2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
139 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
142 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
143 enum btrfs_map_op op
,
144 u64 logical
, u64
*length
,
145 struct btrfs_bio
**bbio_ret
,
146 int mirror_num
, int need_raid_map
);
148 DEFINE_MUTEX(uuid_mutex
);
149 static LIST_HEAD(fs_uuids
);
150 struct list_head
*btrfs_get_fs_uuids(void)
155 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
157 struct btrfs_fs_devices
*fs_devs
;
159 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
161 return ERR_PTR(-ENOMEM
);
163 mutex_init(&fs_devs
->device_list_mutex
);
165 INIT_LIST_HEAD(&fs_devs
->devices
);
166 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
167 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
168 INIT_LIST_HEAD(&fs_devs
->list
);
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
182 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
184 struct btrfs_fs_devices
*fs_devs
;
186 fs_devs
= __alloc_fs_devices();
191 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
193 generate_random_uuid(fs_devs
->fsid
);
198 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
200 struct btrfs_device
*device
;
201 WARN_ON(fs_devices
->opened
);
202 while (!list_empty(&fs_devices
->devices
)) {
203 device
= list_entry(fs_devices
->devices
.next
,
204 struct btrfs_device
, dev_list
);
205 list_del(&device
->dev_list
);
206 rcu_string_free(device
->name
);
212 static void btrfs_kobject_uevent(struct block_device
*bdev
,
213 enum kobject_action action
)
217 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
221 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
222 &disk_to_dev(bdev
->bd_disk
)->kobj
);
225 void btrfs_cleanup_fs_uuids(void)
227 struct btrfs_fs_devices
*fs_devices
;
229 while (!list_empty(&fs_uuids
)) {
230 fs_devices
= list_entry(fs_uuids
.next
,
231 struct btrfs_fs_devices
, list
);
232 list_del(&fs_devices
->list
);
233 free_fs_devices(fs_devices
);
237 static struct btrfs_device
*__alloc_device(void)
239 struct btrfs_device
*dev
;
241 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
243 return ERR_PTR(-ENOMEM
);
245 INIT_LIST_HEAD(&dev
->dev_list
);
246 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
247 INIT_LIST_HEAD(&dev
->resized_list
);
249 spin_lock_init(&dev
->io_lock
);
251 spin_lock_init(&dev
->reada_lock
);
252 atomic_set(&dev
->reada_in_flight
, 0);
253 atomic_set(&dev
->dev_stats_ccnt
, 0);
254 btrfs_device_data_ordered_init(dev
);
255 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
256 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
261 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
264 struct btrfs_device
*dev
;
266 list_for_each_entry(dev
, head
, dev_list
) {
267 if (dev
->devid
== devid
&&
268 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
275 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
277 struct btrfs_fs_devices
*fs_devices
;
279 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
280 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
287 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
288 int flush
, struct block_device
**bdev
,
289 struct buffer_head
**bh
)
293 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
296 ret
= PTR_ERR(*bdev
);
301 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
302 ret
= set_blocksize(*bdev
, 4096);
304 blkdev_put(*bdev
, flags
);
307 invalidate_bdev(*bdev
);
308 *bh
= btrfs_read_dev_super(*bdev
);
311 blkdev_put(*bdev
, flags
);
323 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
324 struct bio
*head
, struct bio
*tail
)
327 struct bio
*old_head
;
329 old_head
= pending_bios
->head
;
330 pending_bios
->head
= head
;
331 if (pending_bios
->tail
)
332 tail
->bi_next
= old_head
;
334 pending_bios
->tail
= tail
;
338 * we try to collect pending bios for a device so we don't get a large
339 * number of procs sending bios down to the same device. This greatly
340 * improves the schedulers ability to collect and merge the bios.
342 * But, it also turns into a long list of bios to process and that is sure
343 * to eventually make the worker thread block. The solution here is to
344 * make some progress and then put this work struct back at the end of
345 * the list if the block device is congested. This way, multiple devices
346 * can make progress from a single worker thread.
348 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
350 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
352 struct backing_dev_info
*bdi
;
353 struct btrfs_pending_bios
*pending_bios
;
357 unsigned long num_run
;
358 unsigned long batch_run
= 0;
360 unsigned long last_waited
= 0;
362 int sync_pending
= 0;
363 struct blk_plug plug
;
366 * this function runs all the bios we've collected for
367 * a particular device. We don't want to wander off to
368 * another device without first sending all of these down.
369 * So, setup a plug here and finish it off before we return
371 blk_start_plug(&plug
);
373 bdi
= device
->bdev
->bd_bdi
;
374 limit
= btrfs_async_submit_limit(fs_info
);
375 limit
= limit
* 2 / 3;
378 spin_lock(&device
->io_lock
);
383 /* take all the bios off the list at once and process them
384 * later on (without the lock held). But, remember the
385 * tail and other pointers so the bios can be properly reinserted
386 * into the list if we hit congestion
388 if (!force_reg
&& device
->pending_sync_bios
.head
) {
389 pending_bios
= &device
->pending_sync_bios
;
392 pending_bios
= &device
->pending_bios
;
396 pending
= pending_bios
->head
;
397 tail
= pending_bios
->tail
;
398 WARN_ON(pending
&& !tail
);
401 * if pending was null this time around, no bios need processing
402 * at all and we can stop. Otherwise it'll loop back up again
403 * and do an additional check so no bios are missed.
405 * device->running_pending is used to synchronize with the
408 if (device
->pending_sync_bios
.head
== NULL
&&
409 device
->pending_bios
.head
== NULL
) {
411 device
->running_pending
= 0;
414 device
->running_pending
= 1;
417 pending_bios
->head
= NULL
;
418 pending_bios
->tail
= NULL
;
420 spin_unlock(&device
->io_lock
);
425 /* we want to work on both lists, but do more bios on the
426 * sync list than the regular list
429 pending_bios
!= &device
->pending_sync_bios
&&
430 device
->pending_sync_bios
.head
) ||
431 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
432 device
->pending_bios
.head
)) {
433 spin_lock(&device
->io_lock
);
434 requeue_list(pending_bios
, pending
, tail
);
439 pending
= pending
->bi_next
;
443 * atomic_dec_return implies a barrier for waitqueue_active
445 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
446 waitqueue_active(&fs_info
->async_submit_wait
))
447 wake_up(&fs_info
->async_submit_wait
);
449 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
452 * if we're doing the sync list, record that our
453 * plug has some sync requests on it
455 * If we're doing the regular list and there are
456 * sync requests sitting around, unplug before
459 if (pending_bios
== &device
->pending_sync_bios
) {
461 } else if (sync_pending
) {
462 blk_finish_plug(&plug
);
463 blk_start_plug(&plug
);
467 btrfsic_submit_bio(cur
);
474 * we made progress, there is more work to do and the bdi
475 * is now congested. Back off and let other work structs
478 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
479 fs_info
->fs_devices
->open_devices
> 1) {
480 struct io_context
*ioc
;
482 ioc
= current
->io_context
;
485 * the main goal here is that we don't want to
486 * block if we're going to be able to submit
487 * more requests without blocking.
489 * This code does two great things, it pokes into
490 * the elevator code from a filesystem _and_
491 * it makes assumptions about how batching works.
493 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
494 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
496 ioc
->last_waited
== last_waited
)) {
498 * we want to go through our batch of
499 * requests and stop. So, we copy out
500 * the ioc->last_waited time and test
501 * against it before looping
503 last_waited
= ioc
->last_waited
;
507 spin_lock(&device
->io_lock
);
508 requeue_list(pending_bios
, pending
, tail
);
509 device
->running_pending
= 1;
511 spin_unlock(&device
->io_lock
);
512 btrfs_queue_work(fs_info
->submit_workers
,
516 /* unplug every 64 requests just for good measure */
517 if (batch_run
% 64 == 0) {
518 blk_finish_plug(&plug
);
519 blk_start_plug(&plug
);
528 spin_lock(&device
->io_lock
);
529 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
531 spin_unlock(&device
->io_lock
);
534 blk_finish_plug(&plug
);
537 static void pending_bios_fn(struct btrfs_work
*work
)
539 struct btrfs_device
*device
;
541 device
= container_of(work
, struct btrfs_device
, work
);
542 run_scheduled_bios(device
);
546 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
548 struct btrfs_fs_devices
*fs_devs
;
549 struct btrfs_device
*dev
;
554 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
559 if (fs_devs
->seeding
)
562 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
570 * Todo: This won't be enough. What if the same device
571 * comes back (with new uuid and) with its mapper path?
572 * But for now, this does help as mostly an admin will
573 * either use mapper or non mapper path throughout.
576 del
= strcmp(rcu_str_deref(dev
->name
),
577 rcu_str_deref(cur_dev
->name
));
584 /* delete the stale device */
585 if (fs_devs
->num_devices
== 1) {
586 btrfs_sysfs_remove_fsid(fs_devs
);
587 list_del(&fs_devs
->list
);
588 free_fs_devices(fs_devs
);
590 fs_devs
->num_devices
--;
591 list_del(&dev
->dev_list
);
592 rcu_string_free(dev
->name
);
601 * Add new device to list of registered devices
604 * 1 - first time device is seen
605 * 0 - device already known
608 static noinline
int device_list_add(const char *path
,
609 struct btrfs_super_block
*disk_super
,
610 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
612 struct btrfs_device
*device
;
613 struct btrfs_fs_devices
*fs_devices
;
614 struct rcu_string
*name
;
616 u64 found_transid
= btrfs_super_generation(disk_super
);
618 fs_devices
= find_fsid(disk_super
->fsid
);
620 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
621 if (IS_ERR(fs_devices
))
622 return PTR_ERR(fs_devices
);
624 list_add(&fs_devices
->list
, &fs_uuids
);
628 device
= __find_device(&fs_devices
->devices
, devid
,
629 disk_super
->dev_item
.uuid
);
633 if (fs_devices
->opened
)
636 device
= btrfs_alloc_device(NULL
, &devid
,
637 disk_super
->dev_item
.uuid
);
638 if (IS_ERR(device
)) {
639 /* we can safely leave the fs_devices entry around */
640 return PTR_ERR(device
);
643 name
= rcu_string_strdup(path
, GFP_NOFS
);
648 rcu_assign_pointer(device
->name
, name
);
650 mutex_lock(&fs_devices
->device_list_mutex
);
651 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
652 fs_devices
->num_devices
++;
653 mutex_unlock(&fs_devices
->device_list_mutex
);
656 device
->fs_devices
= fs_devices
;
657 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
659 * When FS is already mounted.
