struct kmem_cache_node
*n
= NULL
;
2821 unsigned long uninitialized_var(flags
);
2823 stat(s
, FREE_SLOWPATH
);
2825 if (kmem_cache_debug(s
) &&
2826 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2831 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2834 prior
= page
->freelist
;
2835 counters
= page
->counters
;
2836 set_freepointer(s
, tail
, prior
);
2837 new.counters
= counters
;
2838 was_frozen
= new.frozen
;
2840 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2842 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2845 * Slab was on no list before and will be
2847 * We can defer the list move and instead
2852 } else { /* Needs to be taken off a list */
2854 n
= get_node(s
, page_to_nid(page
));
2856 * Speculatively acquire the list_lock.
2857 * If the cmpxchg does not succeed then we may
2858 * drop the list_lock without any processing.
2860 * Otherwise the list_lock will synchronize with
2861 * other processors updating the list of slabs.
2863 spin_lock_irqsave(&n
->list_lock
, flags
);
2868 } while (!cmpxchg_double_slab(s
, page
,
2876 * If we just froze the page then put it onto the
2877 * per cpu partial list.
2879 if (new.frozen
&& !was_frozen
) {
2880 put_cpu_partial(s
, page
, 1);
2881 stat(s
, CPU_PARTIAL_FREE
);
2884 * The list lock was not taken therefore no list
2885 * activity can be necessary.
2888 stat(s
, FREE_FROZEN
);
2892 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2896 * Objects left in the slab. If it was not on the partial list before
2899 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2900 if (kmem_cache_debug(s
))
2901 remove_full(s
, n
, page
);
2902 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2903 stat(s
, FREE_ADD_PARTIAL
);
2905 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2911 * Slab on the partial list.
2913 remove_partial(n
, page
);
2914 stat(s
, FREE_REMOVE_PARTIAL
);
2916 /* Slab must be on the full list */
2917 remove_full(s
, n
, page
);
2920 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2922 discard_slab(s
, page
);
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2940 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2941 struct page
*page
, void *head
, void *tail
,
2942 int cnt
, unsigned long addr
)
2944 void *tail_obj
= tail
? : head
;
2945 struct kmem_cache_cpu
*c
;
2949 * Determine the currently cpus per cpu slab.
2950 * The cpu may change afterward. However that does not matter since
2951 * data is retrieved via this pointer. If we are on the same cpu
2952 * during the cmpxchg then the free will succeed.
2955 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2956 c
= raw_cpu_ptr(s
->cpu_slab
);
2957 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2958 unlikely(tid
!= READ_ONCE(c
->tid
)));
2960 /* Same with comment on barrier() in slab_alloc_node() */
2963 if (likely(page
== c
->page
)) {
2964 set_freepointer(s
, tail_obj
, c
->freelist
);
2966 if (unlikely(!this_cpu_cmpxchg_double(
2967 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2969 head
, next_tid(tid
)))) {
2971 note_cmpxchg_failure("slab_free", s
, tid
);
2974 stat(s
, FREE_FASTPATH
);
2976 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2980 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2981 void *head
, void *tail
, int cnt
,
2985 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986 * to remove objects, whose reuse must be delayed.
2988 if (slab_free_freelist_hook(s
, &head
, &tail
))
2989 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2993 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2995 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2999 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3001 s
= cache_from_obj(s
, x
);
3004 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3005 trace_kmem_cache_free(_RET_IP_
, x
);
3007 EXPORT_SYMBOL(kmem_cache_free
);
3009 struct detached_freelist
{
3014 struct kmem_cache
*s
;
3018 * This function progressively scans the array with free objects (with
3019 * a limited look ahead) and extract objects belonging to the same
3020 * page. It builds a detached freelist directly within the given
3021 * page/objects. This can happen without any need for
3022 * synchronization, because the objects are owned by running process.
3023 * The freelist is build up as a single linked list in the objects.
3024 * The idea is, that this detached freelist can then be bulk
3025 * transferred to the real freelist(s), but only requiring a single
3026 * synchronization primitive. Look ahead in the array is limited due
3027 * to performance reasons.
3030 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3031 void **p
, struct detached_freelist
*df
)
3033 size_t first_skipped_index
= 0;
3038 /* Always re-init detached_freelist */
3043 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044 } while (!object
&& size
);
3049 page
= virt_to_head_page(object
);
3051 /* Handle kalloc'ed objects */
3052 if (unlikely(!PageSlab(page
))) {
3053 BUG_ON(!PageCompound(page
));
3055 __free_pages(page
, compound_order(page
));
3056 p
[size
] = NULL
; /* mark object processed */
3059 /* Derive kmem_cache from object */
3060 df
->s
= page
->slab_cache
;
3062 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3065 /* Start new detached freelist */
3067 set_freepointer(df
->s
, object
, NULL
);
3069 df
->freelist
= object
;
3070 p
[size
] = NULL
; /* mark object processed */
3076 continue; /* Skip processed objects */
3078 /* df->page is always set at this point */
3079 if (df
->page
== virt_to_head_page(object
)) {
3080 /* Opportunity build freelist */
3081 set_freepointer(df
->s
, object
, df
->freelist
);
3082 df
->freelist
= object
;
3084 p
[size
] = NULL
; /* mark object processed */
3089 /* Limit look ahead search */
3093 if (!first_skipped_index
)
3094 first_skipped_index
= size
+ 1;
3097 return first_skipped_index
;
3100 /* Note that interrupts must be enabled when calling this function. */
3101 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3107 struct detached_freelist df
;
3109 size
= build_detached_freelist(s
, size
, p
, &df
);
3113 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3114 } while (likely(size
));
3116 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3118 /* Note that interrupts must be enabled when calling this function. */
3119 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3122 struct kmem_cache_cpu
*c
;
3125 /* memcg and kmem_cache debug support */
3126 s
= slab_pre_alloc_hook(s
, flags
);
3130 * Drain objects in the per cpu slab, while disabling local
3131 * IRQs, which protects against PREEMPT and interrupts
3132 * handlers invoking normal fastpath.
3134 local_irq_disable();
3135 c
= this_cpu_ptr(s
->cpu_slab
);
3137 for (i
= 0; i
< size
; i
++) {
3138 void *object
= c
->freelist
;
3140 if (unlikely(!object
)) {
3142 * Invoking slow path likely have side-effect
3143 * of re-populating per CPU c->freelist
3145 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3147 if (unlikely(!p
[i
]))
3150 c
= this_cpu_ptr(s
->cpu_slab
);
3151 continue; /* goto for-loop */
3153 c
->freelist
= get_freepointer(s
, object
);
3156 c
->tid
= next_tid(c
->tid
);
3159 /* Clear memory outside IRQ disabled fastpath loop */
3160 if (unlikely(flags
& __GFP_ZERO
)) {
3163 for (j
= 0; j
< i
; j
++)
3164 memset(p
[j
], 0, s
->object_size
);
3167 /* memcg and kmem_cache debug support */
3168 slab_post_alloc_hook(s
, flags
, size
, p
);
3172 slab_post_alloc_hook(s
, flags
, i
, p
);
3173 __kmem_cache_free_bulk(s
, i
, p
);
3176 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3180 * Object placement in a slab is made very easy because we always start at
3181 * offset 0. If we tune the size of the object to the alignment then we can
3182 * get the required alignment by putting one properly sized object after
3185 * Notice that the allocation order determines the sizes of the per cpu
3186 * caches. Each processor has always one slab available for allocations.
3187 * Increasing the allocation order reduces the number of times that slabs
3188 * must be moved on and off the partial lists and is therefore a factor in
3193 * Mininum / Maximum order of slab pages. This influences locking overhead
3194 * and slab fragmentation. A higher order reduces the number of partial slabs
3195 * and increases the number of allocations possible without having to
3196 * take the list_lock.
