libertas: convert CMD_802_11_EEPROM_ACCESS to a direct command
[linux/fpc-iii.git] / security / selinux / hooks.c
blob4bf4807f2d44351f9a46084a21e26567e8602448
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
16 * Paul Moore <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <asm/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "xfrm.h"
84 #include "netlabel.h"
86 #define XATTR_SELINUX_SUFFIX "selinux"
87 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
89 #define NUM_SEL_MNT_OPTS 4
91 extern unsigned int policydb_loaded_version;
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern int selinux_compat_net;
94 extern struct security_operations *security_ops;
96 /* SECMARK reference count */
97 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
100 int selinux_enforcing = 0;
102 static int __init enforcing_setup(char *str)
104 selinux_enforcing = simple_strtol(str,NULL,0);
105 return 1;
107 __setup("enforcing=", enforcing_setup);
108 #endif
110 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
111 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
113 static int __init selinux_enabled_setup(char *str)
115 selinux_enabled = simple_strtol(str, NULL, 0);
116 return 1;
118 __setup("selinux=", selinux_enabled_setup);
119 #else
120 int selinux_enabled = 1;
121 #endif
123 /* Original (dummy) security module. */
124 static struct security_operations *original_ops = NULL;
126 /* Minimal support for a secondary security module,
127 just to allow the use of the dummy or capability modules.
128 The owlsm module can alternatively be used as a secondary
129 module as long as CONFIG_OWLSM_FD is not enabled. */
130 static struct security_operations *secondary_ops = NULL;
132 /* Lists of inode and superblock security structures initialized
133 before the policy was loaded. */
134 static LIST_HEAD(superblock_security_head);
135 static DEFINE_SPINLOCK(sb_security_lock);
137 static struct kmem_cache *sel_inode_cache;
140 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
142 * Description:
143 * This function checks the SECMARK reference counter to see if any SECMARK
144 * targets are currently configured, if the reference counter is greater than
145 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
146 * enabled, false (0) if SECMARK is disabled.
149 static int selinux_secmark_enabled(void)
151 return (atomic_read(&selinux_secmark_refcount) > 0);
154 /* Allocate and free functions for each kind of security blob. */
156 static int task_alloc_security(struct task_struct *task)
158 struct task_security_struct *tsec;
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 if (!tsec)
162 return -ENOMEM;
164 tsec->task = task;
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
168 return 0;
171 static void task_free_security(struct task_struct *task)
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
175 kfree(tsec);
178 static int inode_alloc_security(struct inode *inode)
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
184 if (!isec)
185 return -ENOMEM;
187 mutex_init(&isec->lock);
188 INIT_LIST_HEAD(&isec->list);
189 isec->inode = inode;
190 isec->sid = SECINITSID_UNLABELED;
191 isec->sclass = SECCLASS_FILE;
192 isec->task_sid = tsec->sid;
193 inode->i_security = isec;
195 return 0;
198 static void inode_free_security(struct inode *inode)
200 struct inode_security_struct *isec = inode->i_security;
201 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203 spin_lock(&sbsec->isec_lock);
204 if (!list_empty(&isec->list))
205 list_del_init(&isec->list);
206 spin_unlock(&sbsec->isec_lock);
208 inode->i_security = NULL;
209 kmem_cache_free(sel_inode_cache, isec);
212 static int file_alloc_security(struct file *file)
214 struct task_security_struct *tsec = current->security;
215 struct file_security_struct *fsec;
217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
218 if (!fsec)
219 return -ENOMEM;
221 fsec->file = file;
222 fsec->sid = tsec->sid;
223 fsec->fown_sid = tsec->sid;
224 file->f_security = fsec;
226 return 0;
229 static void file_free_security(struct file *file)
231 struct file_security_struct *fsec = file->f_security;
232 file->f_security = NULL;
233 kfree(fsec);
236 static int superblock_alloc_security(struct super_block *sb)
238 struct superblock_security_struct *sbsec;
240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
241 if (!sbsec)
242 return -ENOMEM;
244 mutex_init(&sbsec->lock);
245 INIT_LIST_HEAD(&sbsec->list);
246 INIT_LIST_HEAD(&sbsec->isec_head);
247 spin_lock_init(&sbsec->isec_lock);
248 sbsec->sb = sb;
249 sbsec->sid = SECINITSID_UNLABELED;
250 sbsec->def_sid = SECINITSID_FILE;
251 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 sb->s_security = sbsec;
254 return 0;
257 static void superblock_free_security(struct super_block *sb)
259 struct superblock_security_struct *sbsec = sb->s_security;
261 spin_lock(&sb_security_lock);
262 if (!list_empty(&sbsec->list))
263 list_del_init(&sbsec->list);
264 spin_unlock(&sb_security_lock);
266 sb->s_security = NULL;
267 kfree(sbsec);
270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 struct sk_security_struct *ssec;
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 ssec->sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
283 selinux_netlbl_sk_security_init(ssec, family);
285 return 0;
288 static void sk_free_security(struct sock *sk)
290 struct sk_security_struct *ssec = sk->sk_security;
292 sk->sk_security = NULL;
293 kfree(ssec);
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
300 /* The file system's label must be initialized prior to use. */
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313 static inline int inode_doinit(struct inode *inode)
315 return inode_doinit_with_dentry(inode, NULL);
318 enum {
319 Opt_error = -1,
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 3,
323 Opt_rootcontext = 4,
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
331 {Opt_error, NULL},
334 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
336 static int may_context_mount_sb_relabel(u32 sid,
337 struct superblock_security_struct *sbsec,
338 struct task_security_struct *tsec)
340 int rc;
342 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 FILESYSTEM__RELABELFROM, NULL);
344 if (rc)
345 return rc;
347 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELTO, NULL);
349 return rc;
352 static int may_context_mount_inode_relabel(u32 sid,
353 struct superblock_security_struct *sbsec,
354 struct task_security_struct *tsec)
356 int rc;
357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 FILESYSTEM__RELABELFROM, NULL);
359 if (rc)
360 return rc;
362 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 FILESYSTEM__ASSOCIATE, NULL);
364 return rc;
367 static int sb_finish_set_opts(struct super_block *sb)
369 struct superblock_security_struct *sbsec = sb->s_security;
370 struct dentry *root = sb->s_root;
371 struct inode *root_inode = root->d_inode;
372 int rc = 0;
374 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
375 /* Make sure that the xattr handler exists and that no
376 error other than -ENODATA is returned by getxattr on
377 the root directory. -ENODATA is ok, as this may be
378 the first boot of the SELinux kernel before we have
379 assigned xattr values to the filesystem. */
380 if (!root_inode->i_op->getxattr) {
381 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
382 "xattr support\n", sb->s_id, sb->s_type->name);
383 rc = -EOPNOTSUPP;
384 goto out;
386 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
387 if (rc < 0 && rc != -ENODATA) {
388 if (rc == -EOPNOTSUPP)
389 printk(KERN_WARNING "SELinux: (dev %s, type "
390 "%s) has no security xattr handler\n",
391 sb->s_id, sb->s_type->name);
392 else
393 printk(KERN_WARNING "SELinux: (dev %s, type "
394 "%s) getxattr errno %d\n", sb->s_id,
395 sb->s_type->name, -rc);
396 goto out;
400 sbsec->initialized = 1;
402 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
404 sb->s_id, sb->s_type->name);
405 else
406 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
407 sb->s_id, sb->s_type->name,
408 labeling_behaviors[sbsec->behavior-1]);
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
416 populates itself. */
417 spin_lock(&sbsec->isec_lock);
418 next_inode:
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
426 if (inode) {
427 if (!IS_PRIVATE(inode))
428 inode_doinit(inode);
429 iput(inode);
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
433 goto next_inode;
435 spin_unlock(&sbsec->isec_lock);
436 out:
437 return rc;
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
445 static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
448 int rc = 0, i;
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
451 u32 len;
452 char tmp;
454 security_init_mnt_opts(opts);
456 if (!sbsec->initialized)
457 return -EINVAL;
459 if (!ss_initialized)
460 return -EINVAL;
463 * if we ever use sbsec flags for anything other than tracking mount
464 * settings this is going to need a mask
466 tmp = sbsec->flags;
467 /* count the number of mount options for this sb */
468 for (i = 0; i < 8; i++) {
469 if (tmp & 0x01)
470 opts->num_mnt_opts++;
471 tmp >>= 1;
474 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
475 if (!opts->mnt_opts) {
476 rc = -ENOMEM;
477 goto out_free;
480 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
481 if (!opts->mnt_opts_flags) {
482 rc = -ENOMEM;
483 goto out_free;
486 i = 0;
487 if (sbsec->flags & FSCONTEXT_MNT) {
488 rc = security_sid_to_context(sbsec->sid, &context, &len);
489 if (rc)
490 goto out_free;
491 opts->mnt_opts[i] = context;
492 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
494 if (sbsec->flags & CONTEXT_MNT) {
495 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
496 if (rc)
497 goto out_free;
498 opts->mnt_opts[i] = context;
499 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
501 if (sbsec->flags & DEFCONTEXT_MNT) {
502 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
503 if (rc)
504 goto out_free;
505 opts->mnt_opts[i] = context;
506 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
508 if (sbsec->flags & ROOTCONTEXT_MNT) {
509 struct inode *root = sbsec->sb->s_root->d_inode;
510 struct inode_security_struct *isec = root->i_security;
512 rc = security_sid_to_context(isec->sid, &context, &len);
513 if (rc)
514 goto out_free;
515 opts->mnt_opts[i] = context;
516 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
519 BUG_ON(i != opts->num_mnt_opts);
521 return 0;
523 out_free:
524 security_free_mnt_opts(opts);
525 return rc;
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529 u32 old_sid, u32 new_sid)
531 /* check if the old mount command had the same options */
532 if (sbsec->initialized)
533 if (!(sbsec->flags & flag) ||
534 (old_sid != new_sid))
535 return 1;
537 /* check if we were passed the same options twice,
538 * aka someone passed context=a,context=b
540 if (!sbsec->initialized)
541 if (sbsec->flags & flag)
542 return 1;
543 return 0;
547 * Allow filesystems with binary mount data to explicitly set mount point
548 * labeling information.
550 static int selinux_set_mnt_opts(struct super_block *sb,
551 struct security_mnt_opts *opts)
553 int rc = 0, i;
554 struct task_security_struct *tsec = current->security;
555 struct superblock_security_struct *sbsec = sb->s_security;
556 const char *name = sb->s_type->name;
557 struct inode *inode = sbsec->sb->s_root->d_inode;
558 struct inode_security_struct *root_isec = inode->i_security;
559 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
560 u32 defcontext_sid = 0;
561 char **mount_options = opts->mnt_opts;
562 int *flags = opts->mnt_opts_flags;
563 int num_opts = opts->num_mnt_opts;
565 mutex_lock(&sbsec->lock);
567 if (!ss_initialized) {
568 if (!num_opts) {
569 /* Defer initialization until selinux_complete_init,
570 after the initial policy is loaded and the security
571 server is ready to handle calls. */
572 spin_lock(&sb_security_lock);
573 if (list_empty(&sbsec->list))
574 list_add(&sbsec->list, &superblock_security_head);
575 spin_unlock(&sb_security_lock);
576 goto out;
578 rc = -EINVAL;
579 printk(KERN_WARNING "Unable to set superblock options before "
580 "the security server is initialized\n");
581 goto out;
585 * Binary mount data FS will come through this function twice. Once
586 * from an explicit call and once from the generic calls from the vfs.
587 * Since the generic VFS calls will not contain any security mount data
588 * we need to skip the double mount verification.
590 * This does open a hole in which we will not notice if the first
591 * mount using this sb set explict options and a second mount using
592 * this sb does not set any security options. (The first options
593 * will be used for both mounts)
595 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596 && (num_opts == 0))
597 goto out;
600 * parse the mount options, check if they are valid sids.
601 * also check if someone is trying to mount the same sb more
602 * than once with different security options.
604 for (i = 0; i < num_opts; i++) {
605 u32 sid;
606 rc = security_context_to_sid(mount_options[i],
607 strlen(mount_options[i]), &sid);
608 if (rc) {
609 printk(KERN_WARNING "SELinux: security_context_to_sid"
610 "(%s) failed for (dev %s, type %s) errno=%d\n",
611 mount_options[i], sb->s_id, name, rc);
612 goto out;
614 switch (flags[i]) {
615 case FSCONTEXT_MNT:
616 fscontext_sid = sid;
618 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
619 fscontext_sid))
620 goto out_double_mount;
622 sbsec->flags |= FSCONTEXT_MNT;
623 break;
624 case CONTEXT_MNT:
625 context_sid = sid;
627 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
628 context_sid))
629 goto out_double_mount;
631 sbsec->flags |= CONTEXT_MNT;
632 break;
633 case ROOTCONTEXT_MNT:
634 rootcontext_sid = sid;
636 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
637 rootcontext_sid))
638 goto out_double_mount;
640 sbsec->flags |= ROOTCONTEXT_MNT;
642 break;
643 case DEFCONTEXT_MNT:
644 defcontext_sid = sid;
646 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
647 defcontext_sid))
648 goto out_double_mount;
650 sbsec->flags |= DEFCONTEXT_MNT;
652 break;
653 default:
654 rc = -EINVAL;
655 goto out;
659 if (sbsec->initialized) {
660 /* previously mounted with options, but not on this attempt? */
661 if (sbsec->flags && !num_opts)
662 goto out_double_mount;
663 rc = 0;
664 goto out;
667 if (strcmp(sb->s_type->name, "proc") == 0)
668 sbsec->proc = 1;
670 /* Determine the labeling behavior to use for this filesystem type. */
671 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
672 if (rc) {
673 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
674 __FUNCTION__, sb->s_type->name, rc);
675 goto out;
678 /* sets the context of the superblock for the fs being mounted. */
679 if (fscontext_sid) {
681 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
682 if (rc)
683 goto out;
685 sbsec->sid = fscontext_sid;
689 * Switch to using mount point labeling behavior.
690 * sets the label used on all file below the mountpoint, and will set
691 * the superblock context if not already set.
