1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
82 #include <asm/tlbflush.h>
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr
;
93 EXPORT_SYMBOL(max_mapnr
);
96 EXPORT_SYMBOL(mem_map
);
100 * A number of key systems in x86 including ioremap() rely on the assumption
101 * that high_memory defines the upper bound on direct map memory, then end
102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 EXPORT_SYMBOL(high_memory
);
110 * Randomize the address space (stacks, mmaps, brk, etc.).
112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113 * as ancient (libc5 based) binaries can segfault. )
115 int randomize_va_space __read_mostly
=
116 #ifdef CONFIG_COMPAT_BRK
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
126 * Those arches which don't have hw access flag feature need to
127 * implement their own helper. By default, "true" means pagefault
128 * will be hit on old pte.
134 static int __init
disable_randmaps(char *s
)
136 randomize_va_space
= 0;
139 __setup("norandmaps", disable_randmaps
);
141 unsigned long zero_pfn __read_mostly
;
142 EXPORT_SYMBOL(zero_pfn
);
144 unsigned long highest_memmap_pfn __read_mostly
;
147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 static int __init
init_zero_pfn(void)
151 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
154 core_initcall(init_zero_pfn
);
156 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
, long count
)
158 trace_rss_stat(mm
, member
, count
);
161 #if defined(SPLIT_RSS_COUNTING)
163 void sync_mm_rss(struct mm_struct
*mm
)
167 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
168 if (current
->rss_stat
.count
[i
]) {
169 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
170 current
->rss_stat
.count
[i
] = 0;
173 current
->rss_stat
.events
= 0;
176 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
178 struct task_struct
*task
= current
;
180 if (likely(task
->mm
== mm
))
181 task
->rss_stat
.count
[member
] += val
;
183 add_mm_counter(mm
, member
, val
);
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH (64)
190 static void check_sync_rss_stat(struct task_struct
*task
)
192 if (unlikely(task
!= current
))
194 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
195 sync_mm_rss(task
->mm
);
197 #else /* SPLIT_RSS_COUNTING */
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 static void check_sync_rss_stat(struct task_struct
*task
)
206 #endif /* SPLIT_RSS_COUNTING */
209 * Note: this doesn't free the actual pages themselves. That
210 * has been handled earlier when unmapping all the memory regions.
212 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
215 pgtable_t token
= pmd_pgtable(*pmd
);
217 pte_free_tlb(tlb
, token
, addr
);
218 mm_dec_nr_ptes(tlb
->mm
);
221 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
222 unsigned long addr
, unsigned long end
,
223 unsigned long floor
, unsigned long ceiling
)
230 pmd
= pmd_offset(pud
, addr
);
232 next
= pmd_addr_end(addr
, end
);
233 if (pmd_none_or_clear_bad(pmd
))
235 free_pte_range(tlb
, pmd
, addr
);
236 } while (pmd
++, addr
= next
, addr
!= end
);
246 if (end
- 1 > ceiling
- 1)
249 pmd
= pmd_offset(pud
, start
);
251 pmd_free_tlb(tlb
, pmd
, start
);
252 mm_dec_nr_pmds(tlb
->mm
);
255 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
256 unsigned long addr
, unsigned long end
,
257 unsigned long floor
, unsigned long ceiling
)
264 pud
= pud_offset(p4d
, addr
);
266 next
= pud_addr_end(addr
, end
);
267 if (pud_none_or_clear_bad(pud
))
269 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
270 } while (pud
++, addr
= next
, addr
!= end
);
280 if (end
- 1 > ceiling
- 1)
283 pud
= pud_offset(p4d
, start
);
285 pud_free_tlb(tlb
, pud
, start
);
286 mm_dec_nr_puds(tlb
->mm
);
289 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
290 unsigned long addr
, unsigned long end
,
291 unsigned long floor
, unsigned long ceiling
)
298 p4d
= p4d_offset(pgd
, addr
);
300 next
= p4d_addr_end(addr
, end
);
301 if (p4d_none_or_clear_bad(p4d
))
303 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
304 } while (p4d
++, addr
= next
, addr
!= end
);
310 ceiling
&= PGDIR_MASK
;
314 if (end
- 1 > ceiling
- 1)
317 p4d
= p4d_offset(pgd
, start
);
319 p4d_free_tlb(tlb
, p4d
, start
);
323 * This function frees user-level page tables of a process.
325 void free_pgd_range(struct mmu_gather
*tlb
,
326 unsigned long addr
, unsigned long end
,
327 unsigned long floor
, unsigned long ceiling
)
333 * The next few lines have given us lots of grief...
335 * Why are we testing PMD* at this top level? Because often
336 * there will be no work to do at all, and we'd prefer not to
337 * go all the way down to the bottom just to discover that.
339 * Why all these "- 1"s? Because 0 represents both the bottom
340 * of the address space and the top of it (using -1 for the
341 * top wouldn't help much: the masks would do the wrong thing).
342 * The rule is that addr 0 and floor 0 refer to the bottom of
343 * the address space, but end 0 and ceiling 0 refer to the top
344 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 * that end 0 case should be mythical).
347 * Wherever addr is brought up or ceiling brought down, we must
348 * be careful to reject "the opposite 0" before it confuses the
349 * subsequent tests. But what about where end is brought down
350 * by PMD_SIZE below? no, end can't go down to 0 there.
352 * Whereas we round start (addr) and ceiling down, by different
353 * masks at different levels, in order to test whether a table
354 * now has no other vmas using it, so can be freed, we don't
355 * bother to round floor or end up - the tests don't need that.
369 if (end
- 1 > ceiling
- 1)
374 * We add page table cache pages with PAGE_SIZE,
375 * (see pte_free_tlb()), flush the tlb if we need
377 tlb_change_page_size(tlb
, PAGE_SIZE
);
378 pgd
= pgd_offset(tlb
->mm
, addr
);
380 next
= pgd_addr_end(addr
, end
);
381 if (pgd_none_or_clear_bad(pgd
))
383 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
384 } while (pgd
++, addr
= next
, addr
!= end
);
387 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
388 unsigned long floor
, unsigned long ceiling
)
391 struct vm_area_struct
*next
= vma
->vm_next
;
392 unsigned long addr
= vma
->vm_start
;
395 * Hide vma from rmap and truncate_pagecache before freeing
398 unlink_anon_vmas(vma
);
399 unlink_file_vma(vma
);
401 if (is_vm_hugetlb_page(vma
)) {
402 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
403 floor
, next
? next
->vm_start
: ceiling
);
406 * Optimization: gather nearby vmas into one call down
408 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
409 && !is_vm_hugetlb_page(next
)) {
412 unlink_anon_vmas(vma
);
413 unlink_file_vma(vma
);
415 free_pgd_range(tlb
, addr
, vma
->vm_end
,
416 floor
, next
? next
->vm_start
: ceiling
);
422 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
425 pgtable_t
new = pte_alloc_one(mm
);
430 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 * visible before the pte is made visible to other CPUs by being
432 * put into page tables.
434 * The other side of the story is the pointer chasing in the page
435 * table walking code (when walking the page table without locking;
436 * ie. most of the time). Fortunately, these data accesses consist
437 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 * being the notable exception) will already guarantee loads are
439 * seen in-order. See the alpha page table accessors for the
440 * smp_read_barrier_depends() barriers in page table walking code.
442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 ptl
= pmd_lock(mm
, pmd
);
445 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
447 pmd_populate(mm
, pmd
, new);
456 int __pte_alloc_kernel(pmd_t
*pmd
)
458 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
462 smp_wmb(); /* See comment in __pte_alloc */
464 spin_lock(&init_mm
.page_table_lock
);
465 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
466 pmd_populate_kernel(&init_mm
, pmd
, new);
469 spin_unlock(&init_mm
.page_table_lock
);
471 pte_free_kernel(&init_mm
, new);
475 static inline void init_rss_vec(int *rss
)
477 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
480 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
484 if (current
->mm
== mm
)
486 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
488 add_mm_counter(mm
, i
, rss
[i
]);
492 * This function is called to print an error when a bad pte
493 * is found. For example, we might have a PFN-mapped pte in
494 * a region that doesn't allow it.
496 * The calling function must still handle the error.
498 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
499 pte_t pte
, struct page
*page
)
501 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
502 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
503 pud_t
*pud
= pud_offset(p4d
, addr
);
504 pmd_t
*pmd
= pmd_offset(pud
, addr
);
505 struct address_space
*mapping
;
507 static unsigned long resume
;
508 static unsigned long nr_shown
;
509 static unsigned long nr_unshown
;
512 * Allow a burst of 60 reports, then keep quiet for that minute;
513 * or allow a steady drip of one report per second.
515 if (nr_shown
== 60) {
516 if (time_before(jiffies
, resume
)) {
521 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
528 resume
= jiffies
+ 60 * HZ
;
530 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
531 index
= linear_page_index(vma
, addr
);
533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
537 dump_page(page
, "bad pte");
538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
543 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
544 mapping
? mapping
->a_ops
->readpage
: NULL
);
546 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 * And for normal mappings this is false.
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
591 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
594 unsigned long pfn
= pte_pfn(pte
);
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
597 if (likely(!pte_special(pte
)))
599 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
600 return vma
->vm_ops
->find_special_page(vma
, addr
);
601 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
603 if (is_zero_pfn(pfn
))
608 print_bad_pte(vma
, addr
, pte
, NULL
);
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
615 if (vma
->vm_flags
& VM_MIXEDMAP
) {
621 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
622 if (pfn
== vma
->vm_pgoff
+ off
)
624 if (!is_cow_mapping(vma
->vm_flags
))
629 if (is_zero_pfn(pfn
))
633 if (unlikely(pfn
> highest_memmap_pfn
)) {
634 print_bad_pte(vma
, addr
, pte
, NULL
);
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
643 return pfn_to_page(pfn
);
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
650 unsigned long pfn
= pmd_pfn(pmd
);
653 * There is no pmd_special() but there may be special pmds, e.g.
654 * in a direct-access (dax) mapping, so let's just replicate the
655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
658 if (vma
->vm_flags
& VM_MIXEDMAP
) {
664 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
665 if (pfn
== vma
->vm_pgoff
+ off
)
667 if (!is_cow_mapping(vma
->vm_flags
))
674 if (is_huge_zero_pmd(pmd
))
676 if (unlikely(pfn
> highest_memmap_pfn
))
680 * NOTE! We still have PageReserved() pages in the page tables.
681 * eg. VDSO mappings can cause them to exist.
684 return pfn_to_page(pfn
);
689 * copy one vm_area from one task to the other. Assumes the page tables
690 * already present in the new task to be cleared in the whole range
691 * covered by this vma.
694 static inline unsigned long
695 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
696 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
697 unsigned long addr
, int *rss
)
699 unsigned long vm_flags
= vma
->vm_flags
;
700 pte_t pte
= *src_pte
;
703 /* pte contains position in swap or file, so copy. */
704 if (unlikely(!pte_present(pte
))) {
705 swp_entry_t entry
= pte_to_swp_entry(pte
);
707 if (likely(!non_swap_entry(entry
))) {
708 if (swap_duplicate(entry
) < 0)
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
713 spin_lock(&mmlist_lock
);
714 if (list_empty(&dst_mm
->mmlist
))
715 list_add(&dst_mm
->mmlist
,
717 spin_unlock(&mmlist_lock
);
720 } else if (is_migration_entry(entry
)) {
721 page
= migration_entry_to_page(entry
);
723 rss
[mm_counter(page
)]++;
725 if (is_write_migration_entry(entry
) &&
726 is_cow_mapping(vm_flags
)) {
728 * COW mappings require pages in both
729 * parent and child to be set to read.
731 make_migration_entry_read(&entry
);
732 pte
= swp_entry_to_pte(entry
);
733 if (pte_swp_soft_dirty(*src_pte
))
734 pte
= pte_swp_mksoft_dirty(pte
);
735 if (pte_swp_uffd_wp(*src_pte
))
736 pte
= pte_swp_mkuffd_wp(pte
);
737 set_pte_at(src_mm
, addr
, src_pte
, pte
);
739 } else if (is_device_private_entry(entry
)) {
740 page
= device_private_entry_to_page(entry
);
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
752 rss
[mm_counter(page
)]++;
753 page_dup_rmap(page
, false);
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
762 if (is_write_device_private_entry(entry
) &&
763 is_cow_mapping(vm_flags
)) {
764 make_device_private_entry_read(&entry
);
765 pte
= swp_entry_to_pte(entry
);
766 if (pte_swp_uffd_wp(*src_pte
))
767 pte
= pte_swp_mkuffd_wp(pte
);
768 set_pte_at(src_mm
, addr
, src_pte
, pte
);
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
779 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
780 pte
= pte_wrprotect(pte
);
784 * If it's a shared mapping, mark it clean in
787 if (vm_flags
& VM_SHARED
)
788 pte
= pte_mkclean(pte
);
789 pte
= pte_mkold(pte
);
792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 * does not have the VM_UFFD_WP, which means that the uffd
794 * fork event is not enabled.