3198 static unsigned int slub_min_order
;
3199 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3200 static unsigned int slub_min_objects
;
3203 * Calculate the order of allocation given an slab object size.
3205 * The order of allocation has significant impact on performance and other
3206 * system components. Generally order 0 allocations should be preferred since
3207 * order 0 does not cause fragmentation in the page allocator. Larger objects
3208 * be problematic to put into order 0 slabs because there may be too much
3209 * unused space left. We go to a higher order if more than 1/16th of the slab
3212 * In order to reach satisfactory performance we must ensure that a minimum
3213 * number of objects is in one slab. Otherwise we may generate too much
3214 * activity on the partial lists which requires taking the list_lock. This is
3215 * less a concern for large slabs though which are rarely used.
3217 * slub_max_order specifies the order where we begin to stop considering the
3218 * number of objects in a slab as critical. If we reach slub_max_order then
3219 * we try to keep the page order as low as possible. So we accept more waste
3220 * of space in favor of a small page order.
3222 * Higher order allocations also allow the placement of more objects in a
3223 * slab and thereby reduce object handling overhead. If the user has
3224 * requested a higher mininum order then we start with that one instead of
3225 * the smallest order which will fit the object.
3227 static inline unsigned int slab_order(unsigned int size
,
3228 unsigned int min_objects
, unsigned int max_order
,
3229 unsigned int fract_leftover
, unsigned int reserved
)
3231 unsigned int min_order
= slub_min_order
;
3234 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3235 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3237 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
+ reserved
));
3238 order
<= max_order
; order
++) {
3240 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3243 rem
= (slab_size
- reserved
) % size
;
3245 if (rem
<= slab_size
/ fract_leftover
)
3252 static inline int calculate_order(unsigned int size
, unsigned int reserved
)
3255 unsigned int min_objects
;
3256 unsigned int max_objects
;
3259 * Attempt to find best configuration for a slab. This
3260 * works by first attempting to generate a layout with
3261 * the best configuration and backing off gradually.
3263 * First we increase the acceptable waste in a slab. Then
3264 * we reduce the minimum objects required in a slab.
3266 min_objects
= slub_min_objects
;
3268 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3269 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3270 min_objects
= min(min_objects
, max_objects
);
3272 while (min_objects
> 1) {
3273 unsigned int fraction
;
3276 while (fraction
>= 4) {
3277 order
= slab_order(size
, min_objects
,
3278 slub_max_order
, fraction
, reserved
);
3279 if (order
<= slub_max_order
)
3287 * We were unable to place multiple objects in a slab. Now
3288 * lets see if we can place a single object there.
3290 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3291 if (order
<= slub_max_order
)
3295 * Doh this slab cannot be placed using slub_max_order.
3297 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3298 if (order
< MAX_ORDER
)
3304 init_kmem_cache_node(struct kmem_cache_node
*n
)
3307 spin_lock_init(&n
->list_lock
);
3308 INIT_LIST_HEAD(&n
->partial
);
3309 #ifdef CONFIG_SLUB_DEBUG
3310 atomic_long_set(&n
->nr_slabs
, 0);
3311 atomic_long_set(&n
->total_objects
, 0);
3312 INIT_LIST_HEAD(&n
->full
);
3316 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3319 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3322 * Must align to double word boundary for the double cmpxchg
3323 * instructions to work; see __pcpu_double_call_return_bool().
3325 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3326 2 * sizeof(void *));
3331 init_kmem_cache_cpus(s
);
3336 static struct kmem_cache
*kmem_cache_node
;
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3347 static void early_kmem_cache_node_alloc(int node
)
3350 struct kmem_cache_node
*n
;
3352 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3354 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3357 if (page_to_nid(page
) != node
) {
3358 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3359 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3364 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3367 kmem_cache_node
->node
[node
] = n
;
3368 #ifdef CONFIG_SLUB_DEBUG
3369 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3370 init_tracking(kmem_cache_node
, n
);
3372 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3374 init_kmem_cache_node(n
);
3375 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3378 * No locks need to be taken here as it has just been
3379 * initialized and there is no concurrent access.
3381 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3384 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3387 struct kmem_cache_node
*n
;
3389 for_each_kmem_cache_node(s
, node
, n
) {
3390 s
->node
[node
] = NULL
;
3391 kmem_cache_free(kmem_cache_node
, n
);
3395 void __kmem_cache_release(struct kmem_cache
*s
)
3397 cache_random_seq_destroy(s
);
3398 free_percpu(s
->cpu_slab
);
3399 free_kmem_cache_nodes(s
);
3402 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3406 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3407 struct kmem_cache_node
*n
;
3409 if (slab_state
== DOWN
) {
3410 early_kmem_cache_node_alloc(node
);
3413 n
= kmem_cache_alloc_node(kmem_cache_node
,
3417 free_kmem_cache_nodes(s
);
3421 init_kmem_cache_node(n
);
3427 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3429 if (min
< MIN_PARTIAL
)
3431 else if (min
> MAX_PARTIAL
)
3433 s
->min_partial
= min
;
3436 static void set_cpu_partial(struct kmem_cache
*s
)
3438 #ifdef CONFIG_SLUB_CPU_PARTIAL
3440 * cpu_partial determined the maximum number of objects kept in the
3441 * per cpu partial lists of a processor.
3443 * Per cpu partial lists mainly contain slabs that just have one
3444 * object freed. If they are used for allocation then they can be
3445 * filled up again with minimal effort. The slab will never hit the
3446 * per node partial lists and therefore no locking will be required.
3448 * This setting also determines
3450 * A) The number of objects from per cpu partial slabs dumped to the
3451 * per node list when we reach the limit.
3452 * B) The number of objects in cpu partial slabs to extract from the
3453 * per node list when we run out of per cpu objects. We only fetch
3454 * 50% to keep some capacity around for frees.
3456 if (!kmem_cache_has_cpu_partial(s
))
3458 else if (s
->size
>= PAGE_SIZE
)
3460 else if (s
->size
>= 1024)
3462 else if (s
->size
>= 256)
3463 s
->cpu_partial
= 13;
3465 s
->cpu_partial
= 30;
3470 * calculate_sizes() determines the order and the distribution of data within
3473 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3475 slab_flags_t flags
= s
->flags
;
3476 unsigned int size
= s
->object_size
;
3480 * Round up object size to the next word boundary. We can only
3481 * place the free pointer at word boundaries and this determines
3482 * the possible location of the free pointer.
3484 size
= ALIGN(size
, sizeof(void *));
3486 #ifdef CONFIG_SLUB_DEBUG
3488 * Determine if we can poison the object itself. If the user of
3489 * the slab may touch the object after free or before allocation
3490 * then we should never poison the object itself.
3492 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3494 s
->flags
|= __OBJECT_POISON
;
3496 s
->flags
&= ~__OBJECT_POISON
;
3500 * If we are Redzoning then check if there is some space between the
3501 * end of the object and the free pointer. If not then add an
3502 * additional word to have some bytes to store Redzone information.
3504 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3505 size
+= sizeof(void *);
3509 * With that we have determined the number of bytes in actual use
3510 * by the object. This is the potential offset to the free pointer.
3514 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3517 * Relocate free pointer after the object if it is not
3518 * permitted to overwrite the first word of the object on
3521 * This is the case if we do RCU, have a constructor or
3522 * destructor or are poisoning the objects.
3525 size
+= sizeof(void *);
3528 #ifdef CONFIG_SLUB_DEBUG
3529 if (flags
& SLAB_STORE_USER
)
3531 * Need to store information about allocs and frees after
3534 size
+= 2 * sizeof(struct track
);
3537 kasan_cache_create(s
, &size
, &s
->flags
);
3538 #ifdef CONFIG_SLUB_DEBUG
3539 if (flags
& SLAB_RED_ZONE
) {
3541 * Add some empty padding so that we can catch
3542 * overwrites from earlier objects rather than let
3543 * tracking information or the free pointer be
3544 * corrupted if a user writes before the start
3547 size
+= sizeof(void *);
3549 s
->red_left_pad
= sizeof(void *);
3550 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3551 size
+= s
->red_left_pad
;
3556 * SLUB stores one object immediately after another beginning from
3557 * offset 0. In order to align the objects we have to simply size
3558 * each object to conform to the alignment.