693 if (context_sid) {
694 if (!fscontext_sid) {
695 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
696 if (rc)
697 goto out;
698 sbsec->sid = context_sid;
699 } else {
700 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
701 if (rc)
702 goto out;
704 if (!rootcontext_sid)
705 rootcontext_sid = context_sid;
707 sbsec->mntpoint_sid = context_sid;
708 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711 if (rootcontext_sid) {
712 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
713 if (rc)
714 goto out;
716 root_isec->sid = rootcontext_sid;
717 root_isec->initialized = 1;
720 if (defcontext_sid) {
721 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
722 rc = -EINVAL;
723 printk(KERN_WARNING "SELinux: defcontext option is "
724 "invalid for this filesystem type\n");
725 goto out;
728 if (defcontext_sid != sbsec->def_sid) {
729 rc = may_context_mount_inode_relabel(defcontext_sid,
730 sbsec, tsec);
731 if (rc)
732 goto out;
735 sbsec->def_sid = defcontext_sid;
738 rc = sb_finish_set_opts(sb);
739 out:
740 mutex_unlock(&sbsec->lock);
741 return rc;
742 out_double_mount:
743 rc = -EINVAL;
744 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
745 "security settings for (dev %s, type %s)\n", sb->s_id, name);
746 goto out;
749 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
750 struct super_block *newsb)
752 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
753 struct superblock_security_struct *newsbsec = newsb->s_security;
755 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
756 int set_context = (oldsbsec->flags & CONTEXT_MNT);
757 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
759 /* we can't error, we can't save the info, this shouldn't get called
760 * this early in the boot process. */
761 BUG_ON(!ss_initialized);
763 /* this might go away sometime down the line if there is a new user
764 * of clone, but for now, nfs better not get here... */
765 BUG_ON(newsbsec->initialized);
767 /* how can we clone if the old one wasn't set up?? */
768 BUG_ON(!oldsbsec->initialized);
770 mutex_lock(&newsbsec->lock);
772 newsbsec->flags = oldsbsec->flags;
774 newsbsec->sid = oldsbsec->sid;
775 newsbsec->def_sid = oldsbsec->def_sid;
776 newsbsec->behavior = oldsbsec->behavior;
778 if (set_context) {
779 u32 sid = oldsbsec->mntpoint_sid;
781 if (!set_fscontext)
782 newsbsec->sid = sid;
783 if (!set_rootcontext) {
784 struct inode *newinode = newsb->s_root->d_inode;
785 struct inode_security_struct *newisec = newinode->i_security;
786 newisec->sid = sid;
788 newsbsec->mntpoint_sid = sid;
790 if (set_rootcontext) {
791 const struct inode *oldinode = oldsb->s_root->d_inode;
792 const struct inode_security_struct *oldisec = oldinode->i_security;
793 struct inode *newinode = newsb->s_root->d_inode;
794 struct inode_security_struct *newisec = newinode->i_security;
796 newisec->sid = oldisec->sid;
799 sb_finish_set_opts(newsb);
800 mutex_unlock(&newsbsec->lock);
803 int selinux_parse_opts_str(char *options, struct security_mnt_opts *opts)
805 char *p;
806 char *context = NULL, *defcontext = NULL;
807 char *fscontext = NULL, *rootcontext = NULL;
808 int rc, num_mnt_opts = 0;
810 opts->num_mnt_opts = 0;
812 /* Standard string-based options. */
813 while ((p = strsep(&options, "|")) != NULL) {
814 int token;
815 substring_t args[MAX_OPT_ARGS];
817 if (!*p)
818 continue;
820 token = match_token(p, tokens, args);
822 switch (token) {
823 case Opt_context:
824 if (context || defcontext) {
825 rc = -EINVAL;
826 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
827 goto out_err;
829 context = match_strdup(&args[0]);
830 if (!context) {
831 rc = -ENOMEM;
832 goto out_err;
834 break;
836 case Opt_fscontext:
837 if (fscontext) {
838 rc = -EINVAL;
839 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
840 goto out_err;
842 fscontext = match_strdup(&args[0]);
843 if (!fscontext) {
844 rc = -ENOMEM;
845 goto out_err;
847 break;
849 case Opt_rootcontext:
850 if (rootcontext) {
851 rc = -EINVAL;
852 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
853 goto out_err;
855 rootcontext = match_strdup(&args[0]);
856 if (!rootcontext) {
857 rc = -ENOMEM;
858 goto out_err;
860 break;
862 case Opt_defcontext:
863 if (context || defcontext) {
864 rc = -EINVAL;
865 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
866 goto out_err;
868 defcontext = match_strdup(&args[0]);
869 if (!defcontext) {
870 rc = -ENOMEM;
871 goto out_err;
873 break;
875 default:
876 rc = -EINVAL;
877 printk(KERN_WARNING "SELinux: unknown mount option\n");
878 goto out_err;
883 rc = -ENOMEM;
884 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
885 if (!opts->mnt_opts)
886 goto out_err;
888 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
889 if (!opts->mnt_opts_flags) {
890 kfree(opts->mnt_opts);
891 goto out_err;
894 if (fscontext) {
895 opts->mnt_opts[num_mnt_opts] = fscontext;
896 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
898 if (context) {
899 opts->mnt_opts[num_mnt_opts] = context;
900 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
902 if (rootcontext) {
903 opts->mnt_opts[num_mnt_opts] = rootcontext;
904 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
906 if (defcontext) {
907 opts->mnt_opts[num_mnt_opts] = defcontext;
908 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
911 opts->num_mnt_opts = num_mnt_opts;
912 return 0;
914 out_err:
915 kfree(context);
916 kfree(defcontext);
917 kfree(fscontext);
918 kfree(rootcontext);
919 return rc;
922 * string mount options parsing and call set the sbsec
924 static int superblock_doinit(struct super_block *sb, void *data)
926 int rc = 0;
927 char *options = data;
928 struct security_mnt_opts opts;
930 security_init_mnt_opts(&opts);
932 if (!data)
933 goto out;
935 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
937 rc = selinux_parse_opts_str(options, &opts);
938 if (rc)
939 goto out_err;
941 out:
942 rc = selinux_set_mnt_opts(sb, &opts);
944 out_err:
945 security_free_mnt_opts(&opts);
946 return rc;
949 static inline u16 inode_mode_to_security_class(umode_t mode)
951 switch (mode & S_IFMT) {
952 case S_IFSOCK:
953 return SECCLASS_SOCK_FILE;
954 case S_IFLNK:
955 return SECCLASS_LNK_FILE;
956 case S_IFREG:
957 return SECCLASS_FILE;
958 case S_IFBLK:
959 return SECCLASS_BLK_FILE;
960 case S_IFDIR:
961 return SECCLASS_DIR;
962 case S_IFCHR:
963 return SECCLASS_CHR_FILE;
964 case S_IFIFO:
965 return SECCLASS_FIFO_FILE;
969 return SECCLASS_FILE;
972 static inline int default_protocol_stream(int protocol)
974 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
977 static inline int default_protocol_dgram(int protocol)
979 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
982 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
984 switch (family) {
985 case PF_UNIX:
986 switch (type) {
987 case SOCK_STREAM:
988 case SOCK_SEQPACKET:
989 return SECCLASS_UNIX_STREAM_SOCKET;
990 case SOCK_DGRAM:
991 return SECCLASS_UNIX_DGRAM_SOCKET;
993 break;
994 case PF_INET:
995 case PF_INET6:
996 switch (type) {
997 case SOCK_STREAM:
998 if (default_protocol_stream(protocol))
999 return SECCLASS_TCP_SOCKET;
1000 else
1001 return SECCLASS_RAWIP_SOCKET;
1002 case SOCK_DGRAM:
1003 if (default_protocol_dgram(protocol))
1004 return SECCLASS_UDP_SOCKET;
1005 else
1006 return SECCLASS_RAWIP_SOCKET;
1007 case SOCK_DCCP:
1008 return SECCLASS_DCCP_SOCKET;
1009 default:
1010 return SECCLASS_RAWIP_SOCKET;
1012 break;
1013 case PF_NETLINK:
1014 switch (protocol) {
1015 case NETLINK_ROUTE:
1016 return SECCLASS_NETLINK_ROUTE_SOCKET;
1017 case NETLINK_FIREWALL:
1018 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1019 case NETLINK_INET_DIAG:
1020 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1021 case NETLINK_NFLOG:
1022 return SECCLASS_NETLINK_NFLOG_SOCKET;
1023 case NETLINK_XFRM:
1024 return SECCLASS_NETLINK_XFRM_SOCKET;
1025 case NETLINK_SELINUX:
1026 return SECCLASS_NETLINK_SELINUX_SOCKET;
1027 case NETLINK_AUDIT:
1028 return SECCLASS_NETLINK_AUDIT_SOCKET;
1029 case NETLINK_IP6_FW:
1030 return SECCLASS_NETLINK_IP6FW_SOCKET;
1031 case NETLINK_DNRTMSG:
1032 return SECCLASS_NETLINK_DNRT_SOCKET;
1033 case NETLINK_KOBJECT_UEVENT:
1034 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1035 default:
1036 return SECCLASS_NETLINK_SOCKET;
1038 case PF_PACKET:
1039 return SECCLASS_PACKET_SOCKET;
1040 case PF_KEY:
1041 return SECCLASS_KEY_SOCKET;
1042 case PF_APPLETALK:
1043 return SECCLASS_APPLETALK_SOCKET;
1046 return SECCLASS_SOCKET;
1049 #ifdef CONFIG_PROC_FS
1050 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1051 u16 tclass,
1052 u32 *sid)
1054 int buflen, rc;
1055 char *buffer, *path, *end;
1057 buffer = (char*)__get_free_page(GFP_KERNEL);
1058 if (!buffer)
1059 return -ENOMEM;
1061 buflen = PAGE_SIZE;
1062 end = buffer+buflen;
1063 *--end = '\0';
1064 buflen--;
1065 path = end-1;
1066 *path = '/';
1067 while (de && de != de->parent) {
1068 buflen -= de->namelen + 1;
1069 if (buflen < 0)
1070 break;
1071 end -= de->namelen;
1072 memcpy(end, de->name, de->namelen);
1073 *--end = '/';
1074 path = end;
1075 de = de->parent;
1077 rc = security_genfs_sid("proc", path, tclass, sid);
1078 free_page((unsigned long)buffer);
1079 return rc;
1081 #else
1082 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1083 u16 tclass,
1084 u32 *sid)
1086 return -EINVAL;
1088 #endif
1090 /* The inode's security attributes must be initialized before first use. */
1091 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1093 struct superblock_security_struct *sbsec = NULL;
1094 struct inode_security_struct *isec = inode->i_security;
1095 u32 sid;
1096 struct dentry *dentry;
1097 #define INITCONTEXTLEN 255
1098 char *context = NULL;
1099 unsigned len = 0;
1100 int rc = 0;
1102 if (isec->initialized)
1103 goto out;
1105 mutex_lock(&isec->lock);
1106 if (isec->initialized)
1107 goto out_unlock;
1109 sbsec = inode->i_sb->s_security;
1110 if (!sbsec->initialized) {
1111 /* Defer initialization until selinux_complete_init,
1112 after the initial policy is loaded and the security
1113 server is ready to handle calls. */
1114 spin_lock(&sbsec->isec_lock);
1115 if (list_empty(&isec->list))
1116 list_add(&isec->list, &sbsec->isec_head);
1117 spin_unlock(&sbsec->isec_lock);
1118 goto out_unlock;
1121 switch (sbsec->behavior) {
1122 case SECURITY_FS_USE_XATTR:
1123 if (!inode->i_op->getxattr) {
1124 isec->sid = sbsec->def_sid;
1125 break;
1128 /* Need a dentry, since the xattr API requires one.
1129 Life would be simpler if we could just pass the inode. */
1130 if (opt_dentry) {
1131 /* Called from d_instantiate or d_splice_alias. */
1132 dentry = dget(opt_dentry);
1133 } else {
1134 /* Called from selinux_complete_init, try to find a dentry. */
1135 dentry = d_find_alias(inode);
1137 if (!dentry) {
1138 printk(KERN_WARNING "%s: no dentry for dev=%s "
1139 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
1140 inode->i_ino);
1141 goto out_unlock;
1144 len = INITCONTEXTLEN;
1145 context = kmalloc(len, GFP_KERNEL);
1146 if (!context) {
1147 rc = -ENOMEM;
1148 dput(dentry);
1149 goto out_unlock;
1151 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1152 context, len);
1153 if (rc == -ERANGE) {
1154 /* Need a larger buffer. Query for the right size. */
1155 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1156 NULL, 0);
1157 if (rc < 0) {
1158 dput(dentry);
1159 goto out_unlock;
1161 kfree(context);
1162 len = rc;
1163 context = kmalloc(len, GFP_KERNEL);
1164 if (!context) {
1165 rc = -ENOMEM;
1166 dput(dentry);
1167 goto out_unlock;
1169 rc = inode->i_op->getxattr(dentry,
1170 XATTR_NAME_SELINUX,
1171 context, len);
1173 dput(dentry);
1174 if (rc < 0) {
1175 if (rc != -ENODATA) {
1176 printk(KERN_WARNING "%s: getxattr returned "
1177 "%d for dev=%s ino=%ld\n", __FUNCTION__,
1178 -rc, inode->i_sb->s_id, inode->i_ino);
1179 kfree(context);
1180 goto out_unlock;
1182 /* Map ENODATA to the default file SID */
1183 sid = sbsec->def_sid;
1184 rc = 0;
1185 } else {
1186 rc = security_context_to_sid_default(context, rc, &sid,
1187 sbsec->def_sid);
1188 if (rc) {
1189 printk(KERN_WARNING "%s: context_to_sid(%s) "
1190 "returned %d for dev=%s ino=%ld\n",
1191 __FUNCTION__, context, -rc,
1192 inode->i_sb->s_id, inode->i_ino);
1193 kfree(context);
1194 /* Leave with the unlabeled SID */
1195 rc = 0;
1196 break;
1199 kfree(context);
1200 isec->sid = sid;
1201 break;
1202 case SECURITY_FS_USE_TASK:
1203 isec->sid = isec->task_sid;
1204 break;
1205 case SECURITY_FS_USE_TRANS:
1206 /* Default to the fs SID. */
1207 isec->sid = sbsec->sid;
1209 /* Try to obtain a transition SID. */
1210 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1211 rc = security_transition_sid(isec->task_sid,
1212 sbsec->sid,
1213 isec->sclass,
1214 &sid);
1215 if (rc)
1216 goto out_unlock;
1217 isec->sid = sid;
1218 break;
1219 case SECURITY_FS_USE_MNTPOINT:
1220 isec->sid = sbsec->mntpoint_sid;
1221 break;
1222 default:
1223 /* Default to the fs superblock SID. */
1224 isec->sid = sbsec->sid;
1226 if (sbsec->proc) {
1227 struct proc_inode *proci = PROC_I(inode);
1228 if (proci->pde) {
1229 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1230 rc = selinux_proc_get_sid(proci->pde,
1231 isec->sclass,
1232 &sid);
1233 if (rc)
1234 goto out_unlock;
1235 isec->sid = sid;
1238 break;
1241 isec->initialized = 1;
1243 out_unlock:
1244 mutex_unlock(&isec->lock);
1245 out:
1246 if (isec->sclass == SECCLASS_FILE)
1247 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1248 return rc;
1251 /* Convert a Linux signal to an access vector. */
1252 static inline u32 signal_to_av(int sig)
1254 u32 perm = 0;
1256 switch (sig) {
1257 case SIGCHLD:
1258 /* Commonly granted from child to parent. */
1259 perm = PROCESS__SIGCHLD;
1260 break;
1261 case SIGKILL:
1262 /* Cannot be caught or ignored */
1263 perm = PROCESS__SIGKILL;
1264 break;
1265 case SIGSTOP:
1266 /* Cannot be caught or ignored */
1267 perm = PROCESS__SIGSTOP;
1268 break;
1269 default:
1270 /* All other signals. */
1271 perm = PROCESS__SIGNAL;
1272 break;
1275 return perm;
1278 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1279 fork check, ptrace check, etc. */
1280 static int task_has_perm(struct task_struct *tsk1,
1281 struct task_struct *tsk2,
1282 u32 perms)
1284 struct task_security_struct *tsec1, *tsec2;
1286 tsec1 = tsk1->security;
1287 tsec2 = tsk2->security;
1288 return avc_has_perm(tsec1->sid, tsec2->sid,
1289 SECCLASS_PROCESS, perms, NULL);
1292 #if CAP_LAST_CAP > 63
1293 #error Fix SELinux to handle capabilities > 63.
1294 #endif
1296 /* Check whether a task is allowed to use a capability. */
1297 static int task_has_capability(struct task_struct *tsk,
1298 int cap)
1300 struct task_security_struct *tsec;
1301 struct avc_audit_data ad;
1302 u16 sclass;
1303 u32 av = CAP_TO_MASK(cap);
1305 tsec = tsk->security;
1307 AVC_AUDIT_DATA_INIT(&ad,CAP);
1308 ad.tsk = tsk;
1309 ad.u.cap = cap;
1311 switch (CAP_TO_INDEX(cap)) {
1312 case 0:
1313 sclass = SECCLASS_CAPABILITY;
1314 break;
1315 case 1:
1316 sclass = SECCLASS_CAPABILITY2;
1317 break;
1318 default:
1319 printk(KERN_ERR
1320 "SELinux: out of range capability %d\n", cap);
1321 BUG();
1323 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1326 /* Check whether a task is allowed to use a system operation. */
1327 static int task_has_system(struct task_struct *tsk,
1328 u32 perms)
1330 struct task_security_struct *tsec;
1332 tsec = tsk->security;
1334 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1335 SECCLASS_SYSTEM, perms, NULL);
1338 /* Check whether a task has a particular permission to an inode.
1339 The 'adp' parameter is optional and allows other audit
1340 data to be passed (e.g. the dentry). */
1341 static int inode_has_perm(struct task_struct *tsk,
1342 struct inode *inode,
1343 u32 perms,
1344 struct avc_audit_data *adp)
1346 struct task_security_struct *tsec;
1347 struct inode_security_struct *isec;
1348 struct avc_audit_data ad;
1350 if (unlikely (IS_PRIVATE (inode)))
1351 return 0;
1353 tsec = tsk->security;
1354 isec = inode->i_security;
1356 if (!adp) {
1357 adp = &ad;
1358 AVC_AUDIT_DATA_INIT(&ad, FS);
1359 ad.u.fs.inode = inode;
1362 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1365 /* Same as inode_has_perm, but pass explicit audit data containing
1366 the dentry to help the auditing code to more easily generate the
1367 pathname if needed. */
1368 static inline int dentry_has_perm(struct task_struct *tsk,
1369 struct vfsmount *mnt,
1370 struct dentry *dentry,
1371 u32 av)
1373 struct inode *inode = dentry->d_inode;
1374 struct avc_audit_data ad;
1375 AVC_AUDIT_DATA_INIT(&ad,FS);
1376 ad.u.fs.path.mnt = mnt;
1377 ad.u.fs.path.dentry = dentry;
1378 return inode_has_perm(tsk, inode, av, &ad);
1381 /* Check whether a task can use an open file descriptor to
1382 access an inode in a given way. Check access to the
1383 descriptor itself, and then use dentry_has_perm to
1384 check a particular permission to the file.