796 if (!(vm_flags
& VM_UFFD_WP
))
797 pte
= pte_clear_uffd_wp(pte
);
799 page
= vm_normal_page(vma
, addr
, pte
);
802 page_dup_rmap(page
, false);
803 rss
[mm_counter(page
)]++;
807 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
811 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
812 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
813 unsigned long addr
, unsigned long end
)
815 pte_t
*orig_src_pte
, *orig_dst_pte
;
816 pte_t
*src_pte
, *dst_pte
;
817 spinlock_t
*src_ptl
, *dst_ptl
;
819 int rss
[NR_MM_COUNTERS
];
820 swp_entry_t entry
= (swp_entry_t
){0};
825 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
828 src_pte
= pte_offset_map(src_pmd
, addr
);
829 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
830 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
831 orig_src_pte
= src_pte
;
832 orig_dst_pte
= dst_pte
;
833 arch_enter_lazy_mmu_mode();
837 * We are holding two locks at this point - either of them
838 * could generate latencies in another task on another CPU.
840 if (progress
>= 32) {
842 if (need_resched() ||
843 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
846 if (pte_none(*src_pte
)) {
850 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
855 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
857 arch_leave_lazy_mmu_mode();
858 spin_unlock(src_ptl
);
859 pte_unmap(orig_src_pte
);
860 add_mm_rss_vec(dst_mm
, rss
);
861 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
865 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
874 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
875 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
876 unsigned long addr
, unsigned long end
)
878 pmd_t
*src_pmd
, *dst_pmd
;
881 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
884 src_pmd
= pmd_offset(src_pud
, addr
);
886 next
= pmd_addr_end(addr
, end
);
887 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
888 || pmd_devmap(*src_pmd
)) {
890 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
891 err
= copy_huge_pmd(dst_mm
, src_mm
,
892 dst_pmd
, src_pmd
, addr
, vma
);
899 if (pmd_none_or_clear_bad(src_pmd
))
901 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
904 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
908 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
909 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
910 unsigned long addr
, unsigned long end
)
912 pud_t
*src_pud
, *dst_pud
;
915 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
918 src_pud
= pud_offset(src_p4d
, addr
);
920 next
= pud_addr_end(addr
, end
);
921 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
924 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
925 err
= copy_huge_pud(dst_mm
, src_mm
,
926 dst_pud
, src_pud
, addr
, vma
);
933 if (pud_none_or_clear_bad(src_pud
))
935 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
938 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
942 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
943 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
944 unsigned long addr
, unsigned long end
)
946 p4d_t
*src_p4d
, *dst_p4d
;
949 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
952 src_p4d
= p4d_offset(src_pgd
, addr
);
954 next
= p4d_addr_end(addr
, end
);
955 if (p4d_none_or_clear_bad(src_p4d
))
957 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
960 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
964 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
965 struct vm_area_struct
*vma
)
967 pgd_t
*src_pgd
, *dst_pgd
;
969 unsigned long addr
= vma
->vm_start
;
970 unsigned long end
= vma
->vm_end
;
971 struct mmu_notifier_range range
;
976 * Don't copy ptes where a page fault will fill them correctly.
977 * Fork becomes much lighter when there are big shared or private
978 * readonly mappings. The tradeoff is that copy_page_range is more
979 * efficient than faulting.
981 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
985 if (is_vm_hugetlb_page(vma
))
986 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
988 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
990 * We do not free on error cases below as remove_vma
991 * gets called on error from higher level routine
993 ret
= track_pfn_copy(vma
);
999 * We need to invalidate the secondary MMU mappings only when
1000 * there could be a permission downgrade on the ptes of the
1001 * parent mm. And a permission downgrade will only happen if
1002 * is_cow_mapping() returns true.
1004 is_cow
= is_cow_mapping(vma
->vm_flags
);
1007 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
1008 0, vma
, src_mm
, addr
, end
);
1009 mmu_notifier_invalidate_range_start(&range
);
1013 dst_pgd
= pgd_offset(dst_mm
, addr
);
1014 src_pgd
= pgd_offset(src_mm
, addr
);
1016 next
= pgd_addr_end(addr
, end
);
1017 if (pgd_none_or_clear_bad(src_pgd
))
1019 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1020 vma
, addr
, next
))) {
1024 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1027 mmu_notifier_invalidate_range_end(&range
);
1031 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1032 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1033 unsigned long addr
, unsigned long end
,
1034 struct zap_details
*details
)
1036 struct mm_struct
*mm
= tlb
->mm
;
1037 int force_flush
= 0;
1038 int rss
[NR_MM_COUNTERS
];
1044 tlb_change_page_size(tlb
, PAGE_SIZE
);
1047 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1049 flush_tlb_batched_pending(mm
);
1050 arch_enter_lazy_mmu_mode();
1053 if (pte_none(ptent
))
1059 if (pte_present(ptent
)) {
1062 page
= vm_normal_page(vma
, addr
, ptent
);
1063 if (unlikely(details
) && page
) {
1065 * unmap_shared_mapping_pages() wants to
1066 * invalidate cache without truncating:
1067 * unmap shared but keep private pages.
1069 if (details
->check_mapping
&&
1070 details
->check_mapping
!= page_rmapping(page
))
1073 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1075 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1076 if (unlikely(!page
))
1079 if (!PageAnon(page
)) {
1080 if (pte_dirty(ptent
)) {
1082 set_page_dirty(page
);
1084 if (pte_young(ptent
) &&
1085 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1086 mark_page_accessed(page
);
1088 rss
[mm_counter(page
)]--;
1089 page_remove_rmap(page
, false);
1090 if (unlikely(page_mapcount(page
) < 0))
1091 print_bad_pte(vma
, addr
, ptent
, page
);
1092 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1100 entry
= pte_to_swp_entry(ptent
);
1101 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1102 struct page
*page
= device_private_entry_to_page(entry
);
1104 if (unlikely(details
&& details
->check_mapping
)) {
1106 * unmap_shared_mapping_pages() wants to
1107 * invalidate cache without truncating:
1108 * unmap shared but keep private pages.
1110 if (details
->check_mapping
!=
1111 page_rmapping(page
))
1115 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1116 rss
[mm_counter(page
)]--;
1117 page_remove_rmap(page
, false);
1122 /* If details->check_mapping, we leave swap entries. */
1123 if (unlikely(details
))
1126 if (!non_swap_entry(entry
))
1128 else if (is_migration_entry(entry
)) {
1131 page
= migration_entry_to_page(entry
);
1132 rss
[mm_counter(page
)]--;
1134 if (unlikely(!free_swap_and_cache(entry
)))
1135 print_bad_pte(vma
, addr
, ptent
, NULL
);
1136 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1137 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1139 add_mm_rss_vec(mm
, rss
);
1140 arch_leave_lazy_mmu_mode();
1142 /* Do the actual TLB flush before dropping ptl */
1144 tlb_flush_mmu_tlbonly(tlb
);
1145 pte_unmap_unlock(start_pte
, ptl
);
1148 * If we forced a TLB flush (either due to running out of
1149 * batch buffers or because we needed to flush dirty TLB
1150 * entries before releasing the ptl), free the batched
1151 * memory too. Restart if we didn't do everything.
1166 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1167 struct vm_area_struct
*vma
, pud_t
*pud
,
1168 unsigned long addr
, unsigned long end
,
1169 struct zap_details
*details
)
1174 pmd
= pmd_offset(pud
, addr
);
1176 next
= pmd_addr_end(addr
, end
);
1177 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1178 if (next
- addr
!= HPAGE_PMD_SIZE
)
1179 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1180 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_lock in read
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1193 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1196 } while (pmd
++, addr
= next
, addr
!= end
);
1201 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1202 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1203 unsigned long addr
, unsigned long end
,
1204 struct zap_details
*details
)
1209 pud
= pud_offset(p4d
, addr
);
1211 next
= pud_addr_end(addr
, end
);
1212 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1213 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1214 mmap_assert_locked(tlb
->mm
);
1215 split_huge_pud(vma
, pud
, addr
);
1216 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1220 if (pud_none_or_clear_bad(pud
))
1222 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1225 } while (pud
++, addr
= next
, addr
!= end
);
1230 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1231 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1232 unsigned long addr
, unsigned long end
,
1233 struct zap_details
*details
)
1238 p4d
= p4d_offset(pgd
, addr
);
1240 next
= p4d_addr_end(addr
, end
);
1241 if (p4d_none_or_clear_bad(p4d
))
1243 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1244 } while (p4d
++, addr
= next
, addr
!= end
);
1249 void unmap_page_range(struct mmu_gather
*tlb
,
1250 struct vm_area_struct
*vma
,
1251 unsigned long addr
, unsigned long end
,
1252 struct zap_details
*details
)
1257 BUG_ON(addr
>= end
);
1258 tlb_start_vma(tlb
, vma
);
1259 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1261 next
= pgd_addr_end(addr
, end
);
1262 if (pgd_none_or_clear_bad(pgd
))
1264 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1265 } while (pgd
++, addr
= next
, addr
!= end
);
1266 tlb_end_vma(tlb
, vma
);
1270 static void unmap_single_vma(struct mmu_gather
*tlb
,
1271 struct vm_area_struct
*vma
, unsigned long start_addr
,
1272 unsigned long end_addr
,
1273 struct zap_details
*details
)
1275 unsigned long start
= max(vma
->vm_start
, start_addr
);
1278 if (start
>= vma
->vm_end
)
1280 end
= min(vma
->vm_end
, end_addr
);
1281 if (end
<= vma
->vm_start
)
1285 uprobe_munmap(vma
, start
, end
);
1287 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1288 untrack_pfn(vma
, 0, 0);
1291 if (unlikely(is_vm_hugetlb_page(vma
))) {
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
1296 * cleanup path of mmap_region. When
1297 * hugetlbfs ->mmap method fails,
1298 * mmap_region() nullifies vma->vm_file
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1304 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1305 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1306 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1309 unmap_page_range(tlb
, vma
, start
, end
, details
);
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
1315 * @tlb: address of the caller's struct mmu_gather
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1320 * Unmap all pages in the vma list.
1322 * Only addresses between `start' and `end' will be unmapped.
1324 * The VMA list must be sorted in ascending virtual address order.
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1331 void unmap_vmas(struct mmu_gather
*tlb
,
1332 struct vm_area_struct
*vma
, unsigned long start_addr
,
1333 unsigned long end_addr
)
1335 struct mmu_notifier_range range
;
1337 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1338 start_addr
, end_addr
);
1339 mmu_notifier_invalidate_range_start(&range
);
1340 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1341 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1342 mmu_notifier_invalidate_range_end(&range
);
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1351 * Caller must protect the VMA list
1353 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1356 struct mmu_notifier_range range
;
1357 struct mmu_gather tlb
;
1360 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1361 start
, start
+ size
);
1362 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1363 update_hiwater_rss(vma
->vm_mm
);
1364 mmu_notifier_invalidate_range_start(&range
);
1365 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1366 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1367 mmu_notifier_invalidate_range_end(&range
);
1368 tlb_finish_mmu(&tlb
, start
, range
.end
);
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1378 * The range must fit into one VMA.
1380 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1381 unsigned long size
, struct zap_details
*details
)
1383 struct mmu_notifier_range range
;
1384 struct mmu_gather tlb
;
1387 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1388 address
, address
+ size
);
1389 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1390 update_hiwater_rss(vma
->vm_mm
);
1391 mmu_notifier_invalidate_range_start(&range
);
1392 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1393 mmu_notifier_invalidate_range_end(&range
);
1394 tlb_finish_mmu(&tlb
, address
, range
.end
);
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 * The entire address range must be fully contained within the vma.
1408 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1411 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1412 !(vma
->vm_flags
& VM_PFNMAP
))
1415 zap_page_range_single(vma
, address
, size
, NULL
);
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1419 static pmd_t
*walk_to_pmd(struct mm_struct
*mm
, unsigned long addr
)
1426 pgd
= pgd_offset(mm
, addr
);
1427 p4d
= p4d_alloc(mm
, pgd
, addr
);
1430 pud
= pud_alloc(mm
, p4d
, addr
);
1433 pmd
= pmd_alloc(mm
, pud
, addr
);
1437 VM_BUG_ON(pmd_trans_huge(*pmd
));
1441 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1444 pmd_t
*pmd
= walk_to_pmd(mm
, addr
);
1448 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1451 static int validate_page_before_insert(struct page
*page
)
1453 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1455 flush_dcache_page(page
);
1459 static int insert_page_into_pte_locked(struct mm_struct
*mm
, pte_t
*pte
,
1460 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1462 if (!pte_none(*pte
))
1464 /* Ok, finally just insert the thing.. */
1466 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1467 page_add_file_rmap(page
, false);
1468 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1473 * This is the old fallback for page remapping.
1475 * For historical reasons, it only allows reserved pages. Only
1476 * old drivers should use this, and they needed to mark their
1477 * pages reserved for the old functions anyway.