3560 size
= ALIGN(size
, s
->align
);
3562 if (forced_order
>= 0)
3563 order
= forced_order
;
3565 order
= calculate_order(size
, s
->reserved
);
3572 s
->allocflags
|= __GFP_COMP
;
3574 if (s
->flags
& SLAB_CACHE_DMA
)
3575 s
->allocflags
|= GFP_DMA
;
3577 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3578 s
->allocflags
|= __GFP_RECLAIMABLE
;
3581 * Determine the number of objects per slab
3583 s
->oo
= oo_make(order
, size
, s
->reserved
);
3584 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3585 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3588 return !!oo_objects(s
->oo
);
3591 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3593 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3595 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3596 s
->random
= get_random_long();
3599 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_TYPESAFE_BY_RCU
))
3600 s
->reserved
= sizeof(struct rcu_head
);
3602 if (!calculate_sizes(s
, -1))
3604 if (disable_higher_order_debug
) {
3606 * Disable debugging flags that store metadata if the min slab
3609 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3610 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3612 if (!calculate_sizes(s
, -1))
3617 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3620 /* Enable fast mode */
3621 s
->flags
|= __CMPXCHG_DOUBLE
;
3625 * The larger the object size is, the more pages we want on the partial
3626 * list to avoid pounding the page allocator excessively.
3628 set_min_partial(s
, ilog2(s
->size
) / 2);
3633 s
->remote_node_defrag_ratio
= 1000;
3636 /* Initialize the pre-computed randomized freelist if slab is up */
3637 if (slab_state
>= UP
) {
3638 if (init_cache_random_seq(s
))
3642 if (!init_kmem_cache_nodes(s
))
3645 if (alloc_kmem_cache_cpus(s
))
3648 free_kmem_cache_nodes(s
);
3650 if (flags
& SLAB_PANIC
)
3651 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652 s
->name
, s
->size
, s
->size
,
3653 oo_order(s
->oo
), s
->offset
, (unsigned long)flags
);
3657 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3660 #ifdef CONFIG_SLUB_DEBUG
3661 void *addr
= page_address(page
);
3663 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3664 sizeof(long), GFP_ATOMIC
);
3667 slab_err(s
, page
, text
, s
->name
);
3670 get_map(s
, page
, map
);
3671 for_each_object(p
, s
, addr
, page
->objects
) {
3673 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3674 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3675 print_tracking(s
, p
);
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3688 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3691 struct page
*page
, *h
;
3693 BUG_ON(irqs_disabled());
3694 spin_lock_irq(&n
->list_lock
);
3695 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3697 remove_partial(n
, page
);
3698 list_add(&page
->lru
, &discard
);
3700 list_slab_objects(s
, page
,
3701 "Objects remaining in %s on __kmem_cache_shutdown()");
3704 spin_unlock_irq(&n
->list_lock
);
3706 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3707 discard_slab(s
, page
);
3710 bool __kmem_cache_empty(struct kmem_cache
*s
)
3713 struct kmem_cache_node
*n
;
3715 for_each_kmem_cache_node(s
, node
, n
)
3716 if (n
->nr_partial
|| slabs_node(s
, node
))
3722 * Release all resources used by a slab cache.
3724 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3727 struct kmem_cache_node
*n
;
3730 /* Attempt to free all objects */
3731 for_each_kmem_cache_node(s
, node
, n
) {
3733 if (n
->nr_partial
|| slabs_node(s
, node
))
3736 sysfs_slab_remove(s
);
3740 /********************************************************************
3742 *******************************************************************/
3744 static int __init
setup_slub_min_order(char *str
)
3746 get_option(&str
, (int *)&slub_min_order
);
3751 __setup("slub_min_order=", setup_slub_min_order
);
3753 static int __init
setup_slub_max_order(char *str
)
3755 get_option(&str
, (int *)&slub_max_order
);
3756 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3761 __setup("slub_max_order=", setup_slub_max_order
);
3763 static int __init
setup_slub_min_objects(char *str
)
3765 get_option(&str
, (int *)&slub_min_objects
);
3770 __setup("slub_min_objects=", setup_slub_min_objects
);
3772 void *__kmalloc(size_t size
, gfp_t flags
)
3774 struct kmem_cache
*s
;
3777 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3778 return kmalloc_large(size
, flags
);
3780 s
= kmalloc_slab(size
, flags
);
3782 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3785 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3787 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3789 kasan_kmalloc(s
, ret
, size
, flags
);
3793 EXPORT_SYMBOL(__kmalloc
);
3796 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3801 flags
|= __GFP_COMP
;
3802 page
= alloc_pages_node(node
, flags
, get_order(size
));
3804 ptr
= page_address(page
);
3806 kmalloc_large_node_hook(ptr
, size
, flags
);
3810 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3812 struct kmem_cache
*s
;
3815 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3816 ret
= kmalloc_large_node(size
, flags
, node
);
3818 trace_kmalloc_node(_RET_IP_
, ret
,
3819 size
, PAGE_SIZE
<< get_order(size
),
3825 s
= kmalloc_slab(size
, flags
);
3827 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3830 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3832 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3834 kasan_kmalloc(s
, ret
, size
, flags
);
3838 EXPORT_SYMBOL(__kmalloc_node
);
3841 #ifdef CONFIG_HARDENED_USERCOPY
3843 * Rejects incorrectly sized objects and objects that are to be copied
3844 * to/from userspace but do not fall entirely within the containing slab
3845 * cache's usercopy region.
3847 * Returns NULL if check passes, otherwise const char * to name of cache
3848 * to indicate an error.
3850 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3853 struct kmem_cache
*s
;
3854 unsigned int offset
;
3857 /* Find object and usable object size. */
3858 s
= page
->slab_cache
;
3860 /* Reject impossible pointers. */
3861 if (ptr
< page_address(page
))
3862 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3865 /* Find offset within object. */
3866 offset
= (ptr
- page_address(page
)) % s
->size
;
3868 /* Adjust for redzone and reject if within the redzone. */
3869 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3870 if (offset
< s
->red_left_pad
)
3871 usercopy_abort("SLUB object in left red zone",
3872 s
->name
, to_user
, offset
, n
);
3873 offset
-= s
->red_left_pad
;
3876 /* Allow address range falling entirely within usercopy region. */
3877 if (offset
>= s
->useroffset
&&
3878 offset
- s
->useroffset
<= s
->usersize
&&
3879 n
<= s
->useroffset
- offset
+ s
->usersize
)
3883 * If the copy is still within the allocated object, produce
3884 * a warning instead of rejecting the copy. This is intended
3885 * to be a temporary method to find any missing usercopy
3888 object_size
= slab_ksize(s
);
3889 if (usercopy_fallback
&&
3890 offset
<= object_size
&& n
<= object_size
- offset
) {
3891 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3895 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3897 #endif /* CONFIG_HARDENED_USERCOPY */
3899 static size_t __ksize(const void *object
)
3903 if (unlikely(object
== ZERO_SIZE_PTR
))
3906 page
= virt_to_head_page(object
);
3908 if (unlikely(!PageSlab(page
))) {
3909 WARN_ON(!PageCompound(page
));
3910 return PAGE_SIZE
<< compound_order(page
);
3913 return slab_ksize(page
->slab_cache
);
3916 size_t ksize(const void *object
)
3918 size_t size
= __ksize(object
);
3919 /* We assume that ksize callers could use whole allocated area,
3920 * so we need to unpoison this area.