1385 Access to the descriptor is implicitly granted if it
1386 has the same SID as the process. If av is zero, then
1387 access to the file is not checked, e.g. for cases
1388 where only the descriptor is affected like seek. */
1389 static int file_has_perm(struct task_struct *tsk,
1390 struct file *file,
1391 u32 av)
1393 struct task_security_struct *tsec = tsk->security;
1394 struct file_security_struct *fsec = file->f_security;
1395 struct inode *inode = file->f_path.dentry->d_inode;
1396 struct avc_audit_data ad;
1397 int rc;
1399 AVC_AUDIT_DATA_INIT(&ad, FS);
1400 ad.u.fs.path = file->f_path;
1402 if (tsec->sid != fsec->sid) {
1403 rc = avc_has_perm(tsec->sid, fsec->sid,
1404 SECCLASS_FD,
1405 FD__USE,
1406 &ad);
1407 if (rc)
1408 return rc;
1411 /* av is zero if only checking access to the descriptor. */
1412 if (av)
1413 return inode_has_perm(tsk, inode, av, &ad);
1415 return 0;
1418 /* Check whether a task can create a file. */
1419 static int may_create(struct inode *dir,
1420 struct dentry *dentry,
1421 u16 tclass)
1423 struct task_security_struct *tsec;
1424 struct inode_security_struct *dsec;
1425 struct superblock_security_struct *sbsec;
1426 u32 newsid;
1427 struct avc_audit_data ad;
1428 int rc;
1430 tsec = current->security;
1431 dsec = dir->i_security;
1432 sbsec = dir->i_sb->s_security;
1434 AVC_AUDIT_DATA_INIT(&ad, FS);
1435 ad.u.fs.path.dentry = dentry;
1437 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1438 DIR__ADD_NAME | DIR__SEARCH,
1439 &ad);
1440 if (rc)
1441 return rc;
1443 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1444 newsid = tsec->create_sid;
1445 } else {
1446 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1447 &newsid);
1448 if (rc)
1449 return rc;
1452 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1453 if (rc)
1454 return rc;
1456 return avc_has_perm(newsid, sbsec->sid,
1457 SECCLASS_FILESYSTEM,
1458 FILESYSTEM__ASSOCIATE, &ad);
1461 /* Check whether a task can create a key. */
1462 static int may_create_key(u32 ksid,
1463 struct task_struct *ctx)
1465 struct task_security_struct *tsec;
1467 tsec = ctx->security;
1469 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1472 #define MAY_LINK 0
1473 #define MAY_UNLINK 1
1474 #define MAY_RMDIR 2
1476 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1477 static int may_link(struct inode *dir,
1478 struct dentry *dentry,
1479 int kind)
1482 struct task_security_struct *tsec;
1483 struct inode_security_struct *dsec, *isec;
1484 struct avc_audit_data ad;
1485 u32 av;
1486 int rc;
1488 tsec = current->security;
1489 dsec = dir->i_security;
1490 isec = dentry->d_inode->i_security;
1492 AVC_AUDIT_DATA_INIT(&ad, FS);
1493 ad.u.fs.path.dentry = dentry;
1495 av = DIR__SEARCH;
1496 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1497 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1498 if (rc)
1499 return rc;
1501 switch (kind) {
1502 case MAY_LINK:
1503 av = FILE__LINK;
1504 break;
1505 case MAY_UNLINK:
1506 av = FILE__UNLINK;
1507 break;
1508 case MAY_RMDIR:
1509 av = DIR__RMDIR;
1510 break;
1511 default:
1512 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1513 return 0;
1516 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1517 return rc;
1520 static inline int may_rename(struct inode *old_dir,
1521 struct dentry *old_dentry,
1522 struct inode *new_dir,
1523 struct dentry *new_dentry)
1525 struct task_security_struct *tsec;
1526 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1527 struct avc_audit_data ad;
1528 u32 av;
1529 int old_is_dir, new_is_dir;
1530 int rc;
1532 tsec = current->security;
1533 old_dsec = old_dir->i_security;
1534 old_isec = old_dentry->d_inode->i_security;
1535 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1536 new_dsec = new_dir->i_security;
1538 AVC_AUDIT_DATA_INIT(&ad, FS);
1540 ad.u.fs.path.dentry = old_dentry;
1541 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1542 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1543 if (rc)
1544 return rc;
1545 rc = avc_has_perm(tsec->sid, old_isec->sid,
1546 old_isec->sclass, FILE__RENAME, &ad);
1547 if (rc)
1548 return rc;
1549 if (old_is_dir && new_dir != old_dir) {
1550 rc = avc_has_perm(tsec->sid, old_isec->sid,
1551 old_isec->sclass, DIR__REPARENT, &ad);
1552 if (rc)
1553 return rc;
1556 ad.u.fs.path.dentry = new_dentry;
1557 av = DIR__ADD_NAME | DIR__SEARCH;
1558 if (new_dentry->d_inode)
1559 av |= DIR__REMOVE_NAME;
1560 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1561 if (rc)
1562 return rc;
1563 if (new_dentry->d_inode) {
1564 new_isec = new_dentry->d_inode->i_security;
1565 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1566 rc = avc_has_perm(tsec->sid, new_isec->sid,
1567 new_isec->sclass,
1568 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1569 if (rc)
1570 return rc;
1573 return 0;
1576 /* Check whether a task can perform a filesystem operation. */
1577 static int superblock_has_perm(struct task_struct *tsk,
1578 struct super_block *sb,
1579 u32 perms,
1580 struct avc_audit_data *ad)
1582 struct task_security_struct *tsec;
1583 struct superblock_security_struct *sbsec;
1585 tsec = tsk->security;
1586 sbsec = sb->s_security;
1587 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1588 perms, ad);
1591 /* Convert a Linux mode and permission mask to an access vector. */
1592 static inline u32 file_mask_to_av(int mode, int mask)
1594 u32 av = 0;
1596 if ((mode & S_IFMT) != S_IFDIR) {
1597 if (mask & MAY_EXEC)
1598 av |= FILE__EXECUTE;
1599 if (mask & MAY_READ)
1600 av |= FILE__READ;
1602 if (mask & MAY_APPEND)
1603 av |= FILE__APPEND;
1604 else if (mask & MAY_WRITE)
1605 av |= FILE__WRITE;
1607 } else {
1608 if (mask & MAY_EXEC)
1609 av |= DIR__SEARCH;
1610 if (mask & MAY_WRITE)
1611 av |= DIR__WRITE;
1612 if (mask & MAY_READ)
1613 av |= DIR__READ;
1616 return av;
1619 /* Convert a Linux file to an access vector. */
1620 static inline u32 file_to_av(struct file *file)
1622 u32 av = 0;
1624 if (file->f_mode & FMODE_READ)
1625 av |= FILE__READ;
1626 if (file->f_mode & FMODE_WRITE) {
1627 if (file->f_flags & O_APPEND)
1628 av |= FILE__APPEND;
1629 else
1630 av |= FILE__WRITE;
1633 return av;
1636 /* Hook functions begin here. */
1638 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1640 struct task_security_struct *psec = parent->security;
1641 struct task_security_struct *csec = child->security;
1642 int rc;
1644 rc = secondary_ops->ptrace(parent,child);
1645 if (rc)
1646 return rc;
1648 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1649 /* Save the SID of the tracing process for later use in apply_creds. */
1650 if (!(child->ptrace & PT_PTRACED) && !rc)
1651 csec->ptrace_sid = psec->sid;
1652 return rc;
1655 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1656 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1658 int error;
1660 error = task_has_perm(current, target, PROCESS__GETCAP);
1661 if (error)
1662 return error;
1664 return secondary_ops->capget(target, effective, inheritable, permitted);
1667 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1668 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1670 int error;
1672 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1673 if (error)
1674 return error;
1676 return task_has_perm(current, target, PROCESS__SETCAP);
1679 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1680 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1682 secondary_ops->capset_set(target, effective, inheritable, permitted);
1685 static int selinux_capable(struct task_struct *tsk, int cap)
1687 int rc;
1689 rc = secondary_ops->capable(tsk, cap);
1690 if (rc)
1691 return rc;
1693 return task_has_capability(tsk,cap);
1696 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1698 int buflen, rc;
1699 char *buffer, *path, *end;
1701 rc = -ENOMEM;
1702 buffer = (char*)__get_free_page(GFP_KERNEL);
1703 if (!buffer)
1704 goto out;
1706 buflen = PAGE_SIZE;
1707 end = buffer+buflen;
1708 *--end = '\0';
1709 buflen--;
1710 path = end-1;
1711 *path = '/';
1712 while (table) {
1713 const char *name = table->procname;
1714 size_t namelen = strlen(name);
1715 buflen -= namelen + 1;
1716 if (buflen < 0)
1717 goto out_free;
1718 end -= namelen;
1719 memcpy(end, name, namelen);
1720 *--end = '/';
1721 path = end;
1722 table = table->parent;
1724 buflen -= 4;
1725 if (buflen < 0)
1726 goto out_free;
1727 end -= 4;
1728 memcpy(end, "/sys", 4);
1729 path = end;
1730 rc = security_genfs_sid("proc", path, tclass, sid);
1731 out_free:
1732 free_page((unsigned long)buffer);
1733 out:
1734 return rc;
1737 static int selinux_sysctl(ctl_table *table, int op)
1739 int error = 0;
1740 u32 av;
1741 struct task_security_struct *tsec;
1742 u32 tsid;
1743 int rc;
1745 rc = secondary_ops->sysctl(table, op);
1746 if (rc)
1747 return rc;
1749 tsec = current->security;
1751 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1752 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1753 if (rc) {
1754 /* Default to the well-defined sysctl SID. */
1755 tsid = SECINITSID_SYSCTL;
1758 /* The op values are "defined" in sysctl.c, thereby creating
1759 * a bad coupling between this module and sysctl.c */
1760 if(op == 001) {
1761 error = avc_has_perm(tsec->sid, tsid,
1762 SECCLASS_DIR, DIR__SEARCH, NULL);
1763 } else {
1764 av = 0;
1765 if (op & 004)
1766 av |= FILE__READ;
1767 if (op & 002)
1768 av |= FILE__WRITE;
1769 if (av)
1770 error = avc_has_perm(tsec->sid, tsid,
1771 SECCLASS_FILE, av, NULL);
1774 return error;
1777 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1779 int rc = 0;
1781 if (!sb)
1782 return 0;
1784 switch (cmds) {
1785 case Q_SYNC:
1786 case Q_QUOTAON:
1787 case Q_QUOTAOFF:
1788 case Q_SETINFO:
1789 case Q_SETQUOTA:
1790 rc = superblock_has_perm(current,
1792 FILESYSTEM__QUOTAMOD, NULL);
1793 break;
1794 case Q_GETFMT:
1795 case Q_GETINFO:
1796 case Q_GETQUOTA:
1797 rc = superblock_has_perm(current,
1799 FILESYSTEM__QUOTAGET, NULL);
1800 break;
1801 default:
1802 rc = 0; /* let the kernel handle invalid cmds */
1803 break;
1805 return rc;
1808 static int selinux_quota_on(struct dentry *dentry)
1810 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1813 static int selinux_syslog(int type)
1815 int rc;
1817 rc = secondary_ops->syslog(type);
1818 if (rc)
1819 return rc;
1821 switch (type) {
1822 case 3: /* Read last kernel messages */
1823 case 10: /* Return size of the log buffer */
1824 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1825 break;
1826 case 6: /* Disable logging to console */
1827 case 7: /* Enable logging to console */
1828 case 8: /* Set level of messages printed to console */
1829 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1830 break;
1831 case 0: /* Close log */
1832 case 1: /* Open log */
1833 case 2: /* Read from log */
1834 case 4: /* Read/clear last kernel messages */
1835 case 5: /* Clear ring buffer */
1836 default:
1837 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1838 break;
1840 return rc;
1844 * Check that a process has enough memory to allocate a new virtual
1845 * mapping. 0 means there is enough memory for the allocation to
1846 * succeed and -ENOMEM implies there is not.
1848 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1849 * if the capability is granted, but __vm_enough_memory requires 1 if
1850 * the capability is granted.
1852 * Do not audit the selinux permission check, as this is applied to all
1853 * processes that allocate mappings.
1855 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1857 int rc, cap_sys_admin = 0;
1858 struct task_security_struct *tsec = current->security;
1860 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1861 if (rc == 0)
1862 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1863 SECCLASS_CAPABILITY,
1864 CAP_TO_MASK(CAP_SYS_ADMIN),
1866 NULL);
1868 if (rc == 0)
1869 cap_sys_admin = 1;
1871 return __vm_enough_memory(mm, pages, cap_sys_admin);
1874 /* binprm security operations */
1876 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1878 struct bprm_security_struct *bsec;
1880 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1881 if (!bsec)
1882 return -ENOMEM;
1884 bsec->bprm = bprm;
1885 bsec->sid = SECINITSID_UNLABELED;
1886 bsec->set = 0;
1888 bprm->security = bsec;
1889 return 0;
1892 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1894 struct task_security_struct *tsec;
1895 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1896 struct inode_security_struct *isec;
1897 struct bprm_security_struct *bsec;
1898 u32 newsid;
1899 struct avc_audit_data ad;
1900 int rc;
1902 rc = secondary_ops->bprm_set_security(bprm);
1903 if (rc)
1904 return rc;
1906 bsec = bprm->security;
1908 if (bsec->set)
1909 return 0;
1911 tsec = current->security;
1912 isec = inode->i_security;
1914 /* Default to the current task SID. */
1915 bsec->sid = tsec->sid;
1917 /* Reset fs, key, and sock SIDs on execve. */
1918 tsec->create_sid = 0;
1919 tsec->keycreate_sid = 0;
1920 tsec->sockcreate_sid = 0;
1922 if (tsec->exec_sid) {
1923 newsid = tsec->exec_sid;
1924 /* Reset exec SID on execve. */
1925 tsec->exec_sid = 0;
1926 } else {
1927 /* Check for a default transition on this program. */
1928 rc = security_transition_sid(tsec->sid, isec->sid,
1929 SECCLASS_PROCESS, &newsid);
1930 if (rc)
1931 return rc;
1934 AVC_AUDIT_DATA_INIT(&ad, FS);
1935 ad.u.fs.path = bprm->file->f_path;
1937 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1938 newsid = tsec->sid;
1940 if (tsec->sid == newsid) {
1941 rc = avc_has_perm(tsec->sid, isec->sid,
1942 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1943 if (rc)
1944 return rc;
1945 } else {
1946 /* Check permissions for the transition. */
1947 rc = avc_has_perm(tsec->sid, newsid,
1948 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1949 if (rc)
1950 return rc;
1952 rc = avc_has_perm(newsid, isec->sid,
1953 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1954 if (rc)
1955 return rc;
1957 /* Clear any possibly unsafe personality bits on exec: */
1958 current->personality &= ~PER_CLEAR_ON_SETID;
1960 /* Set the security field to the new SID. */
1961 bsec->sid = newsid;
1964 bsec->set = 1;
1965 return 0;
1968 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1970 return secondary_ops->bprm_check_security(bprm);
1974 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1976 struct task_security_struct *tsec = current->security;
1977 int atsecure = 0;
1979 if (tsec->osid != tsec->sid) {
1980 /* Enable secure mode for SIDs transitions unless
1981 the noatsecure permission is granted between
1982 the two SIDs, i.e. ahp returns 0. */
1983 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1984 SECCLASS_PROCESS,
1985 PROCESS__NOATSECURE, NULL);
1988 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1991 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1993 kfree(bprm->security);
1994 bprm->security = NULL;
1997 extern struct vfsmount *selinuxfs_mount;
1998 extern struct dentry *selinux_null;
2000 /* Derived from fs/exec.c:flush_old_files. */
2001 static inline void flush_unauthorized_files(struct files_struct * files)
2003 struct avc_audit_data ad;
2004 struct file *file, *devnull = NULL;
2005 struct tty_struct *tty;
2006 struct fdtable *fdt;
2007 long j = -1;
2008 int drop_tty = 0;
2010 mutex_lock(&tty_mutex);
2011 tty = get_current_tty();
2012 if (tty) {
2013 file_list_lock();
2014 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2015 if (file) {
2016 /* Revalidate access to controlling tty.
2017 Use inode_has_perm on the tty inode directly rather
2018 than using file_has_perm, as this particular open
2019 file may belong to another process and we are only
2020 interested in the inode-based check here. */
2021 struct inode *inode = file->f_path.dentry->d_inode;
2022 if (inode_has_perm(current, inode,
2023 FILE__READ | FILE__WRITE, NULL)) {
2024 drop_tty = 1;
2027 file_list_unlock();
2029 mutex_unlock(&tty_mutex);
2030 /* Reset controlling tty. */
2031 if (drop_tty)
2032 no_tty();
2034 /* Revalidate access to inherited open files. */
2036 AVC_AUDIT_DATA_INIT(&ad,FS);
2038 spin_lock(&files->file_lock);
2039 for (;;) {
2040 unsigned long set, i;
2041 int fd;
2043 j++;
2044 i = j * __NFDBITS;
2045 fdt = files_fdtable(files);
2046 if (i >= fdt->max_fds)
2047 break;
2048 set = fdt->open_fds->fds_bits[j];
2049 if (!set)
2050 continue;
2051 spin_unlock(&files->file_lock);
2052 for ( ; set ; i++,set >>= 1) {
2053 if (set & 1) {
2054 file = fget(i);
2055 if (!file)
2056 continue;
2057 if (file_has_perm(current,
2058 file,
2059 file_to_av(file))) {
2060 sys_close(i);
2061 fd = get_unused_fd();
2062 if (fd != i) {
2063 if (fd >= 0)
2064 put_unused_fd(fd);
2065 fput(file);
2066 continue;
2068 if (devnull) {
2069 get_file(devnull);
2070 } else {
2071 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2072 if (IS_ERR(devnull)) {
2073 devnull = NULL;
2074 put_unused_fd(fd);
2075 fput(file);
2076 continue;
2079 fd_install(fd, devnull);
2081 fput(file);
2084 spin_lock(&files->file_lock);
2087 spin_unlock(&files->file_lock);
2090 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2092 struct task_security_struct *tsec;
2093 struct bprm_security_struct *bsec;
2094 u32 sid;
2095 int rc;
2097 secondary_ops->bprm_apply_creds(bprm, unsafe);
2099 tsec = current->security;
2101 bsec = bprm->security;
2102 sid = bsec->sid;
2104 tsec->osid = tsec->sid;
2105 bsec->unsafe = 0;
2106 if (tsec->sid != sid) {
2107 /* Check for shared state. If not ok, leave SID
2108 unchanged and kill. */
2109 if (unsafe & LSM_UNSAFE_SHARE) {
2110 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2111 PROCESS__SHARE, NULL);
2112 if (rc) {
2113 bsec->unsafe = 1;
2114 return;
2118 /* Check for ptracing, and update the task SID if ok.
2119 Otherwise, leave SID unchanged and kill. */
2120 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2121 rc = avc_has_perm(tsec->ptrace_sid, sid,
2122 SECCLASS_PROCESS, PROCESS__PTRACE,
2123 NULL);
2124 if (rc) {
2125 bsec->unsafe = 1;
2126 return;
2129 tsec->sid = sid;
2134 * called after apply_creds without the task lock held
2136 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2138 struct task_security_struct *tsec;
2139 struct rlimit *rlim, *initrlim;
2140 struct itimerval itimer;
2141 struct bprm_security_struct *bsec;
2142 int rc, i;
2144 tsec = current->security;
2145 bsec = bprm->security;
2147 if (bsec->unsafe) {
2148 force_sig_specific(SIGKILL, current);
2149 return;
2151 if (tsec->osid == tsec->sid)
2152 return;
2154 /* Close files for which the new task SID is not authorized. */
2155 flush_unauthorized_files(current->files);
2157 /* Check whether the new SID can inherit signal state
2158 from the old SID. If not, clear itimers to avoid
2159 subsequent signal generation and flush and unblock
2160 signals. This must occur _after_ the task SID has
2161 been updated so that any kill done after the flush
2162 will be checked against the new SID. */
2163 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2164 PROCESS__SIGINH, NULL);
2165 if (rc) {
2166 memset(&itimer, 0, sizeof itimer);
2167 for (i = 0; i < 3; i++)
2168 do_setitimer(i, &itimer, NULL);
2169 flush_signals(current);
2170 spin_lock_irq(&current->sighand->siglock);
2171 flush_signal_handlers(current, 1);
2172 sigemptyset(&current->blocked);
2173 recalc_sigpending();
2174 spin_unlock_irq(&current->sighand->siglock);
2177 /* Always clear parent death signal on SID transitions. */
2178 current->pdeath_signal = 0;
2180 /* Check whether the new SID can inherit resource limits
2181 from the old SID. If not, reset all soft limits to
2182 the lower of the current task's hard limit and the init
2183 task's soft limit. Note that the setting of hard limits
2184 (even to lower them) can be controlled by the setrlimit
2185 check. The inclusion of the init task's soft limit into
2186 the computation is to avoid resetting soft limits higher
2187 than the default soft limit for cases where the default
2188 is lower than the hard limit, e.g. RLIMIT_CORE or
2189 RLIMIT_STACK.*/
2190 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2191 PROCESS__RLIMITINH, NULL);
2192 if (rc) {
2193 for (i = 0; i < RLIM_NLIMITS; i++) {
2194 rlim = current->signal->rlim + i;
2195 initrlim = init_task.signal->rlim+i;
2196 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
2198 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2200 * This will cause RLIMIT_CPU calculations
2201 * to be refigured.