660 * 1. If you are here and if the device->name is NULL that
661 * means this device was missing at time of FS mount.
662 * 2. If you are here and if the device->name is different
663 * from 'path' that means either
664 * a. The same device disappeared and reappeared with
666 * b. The missing-disk-which-was-replaced, has
669 * We must allow 1 and 2a above. But 2b would be a spurious
672 * Further in case of 1 and 2a above, the disk at 'path'
673 * would have missed some transaction when it was away and
674 * in case of 2a the stale bdev has to be updated as well.
675 * 2b must not be allowed at all time.
679 * For now, we do allow update to btrfs_fs_device through the
680 * btrfs dev scan cli after FS has been mounted. We're still
681 * tracking a problem where systems fail mount by subvolume id
682 * when we reject replacement on a mounted FS.
684 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
686 * That is if the FS is _not_ mounted and if you
687 * are here, that means there is more than one
688 * disk with same uuid and devid.We keep the one
689 * with larger generation number or the last-in if
690 * generation are equal.
695 name
= rcu_string_strdup(path
, GFP_NOFS
);
698 rcu_string_free(device
->name
);
699 rcu_assign_pointer(device
->name
, name
);
700 if (device
->missing
) {
701 fs_devices
->missing_devices
--;
707 * Unmount does not free the btrfs_device struct but would zero
708 * generation along with most of the other members. So just update
709 * it back. We need it to pick the disk with largest generation
712 if (!fs_devices
->opened
)
713 device
->generation
= found_transid
;
716 * if there is new btrfs on an already registered device,
717 * then remove the stale device entry.
720 btrfs_free_stale_device(device
);
722 *fs_devices_ret
= fs_devices
;
727 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
729 struct btrfs_fs_devices
*fs_devices
;
730 struct btrfs_device
*device
;
731 struct btrfs_device
*orig_dev
;
733 fs_devices
= alloc_fs_devices(orig
->fsid
);
734 if (IS_ERR(fs_devices
))
737 mutex_lock(&orig
->device_list_mutex
);
738 fs_devices
->total_devices
= orig
->total_devices
;
740 /* We have held the volume lock, it is safe to get the devices. */
741 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
742 struct rcu_string
*name
;
744 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
750 * This is ok to do without rcu read locked because we hold the
751 * uuid mutex so nothing we touch in here is going to disappear.
753 if (orig_dev
->name
) {
754 name
= rcu_string_strdup(orig_dev
->name
->str
,
760 rcu_assign_pointer(device
->name
, name
);
763 list_add(&device
->dev_list
, &fs_devices
->devices
);
764 device
->fs_devices
= fs_devices
;
765 fs_devices
->num_devices
++;
767 mutex_unlock(&orig
->device_list_mutex
);
770 mutex_unlock(&orig
->device_list_mutex
);
771 free_fs_devices(fs_devices
);
772 return ERR_PTR(-ENOMEM
);
775 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
777 struct btrfs_device
*device
, *next
;
778 struct btrfs_device
*latest_dev
= NULL
;
780 mutex_lock(&uuid_mutex
);
782 /* This is the initialized path, it is safe to release the devices. */
783 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
784 if (device
->in_fs_metadata
) {
785 if (!device
->is_tgtdev_for_dev_replace
&&
787 device
->generation
> latest_dev
->generation
)) {
793 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
795 * In the first step, keep the device which has
796 * the correct fsid and the devid that is used
797 * for the dev_replace procedure.
798 * In the second step, the dev_replace state is
799 * read from the device tree and it is known
800 * whether the procedure is really active or
801 * not, which means whether this device is
802 * used or whether it should be removed.
804 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
809 blkdev_put(device
->bdev
, device
->mode
);
811 fs_devices
->open_devices
--;
813 if (device
->writeable
) {
814 list_del_init(&device
->dev_alloc_list
);
815 device
->writeable
= 0;
816 if (!device
->is_tgtdev_for_dev_replace
)
817 fs_devices
->rw_devices
--;
819 list_del_init(&device
->dev_list
);
820 fs_devices
->num_devices
--;
821 rcu_string_free(device
->name
);
825 if (fs_devices
->seed
) {
826 fs_devices
= fs_devices
->seed
;
830 fs_devices
->latest_bdev
= latest_dev
->bdev
;
832 mutex_unlock(&uuid_mutex
);
835 static void __free_device(struct work_struct
*work
)
837 struct btrfs_device
*device
;
839 device
= container_of(work
, struct btrfs_device
, rcu_work
);
840 rcu_string_free(device
->name
);
844 static void free_device(struct rcu_head
*head
)
846 struct btrfs_device
*device
;
848 device
= container_of(head
, struct btrfs_device
, rcu
);
850 INIT_WORK(&device
->rcu_work
, __free_device
);
851 schedule_work(&device
->rcu_work
);
854 static void btrfs_close_bdev(struct btrfs_device
*device
)
856 if (device
->bdev
&& device
->writeable
) {
857 sync_blockdev(device
->bdev
);
858 invalidate_bdev(device
->bdev
);
862 blkdev_put(device
->bdev
, device
->mode
);
865 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
867 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
868 struct btrfs_device
*new_device
;
869 struct rcu_string
*name
;
872 fs_devices
->open_devices
--;
874 if (device
->writeable
&&
875 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
876 list_del_init(&device
->dev_alloc_list
);
877 fs_devices
->rw_devices
--;
881 fs_devices
->missing_devices
--;
883 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
885 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
887 /* Safe because we are under uuid_mutex */
889 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
890 BUG_ON(!name
); /* -ENOMEM */
891 rcu_assign_pointer(new_device
->name
, name
);
894 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
895 new_device
->fs_devices
= device
->fs_devices
;
898 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
900 struct btrfs_device
*device
, *tmp
;
901 struct list_head pending_put
;
903 INIT_LIST_HEAD(&pending_put
);
905 if (--fs_devices
->opened
> 0)
908 mutex_lock(&fs_devices
->device_list_mutex
);
909 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
910 btrfs_prepare_close_one_device(device
);
911 list_add(&device
->dev_list
, &pending_put
);
913 mutex_unlock(&fs_devices
->device_list_mutex
);
916 * btrfs_show_devname() is using the device_list_mutex,
917 * sometimes call to blkdev_put() leads vfs calling
918 * into this func. So do put outside of device_list_mutex,
921 while (!list_empty(&pending_put
)) {
922 device
= list_first_entry(&pending_put
,
923 struct btrfs_device
, dev_list
);
924 list_del(&device
->dev_list
);
925 btrfs_close_bdev(device
);
926 call_rcu(&device
->rcu
, free_device
);
929 WARN_ON(fs_devices
->open_devices
);
930 WARN_ON(fs_devices
->rw_devices
);
931 fs_devices
->opened
= 0;
932 fs_devices
->seeding
= 0;
937 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
939 struct btrfs_fs_devices
*seed_devices
= NULL
;
942 mutex_lock(&uuid_mutex
);
943 ret
= __btrfs_close_devices(fs_devices
);
944 if (!fs_devices
->opened
) {
945 seed_devices
= fs_devices
->seed
;
946 fs_devices
->seed
= NULL
;
948 mutex_unlock(&uuid_mutex
);
950 while (seed_devices
) {
951 fs_devices
= seed_devices
;
952 seed_devices
= fs_devices
->seed
;
953 __btrfs_close_devices(fs_devices
);
954 free_fs_devices(fs_devices
);
957 * Wait for rcu kworkers under __btrfs_close_devices
958 * to finish all blkdev_puts so device is really
959 * free when umount is done.
965 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
966 fmode_t flags
, void *holder
)
968 struct request_queue
*q
;
969 struct block_device
*bdev
;
970 struct list_head
*head
= &fs_devices
->devices
;
971 struct btrfs_device
*device
;
972 struct btrfs_device
*latest_dev
= NULL
;
973 struct buffer_head
*bh
;
974 struct btrfs_super_block
*disk_super
;
981 list_for_each_entry(device
, head
, dev_list
) {
987 /* Just open everything we can; ignore failures here */
988 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
992 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
993 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
994 if (devid
!= device
->devid
)
997 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
1001 device
->generation
= btrfs_super_generation(disk_super
);
1003 device
->generation
> latest_dev
->generation
)
1004 latest_dev
= device
;
1006 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
1007 device
->writeable
= 0;
1009 device
->writeable
= !bdev_read_only(bdev
);
1013 q
= bdev_get_queue(bdev
);
1014 if (blk_queue_discard(q
))
1015 device
->can_discard
= 1;
1016 if (!blk_queue_nonrot(q
))
1017 fs_devices
->rotating
= 1;
1019 device
->bdev
= bdev
;
1020 device
->in_fs_metadata
= 0;
1021 device
->mode
= flags
;
1023 fs_devices
->open_devices
++;
1024 if (device
->writeable
&&
1025 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1026 fs_devices
->rw_devices
++;
1027 list_add(&device
->dev_alloc_list
,
1028 &fs_devices
->alloc_list
);
1035 blkdev_put(bdev
, flags
);
1038 if (fs_devices
->open_devices
== 0) {
1042 fs_devices
->seeding
= seeding
;
1043 fs_devices
->opened
= 1;
1044 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1045 fs_devices
->total_rw_bytes
= 0;
1050 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1051 fmode_t flags
, void *holder
)
1055 mutex_lock(&uuid_mutex
);
1056 if (fs_devices
->opened
) {
1057 fs_devices
->opened
++;
1060 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1062 mutex_unlock(&uuid_mutex
);
1066 void btrfs_release_disk_super(struct page
*page
)
1072 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1073 struct page
**page
, struct btrfs_super_block
**disk_super
)
1078 /* make sure our super fits in the device */
1079 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1082 /* make sure our super fits in the page */
1083 if (sizeof(**disk_super
) > PAGE_SIZE
)
1086 /* make sure our super doesn't straddle pages on disk */
1087 index
= bytenr
>> PAGE_SHIFT
;
1088 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1091 /* pull in the page with our super */
1092 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1095 if (IS_ERR_OR_NULL(*page
))
1100 /* align our pointer to the offset of the super block */
1101 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1103 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1104 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1105 btrfs_release_disk_super(*page
);
1109 if ((*disk_super
)->label
[0] &&
1110 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1111 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1117 * Look for a btrfs signature on a device. This may be called out of the mount path
1118 * and we are not allowed to call set_blocksize during the scan. The superblock
1119 * is read via pagecache
1121 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1122 struct btrfs_fs_devices
**fs_devices_ret
)
1124 struct btrfs_super_block
*disk_super
;
1125 struct block_device
*bdev
;
1134 * we would like to check all the supers, but that would make
1135 * a btrfs mount succeed after a mkfs from a different FS.
