2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <asm/stack.h>
31 #include <asm/switch_to.h>
32 #include <asm/homecache.h>
33 #include <asm/syscalls.h>
34 #include <asm/traps.h>
35 #include <asm/setup.h>
36 #include <asm/uaccess.h>
37 #ifdef CONFIG_HARDWALL
38 #include <asm/hardwall.h>
40 #include <arch/chip.h>
42 #include <arch/sim_def.h>
45 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
46 * idle loop over low power while in the idle loop, e.g. if we have
47 * one thread per core and we want to get threads out of futex waits fast.
49 static int __init
idle_setup(char *str
)
54 if (!strcmp(str
, "poll")) {
55 pr_info("using polling idle threads.\n");
56 cpu_idle_poll_ctrl(true);
58 } else if (!strcmp(str
, "halt")) {
63 early_param("idle", idle_setup
);
65 void arch_cpu_idle(void)
67 __get_cpu_var(irq_stat
).idle_timestamp
= jiffies
;
72 * Release a thread_info structure
74 void arch_release_thread_info(struct thread_info
*info
)
76 struct single_step_state
*step_state
= info
->step_state
;
81 * FIXME: we don't munmap step_state->buffer
82 * because the mm_struct for this process (info->task->mm)
83 * has already been zeroed in exit_mm(). Keeping a
84 * reference to it here seems like a bad move, so this
85 * means we can't munmap() the buffer, and therefore if we
86 * ptrace multiple threads in a process, we will slowly
87 * leak user memory. (Note that as soon as the last
88 * thread in a process dies, we will reclaim all user
89 * memory including single-step buffers in the usual way.)
90 * We should either assign a kernel VA to this buffer
91 * somehow, or we should associate the buffer(s) with the
92 * mm itself so we can clean them up that way.
98 static void save_arch_state(struct thread_struct
*t
);
100 int copy_thread(unsigned long clone_flags
, unsigned long sp
,
101 unsigned long arg
, struct task_struct
*p
)
103 struct pt_regs
*childregs
= task_pt_regs(p
);
105 unsigned long *callee_regs
;
108 * Set up the stack and stack pointer appropriately for the
109 * new child to find itself woken up in __switch_to().
110 * The callee-saved registers must be on the stack to be read;
111 * the new task will then jump to assembly support to handle
112 * calling schedule_tail(), etc., and (for userspace tasks)
113 * returning to the context set up in the pt_regs.
115 ksp
= (unsigned long) childregs
;
116 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* interrupt-entry save area */
117 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
118 ksp
-= CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long);
119 callee_regs
= (unsigned long *)ksp
;
120 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* __switch_to() save area */
121 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
124 /* Record the pid of the task that created this one. */
125 p
->thread
.creator_pid
= current
->pid
;
127 if (unlikely(p
->flags
& PF_KTHREAD
)) {
129 memset(childregs
, 0, sizeof(struct pt_regs
));
130 memset(&callee_regs
[2], 0,
131 (CALLEE_SAVED_REGS_COUNT
- 2) * sizeof(unsigned long));
132 callee_regs
[0] = sp
; /* r30 = function */
133 callee_regs
[1] = arg
; /* r31 = arg */
134 childregs
->ex1
= PL_ICS_EX1(KERNEL_PL
, 0);
135 p
->thread
.pc
= (unsigned long) ret_from_kernel_thread
;
140 * Start new thread in ret_from_fork so it schedules properly
141 * and then return from interrupt like the parent.
143 p
->thread
.pc
= (unsigned long) ret_from_fork
;
146 * Do not clone step state from the parent; each thread
147 * must make its own lazily.
149 task_thread_info(p
)->step_state
= NULL
;
153 * Do not clone unalign jit fixup from the parent; each thread
154 * must allocate its own on demand.
156 task_thread_info(p
)->unalign_jit_base
= NULL
;
160 * Copy the registers onto the kernel stack so the
161 * return-from-interrupt code will reload it into registers.
163 *childregs
= *current_pt_regs();
164 childregs
->regs
[0] = 0; /* return value is zero */
166 childregs
->sp
= sp
; /* override with new user stack pointer */
167 memcpy(callee_regs
, &childregs
->regs
[CALLEE_SAVED_FIRST_REG
],
168 CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long));
170 /* Save user stack top pointer so we can ID the stack vm area later. */
171 p
->thread
.usp0
= childregs
->sp
;
174 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
175 * which is passed in as arg #5 to sys_clone().
177 if (clone_flags
& CLONE_SETTLS
)
178 childregs
->tp
= childregs
->regs
[4];
181 #if CHIP_HAS_TILE_DMA()
183 * No DMA in the new thread. We model this on the fact that
184 * fork() clears the pending signals, alarms, and aio for the child.