2203 current->it_prof_expires = jiffies_to_cputime(1);
2207 /* Wake up the parent if it is waiting so that it can
2208 recheck wait permission to the new task SID. */
2209 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2212 /* superblock security operations */
2214 static int selinux_sb_alloc_security(struct super_block *sb)
2216 return superblock_alloc_security(sb);
2219 static void selinux_sb_free_security(struct super_block *sb)
2221 superblock_free_security(sb);
2224 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2226 if (plen > olen)
2227 return 0;
2229 return !memcmp(prefix, option, plen);
2232 static inline int selinux_option(char *option, int len)
2234 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
2235 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
2236 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
2237 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
2240 static inline void take_option(char **to, char *from, int *first, int len)
2242 if (!*first) {
2243 **to = ',';
2244 *to += 1;
2245 } else
2246 *first = 0;
2247 memcpy(*to, from, len);
2248 *to += len;
2251 static inline void take_selinux_option(char **to, char *from, int *first,
2252 int len)
2254 int current_size = 0;
2256 if (!*first) {
2257 **to = '|';
2258 *to += 1;
2260 else
2261 *first = 0;
2263 while (current_size < len) {
2264 if (*from != '"') {
2265 **to = *from;
2266 *to += 1;
2268 from += 1;
2269 current_size += 1;
2273 static int selinux_sb_copy_data(char *orig, char *copy)
2275 int fnosec, fsec, rc = 0;
2276 char *in_save, *in_curr, *in_end;
2277 char *sec_curr, *nosec_save, *nosec;
2278 int open_quote = 0;
2280 in_curr = orig;
2281 sec_curr = copy;
2283 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2284 if (!nosec) {
2285 rc = -ENOMEM;
2286 goto out;
2289 nosec_save = nosec;
2290 fnosec = fsec = 1;
2291 in_save = in_end = orig;
2293 do {
2294 if (*in_end == '"')
2295 open_quote = !open_quote;
2296 if ((*in_end == ',' && open_quote == 0) ||
2297 *in_end == '\0') {
2298 int len = in_end - in_curr;
2300 if (selinux_option(in_curr, len))
2301 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2302 else
2303 take_option(&nosec, in_curr, &fnosec, len);
2305 in_curr = in_end + 1;
2307 } while (*in_end++);
2309 strcpy(in_save, nosec_save);
2310 free_page((unsigned long)nosec_save);
2311 out:
2312 return rc;
2315 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2317 struct avc_audit_data ad;
2318 int rc;
2320 rc = superblock_doinit(sb, data);
2321 if (rc)
2322 return rc;
2324 AVC_AUDIT_DATA_INIT(&ad,FS);
2325 ad.u.fs.path.dentry = sb->s_root;
2326 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2329 static int selinux_sb_statfs(struct dentry *dentry)
2331 struct avc_audit_data ad;
2333 AVC_AUDIT_DATA_INIT(&ad,FS);
2334 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2335 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2338 static int selinux_mount(char * dev_name,
2339 struct nameidata *nd,
2340 char * type,
2341 unsigned long flags,
2342 void * data)
2344 int rc;
2346 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2347 if (rc)
2348 return rc;
2350 if (flags & MS_REMOUNT)
2351 return superblock_has_perm(current, nd->path.mnt->mnt_sb,
2352 FILESYSTEM__REMOUNT, NULL);
2353 else
2354 return dentry_has_perm(current, nd->path.mnt, nd->path.dentry,
2355 FILE__MOUNTON);
2358 static int selinux_umount(struct vfsmount *mnt, int flags)
2360 int rc;
2362 rc = secondary_ops->sb_umount(mnt, flags);
2363 if (rc)
2364 return rc;
2366 return superblock_has_perm(current,mnt->mnt_sb,
2367 FILESYSTEM__UNMOUNT,NULL);
2370 /* inode security operations */
2372 static int selinux_inode_alloc_security(struct inode *inode)
2374 return inode_alloc_security(inode);
2377 static void selinux_inode_free_security(struct inode *inode)
2379 inode_free_security(inode);
2382 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2383 char **name, void **value,
2384 size_t *len)
2386 struct task_security_struct *tsec;
2387 struct inode_security_struct *dsec;
2388 struct superblock_security_struct *sbsec;
2389 u32 newsid, clen;
2390 int rc;
2391 char *namep = NULL, *context;
2393 tsec = current->security;
2394 dsec = dir->i_security;
2395 sbsec = dir->i_sb->s_security;
2397 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2398 newsid = tsec->create_sid;
2399 } else {
2400 rc = security_transition_sid(tsec->sid, dsec->sid,
2401 inode_mode_to_security_class(inode->i_mode),
2402 &newsid);
2403 if (rc) {
2404 printk(KERN_WARNING "%s: "
2405 "security_transition_sid failed, rc=%d (dev=%s "
2406 "ino=%ld)\n",
2407 __FUNCTION__,
2408 -rc, inode->i_sb->s_id, inode->i_ino);
2409 return rc;
2413 /* Possibly defer initialization to selinux_complete_init. */
2414 if (sbsec->initialized) {
2415 struct inode_security_struct *isec = inode->i_security;
2416 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2417 isec->sid = newsid;
2418 isec->initialized = 1;
2421 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2422 return -EOPNOTSUPP;
2424 if (name) {
2425 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2426 if (!namep)
2427 return -ENOMEM;
2428 *name = namep;
2431 if (value && len) {
2432 rc = security_sid_to_context(newsid, &context, &clen);
2433 if (rc) {
2434 kfree(namep);
2435 return rc;
2437 *value = context;
2438 *len = clen;
2441 return 0;
2444 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2446 return may_create(dir, dentry, SECCLASS_FILE);
2449 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2451 int rc;
2453 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2454 if (rc)
2455 return rc;
2456 return may_link(dir, old_dentry, MAY_LINK);
2459 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2461 int rc;
2463 rc = secondary_ops->inode_unlink(dir, dentry);
2464 if (rc)
2465 return rc;
2466 return may_link(dir, dentry, MAY_UNLINK);
2469 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2471 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2474 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2476 return may_create(dir, dentry, SECCLASS_DIR);
2479 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2481 return may_link(dir, dentry, MAY_RMDIR);
2484 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2486 int rc;
2488 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2489 if (rc)
2490 return rc;
2492 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2495 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2496 struct inode *new_inode, struct dentry *new_dentry)
2498 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2501 static int selinux_inode_readlink(struct dentry *dentry)
2503 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2506 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2508 int rc;
2510 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2511 if (rc)
2512 return rc;
2513 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2516 static int selinux_inode_permission(struct inode *inode, int mask,
2517 struct nameidata *nd)
2519 int rc;
2521 rc = secondary_ops->inode_permission(inode, mask, nd);
2522 if (rc)
2523 return rc;
2525 if (!mask) {
2526 /* No permission to check. Existence test. */
2527 return 0;
2530 return inode_has_perm(current, inode,
2531 file_mask_to_av(inode->i_mode, mask), NULL);
2534 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2536 int rc;
2538 rc = secondary_ops->inode_setattr(dentry, iattr);
2539 if (rc)
2540 return rc;
2542 if (iattr->ia_valid & ATTR_FORCE)
2543 return 0;
2545 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2546 ATTR_ATIME_SET | ATTR_MTIME_SET))
2547 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2549 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2552 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2554 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2557 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2559 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2560 sizeof XATTR_SECURITY_PREFIX - 1)) {
2561 if (!strcmp(name, XATTR_NAME_CAPS)) {
2562 if (!capable(CAP_SETFCAP))
2563 return -EPERM;
2564 } else if (!capable(CAP_SYS_ADMIN)) {
2565 /* A different attribute in the security namespace.
2566 Restrict to administrator. */
2567 return -EPERM;
2571 /* Not an attribute we recognize, so just check the
2572 ordinary setattr permission. */
2573 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2576 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2578 struct task_security_struct *tsec = current->security;
2579 struct inode *inode = dentry->d_inode;
2580 struct inode_security_struct *isec = inode->i_security;
2581 struct superblock_security_struct *sbsec;
2582 struct avc_audit_data ad;
2583 u32 newsid;
2584 int rc = 0;
2586 if (strcmp(name, XATTR_NAME_SELINUX))
2587 return selinux_inode_setotherxattr(dentry, name);
2589 sbsec = inode->i_sb->s_security;
2590 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2591 return -EOPNOTSUPP;
2593 if (!is_owner_or_cap(inode))
2594 return -EPERM;
2596 AVC_AUDIT_DATA_INIT(&ad,FS);
2597 ad.u.fs.path.dentry = dentry;
2599 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2600 FILE__RELABELFROM, &ad);
2601 if (rc)
2602 return rc;
2604 rc = security_context_to_sid(value, size, &newsid);
2605 if (rc)
2606 return rc;
2608 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2609 FILE__RELABELTO, &ad);
2610 if (rc)
2611 return rc;
2613 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2614 isec->sclass);
2615 if (rc)
2616 return rc;
2618 return avc_has_perm(newsid,
2619 sbsec->sid,
2620 SECCLASS_FILESYSTEM,
2621 FILESYSTEM__ASSOCIATE,
2622 &ad);
2625 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2626 void *value, size_t size, int flags)
2628 struct inode *inode = dentry->d_inode;
2629 struct inode_security_struct *isec = inode->i_security;
2630 u32 newsid;
2631 int rc;
2633 if (strcmp(name, XATTR_NAME_SELINUX)) {
2634 /* Not an attribute we recognize, so nothing to do. */
2635 return;
2638 rc = security_context_to_sid(value, size, &newsid);
2639 if (rc) {
2640 printk(KERN_WARNING "%s: unable to obtain SID for context "
2641 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2642 return;
2645 isec->sid = newsid;
2646 return;
2649 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2651 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2654 static int selinux_inode_listxattr (struct dentry *dentry)
2656 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2659 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2661 if (strcmp(name, XATTR_NAME_SELINUX))
2662 return selinux_inode_setotherxattr(dentry, name);
2664 /* No one is allowed to remove a SELinux security label.
2665 You can change the label, but all data must be labeled. */
2666 return -EACCES;
2670 * Copy the in-core inode security context value to the user. If the
2671 * getxattr() prior to this succeeded, check to see if we need to
2672 * canonicalize the value to be finally returned to the user.
2674 * Permission check is handled by selinux_inode_getxattr hook.
2676 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2678 u32 size;
2679 int error;
2680 char *context = NULL;
2681 struct inode_security_struct *isec = inode->i_security;
2683 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2684 return -EOPNOTSUPP;
2686 error = security_sid_to_context(isec->sid, &context, &size);
2687 if (error)
2688 return error;
2689 error = size;
2690 if (alloc) {
2691 *buffer = context;
2692 goto out_nofree;
2694 kfree(context);
2695 out_nofree:
2696 return error;
2699 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2700 const void *value, size_t size, int flags)
2702 struct inode_security_struct *isec = inode->i_security;
2703 u32 newsid;
2704 int rc;
2706 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2707 return -EOPNOTSUPP;
2709 if (!value || !size)
2710 return -EACCES;
2712 rc = security_context_to_sid((void*)value, size, &newsid);
2713 if (rc)
2714 return rc;
2716 isec->sid = newsid;
2717 return 0;
2720 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2722 const int len = sizeof(XATTR_NAME_SELINUX);
2723 if (buffer && len <= buffer_size)
2724 memcpy(buffer, XATTR_NAME_SELINUX, len);
2725 return len;
2728 static int selinux_inode_need_killpriv(struct dentry *dentry)
2730 return secondary_ops->inode_need_killpriv(dentry);
2733 static int selinux_inode_killpriv(struct dentry *dentry)
2735 return secondary_ops->inode_killpriv(dentry);
2738 /* file security operations */
2740 static int selinux_revalidate_file_permission(struct file *file, int mask)
2742 int rc;
2743 struct inode *inode = file->f_path.dentry->d_inode;
2745 if (!mask) {
2746 /* No permission to check. Existence test. */
2747 return 0;
2750 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2751 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2752 mask |= MAY_APPEND;
2754 rc = file_has_perm(current, file,
2755 file_mask_to_av(inode->i_mode, mask));
2756 if (rc)
2757 return rc;
2759 return selinux_netlbl_inode_permission(inode, mask);
2762 static int selinux_file_permission(struct file *file, int mask)
2764 struct inode *inode = file->f_path.dentry->d_inode;
2765 struct task_security_struct *tsec = current->security;
2766 struct file_security_struct *fsec = file->f_security;
2767 struct inode_security_struct *isec = inode->i_security;
2769 if (!mask) {
2770 /* No permission to check. Existence test. */
2771 return 0;
2774 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2775 && fsec->pseqno == avc_policy_seqno())
2776 return selinux_netlbl_inode_permission(inode, mask);
2778 return selinux_revalidate_file_permission(file, mask);
2781 static int selinux_file_alloc_security(struct file *file)
2783 return file_alloc_security(file);
2786 static void selinux_file_free_security(struct file *file)
2788 file_free_security(file);
2791 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2792 unsigned long arg)
2794 int error = 0;
2796 switch (cmd) {
2797 case FIONREAD:
2798 /* fall through */
2799 case FIBMAP:
2800 /* fall through */
2801 case FIGETBSZ:
2802 /* fall through */
2803 case EXT2_IOC_GETFLAGS:
2804 /* fall through */
2805 case EXT2_IOC_GETVERSION:
2806 error = file_has_perm(current, file, FILE__GETATTR);
2807 break;
2809 case EXT2_IOC_SETFLAGS:
2810 /* fall through */
2811 case EXT2_IOC_SETVERSION:
2812 error = file_has_perm(current, file, FILE__SETATTR);
2813 break;
2815 /* sys_ioctl() checks */
2816 case FIONBIO:
2817 /* fall through */
2818 case FIOASYNC:
2819 error = file_has_perm(current, file, 0);
2820 break;
2822 case KDSKBENT:
2823 case KDSKBSENT:
2824 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2825 break;
2827 /* default case assumes that the command will go
2828 * to the file's ioctl() function.
2830 default:
2831 error = file_has_perm(current, file, FILE__IOCTL);
2834 return error;
2837 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2839 #ifndef CONFIG_PPC32
2840 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2842 * We are making executable an anonymous mapping or a
2843 * private file mapping that will also be writable.
2844 * This has an additional check.
2846 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2847 if (rc)
2848 return rc;
2850 #endif
2852 if (file) {
2853 /* read access is always possible with a mapping */
2854 u32 av = FILE__READ;
2856 /* write access only matters if the mapping is shared */
2857 if (shared && (prot & PROT_WRITE))
2858 av |= FILE__WRITE;
2860 if (prot & PROT_EXEC)
2861 av |= FILE__EXECUTE;
2863 return file_has_perm(current, file, av);
2865 return 0;
2868 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2869 unsigned long prot, unsigned long flags,
2870 unsigned long addr, unsigned long addr_only)
2872 int rc = 0;
2873 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2875 if (addr < mmap_min_addr)
2876 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2877 MEMPROTECT__MMAP_ZERO, NULL);
2878 if (rc || addr_only)
2879 return rc;
2881 if (selinux_checkreqprot)
2882 prot = reqprot;
2884 return file_map_prot_check(file, prot,
2885 (flags & MAP_TYPE) == MAP_SHARED);
2888 static int selinux_file_mprotect(struct vm_area_struct *vma,
2889 unsigned long reqprot,
2890 unsigned long prot)
2892 int rc;
2894 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2895 if (rc)
2896 return rc;
2898 if (selinux_checkreqprot)
2899 prot = reqprot;
2901 #ifndef CONFIG_PPC32
2902 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2903 rc = 0;
2904 if (vma->vm_start >= vma->vm_mm->start_brk &&
2905 vma->vm_end <= vma->vm_mm->brk) {
2906 rc = task_has_perm(current, current,
2907 PROCESS__EXECHEAP);
2908 } else if (!vma->vm_file &&
2909 vma->vm_start <= vma->vm_mm->start_stack &&
2910 vma->vm_end >= vma->vm_mm->start_stack) {
2911 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2912 } else if (vma->vm_file && vma->anon_vma) {
2914 * We are making executable a file mapping that has
2915 * had some COW done. Since pages might have been
2916 * written, check ability to execute the possibly
2917 * modified content. This typically should only
2918 * occur for text relocations.