1479 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1480 struct page
*page
, pgprot_t prot
)
1482 struct mm_struct
*mm
= vma
->vm_mm
;
1487 retval
= validate_page_before_insert(page
);
1491 pte
= get_locked_pte(mm
, addr
, &ptl
);
1494 retval
= insert_page_into_pte_locked(mm
, pte
, addr
, page
, prot
);
1495 pte_unmap_unlock(pte
, ptl
);
1501 static int insert_page_in_batch_locked(struct mm_struct
*mm
, pte_t
*pte
,
1502 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1506 if (!page_count(page
))
1508 err
= validate_page_before_insert(page
);
1511 return insert_page_into_pte_locked(mm
, pte
, addr
, page
, prot
);
1514 /* insert_pages() amortizes the cost of spinlock operations
1515 * when inserting pages in a loop. Arch *must* define pte_index.
1517 static int insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1518 struct page
**pages
, unsigned long *num
, pgprot_t prot
)
1521 pte_t
*start_pte
, *pte
;
1522 spinlock_t
*pte_lock
;
1523 struct mm_struct
*const mm
= vma
->vm_mm
;
1524 unsigned long curr_page_idx
= 0;
1525 unsigned long remaining_pages_total
= *num
;
1526 unsigned long pages_to_write_in_pmd
;
1530 pmd
= walk_to_pmd(mm
, addr
);
1534 pages_to_write_in_pmd
= min_t(unsigned long,
1535 remaining_pages_total
, PTRS_PER_PTE
- pte_index(addr
));
1537 /* Allocate the PTE if necessary; takes PMD lock once only. */
1539 if (pte_alloc(mm
, pmd
))
1542 while (pages_to_write_in_pmd
) {
1544 const int batch_size
= min_t(int, pages_to_write_in_pmd
, 8);
1546 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &pte_lock
);
1547 for (pte
= start_pte
; pte_idx
< batch_size
; ++pte
, ++pte_idx
) {
1548 int err
= insert_page_in_batch_locked(mm
, pte
,
1549 addr
, pages
[curr_page_idx
], prot
);
1550 if (unlikely(err
)) {
1551 pte_unmap_unlock(start_pte
, pte_lock
);
1553 remaining_pages_total
-= pte_idx
;
1559 pte_unmap_unlock(start_pte
, pte_lock
);
1560 pages_to_write_in_pmd
-= batch_size
;
1561 remaining_pages_total
-= batch_size
;
1563 if (remaining_pages_total
)
1567 *num
= remaining_pages_total
;
1570 #endif /* ifdef pte_index */
1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574 * @vma: user vma to map to
1575 * @addr: target start user address of these pages
1576 * @pages: source kernel pages
1577 * @num: in: number of pages to map. out: number of pages that were *not*
1578 * mapped. (0 means all pages were successfully mapped).
1580 * Preferred over vm_insert_page() when inserting multiple pages.
1582 * In case of error, we may have mapped a subset of the provided
1583 * pages. It is the caller's responsibility to account for this case.
1585 * The same restrictions apply as in vm_insert_page().
1587 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1588 struct page
**pages
, unsigned long *num
)
1591 const unsigned long end_addr
= addr
+ (*num
* PAGE_SIZE
) - 1;
1593 if (addr
< vma
->vm_start
|| end_addr
>= vma
->vm_end
)
1595 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1596 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
1597 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1598 vma
->vm_flags
|= VM_MIXEDMAP
;
1600 /* Defer page refcount checking till we're about to map that page. */
1601 return insert_pages(vma
, addr
, pages
, num
, vma
->vm_page_prot
);
1603 unsigned long idx
= 0, pgcount
= *num
;
1606 for (; idx
< pgcount
; ++idx
) {
1607 err
= vm_insert_page(vma
, addr
+ (PAGE_SIZE
* idx
), pages
[idx
]);
1611 *num
= pgcount
- idx
;
1613 #endif /* ifdef pte_index */
1615 EXPORT_SYMBOL(vm_insert_pages
);
1618 * vm_insert_page - insert single page into user vma
1619 * @vma: user vma to map to
1620 * @addr: target user address of this page
1621 * @page: source kernel page
1623 * This allows drivers to insert individual pages they've allocated
1626 * The page has to be a nice clean _individual_ kernel allocation.
1627 * If you allocate a compound page, you need to have marked it as
1628 * such (__GFP_COMP), or manually just split the page up yourself
1629 * (see split_page()).
1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632 * took an arbitrary page protection parameter. This doesn't allow
1633 * that. Your vma protection will have to be set up correctly, which
1634 * means that if you want a shared writable mapping, you'd better
1635 * ask for a shared writable mapping!
1637 * The page does not need to be reserved.
1639 * Usually this function is called from f_op->mmap() handler
1640 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642 * function from other places, for example from page-fault handler.
1644 * Return: %0 on success, negative error code otherwise.
1646 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1649 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1651 if (!page_count(page
))
1653 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1654 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
1655 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1656 vma
->vm_flags
|= VM_MIXEDMAP
;
1658 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1660 EXPORT_SYMBOL(vm_insert_page
);
1663 * __vm_map_pages - maps range of kernel pages into user vma
1664 * @vma: user vma to map to
1665 * @pages: pointer to array of source kernel pages
1666 * @num: number of pages in page array
1667 * @offset: user's requested vm_pgoff
1669 * This allows drivers to map range of kernel pages into a user vma.
1671 * Return: 0 on success and error code otherwise.
1673 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1674 unsigned long num
, unsigned long offset
)
1676 unsigned long count
= vma_pages(vma
);
1677 unsigned long uaddr
= vma
->vm_start
;
1680 /* Fail if the user requested offset is beyond the end of the object */
1684 /* Fail if the user requested size exceeds available object size */
1685 if (count
> num
- offset
)
1688 for (i
= 0; i
< count
; i
++) {
1689 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1699 * vm_map_pages - maps range of kernel pages starts with non zero offset
1700 * @vma: user vma to map to
1701 * @pages: pointer to array of source kernel pages
1702 * @num: number of pages in page array
1704 * Maps an object consisting of @num pages, catering for the user's
1705 * requested vm_pgoff
1707 * If we fail to insert any page into the vma, the function will return
1708 * immediately leaving any previously inserted pages present. Callers
1709 * from the mmap handler may immediately return the error as their caller
1710 * will destroy the vma, removing any successfully inserted pages. Other
1711 * callers should make their own arrangements for calling unmap_region().
1713 * Context: Process context. Called by mmap handlers.
1714 * Return: 0 on success and error code otherwise.
1716 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1719 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1721 EXPORT_SYMBOL(vm_map_pages
);
1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725 * @vma: user vma to map to
1726 * @pages: pointer to array of source kernel pages
1727 * @num: number of pages in page array
1729 * Similar to vm_map_pages(), except that it explicitly sets the offset
1730 * to 0. This function is intended for the drivers that did not consider
1733 * Context: Process context. Called by mmap handlers.
1734 * Return: 0 on success and error code otherwise.
1736 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1739 return __vm_map_pages(vma
, pages
, num
, 0);
1741 EXPORT_SYMBOL(vm_map_pages_zero
);
1743 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1744 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1746 struct mm_struct
*mm
= vma
->vm_mm
;
1750 pte
= get_locked_pte(mm
, addr
, &ptl
);
1752 return VM_FAULT_OOM
;
1753 if (!pte_none(*pte
)) {
1756 * For read faults on private mappings the PFN passed
1757 * in may not match the PFN we have mapped if the
1758 * mapped PFN is a writeable COW page. In the mkwrite
1759 * case we are creating a writable PTE for a shared
1760 * mapping and we expect the PFNs to match. If they
1761 * don't match, we are likely racing with block
1762 * allocation and mapping invalidation so just skip the
1765 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1769 entry
= pte_mkyoung(*pte
);
1770 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1771 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1772 update_mmu_cache(vma
, addr
, pte
);
1777 /* Ok, finally just insert the thing.. */
1778 if (pfn_t_devmap(pfn
))
1779 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1781 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1784 entry
= pte_mkyoung(entry
);
1785 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1788 set_pte_at(mm
, addr
, pte
, entry
);
1789 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1792 pte_unmap_unlock(pte
, ptl
);
1793 return VM_FAULT_NOPAGE
;
1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @pfn: source kernel pfn
1801 * @pgprot: pgprot flags for the inserted page
1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804 * to override pgprot on a per-page basis.
1806 * This only makes sense for IO mappings, and it makes no sense for
1807 * COW mappings. In general, using multiple vmas is preferable;
1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812 * a value of @pgprot different from that of @vma->vm_page_prot.
1814 * Context: Process context. May allocate using %GFP_KERNEL.
1815 * Return: vm_fault_t value.
1817 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1818 unsigned long pfn
, pgprot_t pgprot
)
1821 * Technically, architectures with pte_special can avoid all these
1822 * restrictions (same for remap_pfn_range). However we would like
1823 * consistency in testing and feature parity among all, so we should
1824 * try to keep these invariants in place for everybody.
1826 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1827 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1828 (VM_PFNMAP
|VM_MIXEDMAP
));
1829 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1830 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1832 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1833 return VM_FAULT_SIGBUS
;
1835 if (!pfn_modify_allowed(pfn
, pgprot
))
1836 return VM_FAULT_SIGBUS
;
1838 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1840 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1846 * vmf_insert_pfn - insert single pfn into user vma
1847 * @vma: user vma to map to
1848 * @addr: target user address of this page
1849 * @pfn: source kernel pfn
1851 * Similar to vm_insert_page, this allows drivers to insert individual pages
1852 * they've allocated into a user vma. Same comments apply.
1854 * This function should only be called from a vm_ops->fault handler, and
1855 * in that case the handler should return the result of this function.
1857 * vma cannot be a COW mapping.
1859 * As this is called only for pages that do not currently exist, we
1860 * do not need to flush old virtual caches or the TLB.
1862 * Context: Process context. May allocate using %GFP_KERNEL.
1863 * Return: vm_fault_t value.
1865 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1868 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1870 EXPORT_SYMBOL(vmf_insert_pfn
);
1872 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1874 /* these checks mirror the abort conditions in vm_normal_page */
1875 if (vma
->vm_flags
& VM_MIXEDMAP
)
1877 if (pfn_t_devmap(pfn
))
1879 if (pfn_t_special(pfn
))
1881 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1886 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1887 unsigned long addr
, pfn_t pfn
, pgprot_t pgprot
,
1892 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1894 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1895 return VM_FAULT_SIGBUS
;
1897 track_pfn_insert(vma
, &pgprot
, pfn
);
1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1900 return VM_FAULT_SIGBUS
;
1903 * If we don't have pte special, then we have to use the pfn_valid()
1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 * refcount the page if pfn_valid is true (hence insert_page rather
1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1907 * without pte special, it would there be refcounted as a normal page.
1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1910 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1914 * At this point we are committed to insert_page()
1915 * regardless of whether the caller specified flags that
1916 * result in pfn_t_has_page() == false.
1918 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1919 err
= insert_page(vma
, addr
, page
, pgprot
);
1921 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1925 return VM_FAULT_OOM
;
1926 if (err
< 0 && err
!= -EBUSY
)
1927 return VM_FAULT_SIGBUS
;
1929 return VM_FAULT_NOPAGE
;
1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934 * @vma: user vma to map to
1935 * @addr: target user address of this page
1936 * @pfn: source kernel pfn
1937 * @pgprot: pgprot flags for the inserted page
1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940 * to override pgprot on a per-page basis.
1942 * Typically this function should be used by drivers to set caching- and
1943 * encryption bits different than those of @vma->vm_page_prot, because
1944 * the caching- or encryption mode may not be known at mmap() time.
1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946 * to set caching and encryption bits for those vmas (except for COW pages).
1947 * This is ensured by core vm only modifying these page table entries using
1948 * functions that don't touch caching- or encryption bits, using pte_modify()
1949 * if needed. (See for example mprotect()).
1950 * Also when new page-table entries are created, this is only done using the
1951 * fault() callback, and never using the value of vma->vm_page_prot,
1952 * except for page-table entries that point to anonymous pages as the result
1955 * Context: Process context. May allocate using %GFP_KERNEL.
1956 * Return: vm_fault_t value.
1958 vm_fault_t
vmf_insert_mixed_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1959 pfn_t pfn
, pgprot_t pgprot
)
1961 return __vm_insert_mixed(vma
, addr
, pfn
, pgprot
, false);
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot
);
1965 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1968 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, false);
1970 EXPORT_SYMBOL(vmf_insert_mixed
);
1973 * If the insertion of PTE failed because someone else already added a
1974 * different entry in the mean time, we treat that as success as we assume
1975 * the same entry was actually inserted.