1136 * So, we need to add a special mount option to scan for
1137 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1139 bytenr
= btrfs_sb_offset(0);
1140 flags
|= FMODE_EXCL
;
1141 mutex_lock(&uuid_mutex
);
1143 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1145 ret
= PTR_ERR(bdev
);
1149 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1150 goto error_bdev_put
;
1152 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1153 transid
= btrfs_super_generation(disk_super
);
1154 total_devices
= btrfs_super_num_devices(disk_super
);
1156 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1158 if (disk_super
->label
[0]) {
1159 pr_info("BTRFS: device label %s ", disk_super
->label
);
1161 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1164 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1167 if (!ret
&& fs_devices_ret
)
1168 (*fs_devices_ret
)->total_devices
= total_devices
;
1170 btrfs_release_disk_super(page
);
1173 blkdev_put(bdev
, flags
);
1175 mutex_unlock(&uuid_mutex
);
1179 /* helper to account the used device space in the range */
1180 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1181 u64 end
, u64
*length
)
1183 struct btrfs_key key
;
1184 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1185 struct btrfs_dev_extent
*dev_extent
;
1186 struct btrfs_path
*path
;
1190 struct extent_buffer
*l
;
1194 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1197 path
= btrfs_alloc_path();
1200 path
->reada
= READA_FORWARD
;
1202 key
.objectid
= device
->devid
;
1204 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1206 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1210 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1217 slot
= path
->slots
[0];
1218 if (slot
>= btrfs_header_nritems(l
)) {
1219 ret
= btrfs_next_leaf(root
, path
);
1227 btrfs_item_key_to_cpu(l
, &key
, slot
);
1229 if (key
.objectid
< device
->devid
)
1232 if (key
.objectid
> device
->devid
)
1235 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1238 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1239 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1241 if (key
.offset
<= start
&& extent_end
> end
) {
1242 *length
= end
- start
+ 1;
1244 } else if (key
.offset
<= start
&& extent_end
> start
)
1245 *length
+= extent_end
- start
;
1246 else if (key
.offset
> start
&& extent_end
<= end
)
1247 *length
+= extent_end
- key
.offset
;
1248 else if (key
.offset
> start
&& key
.offset
<= end
) {
1249 *length
+= end
- key
.offset
+ 1;
1251 } else if (key
.offset
> end
)
1259 btrfs_free_path(path
);
1263 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1264 struct btrfs_device
*device
,
1265 u64
*start
, u64 len
)
1267 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1268 struct extent_map
*em
;
1269 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1271 u64 physical_start
= *start
;
1274 search_list
= &transaction
->pending_chunks
;
1276 list_for_each_entry(em
, search_list
, list
) {
1277 struct map_lookup
*map
;
1280 map
= em
->map_lookup
;
1281 for (i
= 0; i
< map
->num_stripes
; i
++) {
1284 if (map
->stripes
[i
].dev
!= device
)
1286 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1287 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1291 * Make sure that while processing the pinned list we do
1292 * not override our *start with a lower value, because
1293 * we can have pinned chunks that fall within this
1294 * device hole and that have lower physical addresses
1295 * than the pending chunks we processed before. If we
1296 * do not take this special care we can end up getting
1297 * 2 pending chunks that start at the same physical
1298 * device offsets because the end offset of a pinned
1299 * chunk can be equal to the start offset of some
1302 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1309 if (search_list
!= &fs_info
->pinned_chunks
) {
1310 search_list
= &fs_info
->pinned_chunks
;
1319 * find_free_dev_extent_start - find free space in the specified device
1320 * @device: the device which we search the free space in
1321 * @num_bytes: the size of the free space that we need
1322 * @search_start: the position from which to begin the search
1323 * @start: store the start of the free space.
1324 * @len: the size of the free space. that we find, or the size
1325 * of the max free space if we don't find suitable free space
1327 * this uses a pretty simple search, the expectation is that it is
1328 * called very infrequently and that a given device has a small number
1331 * @start is used to store the start of the free space if we find. But if we
1332 * don't find suitable free space, it will be used to store the start position
1333 * of the max free space.
1335 * @len is used to store the size of the free space that we find.
1336 * But if we don't find suitable free space, it is used to store the size of
1337 * the max free space.
1339 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1340 struct btrfs_device
*device
, u64 num_bytes
,
1341 u64 search_start
, u64
*start
, u64
*len
)
1343 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1344 struct btrfs_root
*root
= fs_info
->dev_root
;
1345 struct btrfs_key key
;
1346 struct btrfs_dev_extent
*dev_extent
;
1347 struct btrfs_path
*path
;
1352 u64 search_end
= device
->total_bytes
;
1355 struct extent_buffer
*l
;
1356 u64 min_search_start
;
1359 * We don't want to overwrite the superblock on the drive nor any area
1360 * used by the boot loader (grub for example), so we make sure to start
1361 * at an offset of at least 1MB.
1363 min_search_start
= max(fs_info
->alloc_start
, 1024ull * 1024);
1364 search_start
= max(search_start
, min_search_start
);
1366 path
= btrfs_alloc_path();
1370 max_hole_start
= search_start
;
1374 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1379 path
->reada
= READA_FORWARD
;
1380 path
->search_commit_root
= 1;
1381 path
->skip_locking
= 1;
1383 key
.objectid
= device
->devid
;
1384 key
.offset
= search_start
;
1385 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1387 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1391 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1398 slot
= path
->slots
[0];
1399 if (slot
>= btrfs_header_nritems(l
)) {
1400 ret
= btrfs_next_leaf(root
, path
);
1408 btrfs_item_key_to_cpu(l
, &key
, slot
);
1410 if (key
.objectid
< device
->devid
)
1413 if (key
.objectid
> device
->devid
)
1416 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1419 if (key
.offset
> search_start
) {
1420 hole_size
= key
.offset
- search_start
;
1423 * Have to check before we set max_hole_start, otherwise
1424 * we could end up sending back this offset anyway.
1426 if (contains_pending_extent(transaction
, device
,
1429 if (key
.offset
>= search_start
) {
1430 hole_size
= key
.offset
- search_start
;
1437 if (hole_size
> max_hole_size
) {
1438 max_hole_start
= search_start
;
1439 max_hole_size
= hole_size
;
1443 * If this free space is greater than which we need,
1444 * it must be the max free space that we have found
1445 * until now, so max_hole_start must point to the start
1446 * of this free space and the length of this free space
1447 * is stored in max_hole_size. Thus, we return
1448 * max_hole_start and max_hole_size and go back to the
1451 if (hole_size
>= num_bytes
) {
1457 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1458 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1460 if (extent_end
> search_start
)
1461 search_start
= extent_end
;
1468 * At this point, search_start should be the end of
1469 * allocated dev extents, and when shrinking the device,
1470 * search_end may be smaller than search_start.
1472 if (search_end
> search_start
) {
1473 hole_size
= search_end
- search_start
;
1475 if (contains_pending_extent(transaction
, device
, &search_start
,
1477 btrfs_release_path(path
);
1481 if (hole_size
> max_hole_size
) {
1482 max_hole_start
= search_start
;
1483 max_hole_size
= hole_size
;
1488 if (max_hole_size
< num_bytes
)
1494 btrfs_free_path(path
);
1495 *start
= max_hole_start
;
1497 *len
= max_hole_size
;
1501 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1502 struct btrfs_device
*device
, u64 num_bytes
,
1503 u64
*start
, u64
*len
)
1505 /* FIXME use last free of some kind */
1506 return find_free_dev_extent_start(trans
->transaction
, device
,
1507 num_bytes
, 0, start
, len
);
1510 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1511 struct btrfs_device
*device
,
1512 u64 start
, u64
*dev_extent_len
)
1514 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1515 struct btrfs_root
*root
= fs_info
->dev_root
;
1517 struct btrfs_path
*path
;
1518 struct btrfs_key key
;
1519 struct btrfs_key found_key
;
1520 struct extent_buffer
*leaf
= NULL
;
1521 struct btrfs_dev_extent
*extent
= NULL
;
1523 path
= btrfs_alloc_path();
1527 key
.objectid
= device
->devid
;
1529 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1531 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1533 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1534 BTRFS_DEV_EXTENT_KEY
);
1537 leaf
= path
->nodes
[0];
1538 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1539 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1540 struct btrfs_dev_extent
);
1541 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1542 btrfs_dev_extent_length(leaf
, extent
) < start
);
1544 btrfs_release_path(path
);
1546 } else if (ret
== 0) {
1547 leaf
= path
->nodes
[0];
1548 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1549 struct btrfs_dev_extent
);
1551 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1555 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1557 ret
= btrfs_del_item(trans
, root
, path
);
1559 btrfs_handle_fs_error(fs_info
, ret
,
1560 "Failed to remove dev extent item");
1562 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1565 btrfs_free_path(path
);
1569 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1570 struct btrfs_device
*device
,
1571 u64 chunk_tree
, u64 chunk_objectid
,
1572 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1575 struct btrfs_path
*path
;
1576 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1577 struct btrfs_root
*root
= fs_info
->dev_root
;
1578 struct btrfs_dev_extent
*extent
;
1579 struct extent_buffer
*leaf
;
1580 struct btrfs_key key
;
1582 WARN_ON(!device
->in_fs_metadata
);
1583 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1584 path
= btrfs_alloc_path();
1588 key
.objectid
= device
->devid
;
1590 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1591 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1596 leaf
= path
->nodes
[0];
1597 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1598 struct btrfs_dev_extent
);
1599 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1600 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1601 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1603 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1605 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1606 btrfs_mark_buffer_dirty(leaf
);
1608 btrfs_free_path(path
);
1612 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1614 struct extent_map_tree
*em_tree
;
1615 struct extent_map
*em
;
1619 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1620 read_lock(&em_tree
->lock
);
1621 n
= rb_last(&em_tree
->map
);
1623 em
= rb_entry(n
, struct extent_map
, rb_node
);
1624 ret
= em
->start
+ em
->len
;
1626 read_unlock(&em_tree
->lock
);
1631 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1635 struct btrfs_key key
;
1636 struct btrfs_key found_key
;
1637 struct btrfs_path
*path
;
1639 path
= btrfs_alloc_path();
1643 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1644 key
.type
= BTRFS_DEV_ITEM_KEY
;
1645 key
.offset
= (u64
)-1;
1647 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1651 BUG_ON(ret
== 0); /* Corruption */
1653 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1654 BTRFS_DEV_ITEMS_OBJECTID
,
1655 BTRFS_DEV_ITEM_KEY
);
1659 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1661 *devid_ret
= found_key
.offset
+ 1;
1665 btrfs_free_path(path
);
1670 * the device information is stored in the chunk root
1671 * the btrfs_device struct should be fully filled in
1673 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1674 struct btrfs_fs_info
*fs_info
,
1675 struct btrfs_device
*device
)
1677 struct btrfs_root
*root
= fs_info
->chunk_root
;
1679 struct btrfs_path
*path
;
1680 struct btrfs_dev_item
*dev_item
;
1681 struct extent_buffer
*leaf
;
1682 struct btrfs_key key
;
1685 path
= btrfs_alloc_path();
1689 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1690 key
.type
= BTRFS_DEV_ITEM_KEY
;
1691 key
.offset
= device
->devid
;
1693 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1698 leaf
= path
->nodes
[0];
1699 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1701 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1702 btrfs_set_device_generation(leaf
, dev_item
, 0);
1703 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1704 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1705 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1706 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1707 btrfs_set_device_total_bytes(leaf
, dev_item
,
1708 btrfs_device_get_disk_total_bytes(device
));
1709 btrfs_set_device_bytes_used(leaf
, dev_item
,
1710 btrfs_device_get_bytes_used(device
));
1711 btrfs_set_device_group(leaf
, dev_item
, 0);
1712 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1713 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1714 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1716 ptr
= btrfs_device_uuid(dev_item
);
1717 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1718 ptr
= btrfs_device_fsid(dev_item
);
1719 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1720 btrfs_mark_buffer_dirty(leaf
);
1724 btrfs_free_path(path
);
1729 * Function to update ctime/mtime for a given device path.