2920 rc = file_has_perm(current, vma->vm_file,
2921 FILE__EXECMOD);
2923 if (rc)
2924 return rc;
2926 #endif
2928 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2931 static int selinux_file_lock(struct file *file, unsigned int cmd)
2933 return file_has_perm(current, file, FILE__LOCK);
2936 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2937 unsigned long arg)
2939 int err = 0;
2941 switch (cmd) {
2942 case F_SETFL:
2943 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2944 err = -EINVAL;
2945 break;
2948 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2949 err = file_has_perm(current, file,FILE__WRITE);
2950 break;
2952 /* fall through */
2953 case F_SETOWN:
2954 case F_SETSIG:
2955 case F_GETFL:
2956 case F_GETOWN:
2957 case F_GETSIG:
2958 /* Just check FD__USE permission */
2959 err = file_has_perm(current, file, 0);
2960 break;
2961 case F_GETLK:
2962 case F_SETLK:
2963 case F_SETLKW:
2964 #if BITS_PER_LONG == 32
2965 case F_GETLK64:
2966 case F_SETLK64:
2967 case F_SETLKW64:
2968 #endif
2969 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2970 err = -EINVAL;
2971 break;
2973 err = file_has_perm(current, file, FILE__LOCK);
2974 break;
2977 return err;
2980 static int selinux_file_set_fowner(struct file *file)
2982 struct task_security_struct *tsec;
2983 struct file_security_struct *fsec;
2985 tsec = current->security;
2986 fsec = file->f_security;
2987 fsec->fown_sid = tsec->sid;
2989 return 0;
2992 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2993 struct fown_struct *fown, int signum)
2995 struct file *file;
2996 u32 perm;
2997 struct task_security_struct *tsec;
2998 struct file_security_struct *fsec;
3000 /* struct fown_struct is never outside the context of a struct file */
3001 file = container_of(fown, struct file, f_owner);
3003 tsec = tsk->security;
3004 fsec = file->f_security;
3006 if (!signum)
3007 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3008 else
3009 perm = signal_to_av(signum);
3011 return avc_has_perm(fsec->fown_sid, tsec->sid,
3012 SECCLASS_PROCESS, perm, NULL);
3015 static int selinux_file_receive(struct file *file)
3017 return file_has_perm(current, file, file_to_av(file));
3020 static int selinux_dentry_open(struct file *file)
3022 struct file_security_struct *fsec;
3023 struct inode *inode;
3024 struct inode_security_struct *isec;
3025 inode = file->f_path.dentry->d_inode;
3026 fsec = file->f_security;
3027 isec = inode->i_security;
3029 * Save inode label and policy sequence number
3030 * at open-time so that selinux_file_permission
3031 * can determine whether revalidation is necessary.
3032 * Task label is already saved in the file security
3033 * struct as its SID.
3035 fsec->isid = isec->sid;
3036 fsec->pseqno = avc_policy_seqno();
3038 * Since the inode label or policy seqno may have changed
3039 * between the selinux_inode_permission check and the saving
3040 * of state above, recheck that access is still permitted.
3041 * Otherwise, access might never be revalidated against the
3042 * new inode label or new policy.
3043 * This check is not redundant - do not remove.
3045 return inode_has_perm(current, inode, file_to_av(file), NULL);
3048 /* task security operations */
3050 static int selinux_task_create(unsigned long clone_flags)
3052 int rc;
3054 rc = secondary_ops->task_create(clone_flags);
3055 if (rc)
3056 return rc;
3058 return task_has_perm(current, current, PROCESS__FORK);
3061 static int selinux_task_alloc_security(struct task_struct *tsk)
3063 struct task_security_struct *tsec1, *tsec2;
3064 int rc;
3066 tsec1 = current->security;
3068 rc = task_alloc_security(tsk);
3069 if (rc)
3070 return rc;
3071 tsec2 = tsk->security;
3073 tsec2->osid = tsec1->osid;
3074 tsec2->sid = tsec1->sid;
3076 /* Retain the exec, fs, key, and sock SIDs across fork */
3077 tsec2->exec_sid = tsec1->exec_sid;
3078 tsec2->create_sid = tsec1->create_sid;
3079 tsec2->keycreate_sid = tsec1->keycreate_sid;
3080 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3082 /* Retain ptracer SID across fork, if any.
3083 This will be reset by the ptrace hook upon any
3084 subsequent ptrace_attach operations. */
3085 tsec2->ptrace_sid = tsec1->ptrace_sid;
3087 return 0;
3090 static void selinux_task_free_security(struct task_struct *tsk)
3092 task_free_security(tsk);
3095 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3097 /* Since setuid only affects the current process, and
3098 since the SELinux controls are not based on the Linux
3099 identity attributes, SELinux does not need to control
3100 this operation. However, SELinux does control the use
3101 of the CAP_SETUID and CAP_SETGID capabilities using the
3102 capable hook. */
3103 return 0;
3106 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3108 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
3111 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3113 /* See the comment for setuid above. */
3114 return 0;
3117 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3119 return task_has_perm(current, p, PROCESS__SETPGID);
3122 static int selinux_task_getpgid(struct task_struct *p)
3124 return task_has_perm(current, p, PROCESS__GETPGID);
3127 static int selinux_task_getsid(struct task_struct *p)
3129 return task_has_perm(current, p, PROCESS__GETSESSION);
3132 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3134 selinux_get_task_sid(p, secid);
3137 static int selinux_task_setgroups(struct group_info *group_info)
3139 /* See the comment for setuid above. */
3140 return 0;
3143 static int selinux_task_setnice(struct task_struct *p, int nice)
3145 int rc;
3147 rc = secondary_ops->task_setnice(p, nice);
3148 if (rc)
3149 return rc;
3151 return task_has_perm(current,p, PROCESS__SETSCHED);
3154 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3156 int rc;
3158 rc = secondary_ops->task_setioprio(p, ioprio);
3159 if (rc)
3160 return rc;
3162 return task_has_perm(current, p, PROCESS__SETSCHED);
3165 static int selinux_task_getioprio(struct task_struct *p)
3167 return task_has_perm(current, p, PROCESS__GETSCHED);
3170 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3172 struct rlimit *old_rlim = current->signal->rlim + resource;
3173 int rc;
3175 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3176 if (rc)
3177 return rc;
3179 /* Control the ability to change the hard limit (whether
3180 lowering or raising it), so that the hard limit can
3181 later be used as a safe reset point for the soft limit
3182 upon context transitions. See selinux_bprm_apply_creds. */
3183 if (old_rlim->rlim_max != new_rlim->rlim_max)
3184 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3186 return 0;
3189 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3191 int rc;
3193 rc = secondary_ops->task_setscheduler(p, policy, lp);
3194 if (rc)
3195 return rc;
3197 return task_has_perm(current, p, PROCESS__SETSCHED);
3200 static int selinux_task_getscheduler(struct task_struct *p)
3202 return task_has_perm(current, p, PROCESS__GETSCHED);
3205 static int selinux_task_movememory(struct task_struct *p)
3207 return task_has_perm(current, p, PROCESS__SETSCHED);
3210 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3211 int sig, u32 secid)
3213 u32 perm;
3214 int rc;
3215 struct task_security_struct *tsec;
3217 rc = secondary_ops->task_kill(p, info, sig, secid);
3218 if (rc)
3219 return rc;
3221 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
3222 return 0;
3224 if (!sig)
3225 perm = PROCESS__SIGNULL; /* null signal; existence test */
3226 else
3227 perm = signal_to_av(sig);
3228 tsec = p->security;
3229 if (secid)
3230 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3231 else
3232 rc = task_has_perm(current, p, perm);
3233 return rc;
3236 static int selinux_task_prctl(int option,
3237 unsigned long arg2,
3238 unsigned long arg3,
3239 unsigned long arg4,
3240 unsigned long arg5)
3242 /* The current prctl operations do not appear to require
3243 any SELinux controls since they merely observe or modify
3244 the state of the current process. */
3245 return 0;
3248 static int selinux_task_wait(struct task_struct *p)
3250 return task_has_perm(p, current, PROCESS__SIGCHLD);
3253 static void selinux_task_reparent_to_init(struct task_struct *p)
3255 struct task_security_struct *tsec;
3257 secondary_ops->task_reparent_to_init(p);
3259 tsec = p->security;
3260 tsec->osid = tsec->sid;
3261 tsec->sid = SECINITSID_KERNEL;
3262 return;
3265 static void selinux_task_to_inode(struct task_struct *p,
3266 struct inode *inode)
3268 struct task_security_struct *tsec = p->security;
3269 struct inode_security_struct *isec = inode->i_security;
3271 isec->sid = tsec->sid;
3272 isec->initialized = 1;
3273 return;
3276 /* Returns error only if unable to parse addresses */
3277 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3278 struct avc_audit_data *ad, u8 *proto)
3280 int offset, ihlen, ret = -EINVAL;
3281 struct iphdr _iph, *ih;
3283 offset = skb_network_offset(skb);
3284 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3285 if (ih == NULL)
3286 goto out;
3288 ihlen = ih->ihl * 4;
3289 if (ihlen < sizeof(_iph))
3290 goto out;
3292 ad->u.net.v4info.saddr = ih->saddr;
3293 ad->u.net.v4info.daddr = ih->daddr;
3294 ret = 0;
3296 if (proto)
3297 *proto = ih->protocol;
3299 switch (ih->protocol) {
3300 case IPPROTO_TCP: {
3301 struct tcphdr _tcph, *th;
3303 if (ntohs(ih->frag_off) & IP_OFFSET)
3304 break;
3306 offset += ihlen;
3307 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3308 if (th == NULL)
3309 break;
3311 ad->u.net.sport = th->source;
3312 ad->u.net.dport = th->dest;
3313 break;
3316 case IPPROTO_UDP: {
3317 struct udphdr _udph, *uh;
3319 if (ntohs(ih->frag_off) & IP_OFFSET)
3320 break;
3322 offset += ihlen;
3323 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3324 if (uh == NULL)
3325 break;
3327 ad->u.net.sport = uh->source;
3328 ad->u.net.dport = uh->dest;
3329 break;
3332 case IPPROTO_DCCP: {
3333 struct dccp_hdr _dccph, *dh;
3335 if (ntohs(ih->frag_off) & IP_OFFSET)
3336 break;
3338 offset += ihlen;
3339 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3340 if (dh == NULL)
3341 break;
3343 ad->u.net.sport = dh->dccph_sport;
3344 ad->u.net.dport = dh->dccph_dport;
3345 break;
3348 default:
3349 break;
3351 out:
3352 return ret;
3355 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3357 /* Returns error only if unable to parse addresses */
3358 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3359 struct avc_audit_data *ad, u8 *proto)
3361 u8 nexthdr;
3362 int ret = -EINVAL, offset;
3363 struct ipv6hdr _ipv6h, *ip6;
3365 offset = skb_network_offset(skb);
3366 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3367 if (ip6 == NULL)
3368 goto out;
3370 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3371 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3372 ret = 0;
3374 nexthdr = ip6->nexthdr;
3375 offset += sizeof(_ipv6h);
3376 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3377 if (offset < 0)
3378 goto out;
3380 if (proto)
3381 *proto = nexthdr;
3383 switch (nexthdr) {
3384 case IPPROTO_TCP: {
3385 struct tcphdr _tcph, *th;
3387 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3388 if (th == NULL)
3389 break;
3391 ad->u.net.sport = th->source;
3392 ad->u.net.dport = th->dest;
3393 break;
3396 case IPPROTO_UDP: {
3397 struct udphdr _udph, *uh;
3399 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3400 if (uh == NULL)
3401 break;
3403 ad->u.net.sport = uh->source;
3404 ad->u.net.dport = uh->dest;
3405 break;
3408 case IPPROTO_DCCP: {
3409 struct dccp_hdr _dccph, *dh;
3411 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3412 if (dh == NULL)
3413 break;
3415 ad->u.net.sport = dh->dccph_sport;
3416 ad->u.net.dport = dh->dccph_dport;
3417 break;
3420 /* includes fragments */
3421 default:
3422 break;
3424 out:
3425 return ret;
3428 #endif /* IPV6 */
3430 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3431 char **addrp, int src, u8 *proto)
3433 int ret = 0;
3435 switch (ad->u.net.family) {
3436 case PF_INET:
3437 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3438 if (ret || !addrp)
3439 break;
3440 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3441 &ad->u.net.v4info.daddr);
3442 break;
3444 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3445 case PF_INET6:
3446 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3447 if (ret || !addrp)
3448 break;
3449 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3450 &ad->u.net.v6info.daddr);
3451 break;
3452 #endif /* IPV6 */
3453 default:
3454 break;
3457 if (unlikely(ret))
3458 printk(KERN_WARNING
3459 "SELinux: failure in selinux_parse_skb(),"
3460 " unable to parse packet\n");
3462 return ret;
3466 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3467 * @skb: the packet
3468 * @family: protocol family
3469 * @sid: the packet's peer label SID
3471 * Description:
3472 * Check the various different forms of network peer labeling and determine
3473 * the peer label/SID for the packet; most of the magic actually occurs in
3474 * the security server function security_net_peersid_cmp(). The function
3475 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3476 * or -EACCES if @sid is invalid due to inconsistencies with the different
3477 * peer labels.
3480 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3482 int err;
3483 u32 xfrm_sid;
3484 u32 nlbl_sid;
3485 u32 nlbl_type;
3487 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3488 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3490 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3491 if (unlikely(err)) {
3492 printk(KERN_WARNING
3493 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3494 " unable to determine packet's peer label\n");
3495 return -EACCES;
3498 return 0;
3501 /* socket security operations */
3502 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3503 u32 perms)
3505 struct inode_security_struct *isec;
3506 struct task_security_struct *tsec;
3507 struct avc_audit_data ad;
3508 int err = 0;
3510 tsec = task->security;
3511 isec = SOCK_INODE(sock)->i_security;
3513 if (isec->sid == SECINITSID_KERNEL)
3514 goto out;
3516 AVC_AUDIT_DATA_INIT(&ad,NET);
3517 ad.u.net.sk = sock->sk;
3518 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3520 out:
3521 return err;
3524 static int selinux_socket_create(int family, int type,
3525 int protocol, int kern)
3527 int err = 0;
3528 struct task_security_struct *tsec;
3529 u32 newsid;
3531 if (kern)
3532 goto out;
3534 tsec = current->security;
3535 newsid = tsec->sockcreate_sid ? : tsec->sid;
3536 err = avc_has_perm(tsec->sid, newsid,
3537 socket_type_to_security_class(family, type,
3538 protocol), SOCKET__CREATE, NULL);
3540 out:
3541 return err;
3544 static int selinux_socket_post_create(struct socket *sock, int family,
3545 int type, int protocol, int kern)
3547 int err = 0;
3548 struct inode_security_struct *isec;
3549 struct task_security_struct *tsec;
3550 struct sk_security_struct *sksec;
3551 u32 newsid;
3553 isec = SOCK_INODE(sock)->i_security;
3555 tsec = current->security;
3556 newsid = tsec->sockcreate_sid ? : tsec->sid;
3557 isec->sclass = socket_type_to_security_class(family, type, protocol);
3558 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3559 isec->initialized = 1;
3561 if (sock->sk) {
3562 sksec = sock->sk->sk_security;
3563 sksec->sid = isec->sid;
3564 sksec->sclass = isec->sclass;
3565 err = selinux_netlbl_socket_post_create(sock);
3568 return err;
3571 /* Range of port numbers used to automatically bind.
3572 Need to determine whether we should perform a name_bind
3573 permission check between the socket and the port number. */
3575 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3577 u16 family;
3578 int err;
3580 err = socket_has_perm(current, sock, SOCKET__BIND);
3581 if (err)
3582 goto out;
3585 * If PF_INET or PF_INET6, check name_bind permission for the port.
3586 * Multiple address binding for SCTP is not supported yet: we just
3587 * check the first address now.
3589 family = sock->sk->sk_family;
3590 if (family == PF_INET || family == PF_INET6) {
3591 char *addrp;
3592 struct inode_security_struct *isec;
3593 struct task_security_struct *tsec;
3594 struct avc_audit_data ad;
3595 struct sockaddr_in *addr4 = NULL;
3596 struct sockaddr_in6 *addr6 = NULL;
3597 unsigned short snum;
3598 struct sock *sk = sock->sk;
3599 u32 sid, node_perm, addrlen;
3601 tsec = current->security;
3602 isec = SOCK_INODE(sock)->i_security;
3604 if (family == PF_INET) {
3605 addr4 = (struct sockaddr_in *)address;
3606 snum = ntohs(addr4->sin_port);
3607 addrlen = sizeof(addr4->sin_addr.s_addr);
3608 addrp = (char *)&addr4->sin_addr.s_addr;
3609 } else {
3610 addr6 = (struct sockaddr_in6 *)address;
3611 snum = ntohs(addr6->sin6_port);
3612 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3613 addrp = (char *)&addr6->sin6_addr.s6_addr;
3616 if (snum) {
3617 int low, high;
3619 inet_get_local_port_range(&low, &high);
3621 if (snum < max(PROT_SOCK, low) || snum > high) {
3622 err = security_port_sid(sk->sk_family,
3623 sk->sk_type,
3624 sk->sk_protocol, snum,
3625 &sid);
3626 if (err)
3627 goto out;
3628 AVC_AUDIT_DATA_INIT(&ad,NET);
3629 ad.u.net.sport = htons(snum);
3630 ad.u.net.family = family;
3631 err = avc_has_perm(isec->sid, sid,
3632 isec->sclass,
3633 SOCKET__NAME_BIND, &ad);
3634 if (err)
3635 goto out;
3639 switch(isec->sclass) {
3640 case SECCLASS_TCP_SOCKET:
3641 node_perm = TCP_SOCKET__NODE_BIND;
3642 break;
3644 case SECCLASS_UDP_SOCKET:
3645 node_perm = UDP_SOCKET__NODE_BIND;
3646 break;
3648 case SECCLASS_DCCP_SOCKET:
3649 node_perm = DCCP_SOCKET__NODE_BIND;
3650 break;
3652 default:
3653 node_perm = RAWIP_SOCKET__NODE_BIND;
3654 break;
3657 err = sel_netnode_sid(addrp, family, &sid);
3658 if (err)
3659 goto out;
3661 AVC_AUDIT_DATA_INIT(&ad,NET);
3662 ad.u.net.sport = htons(snum);
3663 ad.u.net.family = family;
3665 if (family == PF_INET)
3666 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3667 else
3668 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3670 err = avc_has_perm(isec->sid, sid,
3671 isec->sclass, node_perm, &ad);
3672 if (err)
3673 goto out;
3675 out:
3676 return err;
3679 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3681 struct inode_security_struct *isec;
3682 int err;
3684 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3685 if (err)
3686 return err;
3689 * If a TCP or DCCP socket, check name_connect permission for the port.