1977 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1978 unsigned long addr
, pfn_t pfn
)
1980 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, true);
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1985 * maps a range of physical memory into the requested pages. the old
1986 * mappings are removed. any references to nonexistent pages results
1987 * in null mappings (currently treated as "copy-on-access")
1989 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1990 unsigned long addr
, unsigned long end
,
1991 unsigned long pfn
, pgprot_t prot
)
1997 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2000 arch_enter_lazy_mmu_mode();
2002 BUG_ON(!pte_none(*pte
));
2003 if (!pfn_modify_allowed(pfn
, prot
)) {
2007 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2009 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2010 arch_leave_lazy_mmu_mode();
2011 pte_unmap_unlock(pte
- 1, ptl
);
2015 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2016 unsigned long addr
, unsigned long end
,
2017 unsigned long pfn
, pgprot_t prot
)
2023 pfn
-= addr
>> PAGE_SHIFT
;
2024 pmd
= pmd_alloc(mm
, pud
, addr
);
2027 VM_BUG_ON(pmd_trans_huge(*pmd
));
2029 next
= pmd_addr_end(addr
, end
);
2030 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2031 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2034 } while (pmd
++, addr
= next
, addr
!= end
);
2038 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2039 unsigned long addr
, unsigned long end
,
2040 unsigned long pfn
, pgprot_t prot
)
2046 pfn
-= addr
>> PAGE_SHIFT
;
2047 pud
= pud_alloc(mm
, p4d
, addr
);
2051 next
= pud_addr_end(addr
, end
);
2052 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2053 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2056 } while (pud
++, addr
= next
, addr
!= end
);
2060 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2061 unsigned long addr
, unsigned long end
,
2062 unsigned long pfn
, pgprot_t prot
)
2068 pfn
-= addr
>> PAGE_SHIFT
;
2069 p4d
= p4d_alloc(mm
, pgd
, addr
);
2073 next
= p4d_addr_end(addr
, end
);
2074 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2075 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2078 } while (p4d
++, addr
= next
, addr
!= end
);
2083 * remap_pfn_range - remap kernel memory to userspace
2084 * @vma: user vma to map to
2085 * @addr: target user address to start at
2086 * @pfn: page frame number of kernel physical memory address
2087 * @size: size of mapping area
2088 * @prot: page protection flags for this mapping
2090 * Note: this is only safe if the mm semaphore is held when called.
2092 * Return: %0 on success, negative error code otherwise.
2094 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2095 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2099 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2100 struct mm_struct
*mm
= vma
->vm_mm
;
2101 unsigned long remap_pfn
= pfn
;
2105 * Physically remapped pages are special. Tell the
2106 * rest of the world about it:
2107 * VM_IO tells people not to look at these pages
2108 * (accesses can have side effects).
2109 * VM_PFNMAP tells the core MM that the base pages are just
2110 * raw PFN mappings, and do not have a "struct page" associated
2113 * Disable vma merging and expanding with mremap().
2115 * Omit vma from core dump, even when VM_IO turned off.
2117 * There's a horrible special case to handle copy-on-write
2118 * behaviour that some programs depend on. We mark the "original"
2119 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120 * See vm_normal_page() for details.
2122 if (is_cow_mapping(vma
->vm_flags
)) {
2123 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2125 vma
->vm_pgoff
= pfn
;
2128 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2132 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2134 BUG_ON(addr
>= end
);
2135 pfn
-= addr
>> PAGE_SHIFT
;
2136 pgd
= pgd_offset(mm
, addr
);
2137 flush_cache_range(vma
, addr
, end
);
2139 next
= pgd_addr_end(addr
, end
);
2140 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2141 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2144 } while (pgd
++, addr
= next
, addr
!= end
);
2147 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2151 EXPORT_SYMBOL(remap_pfn_range
);
2154 * vm_iomap_memory - remap memory to userspace
2155 * @vma: user vma to map to
2156 * @start: start of the physical memory to be mapped
2157 * @len: size of area
2159 * This is a simplified io_remap_pfn_range() for common driver use. The
2160 * driver just needs to give us the physical memory range to be mapped,
2161 * we'll figure out the rest from the vma information.
2163 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164 * whatever write-combining details or similar.
2166 * Return: %0 on success, negative error code otherwise.
2168 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2170 unsigned long vm_len
, pfn
, pages
;
2172 /* Check that the physical memory area passed in looks valid */
2173 if (start
+ len
< start
)
2176 * You *really* shouldn't map things that aren't page-aligned,
2177 * but we've historically allowed it because IO memory might
2178 * just have smaller alignment.
2180 len
+= start
& ~PAGE_MASK
;
2181 pfn
= start
>> PAGE_SHIFT
;
2182 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2183 if (pfn
+ pages
< pfn
)
2186 /* We start the mapping 'vm_pgoff' pages into the area */
2187 if (vma
->vm_pgoff
> pages
)
2189 pfn
+= vma
->vm_pgoff
;
2190 pages
-= vma
->vm_pgoff
;
2192 /* Can we fit all of the mapping? */
2193 vm_len
= vma
->vm_end
- vma
->vm_start
;
2194 if (vm_len
>> PAGE_SHIFT
> pages
)
2197 /* Ok, let it rip */
2198 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2200 EXPORT_SYMBOL(vm_iomap_memory
);
2202 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2203 unsigned long addr
, unsigned long end
,
2204 pte_fn_t fn
, void *data
, bool create
)
2208 spinlock_t
*uninitialized_var(ptl
);
2211 pte
= (mm
== &init_mm
) ?
2212 pte_alloc_kernel(pmd
, addr
) :
2213 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2217 pte
= (mm
== &init_mm
) ?
2218 pte_offset_kernel(pmd
, addr
) :
2219 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
2222 BUG_ON(pmd_huge(*pmd
));
2224 arch_enter_lazy_mmu_mode();
2227 if (create
|| !pte_none(*pte
)) {
2228 err
= fn(pte
++, addr
, data
);
2232 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2234 arch_leave_lazy_mmu_mode();
2237 pte_unmap_unlock(pte
-1, ptl
);
2241 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2242 unsigned long addr
, unsigned long end
,
2243 pte_fn_t fn
, void *data
, bool create
)
2249 BUG_ON(pud_huge(*pud
));
2252 pmd
= pmd_alloc(mm
, pud
, addr
);
2256 pmd
= pmd_offset(pud
, addr
);
2259 next
= pmd_addr_end(addr
, end
);
2260 if (create
|| !pmd_none_or_clear_bad(pmd
)) {
2261 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
,
2266 } while (pmd
++, addr
= next
, addr
!= end
);
2270 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2271 unsigned long addr
, unsigned long end
,
2272 pte_fn_t fn
, void *data
, bool create
)
2279 pud
= pud_alloc(mm
, p4d
, addr
);
2283 pud
= pud_offset(p4d
, addr
);
2286 next
= pud_addr_end(addr
, end
);
2287 if (create
|| !pud_none_or_clear_bad(pud
)) {
2288 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
,
2293 } while (pud
++, addr
= next
, addr
!= end
);
2297 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2298 unsigned long addr
, unsigned long end
,
2299 pte_fn_t fn
, void *data
, bool create
)
2306 p4d
= p4d_alloc(mm
, pgd
, addr
);
2310 p4d
= p4d_offset(pgd
, addr
);
2313 next
= p4d_addr_end(addr
, end
);
2314 if (create
|| !p4d_none_or_clear_bad(p4d
)) {
2315 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
,
2320 } while (p4d
++, addr
= next
, addr
!= end
);
2324 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2325 unsigned long size
, pte_fn_t fn
,
2326 void *data
, bool create
)
2330 unsigned long end
= addr
+ size
;
2333 if (WARN_ON(addr
>= end
))
2336 pgd
= pgd_offset(mm
, addr
);
2338 next
= pgd_addr_end(addr
, end
);
2339 if (!create
&& pgd_none_or_clear_bad(pgd
))
2341 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
, create
);
2344 } while (pgd
++, addr
= next
, addr
!= end
);
2350 * Scan a region of virtual memory, filling in page tables as necessary
2351 * and calling a provided function on each leaf page table.
2353 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2354 unsigned long size
, pte_fn_t fn
, void *data
)
2356 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
2358 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2361 * Scan a region of virtual memory, calling a provided function on
2362 * each leaf page table where it exists.
2364 * Unlike apply_to_page_range, this does _not_ fill in page tables
2365 * where they are absent.
2367 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
2368 unsigned long size
, pte_fn_t fn
, void *data
)
2370 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range
);
2375 * handle_pte_fault chooses page fault handler according to an entry which was
2376 * read non-atomically. Before making any commitment, on those architectures
2377 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378 * parts, do_swap_page must check under lock before unmapping the pte and
2379 * proceeding (but do_wp_page is only called after already making such a check;
2380 * and do_anonymous_page can safely check later on).
2382 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2383 pte_t
*page_table
, pte_t orig_pte
)
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2388 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2390 same
= pte_same(*page_table
, orig_pte
);
2394 pte_unmap(page_table
);
2398 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2399 struct vm_fault
*vmf
)
2404 bool locked
= false;
2405 struct vm_area_struct
*vma
= vmf
->vma
;
2406 struct mm_struct
*mm
= vma
->vm_mm
;
2407 unsigned long addr
= vmf
->address
;
2409 debug_dma_assert_idle(src
);
2412 copy_user_highpage(dst
, src
, addr
, vma
);
2417 * If the source page was a PFN mapping, we don't have
2418 * a "struct page" for it. We do a best-effort copy by
2419 * just copying from the original user address. If that
2420 * fails, we just zero-fill it. Live with it.
2422 kaddr
= kmap_atomic(dst
);
2423 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2426 * On architectures with software "accessed" bits, we would
2427 * take a double page fault, so mark it accessed here.
2429 if (arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
)) {
2432 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2434 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2436 * Other thread has already handled the fault
2437 * and update local tlb only
2439 update_mmu_tlb(vma
, addr
, vmf
->pte
);
2444 entry
= pte_mkyoung(vmf
->orig_pte
);
2445 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2446 update_mmu_cache(vma
, addr
, vmf
->pte
);
2450 * This really shouldn't fail, because the page is there
2451 * in the page tables. But it might just be unreadable,
2452 * in which case we just give up and fill the result with
2455 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2459 /* Re-validate under PTL if the page is still mapped */
2460 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2462 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2463 /* The PTE changed under us, update local tlb */
2464 update_mmu_tlb(vma
, addr
, vmf
->pte
);
2470 * The same page can be mapped back since last copy attempt.
2471 * Try to copy again under PTL.
2473 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2475 * Give a warn in case there can be some obscure
2488 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2489 kunmap_atomic(kaddr
);
2490 flush_dcache_page(dst
);
2495 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2497 struct file
*vm_file
= vma
->vm_file
;
2500 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2503 * Special mappings (e.g. VDSO) do not have any file so fake
2504 * a default GFP_KERNEL for them.
2510 * Notify the address space that the page is about to become writable so that
2511 * it can prohibit this or wait for the page to get into an appropriate state.
2513 * We do this without the lock held, so that it can sleep if it needs to.
2515 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2518 struct page
*page
= vmf
->page
;
2519 unsigned int old_flags
= vmf
->flags
;
2521 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2523 if (vmf
->vma
->vm_file
&&
2524 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
2525 return VM_FAULT_SIGBUS
;
2527 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2528 /* Restore original flags so that caller is not surprised */
2529 vmf
->flags
= old_flags
;
2530 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2532 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2534 if (!page
->mapping
) {
2536 return 0; /* retry */
2538 ret
|= VM_FAULT_LOCKED
;
2540 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2545 * Handle dirtying of a page in shared file mapping on a write fault.
2547 * The function expects the page to be locked and unlocks it.
2549 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
2551 struct vm_area_struct
*vma
= vmf
->vma
;
2552 struct address_space
*mapping
;
2553 struct page
*page
= vmf
->page
;
2555 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2557 dirtied
= set_page_dirty(page
);
2558 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2560 * Take a local copy of the address_space - page.mapping may be zeroed
2561 * by truncate after unlock_page(). The address_space itself remains
2562 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2563 * release semantics to prevent the compiler from undoing this copying.
2565 mapping
= page_rmapping(page
);
2569 file_update_time(vma
->vm_file
);
2572 * Throttle page dirtying rate down to writeback speed.
2574 * mapping may be NULL here because some device drivers do not
2575 * set page.mapping but still dirty their pages
2577 * Drop the mmap_lock before waiting on IO, if we can. The file
2578 * is pinning the mapping, as per above.
2580 if ((dirtied
|| page_mkwrite
) && mapping
) {
2583 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2584 balance_dirty_pages_ratelimited(mapping
);
2587 return VM_FAULT_RETRY
;
2595 * Handle write page faults for pages that can be reused in the current vma
2597 * This can happen either due to the mapping being with the VM_SHARED flag,
2598 * or due to us being the last reference standing to the page. In either
2599 * case, all we need to do here is to mark the page as writable and update
2600 * any related book-keeping.
2602 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2603 __releases(vmf
->ptl
)
2605 struct vm_area_struct
*vma
= vmf
->vma
;
2606 struct page
*page
= vmf
->page
;
2609 * Clear the pages cpupid information as the existing
2610 * information potentially belongs to a now completely
2611 * unrelated process.