1730 * Mainly used for ctime/mtime based probe like libblkid.
1732 static void update_dev_time(const char *path_name
)
1736 filp
= filp_open(path_name
, O_RDWR
, 0);
1739 file_update_time(filp
);
1740 filp_close(filp
, NULL
);
1743 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1744 struct btrfs_device
*device
)
1746 struct btrfs_root
*root
= fs_info
->chunk_root
;
1748 struct btrfs_path
*path
;
1749 struct btrfs_key key
;
1750 struct btrfs_trans_handle
*trans
;
1752 path
= btrfs_alloc_path();
1756 trans
= btrfs_start_transaction(root
, 0);
1757 if (IS_ERR(trans
)) {
1758 btrfs_free_path(path
);
1759 return PTR_ERR(trans
);
1761 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1762 key
.type
= BTRFS_DEV_ITEM_KEY
;
1763 key
.offset
= device
->devid
;
1765 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1774 ret
= btrfs_del_item(trans
, root
, path
);
1778 btrfs_free_path(path
);
1779 btrfs_commit_transaction(trans
);
1784 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1785 * filesystem. It's up to the caller to adjust that number regarding eg. device
1788 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1796 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1798 all_avail
= fs_info
->avail_data_alloc_bits
|
1799 fs_info
->avail_system_alloc_bits
|
1800 fs_info
->avail_metadata_alloc_bits
;
1801 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1803 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1804 if (!(all_avail
& btrfs_raid_group
[i
]))
1807 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1808 int ret
= btrfs_raid_mindev_error
[i
];
1818 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1819 struct btrfs_device
*device
)
1821 struct btrfs_device
*next_device
;
1823 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1824 if (next_device
!= device
&&
1825 !next_device
->missing
&& next_device
->bdev
)
1833 * Helper function to check if the given device is part of s_bdev / latest_bdev
1834 * and replace it with the provided or the next active device, in the context
1835 * where this function called, there should be always be another device (or
1836 * this_dev) which is active.
1838 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1839 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1841 struct btrfs_device
*next_device
;
1844 next_device
= this_dev
;
1846 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1848 ASSERT(next_device
);
1850 if (fs_info
->sb
->s_bdev
&&
1851 (fs_info
->sb
->s_bdev
== device
->bdev
))
1852 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1854 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1855 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1858 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1861 struct btrfs_device
*device
;
1862 struct btrfs_fs_devices
*cur_devices
;
1865 bool clear_super
= false;
1867 mutex_lock(&uuid_mutex
);
1869 num_devices
= fs_info
->fs_devices
->num_devices
;
1870 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1871 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1872 WARN_ON(num_devices
< 1);
1875 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1877 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1881 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1886 if (device
->is_tgtdev_for_dev_replace
) {
1887 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1891 if (device
->writeable
&& fs_info
->fs_devices
->rw_devices
== 1) {
1892 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1896 if (device
->writeable
) {
1897 mutex_lock(&fs_info
->chunk_mutex
);
1898 list_del_init(&device
->dev_alloc_list
);
1899 device
->fs_devices
->rw_devices
--;
1900 mutex_unlock(&fs_info
->chunk_mutex
);
1904 mutex_unlock(&uuid_mutex
);
1905 ret
= btrfs_shrink_device(device
, 0);
1906 mutex_lock(&uuid_mutex
);
1911 * TODO: the superblock still includes this device in its num_devices
1912 * counter although write_all_supers() is not locked out. This
1913 * could give a filesystem state which requires a degraded mount.
1915 ret
= btrfs_rm_dev_item(fs_info
, device
);
1919 device
->in_fs_metadata
= 0;
1920 btrfs_scrub_cancel_dev(fs_info
, device
);
1923 * the device list mutex makes sure that we don't change
1924 * the device list while someone else is writing out all
1925 * the device supers. Whoever is writing all supers, should
1926 * lock the device list mutex before getting the number of
1927 * devices in the super block (super_copy). Conversely,
1928 * whoever updates the number of devices in the super block
1929 * (super_copy) should hold the device list mutex.
1932 cur_devices
= device
->fs_devices
;
1933 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1934 list_del_rcu(&device
->dev_list
);
1936 device
->fs_devices
->num_devices
--;
1937 device
->fs_devices
->total_devices
--;
1939 if (device
->missing
)
1940 device
->fs_devices
->missing_devices
--;
1942 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1945 device
->fs_devices
->open_devices
--;
1946 /* remove sysfs entry */
1947 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1950 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
1951 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
1952 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1955 * at this point, the device is zero sized and detached from
1956 * the devices list. All that's left is to zero out the old
1957 * supers and free the device.
1959 if (device
->writeable
)
1960 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1962 btrfs_close_bdev(device
);
1963 call_rcu(&device
->rcu
, free_device
);
1965 if (cur_devices
->open_devices
== 0) {
1966 struct btrfs_fs_devices
*fs_devices
;
1967 fs_devices
= fs_info
->fs_devices
;
1968 while (fs_devices
) {
1969 if (fs_devices
->seed
== cur_devices
) {
1970 fs_devices
->seed
= cur_devices
->seed
;
1973 fs_devices
= fs_devices
->seed
;
1975 cur_devices
->seed
= NULL
;
1976 __btrfs_close_devices(cur_devices
);
1977 free_fs_devices(cur_devices
);
1980 fs_info
->num_tolerated_disk_barrier_failures
=
1981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
1984 mutex_unlock(&uuid_mutex
);
1988 if (device
->writeable
) {
1989 mutex_lock(&fs_info
->chunk_mutex
);
1990 list_add(&device
->dev_alloc_list
,
1991 &fs_info
->fs_devices
->alloc_list
);
1992 device
->fs_devices
->rw_devices
++;
1993 mutex_unlock(&fs_info
->chunk_mutex
);
1998 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1999 struct btrfs_device
*srcdev
)
2001 struct btrfs_fs_devices
*fs_devices
;
2003 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2006 * in case of fs with no seed, srcdev->fs_devices will point
2007 * to fs_devices of fs_info. However when the dev being replaced is
2008 * a seed dev it will point to the seed's local fs_devices. In short
2009 * srcdev will have its correct fs_devices in both the cases.
2011 fs_devices
= srcdev
->fs_devices
;
2013 list_del_rcu(&srcdev
->dev_list
);
2014 list_del_rcu(&srcdev
->dev_alloc_list
);
2015 fs_devices
->num_devices
--;
2016 if (srcdev
->missing
)
2017 fs_devices
->missing_devices
--;
2019 if (srcdev
->writeable
)
2020 fs_devices
->rw_devices
--;
2023 fs_devices
->open_devices
--;
2026 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2027 struct btrfs_device
*srcdev
)
2029 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2031 if (srcdev
->writeable
) {
2032 /* zero out the old super if it is writable */
2033 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2036 btrfs_close_bdev(srcdev
);
2038 call_rcu(&srcdev
->rcu
, free_device
);
2041 * unless fs_devices is seed fs, num_devices shouldn't go
2044 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2046 /* if this is no devs we rather delete the fs_devices */
2047 if (!fs_devices
->num_devices
) {
2048 struct btrfs_fs_devices
*tmp_fs_devices
;
2050 tmp_fs_devices
= fs_info
->fs_devices
;
2051 while (tmp_fs_devices
) {
2052 if (tmp_fs_devices
->seed
== fs_devices
) {
2053 tmp_fs_devices
->seed
= fs_devices
->seed
;
2056 tmp_fs_devices
= tmp_fs_devices
->seed
;
2058 fs_devices
->seed
= NULL
;
2059 __btrfs_close_devices(fs_devices
);
2060 free_fs_devices(fs_devices
);
2064 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2065 struct btrfs_device
*tgtdev
)
2067 mutex_lock(&uuid_mutex
);
2069 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2071 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2074 fs_info
->fs_devices
->open_devices
--;
2076 fs_info
->fs_devices
->num_devices
--;
2078 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2080 list_del_rcu(&tgtdev
->dev_list
);
2082 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2083 mutex_unlock(&uuid_mutex
);
2086 * The update_dev_time() with in btrfs_scratch_superblocks()
2087 * may lead to a call to btrfs_show_devname() which will try
2088 * to hold device_list_mutex. And here this device
2089 * is already out of device list, so we don't have to hold
2090 * the device_list_mutex lock.