3922 kasan_unpoison_shadow(object
, size
);
3925 EXPORT_SYMBOL(ksize
);
3927 void kfree(const void *x
)
3930 void *object
= (void *)x
;
3932 trace_kfree(_RET_IP_
, x
);
3934 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3937 page
= virt_to_head_page(x
);
3938 if (unlikely(!PageSlab(page
))) {
3939 BUG_ON(!PageCompound(page
));
3941 __free_pages(page
, compound_order(page
));
3944 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3946 EXPORT_SYMBOL(kfree
);
3948 #define SHRINK_PROMOTE_MAX 32
3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952 * up most to the head of the partial lists. New allocations will then
3953 * fill those up and thus they can be removed from the partial lists.
3955 * The slabs with the least items are placed last. This results in them
3956 * being allocated from last increasing the chance that the last objects
3957 * are freed in them.
3959 int __kmem_cache_shrink(struct kmem_cache
*s
)
3963 struct kmem_cache_node
*n
;
3966 struct list_head discard
;
3967 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3968 unsigned long flags
;
3972 for_each_kmem_cache_node(s
, node
, n
) {
3973 INIT_LIST_HEAD(&discard
);
3974 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3975 INIT_LIST_HEAD(promote
+ i
);
3977 spin_lock_irqsave(&n
->list_lock
, flags
);
3980 * Build lists of slabs to discard or promote.
3982 * Note that concurrent frees may occur while we hold the
3983 * list_lock. page->inuse here is the upper limit.
3985 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3986 int free
= page
->objects
- page
->inuse
;
3988 /* Do not reread page->inuse */
3991 /* We do not keep full slabs on the list */
3994 if (free
== page
->objects
) {
3995 list_move(&page
->lru
, &discard
);
3997 } else if (free
<= SHRINK_PROMOTE_MAX
)
3998 list_move(&page
->lru
, promote
+ free
- 1);
4002 * Promote the slabs filled up most to the head of the
4005 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4006 list_splice(promote
+ i
, &n
->partial
);
4008 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4010 /* Release empty slabs */
4011 list_for_each_entry_safe(page
, t
, &discard
, lru
)
4012 discard_slab(s
, page
);
4014 if (slabs_node(s
, node
))
4022 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
4025 * Called with all the locks held after a sched RCU grace period.
4026 * Even if @s becomes empty after shrinking, we can't know that @s
4027 * doesn't have allocations already in-flight and thus can't
4028 * destroy @s until the associated memcg is released.
4030 * However, let's remove the sysfs files for empty caches here.
4031 * Each cache has a lot of interface files which aren't
4032 * particularly useful for empty draining caches; otherwise, we can
4033 * easily end up with millions of unnecessary sysfs files on
4034 * systems which have a lot of memory and transient cgroups.
4036 if (!__kmem_cache_shrink(s
))
4037 sysfs_slab_remove(s
);
4040 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4043 * Disable empty slabs caching. Used to avoid pinning offline
4044 * memory cgroups by kmem pages that can be freed.
4046 slub_set_cpu_partial(s
, 0);
4050 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051 * we have to make sure the change is visible before shrinking.
4053 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4057 static int slab_mem_going_offline_callback(void *arg
)
4059 struct kmem_cache
*s
;
4061 mutex_lock(&slab_mutex
);
4062 list_for_each_entry(s
, &slab_caches
, list
)
4063 __kmem_cache_shrink(s
);
4064 mutex_unlock(&slab_mutex
);
4069 static void slab_mem_offline_callback(void *arg
)
4071 struct kmem_cache_node
*n
;
4072 struct kmem_cache
*s
;
4073 struct memory_notify
*marg
= arg
;
4076 offline_node
= marg
->status_change_nid_normal
;
4079 * If the node still has available memory. we need kmem_cache_node
4082 if (offline_node
< 0)
4085 mutex_lock(&slab_mutex
);
4086 list_for_each_entry(s
, &slab_caches
, list
) {
4087 n
= get_node(s
, offline_node
);
4090 * if n->nr_slabs > 0, slabs still exist on the node
4091 * that is going down. We were unable to free them,
4092 * and offline_pages() function shouldn't call this
4093 * callback. So, we must fail.
4095 BUG_ON(slabs_node(s
, offline_node
));
4097 s
->node
[offline_node
] = NULL
;
4098 kmem_cache_free(kmem_cache_node
, n
);
4101 mutex_unlock(&slab_mutex
);
4104 static int slab_mem_going_online_callback(void *arg
)
4106 struct kmem_cache_node
*n
;
4107 struct kmem_cache
*s
;
4108 struct memory_notify
*marg
= arg
;
4109 int nid
= marg
->status_change_nid_normal
;
4113 * If the node's memory is already available, then kmem_cache_node is
4114 * already created. Nothing to do.
4120 * We are bringing a node online. No memory is available yet. We must
4121 * allocate a kmem_cache_node structure in order to bring the node
4124 mutex_lock(&slab_mutex
);
4125 list_for_each_entry(s
, &slab_caches
, list
) {
4127 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128 * since memory is not yet available from the node that
4131 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4136 init_kmem_cache_node(n
);
4140 mutex_unlock(&slab_mutex
);
4144 static int slab_memory_callback(struct notifier_block
*self
,
4145 unsigned long action
, void *arg
)
4150 case MEM_GOING_ONLINE
:
4151 ret
= slab_mem_going_online_callback(arg
);
4153 case MEM_GOING_OFFLINE
:
4154 ret
= slab_mem_going_offline_callback(arg
);
4157 case MEM_CANCEL_ONLINE
:
4158 slab_mem_offline_callback(arg
);
4161 case MEM_CANCEL_OFFLINE
:
4165 ret
= notifier_from_errno(ret
);
4171 static struct notifier_block slab_memory_callback_nb
= {
4172 .notifier_call
= slab_memory_callback
,
4173 .priority
= SLAB_CALLBACK_PRI
,
4176 /********************************************************************
4177 * Basic setup of slabs
4178 *******************************************************************/
4181 * Used for early kmem_cache structures that were allocated using
4182 * the page allocator. Allocate them properly then fix up the pointers
4183 * that may be pointing to the wrong kmem_cache structure.
4186 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4189 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4190 struct kmem_cache_node
*n
;
4192 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4195 * This runs very early, and only the boot processor is supposed to be
4196 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4199 __flush_cpu_slab(s
, smp_processor_id());
4200 for_each_kmem_cache_node(s
, node
, n
) {
4203 list_for_each_entry(p
, &n
->partial
, lru
)
4206 #ifdef CONFIG_SLUB_DEBUG
4207 list_for_each_entry(p
, &n
->full
, lru
)
4211 slab_init_memcg_params(s
);
4212 list_add(&s
->list
, &slab_caches
);
4213 memcg_link_cache(s
);
4217 void __init
kmem_cache_init(void)
4219 static __initdata
struct kmem_cache boot_kmem_cache
,
4220 boot_kmem_cache_node
;
4222 if (debug_guardpage_minorder())
4225 kmem_cache_node
= &boot_kmem_cache_node
;
4226 kmem_cache
= &boot_kmem_cache
;
4228 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4229 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4231 register_hotmemory_notifier(&slab_memory_callback_nb
);
4233 /* Able to allocate the per node structures */
4234 slab_state
= PARTIAL
;
4236 create_boot_cache(kmem_cache
, "kmem_cache",
4237 offsetof(struct kmem_cache
, node
) +
4238 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4239 SLAB_HWCACHE_ALIGN
, 0, 0);
4241 kmem_cache
= bootstrap(&boot_kmem_cache
);
4244 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245 * kmem_cache_node is separately allocated so no need to
4246 * update any list pointers.