2614 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2616 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2617 entry
= pte_mkyoung(vmf
->orig_pte
);
2618 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2619 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2620 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2621 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2622 count_vm_event(PGREUSE
);
2626 * Handle the case of a page which we actually need to copy to a new page.
2628 * Called with mmap_lock locked and the old page referenced, but
2629 * without the ptl held.
2631 * High level logic flow:
2633 * - Allocate a page, copy the content of the old page to the new one.
2634 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2635 * - Take the PTL. If the pte changed, bail out and release the allocated page
2636 * - If the pte is still the way we remember it, update the page table and all
2637 * relevant references. This includes dropping the reference the page-table
2638 * held to the old page, as well as updating the rmap.
2639 * - In any case, unlock the PTL and drop the reference we took to the old page.
2641 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2643 struct vm_area_struct
*vma
= vmf
->vma
;
2644 struct mm_struct
*mm
= vma
->vm_mm
;
2645 struct page
*old_page
= vmf
->page
;
2646 struct page
*new_page
= NULL
;
2648 int page_copied
= 0;
2649 struct mmu_notifier_range range
;
2651 if (unlikely(anon_vma_prepare(vma
)))
2654 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2655 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2660 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2665 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2667 * COW failed, if the fault was solved by other,
2668 * it's fine. If not, userspace would re-fault on
2669 * the same address and we will handle the fault
2670 * from the second attempt.
2679 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
2681 cgroup_throttle_swaprate(new_page
, GFP_KERNEL
);
2683 __SetPageUptodate(new_page
);
2685 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2686 vmf
->address
& PAGE_MASK
,
2687 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2688 mmu_notifier_invalidate_range_start(&range
);
2691 * Re-check the pte - we dropped the lock
2693 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2694 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2696 if (!PageAnon(old_page
)) {
2697 dec_mm_counter_fast(mm
,
2698 mm_counter_file(old_page
));
2699 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2702 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2704 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2705 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2706 entry
= pte_sw_mkyoung(entry
);
2707 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2709 * Clear the pte entry and flush it first, before updating the
2710 * pte with the new entry. This will avoid a race condition
2711 * seen in the presence of one thread doing SMC and another
2714 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2715 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2716 lru_cache_add_active_or_unevictable(new_page
, vma
);
2718 * We call the notify macro here because, when using secondary
2719 * mmu page tables (such as kvm shadow page tables), we want the
2720 * new page to be mapped directly into the secondary page table.
2722 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2723 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2726 * Only after switching the pte to the new page may
2727 * we remove the mapcount here. Otherwise another
2728 * process may come and find the rmap count decremented
2729 * before the pte is switched to the new page, and
2730 * "reuse" the old page writing into it while our pte
2731 * here still points into it and can be read by other
2734 * The critical issue is to order this
2735 * page_remove_rmap with the ptp_clear_flush above.
2736 * Those stores are ordered by (if nothing else,)
2737 * the barrier present in the atomic_add_negative
2738 * in page_remove_rmap.
2740 * Then the TLB flush in ptep_clear_flush ensures that
2741 * no process can access the old page before the
2742 * decremented mapcount is visible. And the old page
2743 * cannot be reused until after the decremented
2744 * mapcount is visible. So transitively, TLBs to
2745 * old page will be flushed before it can be reused.
2747 page_remove_rmap(old_page
, false);
2750 /* Free the old page.. */
2751 new_page
= old_page
;
2754 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
2760 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2762 * No need to double call mmu_notifier->invalidate_range() callback as
2763 * the above ptep_clear_flush_notify() did already call it.
2765 mmu_notifier_invalidate_range_only_end(&range
);
2768 * Don't let another task, with possibly unlocked vma,
2769 * keep the mlocked page.
2771 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2772 lock_page(old_page
); /* LRU manipulation */
2773 if (PageMlocked(old_page
))
2774 munlock_vma_page(old_page
);
2775 unlock_page(old_page
);
2779 return page_copied
? VM_FAULT_WRITE
: 0;
2785 return VM_FAULT_OOM
;
2789 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2790 * writeable once the page is prepared
2792 * @vmf: structure describing the fault
2794 * This function handles all that is needed to finish a write page fault in a
2795 * shared mapping due to PTE being read-only once the mapped page is prepared.
2796 * It handles locking of PTE and modifying it.
2798 * The function expects the page to be locked or other protection against
2799 * concurrent faults / writeback (such as DAX radix tree locks).
2801 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2802 * we acquired PTE lock.
2804 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2806 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2807 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2810 * We might have raced with another page fault while we released the
2811 * pte_offset_map_lock.
2813 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2814 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
2815 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2816 return VM_FAULT_NOPAGE
;
2823 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2828 struct vm_area_struct
*vma
= vmf
->vma
;
2830 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2833 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2834 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2835 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2836 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2838 return finish_mkwrite_fault(vmf
);
2841 return VM_FAULT_WRITE
;
2844 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2845 __releases(vmf
->ptl
)
2847 struct vm_area_struct
*vma
= vmf
->vma
;
2848 vm_fault_t ret
= VM_FAULT_WRITE
;
2850 get_page(vmf
->page
);
2852 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2855 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2856 tmp
= do_page_mkwrite(vmf
);
2857 if (unlikely(!tmp
|| (tmp
&
2858 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2859 put_page(vmf
->page
);
2862 tmp
= finish_mkwrite_fault(vmf
);
2863 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2864 unlock_page(vmf
->page
);
2865 put_page(vmf
->page
);
2870 lock_page(vmf
->page
);
2872 ret
|= fault_dirty_shared_page(vmf
);
2873 put_page(vmf
->page
);
2879 * This routine handles present pages, when users try to write
2880 * to a shared page. It is done by copying the page to a new address
2881 * and decrementing the shared-page counter for the old page.
2883 * Note that this routine assumes that the protection checks have been
2884 * done by the caller (the low-level page fault routine in most cases).
2885 * Thus we can safely just mark it writable once we've done any necessary
2888 * We also mark the page dirty at this point even though the page will
2889 * change only once the write actually happens. This avoids a few races,
2890 * and potentially makes it more efficient.
2892 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2893 * but allow concurrent faults), with pte both mapped and locked.
2894 * We return with mmap_lock still held, but pte unmapped and unlocked.
2896 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2897 __releases(vmf
->ptl
)
2899 struct vm_area_struct
*vma
= vmf
->vma
;
2901 if (userfaultfd_pte_wp(vma
, *vmf
->pte
)) {
2902 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2903 return handle_userfault(vmf
, VM_UFFD_WP
);
2906 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2909 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912 * We should not cow pages in a shared writeable mapping.
2913 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2915 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2916 (VM_WRITE
|VM_SHARED
))
2917 return wp_pfn_shared(vmf
);
2919 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2920 return wp_page_copy(vmf
);
2924 * Take out anonymous pages first, anonymous shared vmas are
2925 * not dirty accountable.
2927 if (PageAnon(vmf
->page
)) {
2928 struct page
*page
= vmf
->page
;
2930 /* PageKsm() doesn't necessarily raise the page refcount */
2931 if (PageKsm(page
) || page_count(page
) != 1)
2933 if (!trylock_page(page
))
2935 if (PageKsm(page
) || page_mapcount(page
) != 1 || page_count(page
) != 1) {
2940 * Ok, we've got the only map reference, and the only
2941 * page count reference, and the page is locked,
2942 * it's dark out, and we're wearing sunglasses. Hit it.
2946 return VM_FAULT_WRITE
;
2947 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2948 (VM_WRITE
|VM_SHARED
))) {
2949 return wp_page_shared(vmf
);
2953 * Ok, we need to copy. Oh, well..
2955 get_page(vmf
->page
);
2957 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2958 return wp_page_copy(vmf
);
2961 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2962 unsigned long start_addr
, unsigned long end_addr
,
2963 struct zap_details
*details
)
2965 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2968 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2969 struct zap_details
*details
)
2971 struct vm_area_struct
*vma
;
2972 pgoff_t vba
, vea
, zba
, zea
;
2974 vma_interval_tree_foreach(vma
, root
,
2975 details
->first_index
, details
->last_index
) {
2977 vba
= vma
->vm_pgoff
;
2978 vea
= vba
+ vma_pages(vma
) - 1;
2979 zba
= details
->first_index
;
2982 zea
= details
->last_index
;
2986 unmap_mapping_range_vma(vma
,
2987 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2988 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2994 * unmap_mapping_pages() - Unmap pages from processes.
2995 * @mapping: The address space containing pages to be unmapped.
2996 * @start: Index of first page to be unmapped.
2997 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2998 * @even_cows: Whether to unmap even private COWed pages.
3000 * Unmap the pages in this address space from any userspace process which
3001 * has them mmaped. Generally, you want to remove COWed pages as well when
3002 * a file is being truncated, but not when invalidating pages from the page
3005 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
3006 pgoff_t nr
, bool even_cows
)
3008 struct zap_details details
= { };
3010 details
.check_mapping
= even_cows
? NULL
: mapping
;
3011 details
.first_index
= start
;
3012 details
.last_index
= start
+ nr
- 1;
3013 if (details
.last_index
< details
.first_index
)
3014 details
.last_index
= ULONG_MAX
;
3016 i_mmap_lock_write(mapping
);
3017 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
3018 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3019 i_mmap_unlock_write(mapping
);
3023 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3024 * address_space corresponding to the specified byte range in the underlying
3027 * @mapping: the address space containing mmaps to be unmapped.
3028 * @holebegin: byte in first page to unmap, relative to the start of
3029 * the underlying file. This will be rounded down to a PAGE_SIZE
3030 * boundary. Note that this is different from truncate_pagecache(), which
3031 * must keep the partial page. In contrast, we must get rid of
3033 * @holelen: size of prospective hole in bytes. This will be rounded
3034 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3036 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3037 * but 0 when invalidating pagecache, don't throw away private data.
3039 void unmap_mapping_range(struct address_space
*mapping
,
3040 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3042 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
3043 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3045 /* Check for overflow. */
3046 if (sizeof(holelen
) > sizeof(hlen
)) {
3048 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3049 if (holeend
& ~(long long)ULONG_MAX
)
3050 hlen
= ULONG_MAX
- hba
+ 1;
3053 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
3055 EXPORT_SYMBOL(unmap_mapping_range
);
3058 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3059 * but allow concurrent faults), and pte mapped but not yet locked.
3060 * We return with pte unmapped and unlocked.
3062 * We return with the mmap_lock locked or unlocked in the same cases
3063 * as does filemap_fault().
3065 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
3067 struct vm_area_struct
*vma
= vmf
->vma
;
3068 struct page
*page
= NULL
, *swapcache
;
3075 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
3078 entry
= pte_to_swp_entry(vmf
->orig_pte
);
3079 if (unlikely(non_swap_entry(entry
))) {
3080 if (is_migration_entry(entry
)) {
3081 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
3083 } else if (is_device_private_entry(entry
)) {
3084 vmf
->page
= device_private_entry_to_page(entry
);
3085 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
3086 } else if (is_hwpoison_entry(entry
)) {
3087 ret
= VM_FAULT_HWPOISON
;
3089 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
3090 ret
= VM_FAULT_SIGBUS
;
3096 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3097 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
3101 struct swap_info_struct
*si
= swp_swap_info(entry
);
3103 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
3104 __swap_count(entry
) == 1) {
3105 /* skip swapcache */
3106 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
3111 __SetPageLocked(page
);
3112 __SetPageSwapBacked(page
);
3113 set_page_private(page
, entry
.val
);
3115 /* Tell memcg to use swap ownership records */
3116 SetPageSwapCache(page
);
3117 err
= mem_cgroup_charge(page
, vma
->vm_mm
,
3119 ClearPageSwapCache(page
);
3126 * XXX: Move to lru_cache_add() when it
3127 * supports new vs putback
3129 spin_lock_irq(&page_pgdat(page
)->lru_lock
);
3130 lru_note_cost_page(page
);
3131 spin_unlock_irq(&page_pgdat(page
)->lru_lock
);
3133 lru_cache_add(page
);
3134 swap_readpage(page
, true);
3137 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
3144 * Back out if somebody else faulted in this pte
3145 * while we released the pte lock.
3147 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3148 vmf
->address
, &vmf
->ptl
);
3149 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3151 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3155 /* Had to read the page from swap area: Major fault */
3156 ret
= VM_FAULT_MAJOR
;
3157 count_vm_event(PGMAJFAULT
);
3158 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
3159 } else if (PageHWPoison(page
)) {
3161 * hwpoisoned dirty swapcache pages are kept for killing
3162 * owner processes (which may be unknown at hwpoison time)
3164 ret
= VM_FAULT_HWPOISON
;
3165 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3169 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
3171 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3173 ret
|= VM_FAULT_RETRY
;
3178 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3179 * release the swapcache from under us. The page pin, and pte_same
3180 * test below, are not enough to exclude that. Even if it is still
3181 * swapcache, we need to check that the page's swap has not changed.