2092 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2094 btrfs_close_bdev(tgtdev
);
2095 call_rcu(&tgtdev
->rcu
, free_device
);
2098 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2099 const char *device_path
,
2100 struct btrfs_device
**device
)
2103 struct btrfs_super_block
*disk_super
;
2106 struct block_device
*bdev
;
2107 struct buffer_head
*bh
;
2110 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2111 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2114 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2115 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2116 dev_uuid
= disk_super
->dev_item
.uuid
;
2117 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2121 blkdev_put(bdev
, FMODE_READ
);
2125 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2126 const char *device_path
,
2127 struct btrfs_device
**device
)
2130 if (strcmp(device_path
, "missing") == 0) {
2131 struct list_head
*devices
;
2132 struct btrfs_device
*tmp
;
2134 devices
= &fs_info
->fs_devices
->devices
;
2136 * It is safe to read the devices since the volume_mutex
2137 * is held by the caller.
2139 list_for_each_entry(tmp
, devices
, dev_list
) {
2140 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2147 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2151 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2156 * Lookup a device given by device id, or the path if the id is 0.
2158 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2159 const char *devpath
,
2160 struct btrfs_device
**device
)
2166 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2170 if (!devpath
|| !devpath
[0])
2173 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2180 * does all the dirty work required for changing file system's UUID.
2182 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2184 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2185 struct btrfs_fs_devices
*old_devices
;
2186 struct btrfs_fs_devices
*seed_devices
;
2187 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2188 struct btrfs_device
*device
;
2191 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2192 if (!fs_devices
->seeding
)
2195 seed_devices
= __alloc_fs_devices();
2196 if (IS_ERR(seed_devices
))
2197 return PTR_ERR(seed_devices
);
2199 old_devices
= clone_fs_devices(fs_devices
);
2200 if (IS_ERR(old_devices
)) {
2201 kfree(seed_devices
);
2202 return PTR_ERR(old_devices
);
2205 list_add(&old_devices
->list
, &fs_uuids
);
2207 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2208 seed_devices
->opened
= 1;
2209 INIT_LIST_HEAD(&seed_devices
->devices
);
2210 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2211 mutex_init(&seed_devices
->device_list_mutex
);
2213 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2214 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2216 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2217 device
->fs_devices
= seed_devices
;
2219 mutex_lock(&fs_info
->chunk_mutex
);
2220 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2221 mutex_unlock(&fs_info
->chunk_mutex
);
2223 fs_devices
->seeding
= 0;
2224 fs_devices
->num_devices
= 0;
2225 fs_devices
->open_devices
= 0;
2226 fs_devices
->missing_devices
= 0;
2227 fs_devices
->rotating
= 0;
2228 fs_devices
->seed
= seed_devices
;
2230 generate_random_uuid(fs_devices
->fsid
);
2231 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2232 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2233 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2235 super_flags
= btrfs_super_flags(disk_super
) &
2236 ~BTRFS_SUPER_FLAG_SEEDING
;
2237 btrfs_set_super_flags(disk_super
, super_flags
);
2243 * Store the expected generation for seed devices in device items.
2245 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2246 struct btrfs_fs_info
*fs_info
)
2248 struct btrfs_root
*root
= fs_info
->chunk_root
;
2249 struct btrfs_path
*path
;
2250 struct extent_buffer
*leaf
;
2251 struct btrfs_dev_item
*dev_item
;
2252 struct btrfs_device
*device
;
2253 struct btrfs_key key
;
2254 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2255 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2259 path
= btrfs_alloc_path();
2263 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2265 key
.type
= BTRFS_DEV_ITEM_KEY
;
2268 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2272 leaf
= path
->nodes
[0];
2274 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2275 ret
= btrfs_next_leaf(root
, path
);
2280 leaf
= path
->nodes
[0];
2281 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2282 btrfs_release_path(path
);
2286 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2287 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2288 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2291 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2292 struct btrfs_dev_item
);
2293 devid
= btrfs_device_id(leaf
, dev_item
);
2294 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2296 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2298 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2299 BUG_ON(!device
); /* Logic error */
2301 if (device
->fs_devices
->seeding
) {
2302 btrfs_set_device_generation(leaf
, dev_item
,
2303 device
->generation
);
2304 btrfs_mark_buffer_dirty(leaf
);
2312 btrfs_free_path(path
);
2316 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2318 struct btrfs_root
*root
= fs_info
->dev_root
;
2319 struct request_queue
*q
;
2320 struct btrfs_trans_handle
*trans
;
2321 struct btrfs_device
*device
;
2322 struct block_device
*bdev
;
2323 struct list_head
*devices
;
2324 struct super_block
*sb
= fs_info
->sb
;
2325 struct rcu_string
*name
;
2327 int seeding_dev
= 0;
2330 if ((sb
->s_flags
& MS_RDONLY
) && !fs_info
->fs_devices
->seeding
)
2333 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2334 fs_info
->bdev_holder
);
2336 return PTR_ERR(bdev
);
2338 if (fs_info
->fs_devices
->seeding
) {
2340 down_write(&sb
->s_umount
);
2341 mutex_lock(&uuid_mutex
);
2344 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2346 devices
= &fs_info
->fs_devices
->devices
;
2348 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2349 list_for_each_entry(device
, devices
, dev_list
) {
2350 if (device
->bdev
== bdev
) {
2353 &fs_info
->fs_devices
->device_list_mutex
);
2357 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2359 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2360 if (IS_ERR(device
)) {
2361 /* we can safely leave the fs_devices entry around */
2362 ret
= PTR_ERR(device
);
2366 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2372 rcu_assign_pointer(device
->name
, name
);
2374 trans
= btrfs_start_transaction(root
, 0);
2375 if (IS_ERR(trans
)) {
2376 rcu_string_free(device
->name
);
2378 ret
= PTR_ERR(trans
);
2382 q
= bdev_get_queue(bdev
);
2383 if (blk_queue_discard(q
))
2384 device
->can_discard
= 1;
2385 device
->writeable
= 1;
2386 device
->generation
= trans
->transid
;
2387 device
->io_width
= fs_info
->sectorsize
;
2388 device
->io_align
= fs_info
->sectorsize
;
2389 device
->sector_size
= fs_info
->sectorsize
;
2390 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2391 device
->disk_total_bytes
= device
->total_bytes
;
2392 device
->commit_total_bytes
= device
->total_bytes
;
2393 device
->fs_info
= fs_info
;
2394 device
->bdev
= bdev
;
2395 device
->in_fs_metadata
= 1;
2396 device
->is_tgtdev_for_dev_replace
= 0;
2397 device
->mode
= FMODE_EXCL
;
2398 device
->dev_stats_valid
= 1;
2399 set_blocksize(device
->bdev
, 4096);
2402 sb
->s_flags
&= ~MS_RDONLY
;
2403 ret
= btrfs_prepare_sprout(fs_info
);
2404 BUG_ON(ret
); /* -ENOMEM */
2407 device
->fs_devices
= fs_info
->fs_devices
;
2409 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2410 mutex_lock(&fs_info
->chunk_mutex
);
2411 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2412 list_add(&device
->dev_alloc_list
,
2413 &fs_info
->fs_devices
->alloc_list
);
2414 fs_info
->fs_devices
->num_devices
++;
2415 fs_info
->fs_devices
->open_devices
++;
2416 fs_info
->fs_devices
->rw_devices
++;
2417 fs_info
->fs_devices
->total_devices
++;
2418 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2420 spin_lock(&fs_info
->free_chunk_lock
);
2421 fs_info
->free_chunk_space
+= device
->total_bytes
;
2422 spin_unlock(&fs_info
->free_chunk_lock
);
2424 if (!blk_queue_nonrot(q
))
2425 fs_info
->fs_devices
->rotating
= 1;
2427 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2428 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2429 tmp
+ device
->total_bytes
);
2431 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2432 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2434 /* add sysfs device entry */
2435 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2438 * we've got more storage, clear any full flags on the space
2441 btrfs_clear_space_info_full(fs_info
);
2443 mutex_unlock(&fs_info
->chunk_mutex
);
2444 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2447 mutex_lock(&fs_info
->chunk_mutex
);
2448 ret
= init_first_rw_device(trans
, fs_info
);
2449 mutex_unlock(&fs_info
->chunk_mutex
);
2451 btrfs_abort_transaction(trans
, ret
);
2456 ret
= btrfs_add_device(trans
, fs_info
, device
);
2458 btrfs_abort_transaction(trans
, ret
);
2463 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2465 ret
= btrfs_finish_sprout(trans
, fs_info
);
2467 btrfs_abort_transaction(trans
, ret
);
2471 /* Sprouting would change fsid of the mounted root,
2472 * so rename the fsid on the sysfs
2474 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2476 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2478 "sysfs: failed to create fsid for sprout");
2481 fs_info
->num_tolerated_disk_barrier_failures
=
2482 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2483 ret
= btrfs_commit_transaction(trans
);
2486 mutex_unlock(&uuid_mutex
);
2487 up_write(&sb
->s_umount
);
2489 if (ret
) /* transaction commit */
2492 ret
= btrfs_relocate_sys_chunks(fs_info
);
2494 btrfs_handle_fs_error(fs_info
, ret
,
2495 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496 trans
= btrfs_attach_transaction(root
);
2497 if (IS_ERR(trans
)) {
2498 if (PTR_ERR(trans
) == -ENOENT
)
2500 return PTR_ERR(trans
);
2502 ret
= btrfs_commit_transaction(trans
);
2505 /* Update ctime/mtime for libblkid */
2506 update_dev_time(device_path
);
2510 btrfs_end_transaction(trans
);
2511 rcu_string_free(device
->name
);
2512 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2515 blkdev_put(bdev
, FMODE_EXCL
);
2517 mutex_unlock(&uuid_mutex
);
2518 up_write(&sb
->s_umount
);
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2524 const char *device_path
,
2525 struct btrfs_device
*srcdev
,
2526 struct btrfs_device
