4 /* The sparc64 TSB is similar to the powerpc hashtables. It's a
5 * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
6 * pointers into this table for 8K and 64K page sizes, and also a
7 * comparison TAG based upon the virtual address and context which
10 * TLB miss trap handler software does the actual lookup via something
13 * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14 * ldxa [%g0] ASI_{D,I}MMU, %g6
17 * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
19 * bne,pn %xcc, tsb_miss_{d,i}tlb
20 * mov FAULT_CODE_{D,I}TLB, %g3
21 * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26 * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
29 * -------------------------------------------------
30 * | - | CONTEXT | - | VADDR bits 63:22 |
31 * -------------------------------------------------
32 * 63 61 60 48 47 42 41 0
34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
37 * Like the powerpc hashtables we need to use locking in order to
38 * synchronize while we update the entries. PTE updates need locking
41 * We need to carefully choose a lock bits for the TSB entry. We
42 * choose to use bit 47 in the tag. Also, since we never map anything
43 * at page zero in context zero, we use zero as an invalid tag entry.
44 * When the lock bit is set, this forces a tag comparison failure.
47 #define TSB_TAG_LOCK_BIT 47
48 #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32))
50 #define TSB_TAG_INVALID_BIT 46
51 #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32))
53 /* Some cpus support physical address quad loads. We want to use
54 * those if possible so we don't need to hard-lock the TSB mapping
55 * into the TLB. We encode some instruction patching in order to
58 * The kernel TSB is locked into the TLB by virtue of being in the
59 * kernel image, so we don't play these games for swapper_tsb access.
62 struct tsb_ldquad_phys_patch_entry
{
64 unsigned int sun4u_insn
;
65 unsigned int sun4v_insn
;
67 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch
,
68 __tsb_ldquad_phys_patch_end
;
70 struct tsb_phys_patch_entry
{
74 extern struct tsb_phys_patch_entry __tsb_phys_patch
, __tsb_phys_patch_end
;
76 #define TSB_LOAD_QUAD(TSB, REG) \
77 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
78 .section .tsb_ldquad_phys_patch, "ax"; \
80 ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \
81 ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
84 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
85 661: lduwa [TSB] ASI_N, REG; \
86 .section .tsb_phys_patch, "ax"; \
88 lduwa [TSB] ASI_PHYS_USE_EC, REG; \
91 #define TSB_LOAD_TAG(TSB, REG) \
92 661: ldxa [TSB] ASI_N, REG; \
93 .section .tsb_phys_patch, "ax"; \
95 ldxa [TSB] ASI_PHYS_USE_EC, REG; \
98 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
99 661: casa [TSB] ASI_N, REG1, REG2; \
100 .section .tsb_phys_patch, "ax"; \
102 casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
105 #define TSB_CAS_TAG(TSB, REG1, REG2) \
106 661: casxa [TSB] ASI_N, REG1, REG2; \
107 .section .tsb_phys_patch, "ax"; \
109 casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
112 #define TSB_STORE(ADDR, VAL) \
113 661: stxa VAL, [ADDR] ASI_N; \
114 .section .tsb_phys_patch, "ax"; \
116 stxa VAL, [ADDR] ASI_PHYS_USE_EC; \
119 #define TSB_LOCK_TAG(TSB, REG1, REG2) \
120 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \
121 sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\
122 andcc REG1, REG2, %g0; \
125 TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \
130 #define TSB_WRITE(TSB, TTE, TAG) \
132 TSB_STORE(TSB, TTE); \
136 /* Do a kernel page table walk. Leaves physical PTE pointer in
137 * REG1. Jumps to FAIL_LABEL on early page table walk termination.
138 * VADDR will not be clobbered, but REG2 will.