186 memset(&p
->thread
.tile_dma_state
, 0, sizeof(struct tile_dma_state
));
187 memset(&p
->thread
.dma_async_tlb
, 0, sizeof(struct async_tlb
));
190 /* New thread has its miscellaneous processor state bits clear. */
191 p
->thread
.proc_status
= 0;
193 #ifdef CONFIG_HARDWALL
194 /* New thread does not own any networks. */
195 memset(&p
->thread
.hardwall
[0], 0,
196 sizeof(struct hardwall_task
) * HARDWALL_TYPES
);
201 * Start the new thread with the current architecture state
202 * (user interrupt masks, etc.).
204 save_arch_state(&p
->thread
);
209 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
211 task_thread_info(tsk
)->align_ctl
= val
;
215 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
217 return put_user(task_thread_info(tsk
)->align_ctl
,
218 (unsigned int __user
*)adr
);
221 static struct task_struct corrupt_current
= { .comm
= "<corrupt>" };
224 * Return "current" if it looks plausible, or else a pointer to a dummy.
225 * This can be helpful if we are just trying to emit a clean panic.
227 struct task_struct
*validate_current(void)
229 struct task_struct
*tsk
= current
;
230 if (unlikely((unsigned long)tsk
< PAGE_OFFSET
||
231 (high_memory
&& (void *)tsk
> high_memory
) ||
232 ((unsigned long)tsk
& (__alignof__(*tsk
) - 1)) != 0)) {
233 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk
, stack_pointer
);
234 tsk
= &corrupt_current
;
239 /* Take and return the pointer to the previous task, for schedule_tail(). */
240 struct task_struct
*sim_notify_fork(struct task_struct
*prev
)
242 struct task_struct
*tsk
= current
;
243 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK_PARENT
|
244 (tsk
->thread
.creator_pid
<< _SIM_CONTROL_OPERATOR_BITS
));
245 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK
|
246 (tsk
->pid
<< _SIM_CONTROL_OPERATOR_BITS
));
250 int dump_task_regs(struct task_struct
*tsk
, elf_gregset_t
*regs
)
252 struct pt_regs
*ptregs
= task_pt_regs(tsk
);
253 elf_core_copy_regs(regs
, ptregs
);
257 #if CHIP_HAS_TILE_DMA()
259 /* Allow user processes to access the DMA SPRs */
260 void grant_dma_mpls(void)
262 #if CONFIG_KERNEL_PL == 2
263 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
264 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
266 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0
, 1);
267 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0
, 1);
271 /* Forbid user processes from accessing the DMA SPRs */
272 void restrict_dma_mpls(void)
274 #if CONFIG_KERNEL_PL == 2
275 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2
, 1);
276 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2
, 1);
278 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
279 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
283 /* Pause the DMA engine, then save off its state registers. */
284 static void save_tile_dma_state(struct tile_dma_state
*dma
)
286 unsigned long state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
287 unsigned long post_suspend_state
;
289 /* If we're running, suspend the engine. */
290 if ((state
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
)
291 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
294 * Wait for the engine to idle, then save regs. Note that we
295 * want to record the "running" bit from before suspension,
296 * and the "done" bit from after, so that we can properly
297 * distinguish a case where the user suspended the engine from
298 * the case where the kernel suspended as part of the context
302 post_suspend_state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
303 } while (post_suspend_state
& SPR_DMA_STATUS__BUSY_MASK
);
305 dma
->src
= __insn_mfspr(SPR_DMA_SRC_ADDR
);
306 dma
->src_chunk
= __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR
);
307 dma
->dest
= __insn_mfspr(SPR_DMA_DST_ADDR
);
308 dma
->dest_chunk
= __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR
);
309 dma
->strides
= __insn_mfspr(SPR_DMA_STRIDE
);
310 dma
->chunk_size
= __insn_mfspr(SPR_DMA_CHUNK_SIZE
);
311 dma
->byte
= __insn_mfspr(SPR_DMA_BYTE
);
312 dma
->status
= (state
& SPR_DMA_STATUS__RUNNING_MASK
) |
313 (post_suspend_state
& SPR_DMA_STATUS__DONE_MASK
);
316 /* Restart a DMA that was running before we were context-switched out. */
317 static void restore_tile_dma_state(struct thread_struct
*t
)
319 const struct tile_dma_state
*dma
= &t
->tile_dma_state
;
322 * The only way to restore the done bit is to run a zero
323 * length transaction.