**device_out
)
2528 struct request_queue
*q
;
2529 struct btrfs_device
*device
;
2530 struct block_device
*bdev
;
2531 struct list_head
*devices
;
2532 struct rcu_string
*name
;
2533 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2537 if (fs_info
->fs_devices
->seeding
) {
2538 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2542 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2543 fs_info
->bdev_holder
);
2545 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2546 return PTR_ERR(bdev
);
2549 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2551 devices
= &fs_info
->fs_devices
->devices
;
2552 list_for_each_entry(device
, devices
, dev_list
) {
2553 if (device
->bdev
== bdev
) {
2555 "target device is in the filesystem!");
2562 if (i_size_read(bdev
->bd_inode
) <
2563 btrfs_device_get_total_bytes(srcdev
)) {
2565 "target device is smaller than source device!");
2571 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2572 if (IS_ERR(device
)) {
2573 ret
= PTR_ERR(device
);
2577 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2583 rcu_assign_pointer(device
->name
, name
);
2585 q
= bdev_get_queue(bdev
);
2586 if (blk_queue_discard(q
))
2587 device
->can_discard
= 1;
2588 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2589 device
->writeable
= 1;
2590 device
->generation
= 0;
2591 device
->io_width
= fs_info
->sectorsize
;
2592 device
->io_align
= fs_info
->sectorsize
;
2593 device
->sector_size
= fs_info
->sectorsize
;
2594 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2595 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2596 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2597 ASSERT(list_empty(&srcdev
->resized_list
));
2598 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2599 device
->commit_bytes_used
= device
->bytes_used
;
2600 device
->fs_info
= fs_info
;
2601 device
->bdev
= bdev
;
2602 device
->in_fs_metadata
= 1;
2603 device
->is_tgtdev_for_dev_replace
= 1;
2604 device
->mode
= FMODE_EXCL
;
2605 device
->dev_stats_valid
= 1;
2606 set_blocksize(device
->bdev
, 4096);
2607 device
->fs_devices
= fs_info
->fs_devices
;
2608 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2609 fs_info
->fs_devices
->num_devices
++;
2610 fs_info
->fs_devices
->open_devices
++;
2611 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2613 *device_out
= device
;
2617 blkdev_put(bdev
, FMODE_EXCL
);
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2622 struct btrfs_device
*tgtdev
)
2624 u32 sectorsize
= fs_info
->sectorsize
;
2626 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2627 tgtdev
->io_width
= sectorsize
;
2628 tgtdev
->io_align
= sectorsize
;
2629 tgtdev
->sector_size
= sectorsize
;
2630 tgtdev
->fs_info
= fs_info
;
2631 tgtdev
->in_fs_metadata
= 1;
2634 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2635 struct btrfs_device
*device
)
2638 struct btrfs_path
*path
;
2639 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2640 struct btrfs_dev_item
*dev_item
;
2641 struct extent_buffer
*leaf
;
2642 struct btrfs_key key
;
2644 path
= btrfs_alloc_path();
2648 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2649 key
.type
= BTRFS_DEV_ITEM_KEY
;
2650 key
.offset
= device
->devid
;
2652 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2661 leaf
= path
->nodes
[0];
2662 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2664 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2665 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2666 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2667 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2668 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2669 btrfs_set_device_total_bytes(leaf
, dev_item
,
2670 btrfs_device_get_disk_total_bytes(device
));
2671 btrfs_set_device_bytes_used(leaf
, dev_item
,
2672 btrfs_device_get_bytes_used(device
));
2673 btrfs_mark_buffer_dirty(leaf
);
2676 btrfs_free_path(path
);
2680 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2681 struct btrfs_device
*device
, u64 new_size
)
2683 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2684 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2685 struct btrfs_fs_devices
*fs_devices
;
2689 if (!device
->writeable
)
2692 mutex_lock(&fs_info
->chunk_mutex
);
2693 old_total
= btrfs_super_total_bytes(super_copy
);
2694 diff
= new_size
- device
->total_bytes
;
2696 if (new_size
<= device
->total_bytes
||
2697 device
->is_tgtdev_for_dev_replace
) {
2698 mutex_unlock(&fs_info
->chunk_mutex
);
2702 fs_devices
= fs_info
->fs_devices
;
2704 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2705 device
->fs_devices
->total_rw_bytes
+= diff
;
2707 btrfs_device_set_total_bytes(device
, new_size
);
2708 btrfs_device_set_disk_total_bytes(device
, new_size
);
2709 btrfs_clear_space_info_full(device
->fs_info
);
2710 if (list_empty(&device
->resized_list
))
2711 list_add_tail(&device
->resized_list
,
2712 &fs_devices
->resized_devices
);
2713 mutex_unlock(&fs_info
->chunk_mutex
);
2715 return btrfs_update_device(trans
, device
);
2718 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2719 struct btrfs_fs_info
*fs_info
, u64 chunk_objectid
,
2722 struct btrfs_root
*root
= fs_info
->chunk_root
;
2724 struct btrfs_path
*path
;
2725 struct btrfs_key key
;
2727 path
= btrfs_alloc_path();
2731 key
.objectid
= chunk_objectid
;
2732 key
.offset
= chunk_offset
;
2733 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2735 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2738 else if (ret
> 0) { /* Logic error or corruption */
2739 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2740 "Failed lookup while freeing chunk.");
2745 ret
= btrfs_del_item(trans
, root
, path
);
2747 btrfs_handle_fs_error(fs_info
, ret
,
2748 "Failed to delete chunk item.");
2750 btrfs_free_path(path
);
2754 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
,
2755 u64 chunk_objectid
, u64 chunk_offset
)
2757 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2758 struct btrfs_disk_key
*disk_key
;
2759 struct btrfs_chunk
*chunk
;
2766 struct btrfs_key key
;
2768 mutex_lock(&fs_info
->chunk_mutex
);
2769 array_size
= btrfs_super_sys_array_size(super_copy
);
2771 ptr
= super_copy
->sys_chunk_array
;
2774 while (cur
< array_size
) {
2775 disk_key
= (struct btrfs_disk_key
*)ptr
;
2776 btrfs_disk_key_to_cpu(&key
, disk_key
);
2778 len
= sizeof(*disk_key
);
2780 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2781 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2782 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2783 len
+= btrfs_chunk_item_size(num_stripes
);
2788 if (key
.objectid
== chunk_objectid
&&
2789 key
.offset
== chunk_offset
) {
2790 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2792 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2798 mutex_unlock(&fs_info
->chunk_mutex
);
2802 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2803 u64 logical
, u64 length
)
2805 struct extent_map_tree
*em_tree
;
2806 struct extent_map
*em
;
2808 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2809 read_lock(&em_tree
->lock
);
2810 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2811 read_unlock(&em_tree
->lock
);
2814 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2816 return ERR_PTR(-EINVAL
);
2819 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2821 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2822 logical
, length
, em
->start
, em
->start
+ em
->len
);
2823 free_extent_map(em
);
2824 return ERR_PTR(-EINVAL
);
2827 /* callers are responsible for dropping em's ref. */
2831 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2832 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2834 struct extent_map
*em
;
2835 struct map_lookup
*map
;
2836 u64 dev_extent_len
= 0;
2837 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2839 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2841 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2844 * This is a logic error, but we don't want to just rely on the
2845 * user having built with ASSERT enabled, so if ASSERT doesn't
2846 * do anything we still error out.
2851 map
= em
->map_lookup
;
2852 mutex_lock(&fs_info
->chunk_mutex
);
2853 check_system_chunk(trans
, fs_info
, map
->type
);
2854 mutex_unlock(&fs_info
->chunk_mutex
);
2857 * Take the device list mutex to prevent races with the final phase of
2858 * a device replace operation that replaces the device object associated
2859 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2861 mutex_lock(&fs_devices
->device_list_mutex
);
2862 for (i
= 0; i
< map
->num_stripes
; i
++) {
2863 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2864 ret
= btrfs_free_dev_extent(trans
, device
,
2865 map
->stripes
[i
].physical
,
2868 mutex_unlock(&fs_devices
->device_list_mutex
);
2869 btrfs_abort_transaction(trans
, ret
);
2873 if (device
->bytes_used
> 0) {
2874 mutex_lock(&fs_info
->chunk_mutex
);
2875 btrfs_device_set_bytes_used(device
,
2876 device
->bytes_used
- dev_extent_len
);
2877 spin_lock(&fs_info
->free_chunk_lock
);
2878 fs_info
->free_chunk_space
+= dev_extent_len
;
2879 spin_unlock(&fs_info
->free_chunk_lock
);
2880 btrfs_clear_space_info_full(fs_info
);
2881 mutex_unlock(&fs_info
->chunk_mutex
);
2884 if (map
->stripes
[i
].dev
) {
2885 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2887 mutex_unlock(&fs_devices
->device_list_mutex
);
2888 btrfs_abort_transaction(trans
, ret
);
2893 mutex_unlock(&fs_devices
->device_list_mutex
);
2895 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_objectid
, chunk_offset
);
2897 btrfs_abort_transaction(trans
, ret
);
2901 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2903 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2904 ret
= btrfs_del_sys_chunk(fs_info
, chunk_objectid
,
2907 btrfs_abort_transaction(trans
, ret
);
2912 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2914 btrfs_abort_transaction(trans
, ret
);
2920 free_extent_map(em
);
2924 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2926 struct btrfs_root
*root
= fs_info
->chunk_root
;
2927 struct btrfs_trans_handle
*trans
;
2931 * Prevent races with automatic removal of unused block groups.
2932 * After we relocate and before we remove the chunk with offset
2933 * chunk_offset, automatic removal of the block group can kick in,
2934 * resulting in a failure when calling btrfs_remove_chunk() below.
2936 * Make sure to acquire this mutex before doing a tree search (dev
2937 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2938 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2939 * we release the path used to search the chunk/dev tree and before
2940 * the current task acquires this mutex and calls us.