4248 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 setup_kmalloc_cache_index_table();
4252 create_kmalloc_caches(0);
4254 /* Setup random freelists for each cache */
4255 init_freelist_randomization();
4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4262 slub_min_order
, slub_max_order
, slub_min_objects
,
4263 nr_cpu_ids
, nr_node_ids
);
4266 void __init
kmem_cache_init_late(void)
4271 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4272 slab_flags_t flags
, void (*ctor
)(void *))
4274 struct kmem_cache
*s
, *c
;
4276 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4281 * Adjust the object sizes so that we clear
4282 * the complete object on kzalloc.
4284 s
->object_size
= max(s
->object_size
, size
);
4285 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4287 for_each_memcg_cache(c
, s
) {
4288 c
->object_size
= s
->object_size
;
4289 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4292 if (sysfs_slab_alias(s
, name
)) {
4301 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4305 err
= kmem_cache_open(s
, flags
);
4309 /* Mutex is not taken during early boot */
4310 if (slab_state
<= UP
)
4313 memcg_propagate_slab_attrs(s
);
4314 err
= sysfs_slab_add(s
);
4316 __kmem_cache_release(s
);
4321 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4323 struct kmem_cache
*s
;
4326 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4327 return kmalloc_large(size
, gfpflags
);
4329 s
= kmalloc_slab(size
, gfpflags
);
4331 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4334 ret
= slab_alloc(s
, gfpflags
, caller
);
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4343 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4344 int node
, unsigned long caller
)
4346 struct kmem_cache
*s
;
4349 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4350 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4352 trace_kmalloc_node(caller
, ret
,
4353 size
, PAGE_SIZE
<< get_order(size
),
4359 s
= kmalloc_slab(size
, gfpflags
);
4361 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4364 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4366 /* Honor the call site pointer we received. */
4367 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4374 static int count_inuse(struct page
*page
)
4379 static int count_total(struct page
*page
)
4381 return page
->objects
;
4385 #ifdef CONFIG_SLUB_DEBUG
4386 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4390 void *addr
= page_address(page
);
4392 if (!check_slab(s
, page
) ||
4393 !on_freelist(s
, page
, NULL
))
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map
, page
->objects
);
4399 get_map(s
, page
, map
);
4400 for_each_object(p
, s
, addr
, page
->objects
) {
4401 if (test_bit(slab_index(p
, s
, addr
), map
))
4402 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4406 for_each_object(p
, s
, addr
, page
->objects
)
4407 if (!test_bit(slab_index(p
, s
, addr
), map
))
4408 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4413 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4417 validate_slab(s
, page
, map
);
4421 static int validate_slab_node(struct kmem_cache
*s
,
4422 struct kmem_cache_node
*n
, unsigned long *map
)
4424 unsigned long count
= 0;
4426 unsigned long flags
;
4428 spin_lock_irqsave(&n
->list_lock
, flags
);
4430 list_for_each_entry(page
, &n
->partial
, lru
) {
4431 validate_slab_slab(s
, page
, map
);
4434 if (count
!= n
->nr_partial
)
4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 s
->name
, count
, n
->nr_partial
);
4438 if (!(s
->flags
& SLAB_STORE_USER
))
4441 list_for_each_entry(page
, &n
->full
, lru
) {
4442 validate_slab_slab(s
, page
, map
);
4445 if (count
!= atomic_long_read(&n
->nr_slabs
))
4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4450 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4454 static long validate_slab_cache(struct kmem_cache
*s
)
4457 unsigned long count
= 0;
4458 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4459 sizeof(unsigned long), GFP_KERNEL
);
4460 struct kmem_cache_node
*n
;
4466 for_each_kmem_cache_node(s
, node
, n
)
4467 count
+= validate_slab_node(s
, n
, map
);
4472 * Generate lists of code addresses where slabcache objects are allocated
4477 unsigned long count
;
4484 DECLARE_BITMAP(cpus
, NR_CPUS
);
4490 unsigned long count
;
4491 struct location
*loc
;
4494 static void free_loc_track(struct loc_track
*t
)
4497 free_pages((unsigned long)t
->loc
,
4498 get_order(sizeof(struct location
) * t
->max
));
4501 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4506 order
= get_order(sizeof(struct location
) * max
);
4508 l
= (void *)__get_free_pages(flags
, order
);
4513 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4521 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4522 const struct track
*track
)
4524 long start
, end
, pos
;
4526 unsigned long caddr
;
4527 unsigned long age
= jiffies
- track
->when
;
4533 pos
= start
+ (end
- start
+ 1) / 2;
4536 * There is nothing at "end". If we end up there
4537 * we need to add something to before end.
4542 caddr
= t
->loc
[pos
].addr
;
4543 if (track
->addr
== caddr
) {
4549 if (age
< l
->min_time
)
4551 if (age
> l
->max_time
)
4554 if (track
->pid
< l
->min_pid
)
4555 l
->min_pid
= track
->pid
;
4556 if (track
->pid
> l
->max_pid
)
4557 l
->max_pid
= track
->pid
;
4559 cpumask_set_cpu(track
->cpu
,
4560 to_cpumask(l
->cpus
));
4562 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4566 if (track
->addr
< caddr
)
4573 * Not found. Insert new tracking element.
4575 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4581 (t
->count
- pos
) * sizeof(struct location
));
4584 l
->addr
= track
->addr
;
4588 l
->min_pid
= track
->pid
;
4589 l
->max_pid
= track
->pid
;
4590 cpumask_clear(to_cpumask(l
->cpus
));
4591 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4592 nodes_clear(l
->nodes
);
4593 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4597 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4598 struct page
*page
, enum track_item alloc
,
4601 void *addr
= page_address(page
);
4604 bitmap_zero(map
, page
->objects
);
4605 get_map(s
, page
, map
);
4607 for_each_object(p
, s
, addr
, page
->objects
)
4608 if (!test_bit(slab_index(p
, s
, addr
), map
))
4609 add_location(t
, s
, get_track(s
, p
, alloc
));
4612 static int list_locations(struct kmem_cache
*s
, char *buf
,
4613 enum track_item alloc
)
4617 struct loc_track t
= { 0, 0, NULL
};
4619 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4620 sizeof(unsigned long), GFP_KERNEL
);
4621 struct kmem_cache_node
*n
;
4623 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4626 return sprintf(buf
, "Out of memory\n");
4628 /* Push back cpu slabs */
4631 for_each_kmem_cache_node(s
, node
, n
) {
4632 unsigned long flags
;
4635 if (!atomic_long_read(&n
->nr_slabs
))
4638 spin_lock_irqsave(&n
->list_lock
, flags
);
4639 list_for_each_entry(page
, &n
->partial
, lru
)
4640 process_slab(&t
, s
, page
, alloc
, map
);
4641 list_for_each_entry(page
, &n
->full
, lru
)
4642 process_slab(&t
, s
, page
, alloc
, map
);
4643 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4646 for (i
= 0; i
< t
.count
; i
++) {
4647 struct location
*l
= &t
.loc
[i
];
4649 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4651 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4654 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4656 len
+= sprintf(buf
+ len
, "<not-available>");
4658 if (l
->sum_time
!= l
->min_time
) {
4659 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4661 (long)div_u64(l
->sum_time
, l
->count
),
4664 len
+= sprintf(buf
+ len
, " age=%ld",
4667 if (l
->min_pid
!= l
->max_pid
)
4668 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4669 l
->min_pid
, l
->max_pid
);
4671 len
+= sprintf(buf
+ len
, " pid=%ld",
4674 if (num_online_cpus() > 1 &&
4675 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4676 len
< PAGE_SIZE
- 60)
4677 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4679 cpumask_pr_args(to_cpumask(l
->cpus
)));
4681 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4682 len
< PAGE_SIZE
- 60)
4683 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4685 nodemask_pr_args(&l
->nodes
));
4687 len
+= sprintf(buf
+ len
, "\n");
4693 len
+= sprintf(buf
, "No data\n");
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init
resiliency_test(void)
4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4705 pr_err("SLUB resiliency testing\n");
4706 pr_err("-----------------------\n");
4707 pr_err("A. Corruption after allocation\n");
4709 p
= kzalloc(16, GFP_KERNEL
);
4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4714 validate_slab_cache(kmalloc_caches
[4]);
4716 /* Hmmm... The next two are dangerous */
4717 p
= kzalloc(32, GFP_KERNEL
);
4718 p
[32 + sizeof(void *)] = 0x34;