3183 if (unlikely((!PageSwapCache(page
) ||
3184 page_private(page
) != entry
.val
)) && swapcache
)
3187 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3188 if (unlikely(!page
)) {
3194 cgroup_throttle_swaprate(page
, GFP_KERNEL
);
3197 * Back out if somebody else already faulted in this pte.
3199 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3201 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3204 if (unlikely(!PageUptodate(page
))) {
3205 ret
= VM_FAULT_SIGBUS
;
3210 * The page isn't present yet, go ahead with the fault.
3212 * Be careful about the sequence of operations here.
3213 * To get its accounting right, reuse_swap_page() must be called
3214 * while the page is counted on swap but not yet in mapcount i.e.
3215 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3216 * must be called after the swap_free(), or it will never succeed.
3219 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3220 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3221 pte
= mk_pte(page
, vma
->vm_page_prot
);
3222 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3223 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3224 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3225 ret
|= VM_FAULT_WRITE
;
3226 exclusive
= RMAP_EXCLUSIVE
;
3228 flush_icache_page(vma
, page
);
3229 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3230 pte
= pte_mksoft_dirty(pte
);
3231 if (pte_swp_uffd_wp(vmf
->orig_pte
)) {
3232 pte
= pte_mkuffd_wp(pte
);
3233 pte
= pte_wrprotect(pte
);
3235 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3236 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3237 vmf
->orig_pte
= pte
;
3239 /* ksm created a completely new copy */
3240 if (unlikely(page
!= swapcache
&& swapcache
)) {
3241 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3242 lru_cache_add_active_or_unevictable(page
, vma
);
3244 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3245 activate_page(page
);
3249 if (mem_cgroup_swap_full(page
) ||
3250 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3251 try_to_free_swap(page
);
3253 if (page
!= swapcache
&& swapcache
) {
3255 * Hold the lock to avoid the swap entry to be reused
3256 * until we take the PT lock for the pte_same() check
3257 * (to avoid false positives from pte_same). For
3258 * further safety release the lock after the swap_free
3259 * so that the swap count won't change under a
3260 * parallel locked swapcache.
3262 unlock_page(swapcache
);
3263 put_page(swapcache
);
3266 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3267 ret
|= do_wp_page(vmf
);
3268 if (ret
& VM_FAULT_ERROR
)
3269 ret
&= VM_FAULT_ERROR
;
3273 /* No need to invalidate - it was non-present before */
3274 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3276 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3280 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3285 if (page
!= swapcache
&& swapcache
) {
3286 unlock_page(swapcache
);
3287 put_page(swapcache
);
3293 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3294 * but allow concurrent faults), and pte mapped but not yet locked.
3295 * We return with mmap_lock still held, but pte unmapped and unlocked.
3297 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3299 struct vm_area_struct
*vma
= vmf
->vma
;
3304 /* File mapping without ->vm_ops ? */
3305 if (vma
->vm_flags
& VM_SHARED
)
3306 return VM_FAULT_SIGBUS
;
3309 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3310 * pte_offset_map() on pmds where a huge pmd might be created
3311 * from a different thread.
3313 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3314 * parallel threads are excluded by other means.
3316 * Here we only have mmap_read_lock(mm).
3318 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
3319 return VM_FAULT_OOM
;
3321 /* See the comment in pte_alloc_one_map() */
3322 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3325 /* Use the zero-page for reads */
3326 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3327 !mm_forbids_zeropage(vma
->vm_mm
)) {
3328 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3329 vma
->vm_page_prot
));
3330 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3331 vmf
->address
, &vmf
->ptl
);
3332 if (!pte_none(*vmf
->pte
)) {
3333 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3336 ret
= check_stable_address_space(vma
->vm_mm
);
3339 /* Deliver the page fault to userland, check inside PT lock */
3340 if (userfaultfd_missing(vma
)) {
3341 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3342 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3347 /* Allocate our own private page. */
3348 if (unlikely(anon_vma_prepare(vma
)))
3350 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3354 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
3356 cgroup_throttle_swaprate(page
, GFP_KERNEL
);
3359 * The memory barrier inside __SetPageUptodate makes sure that
3360 * preceding stores to the page contents become visible before
3361 * the set_pte_at() write.
3363 __SetPageUptodate(page
);
3365 entry
= mk_pte(page
, vma
->vm_page_prot
);
3366 entry
= pte_sw_mkyoung(entry
);
3367 if (vma
->vm_flags
& VM_WRITE
)
3368 entry
= pte_mkwrite(pte_mkdirty(entry
));
3370 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3372 if (!pte_none(*vmf
->pte
)) {
3373 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3377 ret
= check_stable_address_space(vma
->vm_mm
);
3381 /* Deliver the page fault to userland, check inside PT lock */
3382 if (userfaultfd_missing(vma
)) {
3383 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3385 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3388 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3389 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3390 lru_cache_add_active_or_unevictable(page
, vma
);
3392 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3394 /* No need to invalidate - it was non-present before */
3395 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3397 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3405 return VM_FAULT_OOM
;
3409 * The mmap_lock must have been held on entry, and may have been
3410 * released depending on flags and vma->vm_ops->fault() return value.
3411 * See filemap_fault() and __lock_page_retry().
3413 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3415 struct vm_area_struct
*vma
= vmf
->vma
;
3419 * Preallocate pte before we take page_lock because this might lead to
3420 * deadlocks for memcg reclaim which waits for pages under writeback:
3422 * SetPageWriteback(A)
3428 * wait_on_page_writeback(A)
3429 * SetPageWriteback(B)
3431 * # flush A, B to clear the writeback
3433 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3434 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3435 if (!vmf
->prealloc_pte
)
3436 return VM_FAULT_OOM
;
3437 smp_wmb(); /* See comment in __pte_alloc() */
3440 ret
= vma
->vm_ops
->fault(vmf
);
3441 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3442 VM_FAULT_DONE_COW
)))
3445 if (unlikely(PageHWPoison(vmf
->page
))) {
3446 if (ret
& VM_FAULT_LOCKED
)
3447 unlock_page(vmf
->page
);
3448 put_page(vmf
->page
);
3450 return VM_FAULT_HWPOISON
;
3453 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3454 lock_page(vmf
->page
);
3456 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3462 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3463 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3464 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3465 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3467 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3469 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3472 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3474 struct vm_area_struct
*vma
= vmf
->vma
;
3476 if (!pmd_none(*vmf
->pmd
))
3478 if (vmf
->prealloc_pte
) {
3479 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3480 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3481 spin_unlock(vmf
->ptl
);
3485 mm_inc_nr_ptes(vma
->vm_mm
);
3486 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3487 spin_unlock(vmf
->ptl
);
3488 vmf
->prealloc_pte
= NULL
;
3489 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3490 return VM_FAULT_OOM
;
3494 * If a huge pmd materialized under us just retry later. Use
3495 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3496 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3497 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3498 * running immediately after a huge pmd fault in a different thread of
3499 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3500 * All we have to ensure is that it is a regular pmd that we can walk
3501 * with pte_offset_map() and we can do that through an atomic read in
3502 * C, which is what pmd_trans_unstable() provides.
3504 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3505 return VM_FAULT_NOPAGE
;
3508 * At this point we know that our vmf->pmd points to a page of ptes
3509 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3510 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3511 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3512 * be valid and we will re-check to make sure the vmf->pte isn't
3513 * pte_none() under vmf->ptl protection when we return to
3516 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3521 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3522 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3524 struct vm_area_struct
*vma
= vmf
->vma
;
3526 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3528 * We are going to consume the prealloc table,
3529 * count that as nr_ptes.
3531 mm_inc_nr_ptes(vma
->vm_mm
);
3532 vmf
->prealloc_pte
= NULL
;
3535 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3537 struct vm_area_struct
*vma
= vmf
->vma
;
3538 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3539 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3544 if (!transhuge_vma_suitable(vma
, haddr
))
3545 return VM_FAULT_FALLBACK
;
3547 ret
= VM_FAULT_FALLBACK
;
3548 page
= compound_head(page
);
3551 * Archs like ppc64 need additonal space to store information
3552 * related to pte entry. Use the preallocated table for that.
3554 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3555 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3556 if (!vmf
->prealloc_pte
)
3557 return VM_FAULT_OOM
;
3558 smp_wmb(); /* See comment in __pte_alloc() */
3561 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3562 if (unlikely(!pmd_none(*vmf
->pmd
)))
3565 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3566 flush_icache_page(vma
, page
+ i
);
3568 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3570 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3572 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3573 page_add_file_rmap(page
, true);
3575 * deposit and withdraw with pmd lock held
3577 if (arch_needs_pgtable_deposit())
3578 deposit_prealloc_pte(vmf
);
3580 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3582 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3584 /* fault is handled */
3586 count_vm_event(THP_FILE_MAPPED
);
3588 spin_unlock(vmf
->ptl
);
3592 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3600 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3601 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3603 * @vmf: fault environment
3604 * @page: page to map
3606 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3609 * Target users are page handler itself and implementations of
3610 * vm_ops->map_pages.
3612 * Return: %0 on success, %VM_FAULT_ code in case of error.
3614 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct page
*page
)
3616 struct vm_area_struct
*vma
= vmf
->vma
;
3617 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3621 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
)) {
3622 ret
= do_set_pmd(vmf
, page
);
3623 if (ret
!= VM_FAULT_FALLBACK
)
3628 ret
= pte_alloc_one_map(vmf
);
3633 /* Re-check under ptl */
3634 if (unlikely(!pte_none(*vmf
->pte
))) {
3635 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3636 return VM_FAULT_NOPAGE
;
3639 flush_icache_page(vma
, page
);
3640 entry
= mk_pte(page
, vma
->vm_page_prot
);
3641 entry
= pte_sw_mkyoung(entry
);
3643 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3644 /* copy-on-write page */
3645 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3646 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3647 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3648 lru_cache_add_active_or_unevictable(page
, vma
);
3650 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3651 page_add_file_rmap(page
, false);
3653 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3655 /* no need to invalidate: a not-present page won't be cached */
3656 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3663 * finish_fault - finish page fault once we have prepared the page to fault
3665 * @vmf: structure describing the fault
3667 * This function handles all that is needed to finish a page fault once the
3668 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3669 * given page, adds reverse page mapping, handles memcg charges and LRU
3672 * The function expects the page to be locked and on success it consumes a
3673 * reference of a page being mapped (for the PTE which maps it).
3675 * Return: %0 on success, %VM_FAULT_ code in case of error.
3677 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3682 /* Did we COW the page? */
3683 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3684 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3685 page
= vmf
->cow_page
;
3690 * check even for read faults because we might have lost our CoWed
3693 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3694 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3696 ret
= alloc_set_pte(vmf
, page
);
3698 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3702 static unsigned long fault_around_bytes __read_mostly
=
3703 rounddown_pow_of_two(65536);
3705 #ifdef CONFIG_DEBUG_FS
3706 static int fault_around_bytes_get(void *data
, u64
*val
)
3708 *val
= fault_around_bytes
;
3713 * fault_around_bytes must be rounded down to the nearest page order as it's
3714 * what do_fault_around() expects to see.
3716 static int fault_around_bytes_set(void *data
, u64 val
)
3718 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3720 if (val
> PAGE_SIZE
)
3721 fault_around_bytes
= rounddown_pow_of_two(val
);
3723 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3726 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3727 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3729 static int __init
fault_around_debugfs(void)
3731 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3732 &fault_around_bytes_fops
);
3735 late_initcall(fault_around_debugfs
);
3739 * do_fault_around() tries to map few pages around the fault address. The hope
3740 * is that the pages will be needed soon and this will lower the number of
3743 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3744 * not ready to be mapped: not up-to-date, locked, etc.
3746 * This function is called with the page table lock taken. In the split ptlock
3747 * case the page table lock only protects only those entries which belong to
3748 * the page table corresponding to the fault address.
3750 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3753 * fault_around_bytes defines how many bytes we'll try to map.
3754 * do_fault_around() expects it to be set to a power of two less than or equal
3757 * The virtual address of the area that we map is naturally aligned to
3758 * fault_around_bytes rounded down to the machine page size
3759 * (and therefore to page order). This way it's easier to guarantee
3760 * that we don't cross page table boundaries.
3762 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3764 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3765 pgoff_t start_pgoff
= vmf
->pgoff
;
3770 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3771 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3773 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3774 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3778 * end_pgoff is either the end of the page table, the end of
3779 * the vma or nr_pages from start_pgoff, depending what is nearest.