3691 isec = SOCK_INODE(sock)->i_security;
3692 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3693 isec->sclass == SECCLASS_DCCP_SOCKET) {
3694 struct sock *sk = sock->sk;
3695 struct avc_audit_data ad;
3696 struct sockaddr_in *addr4 = NULL;
3697 struct sockaddr_in6 *addr6 = NULL;
3698 unsigned short snum;
3699 u32 sid, perm;
3701 if (sk->sk_family == PF_INET) {
3702 addr4 = (struct sockaddr_in *)address;
3703 if (addrlen < sizeof(struct sockaddr_in))
3704 return -EINVAL;
3705 snum = ntohs(addr4->sin_port);
3706 } else {
3707 addr6 = (struct sockaddr_in6 *)address;
3708 if (addrlen < SIN6_LEN_RFC2133)
3709 return -EINVAL;
3710 snum = ntohs(addr6->sin6_port);
3713 err = security_port_sid(sk->sk_family, sk->sk_type,
3714 sk->sk_protocol, snum, &sid);
3715 if (err)
3716 goto out;
3718 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3719 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3721 AVC_AUDIT_DATA_INIT(&ad,NET);
3722 ad.u.net.dport = htons(snum);
3723 ad.u.net.family = sk->sk_family;
3724 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3725 if (err)
3726 goto out;
3729 out:
3730 return err;
3733 static int selinux_socket_listen(struct socket *sock, int backlog)
3735 return socket_has_perm(current, sock, SOCKET__LISTEN);
3738 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3740 int err;
3741 struct inode_security_struct *isec;
3742 struct inode_security_struct *newisec;
3744 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3745 if (err)
3746 return err;
3748 newisec = SOCK_INODE(newsock)->i_security;
3750 isec = SOCK_INODE(sock)->i_security;
3751 newisec->sclass = isec->sclass;
3752 newisec->sid = isec->sid;
3753 newisec->initialized = 1;
3755 return 0;
3758 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3759 int size)
3761 int rc;
3763 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3764 if (rc)
3765 return rc;
3767 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3770 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3771 int size, int flags)
3773 return socket_has_perm(current, sock, SOCKET__READ);
3776 static int selinux_socket_getsockname(struct socket *sock)
3778 return socket_has_perm(current, sock, SOCKET__GETATTR);
3781 static int selinux_socket_getpeername(struct socket *sock)
3783 return socket_has_perm(current, sock, SOCKET__GETATTR);
3786 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3788 int err;
3790 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3791 if (err)
3792 return err;
3794 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3797 static int selinux_socket_getsockopt(struct socket *sock, int level,
3798 int optname)
3800 return socket_has_perm(current, sock, SOCKET__GETOPT);
3803 static int selinux_socket_shutdown(struct socket *sock, int how)
3805 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3808 static int selinux_socket_unix_stream_connect(struct socket *sock,
3809 struct socket *other,
3810 struct sock *newsk)
3812 struct sk_security_struct *ssec;
3813 struct inode_security_struct *isec;
3814 struct inode_security_struct *other_isec;
3815 struct avc_audit_data ad;
3816 int err;
3818 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3819 if (err)
3820 return err;
3822 isec = SOCK_INODE(sock)->i_security;
3823 other_isec = SOCK_INODE(other)->i_security;
3825 AVC_AUDIT_DATA_INIT(&ad,NET);
3826 ad.u.net.sk = other->sk;
3828 err = avc_has_perm(isec->sid, other_isec->sid,
3829 isec->sclass,
3830 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3831 if (err)
3832 return err;
3834 /* connecting socket */
3835 ssec = sock->sk->sk_security;
3836 ssec->peer_sid = other_isec->sid;
3838 /* server child socket */
3839 ssec = newsk->sk_security;
3840 ssec->peer_sid = isec->sid;
3841 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3843 return err;
3846 static int selinux_socket_unix_may_send(struct socket *sock,
3847 struct socket *other)
3849 struct inode_security_struct *isec;
3850 struct inode_security_struct *other_isec;
3851 struct avc_audit_data ad;
3852 int err;
3854 isec = SOCK_INODE(sock)->i_security;
3855 other_isec = SOCK_INODE(other)->i_security;
3857 AVC_AUDIT_DATA_INIT(&ad,NET);
3858 ad.u.net.sk = other->sk;
3860 err = avc_has_perm(isec->sid, other_isec->sid,
3861 isec->sclass, SOCKET__SENDTO, &ad);
3862 if (err)
3863 return err;
3865 return 0;
3868 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3869 u32 peer_sid,
3870 struct avc_audit_data *ad)
3872 int err;
3873 u32 if_sid;
3874 u32 node_sid;
3876 err = sel_netif_sid(ifindex, &if_sid);
3877 if (err)
3878 return err;
3879 err = avc_has_perm(peer_sid, if_sid,
3880 SECCLASS_NETIF, NETIF__INGRESS, ad);
3881 if (err)
3882 return err;
3884 err = sel_netnode_sid(addrp, family, &node_sid);
3885 if (err)
3886 return err;
3887 return avc_has_perm(peer_sid, node_sid,
3888 SECCLASS_NODE, NODE__RECVFROM, ad);
3891 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3892 struct sk_buff *skb,
3893 struct avc_audit_data *ad,
3894 u16 family,
3895 char *addrp)
3897 int err;
3898 struct sk_security_struct *sksec = sk->sk_security;
3899 u16 sk_class;
3900 u32 netif_perm, node_perm, recv_perm;
3901 u32 port_sid, node_sid, if_sid, sk_sid;
3903 sk_sid = sksec->sid;
3904 sk_class = sksec->sclass;
3906 switch (sk_class) {
3907 case SECCLASS_UDP_SOCKET:
3908 netif_perm = NETIF__UDP_RECV;
3909 node_perm = NODE__UDP_RECV;
3910 recv_perm = UDP_SOCKET__RECV_MSG;
3911 break;
3912 case SECCLASS_TCP_SOCKET:
3913 netif_perm = NETIF__TCP_RECV;
3914 node_perm = NODE__TCP_RECV;
3915 recv_perm = TCP_SOCKET__RECV_MSG;
3916 break;
3917 case SECCLASS_DCCP_SOCKET:
3918 netif_perm = NETIF__DCCP_RECV;
3919 node_perm = NODE__DCCP_RECV;
3920 recv_perm = DCCP_SOCKET__RECV_MSG;
3921 break;
3922 default:
3923 netif_perm = NETIF__RAWIP_RECV;
3924 node_perm = NODE__RAWIP_RECV;
3925 recv_perm = 0;
3926 break;
3929 err = sel_netif_sid(skb->iif, &if_sid);
3930 if (err)
3931 return err;
3932 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3933 if (err)
3934 return err;
3936 err = sel_netnode_sid(addrp, family, &node_sid);
3937 if (err)
3938 return err;
3939 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3940 if (err)
3941 return err;
3943 if (!recv_perm)
3944 return 0;
3945 err = security_port_sid(sk->sk_family, sk->sk_type,
3946 sk->sk_protocol, ntohs(ad->u.net.sport),
3947 &port_sid);
3948 if (unlikely(err)) {
3949 printk(KERN_WARNING
3950 "SELinux: failure in"
3951 " selinux_sock_rcv_skb_iptables_compat(),"
3952 " network port label not found\n");
3953 return err;
3955 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
3958 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3959 struct avc_audit_data *ad,
3960 u16 family, char *addrp)
3962 int err;
3963 struct sk_security_struct *sksec = sk->sk_security;
3964 u32 peer_sid;
3965 u32 sk_sid = sksec->sid;
3967 if (selinux_compat_net)
3968 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
3969 family, addrp);
3970 else
3971 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
3972 PACKET__RECV, ad);
3973 if (err)
3974 return err;
3976 if (selinux_policycap_netpeer) {
3977 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
3978 if (err)
3979 return err;
3980 err = avc_has_perm(sk_sid, peer_sid,
3981 SECCLASS_PEER, PEER__RECV, ad);
3982 } else {
3983 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
3984 if (err)
3985 return err;
3986 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
3989 return err;
3992 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3994 int err;
3995 struct sk_security_struct *sksec = sk->sk_security;
3996 u16 family = sk->sk_family;
3997 u32 sk_sid = sksec->sid;
3998 struct avc_audit_data ad;
3999 char *addrp;
4001 if (family != PF_INET && family != PF_INET6)
4002 return 0;
4004 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4005 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4006 family = PF_INET;
4008 AVC_AUDIT_DATA_INIT(&ad, NET);
4009 ad.u.net.netif = skb->iif;
4010 ad.u.net.family = family;
4011 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4012 if (err)
4013 return err;
4015 /* If any sort of compatibility mode is enabled then handoff processing
4016 * to the selinux_sock_rcv_skb_compat() function to deal with the
4017 * special handling. We do this in an attempt to keep this function
4018 * as fast and as clean as possible. */
4019 if (selinux_compat_net || !selinux_policycap_netpeer)
4020 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4021 family, addrp);
4023 if (netlbl_enabled() || selinux_xfrm_enabled()) {
4024 u32 peer_sid;
4026 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4027 if (err)
4028 return err;
4029 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4030 peer_sid, &ad);
4031 if (err)
4032 return err;
4033 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4034 PEER__RECV, &ad);
4037 if (selinux_secmark_enabled()) {
4038 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4039 PACKET__RECV, &ad);
4040 if (err)
4041 return err;
4044 return err;
4047 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4048 int __user *optlen, unsigned len)
4050 int err = 0;
4051 char *scontext;
4052 u32 scontext_len;
4053 struct sk_security_struct *ssec;
4054 struct inode_security_struct *isec;
4055 u32 peer_sid = SECSID_NULL;
4057 isec = SOCK_INODE(sock)->i_security;
4059 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4060 isec->sclass == SECCLASS_TCP_SOCKET) {
4061 ssec = sock->sk->sk_security;
4062 peer_sid = ssec->peer_sid;
4064 if (peer_sid == SECSID_NULL) {
4065 err = -ENOPROTOOPT;
4066 goto out;
4069 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4071 if (err)
4072 goto out;
4074 if (scontext_len > len) {
4075 err = -ERANGE;
4076 goto out_len;
4079 if (copy_to_user(optval, scontext, scontext_len))
4080 err = -EFAULT;
4082 out_len:
4083 if (put_user(scontext_len, optlen))
4084 err = -EFAULT;
4086 kfree(scontext);
4087 out:
4088 return err;
4091 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4093 u32 peer_secid = SECSID_NULL;
4094 u16 family;
4096 if (sock)
4097 family = sock->sk->sk_family;
4098 else if (skb && skb->sk)
4099 family = skb->sk->sk_family;
4100 else
4101 goto out;
4103 if (sock && family == PF_UNIX)
4104 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
4105 else if (skb)
4106 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4108 out:
4109 *secid = peer_secid;
4110 if (peer_secid == SECSID_NULL)
4111 return -EINVAL;
4112 return 0;
4115 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4117 return sk_alloc_security(sk, family, priority);
4120 static void selinux_sk_free_security(struct sock *sk)
4122 sk_free_security(sk);
4125 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4127 struct sk_security_struct *ssec = sk->sk_security;
4128 struct sk_security_struct *newssec = newsk->sk_security;
4130 newssec->sid = ssec->sid;
4131 newssec->peer_sid = ssec->peer_sid;
4132 newssec->sclass = ssec->sclass;
4134 selinux_netlbl_sk_security_clone(ssec, newssec);
4137 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4139 if (!sk)
4140 *secid = SECINITSID_ANY_SOCKET;
4141 else {
4142 struct sk_security_struct *sksec = sk->sk_security;
4144 *secid = sksec->sid;
4148 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
4150 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4151 struct sk_security_struct *sksec = sk->sk_security;
4153 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4154 sk->sk_family == PF_UNIX)
4155 isec->sid = sksec->sid;
4156 sksec->sclass = isec->sclass;
4158 selinux_netlbl_sock_graft(sk, parent);
4161 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4162 struct request_sock *req)
4164 struct sk_security_struct *sksec = sk->sk_security;
4165 int err;
4166 u32 newsid;
4167 u32 peersid;
4169 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4170 if (err)
4171 return err;
4172 if (peersid == SECSID_NULL) {
4173 req->secid = sksec->sid;
4174 req->peer_secid = SECSID_NULL;
4175 return 0;
4178 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4179 if (err)
4180 return err;
4182 req->secid = newsid;
4183 req->peer_secid = peersid;
4184 return 0;
4187 static void selinux_inet_csk_clone(struct sock *newsk,
4188 const struct request_sock *req)
4190 struct sk_security_struct *newsksec = newsk->sk_security;
4192 newsksec->sid = req->secid;
4193 newsksec->peer_sid = req->peer_secid;
4194 /* NOTE: Ideally, we should also get the isec->sid for the
4195 new socket in sync, but we don't have the isec available yet.
4196 So we will wait until sock_graft to do it, by which
4197 time it will have been created and available. */
4199 /* We don't need to take any sort of lock here as we are the only
4200 * thread with access to newsksec */
4201 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4204 static void selinux_inet_conn_established(struct sock *sk,
4205 struct sk_buff *skb)
4207 struct sk_security_struct *sksec = sk->sk_security;
4209 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4212 static void selinux_req_classify_flow(const struct request_sock *req,
4213 struct flowi *fl)
4215 fl->secid = req->secid;
4218 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4220 int err = 0;
4221 u32 perm;
4222 struct nlmsghdr *nlh;
4223 struct socket *sock = sk->sk_socket;
4224 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4226 if (skb->len < NLMSG_SPACE(0)) {
4227 err = -EINVAL;
4228 goto out;
4230 nlh = nlmsg_hdr(skb);
4232 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4233 if (err) {
4234 if (err == -EINVAL) {
4235 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4236 "SELinux: unrecognized netlink message"
4237 " type=%hu for sclass=%hu\n",
4238 nlh->nlmsg_type, isec->sclass);
4239 if (!selinux_enforcing)
4240 err = 0;
4243 /* Ignore */
4244 if (err == -ENOENT)
4245 err = 0;
4246 goto out;
4249 err = socket_has_perm(current, sock, perm);
4250 out:
4251 return err;
4254 #ifdef CONFIG_NETFILTER
4256 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4257 u16 family)
4259 char *addrp;
4260 u32 peer_sid;
4261 struct avc_audit_data ad;
4262 u8 secmark_active;
4263 u8 peerlbl_active;
4265 if (!selinux_policycap_netpeer)
4266 return NF_ACCEPT;
4268 secmark_active = selinux_secmark_enabled();
4269 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4270 if (!secmark_active && !peerlbl_active)
4271 return NF_ACCEPT;
4273 AVC_AUDIT_DATA_INIT(&ad, NET);
4274 ad.u.net.netif = ifindex;
4275 ad.u.net.family = family;
4276 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4277 return NF_DROP;
4279 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4280 return NF_DROP;
4282 if (peerlbl_active)
4283 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4284 peer_sid, &ad) != 0)
4285 return NF_DROP;
4287 if (secmark_active)
4288 if (avc_has_perm(peer_sid, skb->secmark,
4289 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4290 return NF_DROP;
4292 return NF_ACCEPT;
4295 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4296 struct sk_buff *skb,
4297 const struct net_device *in,
4298 const struct net_device *out,
4299 int (*okfn)(struct sk_buff *))
4301 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4304 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4305 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4306 struct sk_buff *skb,
4307 const struct net_device *in,
4308 const struct net_device *out,
4309 int (*okfn)(struct sk_buff *))
4311 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4313 #endif /* IPV6 */
4315 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4316 int ifindex,
4317 struct avc_audit_data *ad,
4318 u16 family, char *addrp)
4320 int err;
4321 struct sk_security_struct *sksec = sk->sk_security;
4322 u16 sk_class;
4323 u32 netif_perm, node_perm, send_perm;
4324 u32 port_sid, node_sid, if_sid, sk_sid;
4326 sk_sid = sksec->sid;
4327 sk_class = sksec->sclass;
4329 switch (sk_class) {
4330 case SECCLASS_UDP_SOCKET:
4331 netif_perm = NETIF__UDP_SEND;
4332 node_perm = NODE__UDP_SEND;
4333 send_perm = UDP_SOCKET__SEND_MSG;
4334 break;
4335 case SECCLASS_TCP_SOCKET:
4336 netif_perm = NETIF__TCP_SEND;
4337 node_perm = NODE__TCP_SEND;
4338 send_perm = TCP_SOCKET__SEND_MSG;
4339 break;
4340 case SECCLASS_DCCP_SOCKET:
4341 netif_perm = NETIF__DCCP_SEND;
4342 node_perm = NODE__DCCP_SEND;
4343 send_perm = DCCP_SOCKET__SEND_MSG;
4344 break;
4345 default:
4346 netif_perm = NETIF__RAWIP_SEND;
4347 node_perm = NODE__RAWIP_SEND;
4348 send_perm = 0;
4349 break;
4352 err = sel_netif_sid(ifindex, &if_sid);
4353 if (err)
4354 return err;
4355 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4356 return err;
4358 err = sel_netnode_sid(addrp, family, &node_sid);
4359 if (err)
4360 return err;
4361 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4362 if (err)
4363 return err;
4365 if (send_perm != 0)
4366 return 0;
4368 err = security_port_sid(sk->sk_family, sk->sk_type,
4369 sk->sk_protocol, ntohs(ad->u.net.dport),
4370 &port_sid);
4371 if (unlikely(err)) {
4372 printk(KERN_WARNING
4373 "SELinux: failure in"
4374 " selinux_ip_postroute_iptables_compat(),"
4375 " network port label not found\n");
4376 return err;
4378 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4381 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4382 int ifindex,
4383 struct avc_audit_data *ad,
4384 u16 family,
4385 char *addrp,
4386 u8 proto)
4388 struct sock *sk = skb->sk;
4389 struct sk_security_struct *sksec;
4391 if (sk == NULL)
4392 return NF_ACCEPT;
4393 sksec = sk->sk_security;
4395 if (selinux_compat_net) {
4396 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4397 ad, family, addrp))
4398 return NF_DROP;
4399 } else {
4400 if (avc_has_perm(sksec->sid, skb->secmark,
4401 SECCLASS_PACKET, PACKET__SEND, ad))
4402 return NF_DROP;
4405 if (selinux_policycap_netpeer)
4406 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4407 return NF_DROP;
4409 return NF_ACCEPT;
4412 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4413 u16 family)
4415 u32 secmark_perm;
4416 u32 peer_sid;
4417 struct sock *sk;
4418 struct avc_audit_data ad;
4419 char *addrp;
4420 u8 proto;
4421 u8 secmark_active;
4422 u8 peerlbl_active;
4424 AVC_AUDIT_DATA_INIT(&ad, NET);
4425 ad.u.net.netif = ifindex;
4426 ad.u.net.family = family;
4427 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4428 return NF_DROP;
4430 /* If any sort of compatibility mode is enabled then handoff processing
4431 * to the selinux_ip_postroute_compat() function to deal with the
4432 * special handling. We do this in an attempt to keep this function
4433 * as fast and as clean as possible. */
4434 if (selinux_compat_net || !selinux_policycap_netpeer)
4435 return selinux_ip_postroute_compat(skb, ifindex, &ad,
4436 family, addrp, proto);
4438 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4439 * packet transformation so allow the packet to pass without any checks
4440 * since we'll have another chance to perform access control checks
4441 * when the packet is on it's final way out.