2942 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2944 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2948 /* step one, relocate all the extents inside this chunk */
2949 btrfs_scrub_pause(fs_info
);
2950 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2951 btrfs_scrub_continue(fs_info
);
2955 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2957 if (IS_ERR(trans
)) {
2958 ret
= PTR_ERR(trans
);
2959 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2964 * step two, delete the device extents and the
2965 * chunk tree entries
2967 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2968 btrfs_end_transaction(trans
);
2972 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2974 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2975 struct btrfs_path
*path
;
2976 struct extent_buffer
*leaf
;
2977 struct btrfs_chunk
*chunk
;
2978 struct btrfs_key key
;
2979 struct btrfs_key found_key
;
2981 bool retried
= false;
2985 path
= btrfs_alloc_path();
2990 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2991 key
.offset
= (u64
)-1;
2992 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2995 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2996 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2998 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3001 BUG_ON(ret
== 0); /* Corruption */
3003 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3006 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3012 leaf
= path
->nodes
[0];
3013 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3015 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3016 struct btrfs_chunk
);
3017 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3018 btrfs_release_path(path
);
3020 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3021 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3027 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3029 if (found_key
.offset
== 0)
3031 key
.offset
= found_key
.offset
- 1;
3034 if (failed
&& !retried
) {
3038 } else if (WARN_ON(failed
&& retried
)) {
3042 btrfs_free_path(path
);
3046 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3047 struct btrfs_balance_control
*bctl
)
3049 struct btrfs_root
*root
= fs_info
->tree_root
;
3050 struct btrfs_trans_handle
*trans
;
3051 struct btrfs_balance_item
*item
;
3052 struct btrfs_disk_balance_args disk_bargs
;
3053 struct btrfs_path
*path
;
3054 struct extent_buffer
*leaf
;
3055 struct btrfs_key key
;
3058 path
= btrfs_alloc_path();
3062 trans
= btrfs_start_transaction(root
, 0);
3063 if (IS_ERR(trans
)) {
3064 btrfs_free_path(path
);
3065 return PTR_ERR(trans
);
3068 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3069 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3072 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3077 leaf
= path
->nodes
[0];
3078 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3080 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3082 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3083 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3084 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3085 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3086 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3087 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3089 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3091 btrfs_mark_buffer_dirty(leaf
);
3093 btrfs_free_path(path
);
3094 err
= btrfs_commit_transaction(trans
);
3100 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3102 struct btrfs_root
*root
= fs_info
->tree_root
;
3103 struct btrfs_trans_handle
*trans
;
3104 struct btrfs_path
*path
;
3105 struct btrfs_key key
;
3108 path
= btrfs_alloc_path();
3112 trans
= btrfs_start_transaction(root
, 0);
3113 if (IS_ERR(trans
)) {
3114 btrfs_free_path(path
);
3115 return PTR_ERR(trans
);
3118 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3119 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3122 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3130 ret
= btrfs_del_item(trans
, root
, path
);
3132 btrfs_free_path(path
);
3133 err
= btrfs_commit_transaction(trans
);
3140 * This is a heuristic used to reduce the number of chunks balanced on
3141 * resume after balance was interrupted.
3143 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3146 * Turn on soft mode for chunk types that were being converted.
3148 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3149 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3150 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3151 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3152 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3153 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3156 * Turn on usage filter if is not already used. The idea is
3157 * that chunks that we have already balanced should be
3158 * reasonably full. Don't do it for chunks that are being
3159 * converted - that will keep us from relocating unconverted
3160 * (albeit full) chunks.
3162 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3163 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3164 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3165 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3166 bctl
->data
.usage
= 90;
3168 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3169 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3170 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3171 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3172 bctl
->sys
.usage
= 90;
3174 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3175 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3176 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3177 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3178 bctl
->meta
.usage
= 90;
3183 * Should be called with both balance and volume mutexes held to
3184 * serialize other volume operations (add_dev/rm_dev/resize) with
3185 * restriper. Same goes for unset_balance_control.
3187 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3189 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3191 BUG_ON(fs_info
->balance_ctl
);
3193 spin_lock(&fs_info
->balance_lock
);
3194 fs_info
->balance_ctl
= bctl
;
3195 spin_unlock(&fs_info
->balance_lock
);
3198 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3200 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3202 BUG_ON(!fs_info
->balance_ctl
);
3204 spin_lock(&fs_info
->balance_lock
);
3205 fs_info
->balance_ctl
= NULL
;
3206 spin_unlock(&fs_info
->balance_lock
);
3212 * Balance filters. Return 1 if chunk should be filtered out
3213 * (should not be balanced).
3215 static int chunk_profiles_filter(u64 chunk_type
,
3216 struct btrfs_balance_args
*bargs
)
3218 chunk_type
= chunk_to_extended(chunk_type
) &
3219 BTRFS_EXTENDED_PROFILE_MASK
;
3221 if (bargs
->profiles
& chunk_type
)
3227 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3228 struct btrfs_balance_args
*bargs
)
3230 struct btrfs_block_group_cache
*cache
;
3232 u64 user_thresh_min
;
3233 u64 user_thresh_max
;
3236 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3237 chunk_used
= btrfs_block_group_used(&cache
->item
);
3239 if (bargs
->usage_min
== 0)
3240 user_thresh_min
= 0;
3242 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3245 if (bargs
->usage_max
== 0)
3246 user_thresh_max
= 1;
3247 else if (bargs
->usage_max
> 100)
3248 user_thresh_max
= cache
->key
.offset
;
3250 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3253 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3256 btrfs_put_block_group(cache
);
3260 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3261 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3263 struct btrfs_block_group_cache
*cache
;
3264 u64 chunk_used
, user_thresh
;
3267 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3268 chunk_used
= btrfs_block_group_used(&cache
->item
);
3270 if (bargs
->usage_min
== 0)
3272 else if (bargs
->usage
> 100)
3273 user_thresh
= cache
->key
.offset
;
3275 user_thresh
= div_factor_fine(cache
->key
.offset
,
3278 if (chunk_used
< user_thresh
)
3281 btrfs_put_block_group(cache
);
3285 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3286 struct btrfs_chunk
*chunk
,
3287 struct btrfs_balance_args
*bargs
)
3289 struct btrfs_stripe
*stripe
;
3290 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3293 for (i
= 0; i
< num_stripes
; i
++) {
3294 stripe
= btrfs_stripe_nr(chunk
, i
);
3295 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3302 /* [pstart, pend) */
3303 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3304 struct btrfs_chunk
*chunk
,
3306 struct btrfs_balance_args
*bargs
)
3308 struct btrfs_stripe
*stripe
;
3309 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3315 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3318 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3319 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3320 factor
= num_stripes
/ 2;
3321 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3322 factor
= num_stripes
- 1;
3323 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3324 factor
= num_stripes
- 2;
3326 factor
= num_stripes
;
3329 for (i
= 0; i
< num_stripes
; i
++) {
3330 stripe
= btrfs_stripe_nr(chunk
, i
);
3331 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3334 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3335 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3336 stripe_length
= div_u64(stripe_length
, factor
);
3338 if (stripe_offset
< bargs
->pend
&&
3339 stripe_offset
+ stripe_length
> bargs
->pstart
)
3346 /* [vstart, vend) */
3347 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3348 struct btrfs_chunk
*chunk
,
3350 struct btrfs_balance_args
*bargs
)
3352 if (chunk_offset
< bargs
->vend
&&
3353 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3354 /* at least part of the chunk is inside this vrange */
3360 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3361 struct btrfs_chunk
*chunk
,
3362 struct btrfs_balance_args
*bargs
)
3364 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3366 if (bargs
->stripes_min
<= num_stripes
3367 && num_stripes
<= bargs
->stripes_max
)
3373 static int chunk_soft_convert_filter(u64 chunk_type
,
3374 struct btrfs_balance_args
*bargs
)
3376 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3379 chunk_type
= chunk_to_extended(chunk_type
) &
3380 BTRFS_EXTENDED_PROFILE_MASK
;
3382 if (bargs
->target
== chunk_type
)
3388 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3389 struct extent_buffer
*leaf
,
3390 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3392 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3393 struct btrfs_balance_args
*bargs
= NULL
;
3394 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3397 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3398 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3402 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3403 bargs
= &bctl
->data
;
3404 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3406 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3407 bargs
= &bctl
->meta
;
3409 /* profiles filter */
3410 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3411 chunk_profiles_filter(chunk_type
, bargs
)) {
3416 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3417 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3419 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3420 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3425 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3426 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3430 /* drange filter, makes sense only with devid filter */
3431 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3432 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3437 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3438 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3442 /* stripes filter */
3443 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3444 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3448 /* soft profile changing mode */
3449 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3450 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3455 * limited by count, must be the last filter
3457 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3458 if (bargs
->limit
== 0)
3462 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3464 * Same logic as the 'limit' filter; the minimum cannot be
3465 * determined here because we do not have the global information
3466 * about the count of all chunks that satisfy the filters.