3781 end_pgoff
= start_pgoff
-
3782 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3784 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3785 start_pgoff
+ nr_pages
- 1);
3787 if (pmd_none(*vmf
->pmd
)) {
3788 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3789 if (!vmf
->prealloc_pte
)
3791 smp_wmb(); /* See comment in __pte_alloc() */
3794 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3796 /* Huge page is mapped? Page fault is solved */
3797 if (pmd_trans_huge(*vmf
->pmd
)) {
3798 ret
= VM_FAULT_NOPAGE
;
3802 /* ->map_pages() haven't done anything useful. Cold page cache? */
3806 /* check if the page fault is solved */
3807 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3808 if (!pte_none(*vmf
->pte
))
3809 ret
= VM_FAULT_NOPAGE
;
3810 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3812 vmf
->address
= address
;
3817 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3819 struct vm_area_struct
*vma
= vmf
->vma
;
3823 * Let's call ->map_pages() first and use ->fault() as fallback
3824 * if page by the offset is not ready to be mapped (cold cache or
3827 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3828 ret
= do_fault_around(vmf
);
3833 ret
= __do_fault(vmf
);
3834 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3837 ret
|= finish_fault(vmf
);
3838 unlock_page(vmf
->page
);
3839 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3840 put_page(vmf
->page
);
3844 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3846 struct vm_area_struct
*vma
= vmf
->vma
;
3849 if (unlikely(anon_vma_prepare(vma
)))
3850 return VM_FAULT_OOM
;
3852 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3854 return VM_FAULT_OOM
;
3856 if (mem_cgroup_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
)) {
3857 put_page(vmf
->cow_page
);
3858 return VM_FAULT_OOM
;
3860 cgroup_throttle_swaprate(vmf
->cow_page
, GFP_KERNEL
);
3862 ret
= __do_fault(vmf
);
3863 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3865 if (ret
& VM_FAULT_DONE_COW
)
3868 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3869 __SetPageUptodate(vmf
->cow_page
);
3871 ret
|= finish_fault(vmf
);
3872 unlock_page(vmf
->page
);
3873 put_page(vmf
->page
);
3874 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3878 put_page(vmf
->cow_page
);
3882 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3884 struct vm_area_struct
*vma
= vmf
->vma
;
3885 vm_fault_t ret
, tmp
;
3887 ret
= __do_fault(vmf
);
3888 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3892 * Check if the backing address space wants to know that the page is
3893 * about to become writable
3895 if (vma
->vm_ops
->page_mkwrite
) {
3896 unlock_page(vmf
->page
);
3897 tmp
= do_page_mkwrite(vmf
);
3898 if (unlikely(!tmp
||
3899 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3900 put_page(vmf
->page
);
3905 ret
|= finish_fault(vmf
);
3906 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3908 unlock_page(vmf
->page
);
3909 put_page(vmf
->page
);
3913 ret
|= fault_dirty_shared_page(vmf
);
3918 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3919 * but allow concurrent faults).
3920 * The mmap_lock may have been released depending on flags and our
3921 * return value. See filemap_fault() and __lock_page_or_retry().
3922 * If mmap_lock is released, vma may become invalid (for example
3923 * by other thread calling munmap()).
3925 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3927 struct vm_area_struct
*vma
= vmf
->vma
;
3928 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3932 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3934 if (!vma
->vm_ops
->fault
) {
3936 * If we find a migration pmd entry or a none pmd entry, which
3937 * should never happen, return SIGBUS
3939 if (unlikely(!pmd_present(*vmf
->pmd
)))
3940 ret
= VM_FAULT_SIGBUS
;
3942 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3947 * Make sure this is not a temporary clearing of pte
3948 * by holding ptl and checking again. A R/M/W update
3949 * of pte involves: take ptl, clearing the pte so that
3950 * we don't have concurrent modification by hardware
3951 * followed by an update.
3953 if (unlikely(pte_none(*vmf
->pte
)))
3954 ret
= VM_FAULT_SIGBUS
;
3956 ret
= VM_FAULT_NOPAGE
;
3958 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3960 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3961 ret
= do_read_fault(vmf
);
3962 else if (!(vma
->vm_flags
& VM_SHARED
))
3963 ret
= do_cow_fault(vmf
);
3965 ret
= do_shared_fault(vmf
);
3967 /* preallocated pagetable is unused: free it */
3968 if (vmf
->prealloc_pte
) {
3969 pte_free(vm_mm
, vmf
->prealloc_pte
);
3970 vmf
->prealloc_pte
= NULL
;
3975 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3976 unsigned long addr
, int page_nid
,
3981 count_vm_numa_event(NUMA_HINT_FAULTS
);
3982 if (page_nid
== numa_node_id()) {
3983 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3984 *flags
|= TNF_FAULT_LOCAL
;
3987 return mpol_misplaced(page
, vma
, addr
);
3990 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3992 struct vm_area_struct
*vma
= vmf
->vma
;
3993 struct page
*page
= NULL
;
3994 int page_nid
= NUMA_NO_NODE
;
3997 bool migrated
= false;
3999 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
4003 * The "pte" at this point cannot be used safely without
4004 * validation through pte_unmap_same(). It's of NUMA type but
4005 * the pfn may be screwed if the read is non atomic.
4007 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
4008 spin_lock(vmf
->ptl
);
4009 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
4010 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4015 * Make it present again, Depending on how arch implementes non
4016 * accessible ptes, some can allow access by kernel mode.
4018 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
4019 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
4020 pte
= pte_mkyoung(pte
);
4022 pte
= pte_mkwrite(pte
);
4023 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
4024 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
4026 page
= vm_normal_page(vma
, vmf
->address
, pte
);
4028 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4032 /* TODO: handle PTE-mapped THP */
4033 if (PageCompound(page
)) {
4034 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4039 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4040 * much anyway since they can be in shared cache state. This misses
4041 * the case where a mapping is writable but the process never writes
4042 * to it but pte_write gets cleared during protection updates and
4043 * pte_dirty has unpredictable behaviour between PTE scan updates,
4044 * background writeback, dirty balancing and application behaviour.
4046 if (!pte_write(pte
))
4047 flags
|= TNF_NO_GROUP
;
4050 * Flag if the page is shared between multiple address spaces. This
4051 * is later used when determining whether to group tasks together
4053 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
4054 flags
|= TNF_SHARED
;
4056 last_cpupid
= page_cpupid_last(page
);
4057 page_nid
= page_to_nid(page
);
4058 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
4060 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4061 if (target_nid
== NUMA_NO_NODE
) {
4066 /* Migrate to the requested node */
4067 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
4069 page_nid
= target_nid
;
4070 flags
|= TNF_MIGRATED
;
4072 flags
|= TNF_MIGRATE_FAIL
;
4075 if (page_nid
!= NUMA_NO_NODE
)
4076 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
4080 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
4082 if (vma_is_anonymous(vmf
->vma
))
4083 return do_huge_pmd_anonymous_page(vmf
);
4084 if (vmf
->vma
->vm_ops
->huge_fault
)
4085 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4086 return VM_FAULT_FALLBACK
;
4089 /* `inline' is required to avoid gcc 4.1.2 build error */
4090 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
4092 if (vma_is_anonymous(vmf
->vma
)) {
4093 if (userfaultfd_huge_pmd_wp(vmf
->vma
, orig_pmd
))
4094 return handle_userfault(vmf
, VM_UFFD_WP
);
4095 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
4097 if (vmf
->vma
->vm_ops
->huge_fault
) {
4098 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4100 if (!(ret
& VM_FAULT_FALLBACK
))
4104 /* COW or write-notify handled on pte level: split pmd. */
4105 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
4107 return VM_FAULT_FALLBACK
;
4110 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
4112 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4113 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4114 /* No support for anonymous transparent PUD pages yet */
4115 if (vma_is_anonymous(vmf
->vma
))
4117 if (vmf
->vma
->vm_ops
->huge_fault
) {
4118 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4120 if (!(ret
& VM_FAULT_FALLBACK
))
4124 /* COW or write-notify not handled on PUD level: split pud.*/
4125 __split_huge_pud(vmf
->vma
, vmf
->pud
, vmf
->address
);
4126 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4127 return VM_FAULT_FALLBACK
;
4130 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
4132 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4133 /* No support for anonymous transparent PUD pages yet */
4134 if (vma_is_anonymous(vmf
->vma
))
4135 return VM_FAULT_FALLBACK
;
4136 if (vmf
->vma
->vm_ops
->huge_fault
)
4137 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4139 return VM_FAULT_FALLBACK
;
4143 * These routines also need to handle stuff like marking pages dirty
4144 * and/or accessed for architectures that don't do it in hardware (most
4145 * RISC architectures). The early dirtying is also good on the i386.
4147 * There is also a hook called "update_mmu_cache()" that architectures
4148 * with external mmu caches can use to update those (ie the Sparc or
4149 * PowerPC hashed page tables that act as extended TLBs).
4151 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4152 * concurrent faults).
4154 * The mmap_lock may have been released depending on flags and our return value.
4155 * See filemap_fault() and __lock_page_or_retry().
4157 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
4161 if (unlikely(pmd_none(*vmf
->pmd
))) {
4163 * Leave __pte_alloc() until later: because vm_ops->fault may
4164 * want to allocate huge page, and if we expose page table
4165 * for an instant, it will be difficult to retract from
4166 * concurrent faults and from rmap lookups.
4170 /* See comment in pte_alloc_one_map() */
4171 if (pmd_devmap_trans_unstable(vmf
->pmd
))
4174 * A regular pmd is established and it can't morph into a huge
4175 * pmd from under us anymore at this point because we hold the
4176 * mmap_lock read mode and khugepaged takes it in write mode.
4177 * So now it's safe to run pte_offset_map().
4179 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
4180 vmf
->orig_pte
= *vmf
->pte
;
4183 * some architectures can have larger ptes than wordsize,
4184 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4185 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4186 * accesses. The code below just needs a consistent view
4187 * for the ifs and we later double check anyway with the
4188 * ptl lock held. So here a barrier will do.
4191 if (pte_none(vmf
->orig_pte
)) {
4192 pte_unmap(vmf
->pte
);
4198 if (vma_is_anonymous(vmf
->vma
))
4199 return do_anonymous_page(vmf
);
4201 return do_fault(vmf
);
4204 if (!pte_present(vmf
->orig_pte
))
4205 return do_swap_page(vmf
);
4207 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
4208 return do_numa_page(vmf
);
4210 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
4211 spin_lock(vmf
->ptl
);
4212 entry
= vmf
->orig_pte
;
4213 if (unlikely(!pte_same(*vmf
->pte
, entry
))) {
4214 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
4217 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4218 if (!pte_write(entry
))
4219 return do_wp_page(vmf
);
4220 entry
= pte_mkdirty(entry
);
4222 entry
= pte_mkyoung(entry
);
4223 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4224 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4225 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4228 * This is needed only for protection faults but the arch code
4229 * is not yet telling us if this is a protection fault or not.
4230 * This still avoids useless tlb flushes for .text page faults
4233 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4234 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4237 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4242 * By the time we get here, we already hold the mm semaphore
4244 * The mmap_lock may have been released depending on flags and our
4245 * return value. See filemap_fault() and __lock_page_or_retry().
4247 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4248 unsigned long address
, unsigned int flags
)
4250 struct vm_fault vmf
= {
4252 .address
= address
& PAGE_MASK
,
4254 .pgoff
= linear_page_index(vma
, address
),
4255 .gfp_mask
= __get_fault_gfp_mask(vma
),
4257 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4258 struct mm_struct
*mm
= vma
->vm_mm
;
4263 pgd
= pgd_offset(mm
, address
);
4264 p4d
= p4d_alloc(mm
, pgd
, address
);
4266 return VM_FAULT_OOM
;
4268 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4270 return VM_FAULT_OOM
;
4272 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4273 ret
= create_huge_pud(&vmf
);
4274 if (!(ret
& VM_FAULT_FALLBACK
))
4277 pud_t orig_pud
= *vmf
.pud
;
4280 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4282 /* NUMA case for anonymous PUDs would go here */
4284 if (dirty
&& !pud_write(orig_pud
)) {
4285 ret
= wp_huge_pud(&vmf
, orig_pud
);
4286 if (!(ret
& VM_FAULT_FALLBACK
))
4289 huge_pud_set_accessed(&vmf
, orig_pud
);
4295 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4297 return VM_FAULT_OOM
;
4299 /* Huge pud page fault raced with pmd_alloc? */
4300 if (pud_trans_unstable(vmf
.pud
))
4303 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4304 ret
= create_huge_pmd(&vmf
);
4305 if (!(ret
& VM_FAULT_FALLBACK
))
4308 pmd_t orig_pmd
= *vmf
.pmd
;
4311 if (unlikely(is_swap_pmd(orig_pmd
))) {
4312 VM_BUG_ON(thp_migration_supported() &&
4313 !is_pmd_migration_entry(orig_pmd
));
4314 if (is_pmd_migration_entry(orig_pmd
))
4315 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4318 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4319 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4320 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4322 if (dirty
&& !pmd_write(orig_pmd
)) {
4323 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4324 if (!(ret
& VM_FAULT_FALLBACK
))
4327 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4333 return handle_pte_fault(&vmf
);
4337 * By the time we get here, we already hold the mm semaphore
4339 * The mmap_lock may have been released depending on flags and our
4340 * return value. See filemap_fault() and __lock_page_or_retry().