4442 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4443 * is NULL, in this case go ahead and apply access control. */
4444 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4445 return NF_ACCEPT;
4447 secmark_active = selinux_secmark_enabled();
4448 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4449 if (!secmark_active && !peerlbl_active)
4450 return NF_ACCEPT;
4452 /* if the packet is locally generated (skb->sk != NULL) then use the
4453 * socket's label as the peer label, otherwise the packet is being
4454 * forwarded through this system and we need to fetch the peer label
4455 * directly from the packet */
4456 sk = skb->sk;
4457 if (sk) {
4458 struct sk_security_struct *sksec = sk->sk_security;
4459 peer_sid = sksec->sid;
4460 secmark_perm = PACKET__SEND;
4461 } else {
4462 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4463 return NF_DROP;
4464 secmark_perm = PACKET__FORWARD_OUT;
4467 if (secmark_active)
4468 if (avc_has_perm(peer_sid, skb->secmark,
4469 SECCLASS_PACKET, secmark_perm, &ad))
4470 return NF_DROP;
4472 if (peerlbl_active) {
4473 u32 if_sid;
4474 u32 node_sid;
4476 if (sel_netif_sid(ifindex, &if_sid))
4477 return NF_DROP;
4478 if (avc_has_perm(peer_sid, if_sid,
4479 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4480 return NF_DROP;
4482 if (sel_netnode_sid(addrp, family, &node_sid))
4483 return NF_DROP;
4484 if (avc_has_perm(peer_sid, node_sid,
4485 SECCLASS_NODE, NODE__SENDTO, &ad))
4486 return NF_DROP;
4489 return NF_ACCEPT;
4492 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4493 struct sk_buff *skb,
4494 const struct net_device *in,
4495 const struct net_device *out,
4496 int (*okfn)(struct sk_buff *))
4498 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4501 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4502 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4503 struct sk_buff *skb,
4504 const struct net_device *in,
4505 const struct net_device *out,
4506 int (*okfn)(struct sk_buff *))
4508 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4510 #endif /* IPV6 */
4512 #endif /* CONFIG_NETFILTER */
4514 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4516 int err;
4518 err = secondary_ops->netlink_send(sk, skb);
4519 if (err)
4520 return err;
4522 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4523 err = selinux_nlmsg_perm(sk, skb);
4525 return err;
4528 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4530 int err;
4531 struct avc_audit_data ad;
4533 err = secondary_ops->netlink_recv(skb, capability);
4534 if (err)
4535 return err;
4537 AVC_AUDIT_DATA_INIT(&ad, CAP);
4538 ad.u.cap = capability;
4540 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4541 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4544 static int ipc_alloc_security(struct task_struct *task,
4545 struct kern_ipc_perm *perm,
4546 u16 sclass)
4548 struct task_security_struct *tsec = task->security;
4549 struct ipc_security_struct *isec;
4551 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4552 if (!isec)
4553 return -ENOMEM;
4555 isec->sclass = sclass;
4556 isec->ipc_perm = perm;
4557 isec->sid = tsec->sid;
4558 perm->security = isec;
4560 return 0;
4563 static void ipc_free_security(struct kern_ipc_perm *perm)
4565 struct ipc_security_struct *isec = perm->security;
4566 perm->security = NULL;
4567 kfree(isec);
4570 static int msg_msg_alloc_security(struct msg_msg *msg)
4572 struct msg_security_struct *msec;
4574 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4575 if (!msec)
4576 return -ENOMEM;
4578 msec->msg = msg;
4579 msec->sid = SECINITSID_UNLABELED;
4580 msg->security = msec;
4582 return 0;
4585 static void msg_msg_free_security(struct msg_msg *msg)
4587 struct msg_security_struct *msec = msg->security;
4589 msg->security = NULL;
4590 kfree(msec);
4593 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4594 u32 perms)
4596 struct task_security_struct *tsec;
4597 struct ipc_security_struct *isec;
4598 struct avc_audit_data ad;
4600 tsec = current->security;
4601 isec = ipc_perms->security;
4603 AVC_AUDIT_DATA_INIT(&ad, IPC);
4604 ad.u.ipc_id = ipc_perms->key;
4606 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4609 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4611 return msg_msg_alloc_security(msg);
4614 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4616 msg_msg_free_security(msg);
4619 /* message queue security operations */
4620 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4622 struct task_security_struct *tsec;
4623 struct ipc_security_struct *isec;
4624 struct avc_audit_data ad;
4625 int rc;
4627 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4628 if (rc)
4629 return rc;
4631 tsec = current->security;
4632 isec = msq->q_perm.security;
4634 AVC_AUDIT_DATA_INIT(&ad, IPC);
4635 ad.u.ipc_id = msq->q_perm.key;
4637 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4638 MSGQ__CREATE, &ad);
4639 if (rc) {
4640 ipc_free_security(&msq->q_perm);
4641 return rc;
4643 return 0;
4646 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4648 ipc_free_security(&msq->q_perm);
4651 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4653 struct task_security_struct *tsec;
4654 struct ipc_security_struct *isec;
4655 struct avc_audit_data ad;
4657 tsec = current->security;
4658 isec = msq->q_perm.security;
4660 AVC_AUDIT_DATA_INIT(&ad, IPC);
4661 ad.u.ipc_id = msq->q_perm.key;
4663 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4664 MSGQ__ASSOCIATE, &ad);
4667 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4669 int err;
4670 int perms;
4672 switch(cmd) {
4673 case IPC_INFO:
4674 case MSG_INFO:
4675 /* No specific object, just general system-wide information. */
4676 return task_has_system(current, SYSTEM__IPC_INFO);
4677 case IPC_STAT:
4678 case MSG_STAT:
4679 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4680 break;
4681 case IPC_SET:
4682 perms = MSGQ__SETATTR;
4683 break;
4684 case IPC_RMID:
4685 perms = MSGQ__DESTROY;
4686 break;
4687 default:
4688 return 0;
4691 err = ipc_has_perm(&msq->q_perm, perms);
4692 return err;
4695 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4697 struct task_security_struct *tsec;
4698 struct ipc_security_struct *isec;
4699 struct msg_security_struct *msec;
4700 struct avc_audit_data ad;
4701 int rc;
4703 tsec = current->security;
4704 isec = msq->q_perm.security;
4705 msec = msg->security;
4708 * First time through, need to assign label to the message
4710 if (msec->sid == SECINITSID_UNLABELED) {
4712 * Compute new sid based on current process and
4713 * message queue this message will be stored in
4715 rc = security_transition_sid(tsec->sid,
4716 isec->sid,
4717 SECCLASS_MSG,
4718 &msec->sid);
4719 if (rc)
4720 return rc;
4723 AVC_AUDIT_DATA_INIT(&ad, IPC);
4724 ad.u.ipc_id = msq->q_perm.key;
4726 /* Can this process write to the queue? */
4727 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4728 MSGQ__WRITE, &ad);
4729 if (!rc)
4730 /* Can this process send the message */
4731 rc = avc_has_perm(tsec->sid, msec->sid,
4732 SECCLASS_MSG, MSG__SEND, &ad);
4733 if (!rc)
4734 /* Can the message be put in the queue? */
4735 rc = avc_has_perm(msec->sid, isec->sid,
4736 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4738 return rc;
4741 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4742 struct task_struct *target,
4743 long type, int mode)
4745 struct task_security_struct *tsec;
4746 struct ipc_security_struct *isec;
4747 struct msg_security_struct *msec;
4748 struct avc_audit_data ad;
4749 int rc;
4751 tsec = target->security;
4752 isec = msq->q_perm.security;
4753 msec = msg->security;
4755 AVC_AUDIT_DATA_INIT(&ad, IPC);
4756 ad.u.ipc_id = msq->q_perm.key;
4758 rc = avc_has_perm(tsec->sid, isec->sid,
4759 SECCLASS_MSGQ, MSGQ__READ, &ad);
4760 if (!rc)
4761 rc = avc_has_perm(tsec->sid, msec->sid,
4762 SECCLASS_MSG, MSG__RECEIVE, &ad);
4763 return rc;
4766 /* Shared Memory security operations */
4767 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4769 struct task_security_struct *tsec;
4770 struct ipc_security_struct *isec;
4771 struct avc_audit_data ad;
4772 int rc;
4774 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4775 if (rc)
4776 return rc;
4778 tsec = current->security;
4779 isec = shp->shm_perm.security;
4781 AVC_AUDIT_DATA_INIT(&ad, IPC);
4782 ad.u.ipc_id = shp->shm_perm.key;
4784 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4785 SHM__CREATE, &ad);
4786 if (rc) {
4787 ipc_free_security(&shp->shm_perm);
4788 return rc;
4790 return 0;
4793 static void selinux_shm_free_security(struct shmid_kernel *shp)
4795 ipc_free_security(&shp->shm_perm);
4798 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4800 struct task_security_struct *tsec;
4801 struct ipc_security_struct *isec;
4802 struct avc_audit_data ad;
4804 tsec = current->security;
4805 isec = shp->shm_perm.security;
4807 AVC_AUDIT_DATA_INIT(&ad, IPC);
4808 ad.u.ipc_id = shp->shm_perm.key;
4810 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4811 SHM__ASSOCIATE, &ad);
4814 /* Note, at this point, shp is locked down */
4815 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4817 int perms;
4818 int err;
4820 switch(cmd) {
4821 case IPC_INFO:
4822 case SHM_INFO:
4823 /* No specific object, just general system-wide information. */
4824 return task_has_system(current, SYSTEM__IPC_INFO);
4825 case IPC_STAT:
4826 case SHM_STAT:
4827 perms = SHM__GETATTR | SHM__ASSOCIATE;
4828 break;
4829 case IPC_SET:
4830 perms = SHM__SETATTR;
4831 break;
4832 case SHM_LOCK:
4833 case SHM_UNLOCK:
4834 perms = SHM__LOCK;
4835 break;
4836 case IPC_RMID:
4837 perms = SHM__DESTROY;
4838 break;
4839 default:
4840 return 0;
4843 err = ipc_has_perm(&shp->shm_perm, perms);
4844 return err;
4847 static int selinux_shm_shmat(struct shmid_kernel *shp,
4848 char __user *shmaddr, int shmflg)
4850 u32 perms;
4851 int rc;
4853 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4854 if (rc)
4855 return rc;
4857 if (shmflg & SHM_RDONLY)
4858 perms = SHM__READ;
4859 else
4860 perms = SHM__READ | SHM__WRITE;
4862 return ipc_has_perm(&shp->shm_perm, perms);
4865 /* Semaphore security operations */
4866 static int selinux_sem_alloc_security(struct sem_array *sma)
4868 struct task_security_struct *tsec;
4869 struct ipc_security_struct *isec;
4870 struct avc_audit_data ad;
4871 int rc;
4873 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4874 if (rc)
4875 return rc;
4877 tsec = current->security;
4878 isec = sma->sem_perm.security;
4880 AVC_AUDIT_DATA_INIT(&ad, IPC);
4881 ad.u.ipc_id = sma->sem_perm.key;
4883 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4884 SEM__CREATE, &ad);
4885 if (rc) {
4886 ipc_free_security(&sma->sem_perm);
4887 return rc;
4889 return 0;
4892 static void selinux_sem_free_security(struct sem_array *sma)
4894 ipc_free_security(&sma->sem_perm);
4897 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4899 struct task_security_struct *tsec;
4900 struct ipc_security_struct *isec;
4901 struct avc_audit_data ad;
4903 tsec = current->security;
4904 isec = sma->sem_perm.security;
4906 AVC_AUDIT_DATA_INIT(&ad, IPC);
4907 ad.u.ipc_id = sma->sem_perm.key;
4909 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4910 SEM__ASSOCIATE, &ad);
4913 /* Note, at this point, sma is locked down */
4914 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4916 int err;
4917 u32 perms;
4919 switch(cmd) {
4920 case IPC_INFO:
4921 case SEM_INFO:
4922 /* No specific object, just general system-wide information. */
4923 return task_has_system(current, SYSTEM__IPC_INFO);
4924 case GETPID:
4925 case GETNCNT:
4926 case GETZCNT:
4927 perms = SEM__GETATTR;
4928 break;
4929 case GETVAL:
4930 case GETALL:
4931 perms = SEM__READ;
4932 break;
4933 case SETVAL:
4934 case SETALL:
4935 perms = SEM__WRITE;
4936 break;
4937 case IPC_RMID:
4938 perms = SEM__DESTROY;
4939 break;
4940 case IPC_SET:
4941 perms = SEM__SETATTR;
4942 break;
4943 case IPC_STAT:
4944 case SEM_STAT:
4945 perms = SEM__GETATTR | SEM__ASSOCIATE;
4946 break;
4947 default:
4948 return 0;
4951 err = ipc_has_perm(&sma->sem_perm, perms);
4952 return err;
4955 static int selinux_sem_semop(struct sem_array *sma,
4956 struct sembuf *sops, unsigned nsops, int alter)
4958 u32 perms;
4960 if (alter)
4961 perms = SEM__READ | SEM__WRITE;
4962 else
4963 perms = SEM__READ;
4965 return ipc_has_perm(&sma->sem_perm, perms);
4968 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4970 u32 av = 0;
4972 av = 0;
4973 if (flag & S_IRUGO)
4974 av |= IPC__UNIX_READ;
4975 if (flag & S_IWUGO)
4976 av |= IPC__UNIX_WRITE;
4978 if (av == 0)
4979 return 0;
4981 return ipc_has_perm(ipcp, av);
4984 /* module stacking operations */
4985 static int selinux_register_security (const char *name, struct security_operations *ops)
4987 if (secondary_ops != original_ops) {
4988 printk(KERN_ERR "%s: There is already a secondary security "
4989 "module registered.\n", __FUNCTION__);
4990 return -EINVAL;
4993 secondary_ops = ops;
4995 printk(KERN_INFO "%s: Registering secondary module %s\n",
4996 __FUNCTION__,
4997 name);
4999 return 0;
5002 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
5004 if (inode)
5005 inode_doinit_with_dentry(inode, dentry);
5008 static int selinux_getprocattr(struct task_struct *p,
5009 char *name, char **value)
5011 struct task_security_struct *tsec;
5012 u32 sid;
5013 int error;
5014 unsigned len;
5016 if (current != p) {
5017 error = task_has_perm(current, p, PROCESS__GETATTR);
5018 if (error)
5019 return error;
5022 tsec = p->security;
5024 if (!strcmp(name, "current"))
5025 sid = tsec->sid;
5026 else if (!strcmp(name, "prev"))
5027 sid = tsec->osid;
5028 else if (!strcmp(name, "exec"))
5029 sid = tsec->exec_sid;
5030 else if (!strcmp(name, "fscreate"))
5031 sid = tsec->create_sid;
5032 else if (!strcmp(name, "keycreate"))
5033 sid = tsec->keycreate_sid;
5034 else if (!strcmp(name, "sockcreate"))
5035 sid = tsec->sockcreate_sid;
5036 else
5037 return -EINVAL;
5039 if (!sid)
5040 return 0;
5042 error = security_sid_to_context(sid, value, &len);
5043 if (error)
5044 return error;
5045 return len;
5048 static int selinux_setprocattr(struct task_struct *p,
5049 char *name, void *value, size_t size)
5051 struct task_security_struct *tsec;
5052 u32 sid = 0;
5053 int error;
5054 char *str = value;
5056 if (current != p) {
5057 /* SELinux only allows a process to change its own
5058 security attributes. */
5059 return -EACCES;
5063 * Basic control over ability to set these attributes at all.
5064 * current == p, but we'll pass them separately in case the
5065 * above restriction is ever removed.