325 if ((dma
->status
& SPR_DMA_STATUS__DONE_MASK
) &&
326 !(__insn_mfspr(SPR_DMA_USER_STATUS
) & SPR_DMA_STATUS__DONE_MASK
)) {
327 __insn_mtspr(SPR_DMA_BYTE
, 0);
328 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
329 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
330 SPR_DMA_STATUS__BUSY_MASK
)
334 __insn_mtspr(SPR_DMA_SRC_ADDR
, dma
->src
);
335 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR
, dma
->src_chunk
);
336 __insn_mtspr(SPR_DMA_DST_ADDR
, dma
->dest
);
337 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR
, dma
->dest_chunk
);
338 __insn_mtspr(SPR_DMA_STRIDE
, dma
->strides
);
339 __insn_mtspr(SPR_DMA_CHUNK_SIZE
, dma
->chunk_size
);
340 __insn_mtspr(SPR_DMA_BYTE
, dma
->byte
);
343 * Restart the engine if we were running and not done.
344 * Clear a pending async DMA fault that we were waiting on return
345 * to user space to execute, since we expect the DMA engine
346 * to regenerate those faults for us now. Note that we don't
347 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
348 * harmless if set, and it covers both DMA and the SN processor.
350 if ((dma
->status
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
) {
351 t
->dma_async_tlb
.fault_num
= 0;
352 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
358 static void save_arch_state(struct thread_struct
*t
)
360 #if CHIP_HAS_SPLIT_INTR_MASK()
361 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0_0
) |
362 ((u64
)__insn_mfspr(SPR_INTERRUPT_MASK_0_1
) << 32);
364 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0
);
366 t
->ex_context
[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0
);
367 t
->ex_context
[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1
);
368 t
->system_save
[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0
);
369 t
->system_save
[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1
);
370 t
->system_save
[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2
);
371 t
->system_save
[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3
);
372 t
->intctrl_0
= __insn_mfspr(SPR_INTCTRL_0_STATUS
);
373 t
->proc_status
= __insn_mfspr(SPR_PROC_STATUS
);
374 #if !CHIP_HAS_FIXED_INTVEC_BASE()
375 t
->interrupt_vector_base
= __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0
);
377 t
->tile_rtf_hwm
= __insn_mfspr(SPR_TILE_RTF_HWM
);
378 #if CHIP_HAS_DSTREAM_PF()
379 t
->dstream_pf
= __insn_mfspr(SPR_DSTREAM_PF
);
383 static void restore_arch_state(const struct thread_struct
*t
)
385 #if CHIP_HAS_SPLIT_INTR_MASK()
386 __insn_mtspr(SPR_INTERRUPT_MASK_0_0
, (u32
) t
->interrupt_mask
);
387 __insn_mtspr(SPR_INTERRUPT_MASK_0_1
, t
->interrupt_mask
>> 32);
389 __insn_mtspr(SPR_INTERRUPT_MASK_0
, t
->interrupt_mask
);
391 __insn_mtspr(SPR_EX_CONTEXT_0_0
, t
->ex_context
[0]);
392 __insn_mtspr(SPR_EX_CONTEXT_0_1
, t
->ex_context
[1]);
393 __insn_mtspr(SPR_SYSTEM_SAVE_0_0
, t
->system_save
[0]);
394 __insn_mtspr(SPR_SYSTEM_SAVE_0_1
, t
->system_save
[1]);
395 __insn_mtspr(SPR_SYSTEM_SAVE_0_2
, t
->system_save
[2]);
396 __insn_mtspr(SPR_SYSTEM_SAVE_0_3
, t
->system_save
[3]);
397 __insn_mtspr(SPR_INTCTRL_0_STATUS
, t
->intctrl_0
);
398 __insn_mtspr(SPR_PROC_STATUS
, t
->proc_status
);
399 #if !CHIP_HAS_FIXED_INTVEC_BASE()
400 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0
, t
->interrupt_vector_base
);
402 __insn_mtspr(SPR_TILE_RTF_HWM
, t
->tile_rtf_hwm
);
403 #if CHIP_HAS_DSTREAM_PF()
404 __insn_mtspr(SPR_DSTREAM_PF
, t
->dstream_pf
);
409 void _prepare_arch_switch(struct task_struct
*next
)
411 #if CHIP_HAS_TILE_DMA()
412 struct tile_dma_state
*dma
= ¤t
->thread
.tile_dma_state
;
414 save_tile_dma_state(dma
);
419 struct task_struct
*__sched
_switch_to(struct task_struct
*prev
,
420 struct task_struct
*next
)
422 /* DMA state is already saved; save off other arch state. */
423 save_arch_state(&prev
->thread
);
425 #if CHIP_HAS_TILE_DMA()
427 * Restore DMA in new task if desired.