4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4721 pr_err("If allocated object is overwritten then not detectable\n\n");
4723 validate_slab_cache(kmalloc_caches
[5]);
4724 p
= kzalloc(64, GFP_KERNEL
);
4725 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4729 pr_err("If allocated object is overwritten then not detectable\n\n");
4730 validate_slab_cache(kmalloc_caches
[6]);
4732 pr_err("\nB. Corruption after free\n");
4733 p
= kzalloc(128, GFP_KERNEL
);
4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4737 validate_slab_cache(kmalloc_caches
[7]);
4739 p
= kzalloc(256, GFP_KERNEL
);
4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4743 validate_slab_cache(kmalloc_caches
[8]);
4745 p
= kzalloc(512, GFP_KERNEL
);
4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4749 validate_slab_cache(kmalloc_caches
[9]);
4753 static void resiliency_test(void) {};
4758 enum slab_stat_type
{
4759 SL_ALL
, /* All slabs */
4760 SL_PARTIAL
, /* Only partially allocated slabs */
4761 SL_CPU
, /* Only slabs used for cpu caches */
4762 SL_OBJECTS
, /* Determine allocated objects not slabs */
4763 SL_TOTAL
/* Determine object capacity not slabs */
4766 #define SO_ALL (1 << SL_ALL)
4767 #define SO_PARTIAL (1 << SL_PARTIAL)
4768 #define SO_CPU (1 << SL_CPU)
4769 #define SO_OBJECTS (1 << SL_OBJECTS)
4770 #define SO_TOTAL (1 << SL_TOTAL)
4773 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4775 static int __init
setup_slub_memcg_sysfs(char *str
)
4779 if (get_option(&str
, &v
) > 0)
4780 memcg_sysfs_enabled
= v
;
4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4788 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4789 char *buf
, unsigned long flags
)
4791 unsigned long total
= 0;
4794 unsigned long *nodes
;
4796 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4800 if (flags
& SO_CPU
) {
4803 for_each_possible_cpu(cpu
) {
4804 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4809 page
= READ_ONCE(c
->page
);
4813 node
= page_to_nid(page
);
4814 if (flags
& SO_TOTAL
)
4816 else if (flags
& SO_OBJECTS
)
4824 page
= slub_percpu_partial_read_once(c
);
4826 node
= page_to_nid(page
);
4827 if (flags
& SO_TOTAL
)
4829 else if (flags
& SO_OBJECTS
)
4840 #ifdef CONFIG_SLUB_DEBUG
4841 if (flags
& SO_ALL
) {
4842 struct kmem_cache_node
*n
;
4844 for_each_kmem_cache_node(s
, node
, n
) {
4846 if (flags
& SO_TOTAL
)
4847 x
= atomic_long_read(&n
->total_objects
);
4848 else if (flags
& SO_OBJECTS
)
4849 x
= atomic_long_read(&n
->total_objects
) -
4850 count_partial(n
, count_free
);
4852 x
= atomic_long_read(&n
->nr_slabs
);
4859 if (flags
& SO_PARTIAL
) {
4860 struct kmem_cache_node
*n
;
4862 for_each_kmem_cache_node(s
, node
, n
) {
4863 if (flags
& SO_TOTAL
)
4864 x
= count_partial(n
, count_total
);
4865 else if (flags
& SO_OBJECTS
)
4866 x
= count_partial(n
, count_inuse
);
4873 x
= sprintf(buf
, "%lu", total
);
4875 for (node
= 0; node
< nr_node_ids
; node
++)
4877 x
+= sprintf(buf
+ x
, " N%d=%lu",
4882 return x
+ sprintf(buf
+ x
, "\n");
4885 #ifdef CONFIG_SLUB_DEBUG
4886 static int any_slab_objects(struct kmem_cache
*s
)
4889 struct kmem_cache_node
*n
;
4891 for_each_kmem_cache_node(s
, node
, n
)
4892 if (atomic_long_read(&n
->total_objects
))
4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4902 struct slab_attribute
{
4903 struct attribute attr
;
4904 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4905 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4908 #define SLAB_ATTR_RO(_name) \
4909 static struct slab_attribute _name##_attr = \
4910 __ATTR(_name, 0400, _name##_show, NULL)
4912 #define SLAB_ATTR(_name) \
4913 static struct slab_attribute _name##_attr = \
4914 __ATTR(_name, 0600, _name##_show, _name##_store)
4916 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4918 return sprintf(buf
, "%u\n", s
->size
);
4920 SLAB_ATTR_RO(slab_size
);
4922 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4924 return sprintf(buf
, "%u\n", s
->align
);
4926 SLAB_ATTR_RO(align
);
4928 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4930 return sprintf(buf
, "%u\n", s
->object_size
);
4932 SLAB_ATTR_RO(object_size
);
4934 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4936 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4938 SLAB_ATTR_RO(objs_per_slab
);
4940 static ssize_t
order_store(struct kmem_cache
*s
,
4941 const char *buf
, size_t length
)
4946 err
= kstrtouint(buf
, 10, &order
);
4950 if (order
> slub_max_order
|| order
< slub_min_order
)
4953 calculate_sizes(s
, order
);
4957 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4959 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
4963 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4965 return sprintf(buf
, "%lu\n", s
->min_partial
);
4968 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4974 err
= kstrtoul(buf
, 10, &min
);
4978 set_min_partial(s
, min
);
4981 SLAB_ATTR(min_partial
);
4983 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4985 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4988 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4991 unsigned int objects
;
4994 err
= kstrtouint(buf
, 10, &objects
);
4997 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5000 slub_set_cpu_partial(s
, objects
);
5004 SLAB_ATTR(cpu_partial
);
5006 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5010 return sprintf(buf
, "%pS\n", s
->ctor
);
5014 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5016 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5018 SLAB_ATTR_RO(aliases
);
5020 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5022 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5024 SLAB_ATTR_RO(partial
);
5026 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5028 return show_slab_objects(s
, buf
, SO_CPU
);
5030 SLAB_ATTR_RO(cpu_slabs
);
5032 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5034 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5036 SLAB_ATTR_RO(objects
);
5038 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5040 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5042 SLAB_ATTR_RO(objects_partial
);
5044 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5051 for_each_online_cpu(cpu
) {
5054 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5057 pages
+= page
->pages
;
5058 objects
+= page
->pobjects
;
5062 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5065 for_each_online_cpu(cpu
) {
5068 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5070 if (page
&& len
< PAGE_SIZE
- 20)
5071 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5072 page
->pobjects
, page
->pages
);
5075 return len
+ sprintf(buf
+ len
, "\n");
5077 SLAB_ATTR_RO(slabs_cpu_partial
);
5079 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5081 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5084 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5085 const char *buf
, size_t length
)
5087 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5089 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5092 SLAB_ATTR(reclaim_account
);
5094 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5096 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5098 SLAB_ATTR_RO(hwcache_align
);
5100 #ifdef CONFIG_ZONE_DMA
5101 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5103 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5105 SLAB_ATTR_RO(cache_dma
);
5108 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5110 return sprintf(buf
, "%u\n", s
->usersize
);
5112 SLAB_ATTR_RO(usersize
);
5114 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5116 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5118 SLAB_ATTR_RO(destroy_by_rcu
);
5120 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5122 return sprintf(buf
, "%u\n", s
->reserved
);
5124 SLAB_ATTR_RO(reserved
);
5126 #ifdef CONFIG_SLUB_DEBUG
5127 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5129 return show_slab_objects(s
, buf
, SO_ALL
);
5131 SLAB_ATTR_RO(slabs
);
5133 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5135 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5137 SLAB_ATTR_RO(total_objects
);
5139 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5141 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5144 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5145 const char *buf
, size_t length
)
5147 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5148 if (buf
[0] == '1') {
5149 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5150 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5154 SLAB_ATTR(sanity_checks
);
5156 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5158 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5161 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5165 * Tracing a merged cache is going to give confusing results
5166 * as well as cause other issues like converting a mergeable
5167 * cache into an umergeable one.