4342 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4347 __set_current_state(TASK_RUNNING
);
4349 count_vm_event(PGFAULT
);
4350 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4352 /* do counter updates before entering really critical section. */
4353 check_sync_rss_stat(current
);
4355 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4356 flags
& FAULT_FLAG_INSTRUCTION
,
4357 flags
& FAULT_FLAG_REMOTE
))
4358 return VM_FAULT_SIGSEGV
;
4361 * Enable the memcg OOM handling for faults triggered in user
4362 * space. Kernel faults are handled more gracefully.
4364 if (flags
& FAULT_FLAG_USER
)
4365 mem_cgroup_enter_user_fault();
4367 if (unlikely(is_vm_hugetlb_page(vma
)))
4368 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4370 ret
= __handle_mm_fault(vma
, address
, flags
);
4372 if (flags
& FAULT_FLAG_USER
) {
4373 mem_cgroup_exit_user_fault();
4375 * The task may have entered a memcg OOM situation but
4376 * if the allocation error was handled gracefully (no
4377 * VM_FAULT_OOM), there is no need to kill anything.
4378 * Just clean up the OOM state peacefully.
4380 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4381 mem_cgroup_oom_synchronize(false);
4386 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4388 #ifndef __PAGETABLE_P4D_FOLDED
4390 * Allocate p4d page table.
4391 * We've already handled the fast-path in-line.
4393 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4395 p4d_t
*new = p4d_alloc_one(mm
, address
);
4399 smp_wmb(); /* See comment in __pte_alloc */
4401 spin_lock(&mm
->page_table_lock
);
4402 if (pgd_present(*pgd
)) /* Another has populated it */
4405 pgd_populate(mm
, pgd
, new);
4406 spin_unlock(&mm
->page_table_lock
);
4409 #endif /* __PAGETABLE_P4D_FOLDED */
4411 #ifndef __PAGETABLE_PUD_FOLDED
4413 * Allocate page upper directory.
4414 * We've already handled the fast-path in-line.
4416 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4418 pud_t
*new = pud_alloc_one(mm
, address
);
4422 smp_wmb(); /* See comment in __pte_alloc */
4424 spin_lock(&mm
->page_table_lock
);
4425 if (!p4d_present(*p4d
)) {
4427 p4d_populate(mm
, p4d
, new);
4428 } else /* Another has populated it */
4430 spin_unlock(&mm
->page_table_lock
);
4433 #endif /* __PAGETABLE_PUD_FOLDED */
4435 #ifndef __PAGETABLE_PMD_FOLDED
4437 * Allocate page middle directory.
4438 * We've already handled the fast-path in-line.
4440 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4443 pmd_t
*new = pmd_alloc_one(mm
, address
);
4447 smp_wmb(); /* See comment in __pte_alloc */
4449 ptl
= pud_lock(mm
, pud
);
4450 if (!pud_present(*pud
)) {
4452 pud_populate(mm
, pud
, new);
4453 } else /* Another has populated it */
4458 #endif /* __PAGETABLE_PMD_FOLDED */
4460 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4461 struct mmu_notifier_range
*range
,
4462 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4470 pgd
= pgd_offset(mm
, address
);
4471 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4474 p4d
= p4d_offset(pgd
, address
);
4475 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4478 pud
= pud_offset(p4d
, address
);
4479 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4482 pmd
= pmd_offset(pud
, address
);
4483 VM_BUG_ON(pmd_trans_huge(*pmd
));
4485 if (pmd_huge(*pmd
)) {
4490 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4491 NULL
, mm
, address
& PMD_MASK
,
4492 (address
& PMD_MASK
) + PMD_SIZE
);
4493 mmu_notifier_invalidate_range_start(range
);
4495 *ptlp
= pmd_lock(mm
, pmd
);
4496 if (pmd_huge(*pmd
)) {
4502 mmu_notifier_invalidate_range_end(range
);
4505 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4509 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4510 address
& PAGE_MASK
,
4511 (address
& PAGE_MASK
) + PAGE_SIZE
);
4512 mmu_notifier_invalidate_range_start(range
);
4514 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4515 if (!pte_present(*ptep
))
4520 pte_unmap_unlock(ptep
, *ptlp
);
4522 mmu_notifier_invalidate_range_end(range
);
4527 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4528 pte_t
**ptepp
, spinlock_t
**ptlp
)
4532 /* (void) is needed to make gcc happy */
4533 (void) __cond_lock(*ptlp
,
4534 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4535 ptepp
, NULL
, ptlp
)));
4539 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4540 struct mmu_notifier_range
*range
,
4541 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4545 /* (void) is needed to make gcc happy */
4546 (void) __cond_lock(*ptlp
,
4547 !(res
= __follow_pte_pmd(mm
, address
, range
,
4548 ptepp
, pmdpp
, ptlp
)));
4551 EXPORT_SYMBOL(follow_pte_pmd
);
4554 * follow_pfn - look up PFN at a user virtual address
4555 * @vma: memory mapping
4556 * @address: user virtual address
4557 * @pfn: location to store found PFN
4559 * Only IO mappings and raw PFN mappings are allowed.
4561 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4563 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4570 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4573 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4576 *pfn
= pte_pfn(*ptep
);
4577 pte_unmap_unlock(ptep
, ptl
);
4580 EXPORT_SYMBOL(follow_pfn
);
4582 #ifdef CONFIG_HAVE_IOREMAP_PROT
4583 int follow_phys(struct vm_area_struct
*vma
,
4584 unsigned long address
, unsigned int flags
,
4585 unsigned long *prot
, resource_size_t
*phys
)
4591 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4594 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4598 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4601 *prot
= pgprot_val(pte_pgprot(pte
));
4602 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4606 pte_unmap_unlock(ptep
, ptl
);
4611 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4612 void *buf
, int len
, int write
)
4614 resource_size_t phys_addr
;
4615 unsigned long prot
= 0;
4616 void __iomem
*maddr
;
4617 int offset
= addr
& (PAGE_SIZE
-1);
4619 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4622 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4627 memcpy_toio(maddr
+ offset
, buf
, len
);
4629 memcpy_fromio(buf
, maddr
+ offset
, len
);
4634 EXPORT_SYMBOL_GPL(generic_access_phys
);
4638 * Access another process' address space as given in mm. If non-NULL, use the
4639 * given task for page fault accounting.
4641 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4642 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4644 struct vm_area_struct
*vma
;
4645 void *old_buf
= buf
;
4646 int write
= gup_flags
& FOLL_WRITE
;
4648 if (mmap_read_lock_killable(mm
))
4651 /* ignore errors, just check how much was successfully transferred */
4653 int bytes
, ret
, offset
;
4655 struct page
*page
= NULL
;
4657 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4658 gup_flags
, &page
, &vma
, NULL
);
4660 #ifndef CONFIG_HAVE_IOREMAP_PROT
4664 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4665 * we can access using slightly different code.
4667 vma
= find_vma(mm
, addr
);
4668 if (!vma
|| vma
->vm_start
> addr
)
4670 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4671 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4679 offset
= addr
& (PAGE_SIZE
-1);
4680 if (bytes
> PAGE_SIZE
-offset
)
4681 bytes
= PAGE_SIZE
-offset
;
4685 copy_to_user_page(vma
, page
, addr
,
4686 maddr
+ offset
, buf
, bytes
);
4687 set_page_dirty_lock(page
);
4689 copy_from_user_page(vma
, page
, addr
,
4690 buf
, maddr
+ offset
, bytes
);
4699 mmap_read_unlock(mm
);
4701 return buf
- old_buf
;
4705 * access_remote_vm - access another process' address space
4706 * @mm: the mm_struct of the target address space
4707 * @addr: start address to access
4708 * @buf: source or destination buffer
4709 * @len: number of bytes to transfer
4710 * @gup_flags: flags modifying lookup behaviour
4712 * The caller must hold a reference on @mm.
4714 * Return: number of bytes copied from source to destination.
4716 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4717 void *buf
, int len
, unsigned int gup_flags
)
4719 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4723 * Access another process' address space.
4724 * Source/target buffer must be kernel space,
4725 * Do not walk the page table directly, use get_user_pages
4727 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4728 void *buf
, int len
, unsigned int gup_flags
)
4730 struct mm_struct
*mm
;
4733 mm
= get_task_mm(tsk
);
4737 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4743 EXPORT_SYMBOL_GPL(access_process_vm
);
4746 * Print the name of a VMA.
4748 void print_vma_addr(char *prefix
, unsigned long ip
)
4750 struct mm_struct
*mm
= current
->mm
;
4751 struct vm_area_struct
*vma
;
4754 * we might be running from an atomic context so we cannot sleep
4756 if (!mmap_read_trylock(mm
))
4759 vma
= find_vma(mm
, ip
);
4760 if (vma
&& vma
->vm_file
) {
4761 struct file
*f
= vma
->vm_file
;
4762 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4766 p
= file_path(f
, buf
, PAGE_SIZE
);
4769 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4771 vma
->vm_end
- vma
->vm_start
);
4772 free_page((unsigned long)buf
);
4775 mmap_read_unlock(mm
);
4778 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4779 void __might_fault(const char *file
, int line
)
4782 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4783 * holding the mmap_lock, this is safe because kernel memory doesn't
4784 * get paged out, therefore we'll never actually fault, and the
4785 * below annotations will generate false positives.
4787 if (uaccess_kernel())
4789 if (pagefault_disabled())
4791 __might_sleep(file
, line
, 0);
4792 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4794 might_lock_read(¤t
->mm
->mmap_lock
);
4797 EXPORT_SYMBOL(__might_fault
);
4800 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4802 * Process all subpages of the specified huge page with the specified
4803 * operation. The target subpage will be processed last to keep its
4806 static inline void process_huge_page(
4807 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4808 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4812 unsigned long addr
= addr_hint
&
4813 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4815 /* Process target subpage last to keep its cache lines hot */
4817 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4818 if (2 * n
<= pages_per_huge_page
) {
4819 /* If target subpage in first half of huge page */
4822 /* Process subpages at the end of huge page */
4823 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4825 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4828 /* If target subpage in second half of huge page */
4829 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4830 l
= pages_per_huge_page
- n
;
4831 /* Process subpages at the begin of huge page */
4832 for (i
= 0; i
< base
; i
++) {
4834 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4838 * Process remaining subpages in left-right-left-right pattern
4839 * towards the target subpage
4841 for (i
= 0; i
< l
; i
++) {
4842 int left_idx
= base
+ i
;
4843 int right_idx
= base
+ 2 * l
- 1 - i
;
4846 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4848 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4852 static void clear_gigantic_page(struct page
*page
,
4854 unsigned int pages_per_huge_page
)
4857 struct page
*p
= page
;
4860 for (i
= 0; i
< pages_per_huge_page
;
4861 i
++, p
= mem_map_next(p
, page
, i
)) {
4863 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4867 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4869 struct page
*page
= arg
;
4871 clear_user_highpage(page
+ idx
, addr
);
4874 void clear_huge_page(struct page
*page
,
4875 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4877 unsigned long addr
= addr_hint
&
4878 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4880 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4881 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4885 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4888 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4890 struct vm_area_struct
*vma
,
4891 unsigned int pages_per_huge_page
)
4894 struct page
*dst_base
= dst
;
4895 struct page
*src_base
= src
;
4897 for (i
= 0; i
< pages_per_huge_page
; ) {
4899 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4902 dst
= mem_map_next(dst
, dst_base
, i
);
4903 src
= mem_map_next(src
, src_base
, i
);
4907 struct copy_subpage_arg
{
4910 struct vm_area_struct
*vma
;
4913 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4915 struct copy_subpage_arg
*copy_arg
= arg
;
4917 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4918 addr
, copy_arg
->vma
);
4921 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4922 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4923 unsigned int pages_per_huge_page
)
4925 unsigned long addr
= addr_hint
&
4926 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4927 struct copy_subpage_arg arg
= {
4933 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4934 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4935 pages_per_huge_page
);
4939 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4942 long copy_huge_page_from_user(struct page
*dst_page
,
4943 const void __user
*usr_src
,
4944 unsigned int pages_per_huge_page
,
4945 bool allow_pagefault
)
4947 void *src
= (void *)usr_src
;
4949 unsigned long i
, rc
= 0;
4950 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4952 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4953 if (allow_pagefault
)
4954 page_kaddr
= kmap(dst_page
+ i
);
4956 page_kaddr
= kmap_atomic(dst_page
+ i
);
4957 rc
= copy_from_user(page_kaddr
,
4958 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4960 if (allow_pagefault
)
4961 kunmap(dst_page
+ i
);
4963 kunmap_atomic(page_kaddr
);
4965 ret_val
-= (PAGE_SIZE
- rc
);
4973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4975 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4977 static struct kmem_cache
*page_ptl_cachep
;
4979 void __init
ptlock_cache_init(void)
4981 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4985 bool ptlock_alloc(struct page
*page
)
4989 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4996 void ptlock_free(struct page
*page
)
4998 kmem_cache_free(page_ptl_cachep
, page
->ptl
);