428 * Note that it is only safe to restart here since interrupts
429 * are disabled, so we can't take any DMATLB miss or access
430 * interrupts before we have finished switching stacks.
432 if (next
->thread
.tile_dma_state
.enabled
) {
433 restore_tile_dma_state(&next
->thread
);
440 /* Restore other arch state. */
441 restore_arch_state(&next
->thread
);
443 #ifdef CONFIG_HARDWALL
444 /* Enable or disable access to the network registers appropriately. */
445 hardwall_switch_tasks(prev
, next
);
449 * Switch kernel SP, PC, and callee-saved registers.
450 * In the context of the new task, return the old task pointer
451 * (i.e. the task that actually called __switch_to).
452 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
454 return __switch_to(prev
, next
, next_current_ksp0(next
));
458 * This routine is called on return from interrupt if any of the
459 * TIF_WORK_MASK flags are set in thread_info->flags. It is
460 * entered with interrupts disabled so we don't miss an event
461 * that modified the thread_info flags. If any flag is set, we
462 * handle it and return, and the calling assembly code will
463 * re-disable interrupts, reload the thread flags, and call back
464 * if more flags need to be handled.
466 * We return whether we need to check the thread_info flags again
467 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
468 * important that it be tested last, and then claim that we don't
469 * need to recheck the flags.
471 int do_work_pending(struct pt_regs
*regs
, u32 thread_info_flags
)
473 /* If we enter in kernel mode, do nothing and exit the caller loop. */
474 if (!user_mode(regs
))
477 /* Enable interrupts; they are disabled again on return to caller. */
480 if (thread_info_flags
& _TIF_NEED_RESCHED
) {
484 #if CHIP_HAS_TILE_DMA()
485 if (thread_info_flags
& _TIF_ASYNC_TLB
) {
486 do_async_page_fault(regs
);
490 if (thread_info_flags
& _TIF_SIGPENDING
) {
494 if (thread_info_flags
& _TIF_NOTIFY_RESUME
) {
495 clear_thread_flag(TIF_NOTIFY_RESUME
);
496 tracehook_notify_resume(regs
);
499 if (thread_info_flags
& _TIF_SINGLESTEP
) {
500 single_step_once(regs
);
503 panic("work_pending: bad flags %#x\n", thread_info_flags
);
506 unsigned long get_wchan(struct task_struct
*p
)
508 struct KBacktraceIterator kbt
;
510 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
513 for (KBacktraceIterator_init(&kbt
, p
, NULL
);
514 !KBacktraceIterator_end(&kbt
);
515 KBacktraceIterator_next(&kbt
)) {
516 if (!in_sched_functions(kbt
.it
.pc
))
523 /* Flush thread state. */
524 void flush_thread(void)
530 * Free current thread data structures etc..
532 void exit_thread(void)
534 #ifdef CONFIG_HARDWALL
536 * Remove the task from the list of tasks that are associated
537 * with any live hardwalls. (If the task that is exiting held
538 * the last reference to a hardwall fd, it would already have
539 * been released and deactivated at this point.)
541 hardwall_deactivate_all(current
);
545 void show_regs(struct pt_regs
*regs
)
547 struct task_struct
*tsk
= validate_current();
551 if (tsk
!= &corrupt_current
)
552 show_regs_print_info(KERN_ERR
);
554 for (i
= 0; i
< 17; i
++)
555 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
556 i
, regs
->regs
[i
], i
+18, regs
->regs
[i
+18],
557 i
+36, regs
->regs
[i
+36]);
558 pr_err(" r17: "REGFMT
" r35: "REGFMT
" tp : "REGFMT
"\n",
559 regs
->regs
[17], regs
->regs
[35], regs
->tp
);
560 pr_err(" sp : "REGFMT
" lr : "REGFMT
"\n", regs
->sp
, regs
->lr
);
562 for (i
= 0; i
< 13; i
++)
563 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
564 " r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
565 i
, regs
->regs
[i
], i
+14, regs
->regs
[i
+14],
566 i
+27, regs
->regs
[i
+27], i
+40, regs
->regs
[i
+40]);
567 pr_err(" r13: "REGFMT
" tp : "REGFMT
" sp : "REGFMT
" lr : "REGFMT
"\n",
568 regs
->regs
[13], regs
->tp
, regs
->sp
, regs
->lr
);
570 pr_err(" pc : "REGFMT
" ex1: %ld faultnum: %ld\n",
571 regs
->pc
, regs
->ex1
, regs
->faultnum
);
573 dump_stack_regs(regs
);