5169 if (s
->refcount
> 1)
5172 s
->flags
&= ~SLAB_TRACE
;
5173 if (buf
[0] == '1') {
5174 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5175 s
->flags
|= SLAB_TRACE
;
5181 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5183 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5186 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5187 const char *buf
, size_t length
)
5189 if (any_slab_objects(s
))
5192 s
->flags
&= ~SLAB_RED_ZONE
;
5193 if (buf
[0] == '1') {
5194 s
->flags
|= SLAB_RED_ZONE
;
5196 calculate_sizes(s
, -1);
5199 SLAB_ATTR(red_zone
);
5201 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5203 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5206 static ssize_t
poison_store(struct kmem_cache
*s
,
5207 const char *buf
, size_t length
)
5209 if (any_slab_objects(s
))
5212 s
->flags
&= ~SLAB_POISON
;
5213 if (buf
[0] == '1') {
5214 s
->flags
|= SLAB_POISON
;
5216 calculate_sizes(s
, -1);
5221 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5223 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5226 static ssize_t
store_user_store(struct kmem_cache
*s
,
5227 const char *buf
, size_t length
)
5229 if (any_slab_objects(s
))
5232 s
->flags
&= ~SLAB_STORE_USER
;
5233 if (buf
[0] == '1') {
5234 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5235 s
->flags
|= SLAB_STORE_USER
;
5237 calculate_sizes(s
, -1);
5240 SLAB_ATTR(store_user
);
5242 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5247 static ssize_t
validate_store(struct kmem_cache
*s
,
5248 const char *buf
, size_t length
)
5252 if (buf
[0] == '1') {
5253 ret
= validate_slab_cache(s
);
5259 SLAB_ATTR(validate
);
5261 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5263 if (!(s
->flags
& SLAB_STORE_USER
))
5265 return list_locations(s
, buf
, TRACK_ALLOC
);
5267 SLAB_ATTR_RO(alloc_calls
);
5269 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5271 if (!(s
->flags
& SLAB_STORE_USER
))
5273 return list_locations(s
, buf
, TRACK_FREE
);
5275 SLAB_ATTR_RO(free_calls
);
5276 #endif /* CONFIG_SLUB_DEBUG */
5278 #ifdef CONFIG_FAILSLAB
5279 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5281 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5284 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5287 if (s
->refcount
> 1)
5290 s
->flags
&= ~SLAB_FAILSLAB
;
5292 s
->flags
|= SLAB_FAILSLAB
;
5295 SLAB_ATTR(failslab
);
5298 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5303 static ssize_t
shrink_store(struct kmem_cache
*s
,
5304 const char *buf
, size_t length
)
5307 kmem_cache_shrink(s
);
5315 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5317 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5320 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5321 const char *buf
, size_t length
)
5326 err
= kstrtouint(buf
, 10, &ratio
);
5332 s
->remote_node_defrag_ratio
= ratio
* 10;
5336 SLAB_ATTR(remote_node_defrag_ratio
);
5339 #ifdef CONFIG_SLUB_STATS
5340 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5342 unsigned long sum
= 0;
5345 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5350 for_each_online_cpu(cpu
) {
5351 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5357 len
= sprintf(buf
, "%lu", sum
);
5360 for_each_online_cpu(cpu
) {
5361 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5362 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5366 return len
+ sprintf(buf
+ len
, "\n");
5369 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5373 for_each_online_cpu(cpu
)
5374 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5377 #define STAT_ATTR(si, text) \
5378 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5380 return show_stat(s, buf, si); \
5382 static ssize_t text##_store(struct kmem_cache *s, \
5383 const char *buf, size_t length) \
5385 if (buf[0] != '0') \
5387 clear_stat(s, si); \
5392 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5394 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5395 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5396 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5397 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5398 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5399 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5400 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5401 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5402 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5403 STAT_ATTR(FREE_SLAB
, free_slab
);
5404 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5405 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5406 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5407 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5408 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5409 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5410 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5411 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5412 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5413 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5414 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5415 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5416 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5417 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5420 static struct attribute
*slab_attrs
[] = {
5421 &slab_size_attr
.attr
,
5422 &object_size_attr
.attr
,
5423 &objs_per_slab_attr
.attr
,
5425 &min_partial_attr
.attr
,
5426 &cpu_partial_attr
.attr
,
5428 &objects_partial_attr
.attr
,
5430 &cpu_slabs_attr
.attr
,
5434 &hwcache_align_attr
.attr
,
5435 &reclaim_account_attr
.attr
,
5436 &destroy_by_rcu_attr
.attr
,
5438 &reserved_attr
.attr
,
5439 &slabs_cpu_partial_attr
.attr
,
5440 #ifdef CONFIG_SLUB_DEBUG
5441 &total_objects_attr
.attr
,
5443 &sanity_checks_attr
.attr
,
5445 &red_zone_attr
.attr
,
5447 &store_user_attr
.attr
,
5448 &validate_attr
.attr
,
5449 &alloc_calls_attr
.attr
,
5450 &free_calls_attr
.attr
,
5452 #ifdef CONFIG_ZONE_DMA
5453 &cache_dma_attr
.attr
,
5456 &remote_node_defrag_ratio_attr
.attr
,
5458 #ifdef CONFIG_SLUB_STATS
5459 &alloc_fastpath_attr
.attr
,
5460 &alloc_slowpath_attr
.attr
,
5461 &free_fastpath_attr
.attr
,
5462 &free_slowpath_attr
.attr
,
5463 &free_frozen_attr
.attr
,
5464 &free_add_partial_attr
.attr
,
5465 &free_remove_partial_attr
.attr
,
5466 &alloc_from_partial_attr
.attr
,
5467 &alloc_slab_attr
.attr
,
5468 &alloc_refill_attr
.attr
,
5469 &alloc_node_mismatch_attr
.attr
,
5470 &free_slab_attr
.attr
,
5471 &cpuslab_flush_attr
.attr
,
5472 &deactivate_full_attr
.attr
,
5473 &deactivate_empty_attr
.attr
,
5474 &deactivate_to_head_attr
.attr
,
5475 &deactivate_to_tail_attr
.attr
,
5476 &deactivate_remote_frees_attr
.attr
,
5477 &deactivate_bypass_attr
.attr
,
5478 &order_fallback_attr
.attr
,
5479 &cmpxchg_double_fail_attr
.attr
,
5480 &cmpxchg_double_cpu_fail_attr
.attr
,
5481 &cpu_partial_alloc_attr
.attr
,
5482 &cpu_partial_free_attr
.attr
,
5483 &cpu_partial_node_attr
.attr
,
5484 &cpu_partial_drain_attr
.attr
,
5486 #ifdef CONFIG_FAILSLAB
5487 &failslab_attr
.attr
,
5489 &usersize_attr
.attr
,
5494 static const struct attribute_group slab_attr_group
= {
5495 .attrs
= slab_attrs
,
5498 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5499 struct attribute
*attr
,
5502 struct slab_attribute
*attribute
;
5503 struct kmem_cache
*s
;
5506 attribute
= to_slab_attr(attr
);
5509 if (!attribute
->show
)
5512 err
= attribute
->show(s
, buf
);
5517 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5518 struct attribute
*attr
,
5519 const char *buf
, size_t len
)
5521 struct slab_attribute
*attribute
;
5522 struct kmem_cache
*s
;
5525 attribute
= to_slab_attr(attr
);
5528 if (!attribute
->store
)
5531 err
= attribute
->store(s
, buf
, len
);
5533 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5534 struct kmem_cache
*c
;
5536 mutex_lock(&slab_mutex
);
5537 if (s
->max_attr_size
< len
)
5538 s
->max_attr_size
= len
;
5541 * This is a best effort propagation, so this function's return
5542 * value will be determined by the parent cache only. This is
5543 * basically because not all attributes will have a well
5544 * defined semantics for rollbacks - most of the actions will
5545 * have permanent effects.