140 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
141 sethi %hi(swapper_pg_dir), REG1; \
142 or REG1, %lo(swapper_pg_dir), REG1; \
143 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
144 srlx REG2, 64 - PAGE_SHIFT, REG2; \
145 andn REG2, 0x3, REG2; \
146 lduw [REG1 + REG2], REG1; \
147 brz,pn REG1, FAIL_LABEL; \
148 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
149 srlx REG2, 64 - PAGE_SHIFT, REG2; \
150 sllx REG1, PGD_PADDR_SHIFT, REG1; \
151 andn REG2, 0x3, REG2; \
152 lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
153 brz,pn REG1, FAIL_LABEL; \
154 sllx VADDR, 64 - PMD_SHIFT, REG2; \
155 srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
156 sllx REG1, PMD_PADDR_SHIFT, REG1; \
157 andn REG2, 0x7, REG2; \
158 add REG1, REG2, REG1;
160 /* These macros exists only to make the PMD translator below
161 * easier to read. It hides the ELF section switch for the
162 * sun4v code patching.
164 #define OR_PTE_BIT_1INSN(REG, NAME) \
165 661: or REG, _PAGE_##NAME##_4U, REG; \
166 .section .sun4v_1insn_patch, "ax"; \
168 or REG, _PAGE_##NAME##_4V, REG; \
171 #define OR_PTE_BIT_2INSN(REG, TMP, NAME) \
172 661: sethi %hi(_PAGE_##NAME##_4U), TMP; \
174 .section .sun4v_2insn_patch, "ax"; \
177 or REG, _PAGE_##NAME##_4V, REG; \
180 /* Load into REG the PTE value for VALID, CACHE, and SZHUGE. */
181 #define BUILD_PTE_VALID_SZHUGE_CACHE(REG) \
182 661: sethi %uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG; \
183 .section .sun4v_1insn_patch, "ax"; \
185 sethi %uhi(_PAGE_VALID), REG; \
188 661: or REG, _PAGE_CP_4U|_PAGE_CV_4U, REG; \
189 .section .sun4v_1insn_patch, "ax"; \
191 or REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
194 /* PMD has been loaded into REG1, interpret the value, seeing
195 * if it is a HUGE PMD or a normal one. If it is not valid
196 * then jump to FAIL_LABEL. If it is a HUGE PMD, and it
197 * translates to a valid PTE, branch to PTE_LABEL.
199 * We translate the PMD by hand, one bit at a time,
200 * constructing the huge PTE.
202 * So we construct the PTE in REG2 as follows:
204 * 1) Extract the PMD PFN from REG1 and place it into REG2.
206 * 2) Translate PMD protection bits in REG1 into REG2, one bit
207 * at a time using andcc tests on REG1 and OR's into REG2.
209 * Only two bits to be concerned with here, EXEC and WRITE.
210 * Now REG1 is freed up and we can use it as a temporary.
212 * 3) Construct the VALID, CACHE, and page size PTE bits in
213 * REG1, OR with REG2 to form final PTE.
215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
216 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
217 brz,pn REG1, FAIL_LABEL; \
218 andcc REG1, PMD_ISHUGE, %g0; \
220 and REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2; \
221 cmp REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED; \
222 bne,pn %xcc, FAIL_LABEL; \
223 andn REG1, PMD_HUGE_PROTBITS, REG2; \
224 sllx REG2, PMD_PADDR_SHIFT, REG2; \
225 /* REG2 now holds PFN << PAGE_SHIFT */ \
226 andcc REG1, PMD_HUGE_WRITE, %g0; \
228 OR_PTE_BIT_1INSN(REG2, W); \
229 1: andcc REG1, PMD_HUGE_EXEC, %g0; \
232 OR_PTE_BIT_2INSN(REG2, REG1, EXEC); \
233 /* REG1 can now be clobbered, build final PTE */ \
234 1: BUILD_PTE_VALID_SZHUGE_CACHE(REG1); \
235 ba,pt %xcc, PTE_LABEL; \
236 or REG1, REG2, REG1; \
239 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
240 brz,pn REG1, FAIL_LABEL; \
244 /* Do a user page table walk in MMU globals. Leaves final,
245 * valid, PTE value in REG1. Jumps to FAIL_LABEL on early
246 * page table walk termination or if the PTE is not valid.