5067 if (!strcmp(name, "exec"))
5068 error = task_has_perm(current, p, PROCESS__SETEXEC);
5069 else if (!strcmp(name, "fscreate"))
5070 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5071 else if (!strcmp(name, "keycreate"))
5072 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5073 else if (!strcmp(name, "sockcreate"))
5074 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5075 else if (!strcmp(name, "current"))
5076 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5077 else
5078 error = -EINVAL;
5079 if (error)
5080 return error;
5082 /* Obtain a SID for the context, if one was specified. */
5083 if (size && str[1] && str[1] != '\n') {
5084 if (str[size-1] == '\n') {
5085 str[size-1] = 0;
5086 size--;
5088 error = security_context_to_sid(value, size, &sid);
5089 if (error)
5090 return error;
5093 /* Permission checking based on the specified context is
5094 performed during the actual operation (execve,
5095 open/mkdir/...), when we know the full context of the
5096 operation. See selinux_bprm_set_security for the execve
5097 checks and may_create for the file creation checks. The
5098 operation will then fail if the context is not permitted. */
5099 tsec = p->security;
5100 if (!strcmp(name, "exec"))
5101 tsec->exec_sid = sid;
5102 else if (!strcmp(name, "fscreate"))
5103 tsec->create_sid = sid;
5104 else if (!strcmp(name, "keycreate")) {
5105 error = may_create_key(sid, p);
5106 if (error)
5107 return error;
5108 tsec->keycreate_sid = sid;
5109 } else if (!strcmp(name, "sockcreate"))
5110 tsec->sockcreate_sid = sid;
5111 else if (!strcmp(name, "current")) {
5112 struct av_decision avd;
5114 if (sid == 0)
5115 return -EINVAL;
5117 /* Only allow single threaded processes to change context */
5118 if (atomic_read(&p->mm->mm_users) != 1) {
5119 struct task_struct *g, *t;
5120 struct mm_struct *mm = p->mm;
5121 read_lock(&tasklist_lock);
5122 do_each_thread(g, t)
5123 if (t->mm == mm && t != p) {
5124 read_unlock(&tasklist_lock);
5125 return -EPERM;
5127 while_each_thread(g, t);
5128 read_unlock(&tasklist_lock);
5131 /* Check permissions for the transition. */
5132 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5133 PROCESS__DYNTRANSITION, NULL);
5134 if (error)
5135 return error;
5137 /* Check for ptracing, and update the task SID if ok.
5138 Otherwise, leave SID unchanged and fail. */
5139 task_lock(p);
5140 if (p->ptrace & PT_PTRACED) {
5141 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
5142 SECCLASS_PROCESS,
5143 PROCESS__PTRACE, 0, &avd);
5144 if (!error)
5145 tsec->sid = sid;
5146 task_unlock(p);
5147 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
5148 PROCESS__PTRACE, &avd, error, NULL);
5149 if (error)
5150 return error;
5151 } else {
5152 tsec->sid = sid;
5153 task_unlock(p);
5156 else
5157 return -EINVAL;
5159 return size;
5162 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5164 return security_sid_to_context(secid, secdata, seclen);
5167 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
5169 return security_context_to_sid(secdata, seclen, secid);
5172 static void selinux_release_secctx(char *secdata, u32 seclen)
5174 kfree(secdata);
5177 #ifdef CONFIG_KEYS
5179 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5180 unsigned long flags)
5182 struct task_security_struct *tsec = tsk->security;
5183 struct key_security_struct *ksec;
5185 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5186 if (!ksec)
5187 return -ENOMEM;
5189 ksec->obj = k;
5190 if (tsec->keycreate_sid)
5191 ksec->sid = tsec->keycreate_sid;
5192 else
5193 ksec->sid = tsec->sid;
5194 k->security = ksec;
5196 return 0;
5199 static void selinux_key_free(struct key *k)
5201 struct key_security_struct *ksec = k->security;
5203 k->security = NULL;
5204 kfree(ksec);
5207 static int selinux_key_permission(key_ref_t key_ref,
5208 struct task_struct *ctx,
5209 key_perm_t perm)
5211 struct key *key;
5212 struct task_security_struct *tsec;
5213 struct key_security_struct *ksec;
5215 key = key_ref_to_ptr(key_ref);
5217 tsec = ctx->security;
5218 ksec = key->security;
5220 /* if no specific permissions are requested, we skip the
5221 permission check. No serious, additional covert channels
5222 appear to be created. */
5223 if (perm == 0)
5224 return 0;
5226 return avc_has_perm(tsec->sid, ksec->sid,
5227 SECCLASS_KEY, perm, NULL);
5230 #endif
5232 static struct security_operations selinux_ops = {
5233 .ptrace = selinux_ptrace,
5234 .capget = selinux_capget,
5235 .capset_check = selinux_capset_check,
5236 .capset_set = selinux_capset_set,
5237 .sysctl = selinux_sysctl,
5238 .capable = selinux_capable,
5239 .quotactl = selinux_quotactl,
5240 .quota_on = selinux_quota_on,
5241 .syslog = selinux_syslog,
5242 .vm_enough_memory = selinux_vm_enough_memory,
5244 .netlink_send = selinux_netlink_send,
5245 .netlink_recv = selinux_netlink_recv,
5247 .bprm_alloc_security = selinux_bprm_alloc_security,
5248 .bprm_free_security = selinux_bprm_free_security,
5249 .bprm_apply_creds = selinux_bprm_apply_creds,
5250 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
5251 .bprm_set_security = selinux_bprm_set_security,
5252 .bprm_check_security = selinux_bprm_check_security,
5253 .bprm_secureexec = selinux_bprm_secureexec,
5255 .sb_alloc_security = selinux_sb_alloc_security,
5256 .sb_free_security = selinux_sb_free_security,
5257 .sb_copy_data = selinux_sb_copy_data,
5258 .sb_kern_mount = selinux_sb_kern_mount,
5259 .sb_statfs = selinux_sb_statfs,
5260 .sb_mount = selinux_mount,
5261 .sb_umount = selinux_umount,
5262 .sb_get_mnt_opts = selinux_get_mnt_opts,
5263 .sb_set_mnt_opts = selinux_set_mnt_opts,
5264 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5265 .sb_parse_opts_str = selinux_parse_opts_str,
5268 .inode_alloc_security = selinux_inode_alloc_security,
5269 .inode_free_security = selinux_inode_free_security,
5270 .inode_init_security = selinux_inode_init_security,
5271 .inode_create = selinux_inode_create,
5272 .inode_link = selinux_inode_link,
5273 .inode_unlink = selinux_inode_unlink,
5274 .inode_symlink = selinux_inode_symlink,
5275 .inode_mkdir = selinux_inode_mkdir,
5276 .inode_rmdir = selinux_inode_rmdir,
5277 .inode_mknod = selinux_inode_mknod,
5278 .inode_rename = selinux_inode_rename,
5279 .inode_readlink = selinux_inode_readlink,
5280 .inode_follow_link = selinux_inode_follow_link,
5281 .inode_permission = selinux_inode_permission,
5282 .inode_setattr = selinux_inode_setattr,
5283 .inode_getattr = selinux_inode_getattr,
5284 .inode_setxattr = selinux_inode_setxattr,
5285 .inode_post_setxattr = selinux_inode_post_setxattr,
5286 .inode_getxattr = selinux_inode_getxattr,
5287 .inode_listxattr = selinux_inode_listxattr,
5288 .inode_removexattr = selinux_inode_removexattr,
5289 .inode_getsecurity = selinux_inode_getsecurity,
5290 .inode_setsecurity = selinux_inode_setsecurity,
5291 .inode_listsecurity = selinux_inode_listsecurity,
5292 .inode_need_killpriv = selinux_inode_need_killpriv,
5293 .inode_killpriv = selinux_inode_killpriv,
5295 .file_permission = selinux_file_permission,
5296 .file_alloc_security = selinux_file_alloc_security,
5297 .file_free_security = selinux_file_free_security,
5298 .file_ioctl = selinux_file_ioctl,
5299 .file_mmap = selinux_file_mmap,
5300 .file_mprotect = selinux_file_mprotect,
5301 .file_lock = selinux_file_lock,
5302 .file_fcntl = selinux_file_fcntl,
5303 .file_set_fowner = selinux_file_set_fowner,
5304 .file_send_sigiotask = selinux_file_send_sigiotask,
5305 .file_receive = selinux_file_receive,
5307 .dentry_open = selinux_dentry_open,
5309 .task_create = selinux_task_create,
5310 .task_alloc_security = selinux_task_alloc_security,
5311 .task_free_security = selinux_task_free_security,
5312 .task_setuid = selinux_task_setuid,
5313 .task_post_setuid = selinux_task_post_setuid,
5314 .task_setgid = selinux_task_setgid,
5315 .task_setpgid = selinux_task_setpgid,
5316 .task_getpgid = selinux_task_getpgid,
5317 .task_getsid = selinux_task_getsid,
5318 .task_getsecid = selinux_task_getsecid,
5319 .task_setgroups = selinux_task_setgroups,
5320 .task_setnice = selinux_task_setnice,
5321 .task_setioprio = selinux_task_setioprio,
5322 .task_getioprio = selinux_task_getioprio,
5323 .task_setrlimit = selinux_task_setrlimit,
5324 .task_setscheduler = selinux_task_setscheduler,
5325 .task_getscheduler = selinux_task_getscheduler,
5326 .task_movememory = selinux_task_movememory,
5327 .task_kill = selinux_task_kill,
5328 .task_wait = selinux_task_wait,
5329 .task_prctl = selinux_task_prctl,
5330 .task_reparent_to_init = selinux_task_reparent_to_init,
5331 .task_to_inode = selinux_task_to_inode,
5333 .ipc_permission = selinux_ipc_permission,
5335 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5336 .msg_msg_free_security = selinux_msg_msg_free_security,
5338 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5339 .msg_queue_free_security = selinux_msg_queue_free_security,
5340 .msg_queue_associate = selinux_msg_queue_associate,
5341 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5342 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5343 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5345 .shm_alloc_security = selinux_shm_alloc_security,
5346 .shm_free_security = selinux_shm_free_security,
5347 .shm_associate = selinux_shm_associate,
5348 .shm_shmctl = selinux_shm_shmctl,
5349 .shm_shmat = selinux_shm_shmat,
5351 .sem_alloc_security = selinux_sem_alloc_security,
5352 .sem_free_security = selinux_sem_free_security,
5353 .sem_associate = selinux_sem_associate,
5354 .sem_semctl = selinux_sem_semctl,
5355 .sem_semop = selinux_sem_semop,
5357 .register_security = selinux_register_security,
5359 .d_instantiate = selinux_d_instantiate,
5361 .getprocattr = selinux_getprocattr,
5362 .setprocattr = selinux_setprocattr,
5364 .secid_to_secctx = selinux_secid_to_secctx,
5365 .secctx_to_secid = selinux_secctx_to_secid,
5366 .release_secctx = selinux_release_secctx,
5368 .unix_stream_connect = selinux_socket_unix_stream_connect,
5369 .unix_may_send = selinux_socket_unix_may_send,
5371 .socket_create = selinux_socket_create,
5372 .socket_post_create = selinux_socket_post_create,
5373 .socket_bind = selinux_socket_bind,
5374 .socket_connect = selinux_socket_connect,
5375 .socket_listen = selinux_socket_listen,
5376 .socket_accept = selinux_socket_accept,
5377 .socket_sendmsg = selinux_socket_sendmsg,
5378 .socket_recvmsg = selinux_socket_recvmsg,
5379 .socket_getsockname = selinux_socket_getsockname,
5380 .socket_getpeername = selinux_socket_getpeername,
5381 .socket_getsockopt = selinux_socket_getsockopt,
5382 .socket_setsockopt = selinux_socket_setsockopt,
5383 .socket_shutdown = selinux_socket_shutdown,
5384 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5385 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5386 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5387 .sk_alloc_security = selinux_sk_alloc_security,
5388 .sk_free_security = selinux_sk_free_security,
5389 .sk_clone_security = selinux_sk_clone_security,
5390 .sk_getsecid = selinux_sk_getsecid,
5391 .sock_graft = selinux_sock_graft,
5392 .inet_conn_request = selinux_inet_conn_request,
5393 .inet_csk_clone = selinux_inet_csk_clone,
5394 .inet_conn_established = selinux_inet_conn_established,
5395 .req_classify_flow = selinux_req_classify_flow,
5397 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5398 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5399 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5400 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5401 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5402 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5403 .xfrm_state_free_security = selinux_xfrm_state_free,
5404 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5405 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5406 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5407 .xfrm_decode_session = selinux_xfrm_decode_session,
5408 #endif
5410 #ifdef CONFIG_KEYS
5411 .key_alloc = selinux_key_alloc,
5412 .key_free = selinux_key_free,
5413 .key_permission = selinux_key_permission,
5414 #endif
5417 static __init int selinux_init(void)
5419 struct task_security_struct *tsec;
5421 if (!selinux_enabled) {
5422 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5423 return 0;
5426 printk(KERN_INFO "SELinux: Initializing.\n");
5428 /* Set the security state for the initial task. */
5429 if (task_alloc_security(current))
5430 panic("SELinux: Failed to initialize initial task.\n");
5431 tsec = current->security;
5432 tsec->osid = tsec->sid = SECINITSID_KERNEL;
5434 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5435 sizeof(struct inode_security_struct),
5436 0, SLAB_PANIC, NULL);
5437 avc_init();
5439 original_ops = secondary_ops = security_ops;
5440 if (!secondary_ops)
5441 panic ("SELinux: No initial security operations\n");
5442 if (register_security (&selinux_ops))
5443 panic("SELinux: Unable to register with kernel.\n");
5445 if (selinux_enforcing) {
5446 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5447 } else {
5448 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5451 #ifdef CONFIG_KEYS
5452 /* Add security information to initial keyrings */
5453 selinux_key_alloc(&root_user_keyring, current,
5454 KEY_ALLOC_NOT_IN_QUOTA);
5455 selinux_key_alloc(&root_session_keyring, current,
5456 KEY_ALLOC_NOT_IN_QUOTA);
5457 #endif
5459 return 0;
5462 void selinux_complete_init(void)
5464 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5466 /* Set up any superblocks initialized prior to the policy load. */
5467 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5468 spin_lock(&sb_lock);
5469 spin_lock(&sb_security_lock);
5470 next_sb:
5471 if (!list_empty(&superblock_security_head)) {
5472 struct superblock_security_struct *sbsec =
5473 list_entry(superblock_security_head.next,
5474 struct superblock_security_struct,
5475 list);
5476 struct super_block *sb = sbsec->sb;
5477 sb->s_count++;
5478 spin_unlock(&sb_security_lock);
5479 spin_unlock(&sb_lock);
5480 down_read(&sb->s_umount);
5481 if (sb->s_root)
5482 superblock_doinit(sb, NULL);
5483 drop_super(sb);
5484 spin_lock(&sb_lock);
5485 spin_lock(&sb_security_lock);
5486 list_del_init(&sbsec->list);
5487 goto next_sb;
5489 spin_unlock(&sb_security_lock);
5490 spin_unlock(&sb_lock);
5493 /* SELinux requires early initialization in order to label
5494 all processes and objects when they are created. */
5495 security_initcall(selinux_init);
5497 #if defined(CONFIG_NETFILTER)
5499 static struct nf_hook_ops selinux_ipv4_ops[] = {
5501 .hook = selinux_ipv4_postroute,
5502 .owner = THIS_MODULE,
5503 .pf = PF_INET,
5504 .hooknum = NF_INET_POST_ROUTING,
5505 .priority = NF_IP_PRI_SELINUX_LAST,
5508 .hook = selinux_ipv4_forward,
5509 .owner = THIS_MODULE,
5510 .pf = PF_INET,
5511 .hooknum = NF_INET_FORWARD,
5512 .priority = NF_IP_PRI_SELINUX_FIRST,
5516 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5518 static struct nf_hook_ops selinux_ipv6_ops[] = {
5520 .hook = selinux_ipv6_postroute,
5521 .owner = THIS_MODULE,
5522 .pf = PF_INET6,
5523 .hooknum = NF_INET_POST_ROUTING,
5524 .priority = NF_IP6_PRI_SELINUX_LAST,
5527 .hook = selinux_ipv6_forward,
5528 .owner = THIS_MODULE,
5529 .pf = PF_INET6,
5530 .hooknum = NF_INET_FORWARD,
5531 .priority = NF_IP6_PRI_SELINUX_FIRST,
5535 #endif /* IPV6 */
5537 static int __init selinux_nf_ip_init(void)
5539 int err = 0;
5540 u32 iter;
5542 if (!selinux_enabled)
5543 goto out;
5545 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5547 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) {
5548 err = nf_register_hook(&selinux_ipv4_ops[iter]);
5549 if (err)
5550 panic("SELinux: nf_register_hook for IPv4: error %d\n",
5551 err);
5554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5555 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) {
5556 err = nf_register_hook(&selinux_ipv6_ops[iter]);
5557 if (err)
5558 panic("SELinux: nf_register_hook for IPv6: error %d\n",
5559 err);
5561 #endif /* IPV6 */
5563 out:
5564 return err;
5567 __initcall(selinux_nf_ip_init);
5569 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5570 static void selinux_nf_ip_exit(void)
5572 u32 iter;
5574 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5576 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++)
5577 nf_unregister_hook(&selinux_ipv4_ops[iter]);
5578 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5579 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++)
5580 nf_unregister_hook(&selinux_ipv6_ops[iter]);
5581 #endif /* IPV6 */
5583 #endif
5585 #else /* CONFIG_NETFILTER */
5587 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5588 #define selinux_nf_ip_exit()
5589 #endif
5591 #endif /* CONFIG_NETFILTER */
5593 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5594 int selinux_disable(void)
5596 extern void exit_sel_fs(void);
5597 static int selinux_disabled = 0;
5599 if (ss_initialized) {
5600 /* Not permitted after initial policy load. */
5601 return -EINVAL;
5604 if (selinux_disabled) {
5605 /* Only do this once. */
5606 return -EINVAL;
5609 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5611 selinux_disabled = 1;
5612 selinux_enabled = 0;
5614 /* Reset security_ops to the secondary module, dummy or capability. */
5615 security_ops = secondary_ops;
5617 /* Unregister netfilter hooks. */
5618 selinux_nf_ip_exit();
5620 /* Unregister selinuxfs. */
5621 exit_sel_fs();
5623 return 0;
5625 #endif