5547 * Returning the error value of any of the children that fail
5548 * is not 100 % defined, in the sense that users seeing the
5549 * error code won't be able to know anything about the state of
5552 * Only returning the error code for the parent cache at least
5553 * has well defined semantics. The cache being written to
5554 * directly either failed or succeeded, in which case we loop
5555 * through the descendants with best-effort propagation.
5557 for_each_memcg_cache(c
, s
)
5558 attribute
->store(c
, buf
, len
);
5559 mutex_unlock(&slab_mutex
);
5565 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5569 char *buffer
= NULL
;
5570 struct kmem_cache
*root_cache
;
5572 if (is_root_cache(s
))
5575 root_cache
= s
->memcg_params
.root_cache
;
5578 * This mean this cache had no attribute written. Therefore, no point
5579 * in copying default values around
5581 if (!root_cache
->max_attr_size
)
5584 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5587 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5590 if (!attr
|| !attr
->store
|| !attr
->show
)
5594 * It is really bad that we have to allocate here, so we will
5595 * do it only as a fallback. If we actually allocate, though,
5596 * we can just use the allocated buffer until the end.
5598 * Most of the slub attributes will tend to be very small in
5599 * size, but sysfs allows buffers up to a page, so they can
5600 * theoretically happen.
5604 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5607 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5608 if (WARN_ON(!buffer
))
5613 len
= attr
->show(root_cache
, buf
);
5615 attr
->store(s
, buf
, len
);
5619 free_page((unsigned long)buffer
);
5623 static void kmem_cache_release(struct kobject
*k
)
5625 slab_kmem_cache_release(to_slab(k
));
5628 static const struct sysfs_ops slab_sysfs_ops
= {
5629 .show
= slab_attr_show
,
5630 .store
= slab_attr_store
,
5633 static struct kobj_type slab_ktype
= {
5634 .sysfs_ops
= &slab_sysfs_ops
,
5635 .release
= kmem_cache_release
,
5638 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5640 struct kobj_type
*ktype
= get_ktype(kobj
);
5642 if (ktype
== &slab_ktype
)
5647 static const struct kset_uevent_ops slab_uevent_ops
= {
5648 .filter
= uevent_filter
,
5651 static struct kset
*slab_kset
;
5653 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5656 if (!is_root_cache(s
))
5657 return s
->memcg_params
.root_cache
->memcg_kset
;
5662 #define ID_STR_LENGTH 64
5664 /* Create a unique string id for a slab cache:
5666 * Format :[flags-]size
5668 static char *create_unique_id(struct kmem_cache
*s
)
5670 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5677 * First flags affecting slabcache operations. We will only
5678 * get here for aliasable slabs so we do not need to support
5679 * too many flags. The flags here must cover all flags that
5680 * are matched during merging to guarantee that the id is
5683 if (s
->flags
& SLAB_CACHE_DMA
)
5685 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5687 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5689 if (s
->flags
& SLAB_ACCOUNT
)
5693 p
+= sprintf(p
, "%07u", s
->size
);
5695 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5699 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5701 struct kmem_cache
*s
=
5702 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5704 if (!s
->kobj
.state_in_sysfs
)
5706 * For a memcg cache, this may be called during
5707 * deactivation and again on shutdown. Remove only once.
5708 * A cache is never shut down before deactivation is
5709 * complete, so no need to worry about synchronization.
5714 kset_unregister(s
->memcg_kset
);
5716 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5717 kobject_del(&s
->kobj
);
5719 kobject_put(&s
->kobj
);
5722 static int sysfs_slab_add(struct kmem_cache
*s
)
5726 struct kset
*kset
= cache_kset(s
);
5727 int unmergeable
= slab_unmergeable(s
);
5729 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5732 kobject_init(&s
->kobj
, &slab_ktype
);
5736 if (!unmergeable
&& disable_higher_order_debug
&&
5737 (slub_debug
& DEBUG_METADATA_FLAGS
))
5742 * Slabcache can never be merged so we can use the name proper.
5743 * This is typically the case for debug situations. In that
5744 * case we can catch duplicate names easily.
5746 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5750 * Create a unique name for the slab as a target
5753 name
= create_unique_id(s
);
5756 s
->kobj
.kset
= kset
;
5757 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5761 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5766 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5767 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5768 if (!s
->memcg_kset
) {
5775 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5777 /* Setup first alias */
5778 sysfs_slab_alias(s
, s
->name
);
5785 kobject_del(&s
->kobj
);
5789 static void sysfs_slab_remove(struct kmem_cache
*s
)
5791 if (slab_state
< FULL
)
5793 * Sysfs has not been setup yet so no need to remove the
5798 kobject_get(&s
->kobj
);
5799 schedule_work(&s
->kobj_remove_work
);
5802 void sysfs_slab_release(struct kmem_cache
*s
)
5804 if (slab_state
>= FULL
)
5805 kobject_put(&s
->kobj
);
5809 * Need to buffer aliases during bootup until sysfs becomes
5810 * available lest we lose that information.
5812 struct saved_alias
{
5813 struct kmem_cache
*s
;
5815 struct saved_alias
*next
;
5818 static struct saved_alias
*alias_list
;
5820 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5822 struct saved_alias
*al
;
5824 if (slab_state
== FULL
) {
5826 * If we have a leftover link then remove it.
5828 sysfs_remove_link(&slab_kset
->kobj
, name
);
5829 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5832 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5838 al
->next
= alias_list
;
5843 static int __init
slab_sysfs_init(void)
5845 struct kmem_cache
*s
;
5848 mutex_lock(&slab_mutex
);
5850 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5852 mutex_unlock(&slab_mutex
);
5853 pr_err("Cannot register slab subsystem.\n");
5859 list_for_each_entry(s
, &slab_caches
, list
) {
5860 err
= sysfs_slab_add(s
);
5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5866 while (alias_list
) {
5867 struct saved_alias
*al
= alias_list
;
5869 alias_list
= alias_list
->next
;
5870 err
= sysfs_slab_alias(al
->s
, al
->name
);
5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 mutex_unlock(&slab_mutex
);
5882 __initcall(slab_sysfs_init
);
5883 #endif /* CONFIG_SYSFS */
5886 * The /proc/slabinfo ABI
5888 #ifdef CONFIG_SLUB_DEBUG
5889 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5891 unsigned long nr_slabs
= 0;
5892 unsigned long nr_objs
= 0;
5893 unsigned long nr_free
= 0;
5895 struct kmem_cache_node
*n
;
5897 for_each_kmem_cache_node(s
, node
, n
) {
5898 nr_slabs
+= node_nr_slabs(n
);
5899 nr_objs
+= node_nr_objs(n
);
5900 nr_free
+= count_partial(n
, count_free
);
5903 sinfo
->active_objs
= nr_objs
- nr_free
;
5904 sinfo
->num_objs
= nr_objs
;
5905 sinfo
->active_slabs
= nr_slabs
;
5906 sinfo
->num_slabs
= nr_slabs
;
5907 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5908 sinfo
->cache_order
= oo_order(s
->oo
);
5911 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5915 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5916 size_t count
, loff_t
*ppos
)
5920 #endif /* CONFIG_SLUB_DEBUG */