248 * Physical base of page tables is in PHYS_PGD which will not
251 * VADDR will not be clobbered, but REG1 and REG2 will.
253 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
254 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
255 srlx REG2, 64 - PAGE_SHIFT, REG2; \
256 andn REG2, 0x3, REG2; \
257 lduwa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
258 brz,pn REG1, FAIL_LABEL; \
259 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
260 srlx REG2, 64 - PAGE_SHIFT, REG2; \
261 sllx REG1, PGD_PADDR_SHIFT, REG1; \
262 andn REG2, 0x3, REG2; \
263 lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
264 USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
265 sllx VADDR, 64 - PMD_SHIFT, REG2; \
266 srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
267 sllx REG1, PMD_PADDR_SHIFT, REG1; \
268 andn REG2, 0x7, REG2; \
269 add REG1, REG2, REG1; \
270 ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
271 brgez,pn REG1, FAIL_LABEL; \
275 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
276 * If no entry is found, FAIL_LABEL will be branched to. On success
277 * the resulting PTE value will be left in REG1. VADDR is preserved
280 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
281 sethi %hi(prom_trans), REG1; \
282 or REG1, %lo(prom_trans), REG1; \
283 97: ldx [REG1 + 0x00], REG2; \
284 brz,pn REG2, FAIL_LABEL; \
286 ldx [REG1 + 0x08], REG3; \
287 add REG2, REG3, REG3; \
292 ldx [REG1 + 0x10], REG3; \
293 sub VADDR, REG2, REG2; \
295 add REG3, REG2, REG1; \
296 98: ba,pt %xcc, 97b; \
297 add REG1, (3 * 8), REG1; \
300 /* We use a 32K TSB for the whole kernel, this allows to
301 * handle about 16MB of modules and vmalloc mappings without
302 * incurring many hash conflicts.
304 #define KERNEL_TSB_SIZE_BYTES (32 * 1024)
305 #define KERNEL_TSB_NENTRIES \
306 (KERNEL_TSB_SIZE_BYTES / 16)
307 #define KERNEL_TSB4M_NENTRIES 4096
309 #define KTSB_PHYS_SHIFT 15
311 /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
312 * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
313 * and the found TTE will be left in REG1. REG3 and REG4 must
314 * be an even/odd pair of registers.
316 * VADDR and TAG will be preserved and not clobbered by this macro.
318 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
319 661: sethi %hi(swapper_tsb), REG1; \
320 or REG1, %lo(swapper_tsb), REG1; \
321 .section .swapper_tsb_phys_patch, "ax"; \
325 .section .tsb_ldquad_phys_patch, "ax"; \
327 sllx REG1, KTSB_PHYS_SHIFT, REG1; \
328 sllx REG1, KTSB_PHYS_SHIFT, REG1; \
330 srlx VADDR, PAGE_SHIFT, REG2; \
331 and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
332 sllx REG2, 4, REG2; \
333 add REG1, REG2, REG2; \
334 TSB_LOAD_QUAD(REG2, REG3); \
336 be,a,pt %xcc, OK_LABEL; \
339 #ifndef CONFIG_DEBUG_PAGEALLOC
340 /* This version uses a trick, the TAG is already (VADDR >> 22) so
341 * we can make use of that for the index computation.
343 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
344 661: sethi %hi(swapper_4m_tsb), REG1; \
345 or REG1, %lo(swapper_4m_tsb), REG1; \
346 .section .swapper_4m_tsb_phys_patch, "ax"; \
350 .section .tsb_ldquad_phys_patch, "ax"; \
352 sllx REG1, KTSB_PHYS_SHIFT, REG1; \
353 sllx REG1, KTSB_PHYS_SHIFT, REG1; \
355 and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
356 sllx REG2, 4, REG2; \
357 add REG1, REG2, REG2; \
358 TSB_LOAD_QUAD(REG2, REG3); \
360 be,a,pt %xcc, OK_LABEL; \
364 #endif /* !(_SPARC64_TSB_H) */