3468 if (bargs
->limit_max
== 0)
3477 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3479 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3480 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3481 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3482 struct list_head
*devices
;
3483 struct btrfs_device
*device
;
3487 struct btrfs_chunk
*chunk
;
3488 struct btrfs_path
*path
= NULL
;
3489 struct btrfs_key key
;
3490 struct btrfs_key found_key
;
3491 struct btrfs_trans_handle
*trans
;
3492 struct extent_buffer
*leaf
;
3495 int enospc_errors
= 0;
3496 bool counting
= true;
3497 /* The single value limit and min/max limits use the same bytes in the */
3498 u64 limit_data
= bctl
->data
.limit
;
3499 u64 limit_meta
= bctl
->meta
.limit
;
3500 u64 limit_sys
= bctl
->sys
.limit
;
3504 int chunk_reserved
= 0;
3507 /* step one make some room on all the devices */
3508 devices
= &fs_info
->fs_devices
->devices
;
3509 list_for_each_entry(device
, devices
, dev_list
) {
3510 old_size
= btrfs_device_get_total_bytes(device
);
3511 size_to_free
= div_factor(old_size
, 1);
3512 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3513 if (!device
->writeable
||
3514 btrfs_device_get_total_bytes(device
) -
3515 btrfs_device_get_bytes_used(device
) > size_to_free
||
3516 device
->is_tgtdev_for_dev_replace
)
3519 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3523 /* btrfs_shrink_device never returns ret > 0 */
3528 trans
= btrfs_start_transaction(dev_root
, 0);
3529 if (IS_ERR(trans
)) {
3530 ret
= PTR_ERR(trans
);
3531 btrfs_info_in_rcu(fs_info
,
3532 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3533 rcu_str_deref(device
->name
), ret
,
3534 old_size
, old_size
- size_to_free
);
3538 ret
= btrfs_grow_device(trans
, device
, old_size
);
3540 btrfs_end_transaction(trans
);
3541 /* btrfs_grow_device never returns ret > 0 */
3543 btrfs_info_in_rcu(fs_info
,
3544 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3545 rcu_str_deref(device
->name
), ret
,
3546 old_size
, old_size
- size_to_free
);
3550 btrfs_end_transaction(trans
);
3553 /* step two, relocate all the chunks */
3554 path
= btrfs_alloc_path();
3560 /* zero out stat counters */
3561 spin_lock(&fs_info
->balance_lock
);
3562 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3563 spin_unlock(&fs_info
->balance_lock
);
3567 * The single value limit and min/max limits use the same bytes
3570 bctl
->data
.limit
= limit_data
;
3571 bctl
->meta
.limit
= limit_meta
;
3572 bctl
->sys
.limit
= limit_sys
;
3574 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3575 key
.offset
= (u64
)-1;
3576 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3579 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3580 atomic_read(&fs_info
->balance_cancel_req
)) {
3585 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3586 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3588 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3593 * this shouldn't happen, it means the last relocate
3597 BUG(); /* FIXME break ? */
3599 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3600 BTRFS_CHUNK_ITEM_KEY
);
3602 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3607 leaf
= path
->nodes
[0];
3608 slot
= path
->slots
[0];
3609 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3611 if (found_key
.objectid
!= key
.objectid
) {
3612 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3616 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3617 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3620 spin_lock(&fs_info
->balance_lock
);
3621 bctl
->stat
.considered
++;
3622 spin_unlock(&fs_info
->balance_lock
);
3625 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3628 btrfs_release_path(path
);
3630 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3635 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3636 spin_lock(&fs_info
->balance_lock
);
3637 bctl
->stat
.expected
++;
3638 spin_unlock(&fs_info
->balance_lock
);
3640 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3642 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3644 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3651 * Apply limit_min filter, no need to check if the LIMITS
3652 * filter is used, limit_min is 0 by default
3654 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3655 count_data
< bctl
->data
.limit_min
)
3656 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3657 count_meta
< bctl
->meta
.limit_min
)
3658 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3659 count_sys
< bctl
->sys
.limit_min
)) {
3660 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3664 ASSERT(fs_info
->data_sinfo
);
3665 spin_lock(&fs_info
->data_sinfo
->lock
);
3666 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3667 spin_unlock(&fs_info
->data_sinfo
->lock
);
3669 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3670 !chunk_reserved
&& !bytes_used
) {
3671 trans
= btrfs_start_transaction(chunk_root
, 0);
3672 if (IS_ERR(trans
)) {
3673 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3674 ret
= PTR_ERR(trans
);
3678 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3679 BTRFS_BLOCK_GROUP_DATA
);
3680 btrfs_end_transaction(trans
);
3682 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3688 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3689 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3690 if (ret
&& ret
!= -ENOSPC
)
3692 if (ret
== -ENOSPC
) {
3695 spin_lock(&fs_info
->balance_lock
);
3696 bctl
->stat
.completed
++;
3697 spin_unlock(&fs_info
->balance_lock
);
3700 if (found_key
.offset
== 0)
3702 key
.offset
= found_key
.offset
- 1;
3706 btrfs_release_path(path
);
3711 btrfs_free_path(path
);
3712 if (enospc_errors
) {
3713 btrfs_info(fs_info
, "%d enospc errors during balance",
3723 * alloc_profile_is_valid - see if a given profile is valid and reduced
3724 * @flags: profile to validate
3725 * @extended: if true @flags is treated as an extended profile
3727 static int alloc_profile_is_valid(u64 flags
, int extended
)
3729 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3730 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3732 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3734 /* 1) check that all other bits are zeroed */
3738 /* 2) see if profile is reduced */
3740 return !extended
; /* "0" is valid for usual profiles */
3742 /* true if exactly one bit set */
3743 return (flags
& (flags
- 1)) == 0;
3746 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3748 /* cancel requested || normal exit path */
3749 return atomic_read(&fs_info
->balance_cancel_req
) ||
3750 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3751 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3754 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3758 unset_balance_control(fs_info
);
3759 ret
= del_balance_item(fs_info
);
3761 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3763 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3770 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3771 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3772 (bctl_arg
->target
& ~allowed
)));
3776 * Should be called with both balance and volume mutexes held
3778 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3779 struct btrfs_ioctl_balance_args
*bargs
)
3781 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3782 u64 meta_target
, data_target
;
3789 if (btrfs_fs_closing(fs_info
) ||
3790 atomic_read(&fs_info
->balance_pause_req
) ||
3791 atomic_read(&fs_info
->balance_cancel_req
)) {
3796 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3797 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3801 * In case of mixed groups both data and meta should be picked,
3802 * and identical options should be given for both of them.
3804 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3805 if (mixed
&& (bctl
->flags
& allowed
)) {
3806 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3807 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3808 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3810 "with mixed groups data and metadata balance options must be the same");
3816 num_devices
= fs_info
->fs_devices
->num_devices
;
3817 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3818 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3819 BUG_ON(num_devices
< 1);
3822 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3823 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3824 if (num_devices
> 1)
3825 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3826 if (num_devices
> 2)
3827 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3828 if (num_devices
> 3)
3829 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3830 BTRFS_BLOCK_GROUP_RAID6
);
3831 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3833 "unable to start balance with target data profile %llu",
3838 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3840 "unable to start balance with target metadata profile %llu",
3845 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3847 "unable to start balance with target system profile %llu",
3853 /* allow to reduce meta or sys integrity only if force set */
3854 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3855 BTRFS_BLOCK_GROUP_RAID10
|
3856 BTRFS_BLOCK_GROUP_RAID5
|
3857 BTRFS_BLOCK_GROUP_RAID6
;
3859 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3861 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3862 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3863 !(bctl
->sys
.target
& allowed
)) ||
3864 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3865 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3866 !(bctl
->meta
.target
& allowed
))) {
3867 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3869 "force reducing metadata integrity");
3872 "balance will reduce metadata integrity, use force if you want this");
3877 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3879 /* if we're not converting, the target field is uninitialized */
3880 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3881 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3882 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3883 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3884 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3885 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3887 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3888 meta_target
, data_target
);
3891 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3892 fs_info
->num_tolerated_disk_barrier_failures
= min(
3893 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3894 btrfs_get_num_tolerated_disk_barrier_failures(
3898 ret
= insert_balance_item(fs_info
, bctl
);
3899 if (ret
&& ret
!= -EEXIST
)
3902 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3903 BUG_ON(ret
== -EEXIST
);
3904 set_balance_control(bctl
);
3906 BUG_ON(ret
!= -EEXIST
);
3907 spin_lock(&fs_info
->balance_lock
);
3908 update_balance_args(bctl
);
3909 spin_unlock(&fs_info
->balance_lock
);
3912 atomic_inc(&fs_info
->balance_running
);
3913 mutex_unlock(&fs_info
->balance_mutex
);
3915 ret
= __btrfs_balance(fs_info
);
3917 mutex_lock(&fs_info
->balance_mutex
);
3918 atomic_dec(&fs_info
->balance_running
);
3920 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3921 fs_info
->num_tolerated_disk_barrier_failures
=
3922 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3926 memset(bargs
, 0, sizeof(*bargs
));
3927 update_ioctl_balance_args(fs_info
, 0, bargs
);
3930 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3931 balance_need_close(fs_info
)) {
3932 __cancel_balance(fs_info
);
3935 wake_up(&fs_info
->balance_wait_q
);
3939 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3940 __cancel_balance(fs_info
);
3943 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3948 static int balance_kthread(void *data
)
3950 struct btrfs_fs_info
*fs_info
= data
;
3953 mutex_lock(&fs_info
->volume_mutex
);
3954 mutex_lock(&fs_info
->balance_mutex
);
3956 if (fs_info
->balance_ctl
) {
3957 btrfs_info(fs_info
, "continuing balance");
3958 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3961 mutex_unlock(&fs_info
->balance_mutex
);
3962 mutex_unlock(&fs_info
->volume_mutex
);
3967 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3969 struct task_struct
*tsk
;
3971 spin_lock(&fs_info
->balance_lock
);
3972 if (!fs_info
->balance_ctl
) {
3973 spin_unlock(&fs_info
->balance_lock
);
3976 spin_unlock(&fs_info
->balance_lock
);
3978 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3979 btrfs_info(fs_info
, "force skipping balance");
3983 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3984 return PTR_ERR_OR_ZERO(tsk
);
3987 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3989 struct btrfs_balance_control
*bctl
;
3990 struct btrfs_balance_item
*item
;
3991 struct btrfs_disk_balance_args disk_bargs
;
3992 struct btrfs_path
*path
;
3993 struct extent_buffer
*leaf
;
3994 struct btrfs_key key
;
3997 path
= btrfs_alloc_path();
4001 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4002 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4005 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4008 if (ret
> 0) { /* ret = -ENOENT; */
4013 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4019 leaf
= path
->nodes
[0];
4020 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4022 bctl
->fs_info
= fs_info
;
4023 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4024 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4026 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4027 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4028 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4029 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4030 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4031 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4033 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4035 mutex_lock(&fs_info
->volume_mutex
);
4036 mutex_lock(&fs_info
->balance_mutex
);
4038 set_balance_control(bctl
);
4040 mutex_unlock(&fs_info
->balance_mutex
);
4041 mutex_unlock(&fs_info
->volume_mutex
);
4043 btrfs_free_path(path
);
4047 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4051 mutex_lock(&fs_info
->balance_mutex
);
4052 if (!fs_info
->balance_ctl
) {
4053 mutex_unlock(&fs_info
->balance_mutex
);
4057 if (atomic_read(&fs_info
->balance_running
)) {
4058 atomic_inc(&fs_info
->balance_pause_req
);
4059 mutex_unlock(&fs_info
->balance_mutex
);
4061 wait_event(fs_info
->balance_wait_q
,
4062 atomic_read(&fs_info
->balance_running
) == 0);
4064 mutex_lock(&fs_info
->balance_mutex
);
4065 /* we are good with balance_ctl ripped off from under us */
4066 BUG_ON(atomic_read(&fs_info
->balance_running
));
4067 atomic_dec(&fs_info
->balance_pause_req
);
4072 mutex_unlock(&fs_info
->balance_mutex
);
4076 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4078 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4081 mutex_lock(&fs_info
->balance_mutex
);
4082 if (!fs_info
->balance_ctl
) {
4083 mutex_unlock(&fs_info
->balance_mutex
);
4087 atomic_inc(&fs_info
->balance_cancel_req
);
4089 * if we are running just wait and return, balance item is
4090 * deleted in btrfs_balance in this case
4092 if (atomic_read(&fs_info
->balance_running
)) {
4093 mutex_unlock(&fs_info
->balance_mutex
);
4094 wait_event(fs_info
->balance_wait_q
,
4095 atomic_read(&fs_info
->balance_running
) == 0);
4096 mutex_lock(&fs_info
->balance_mutex
);
4098 /* __cancel_balance needs volume_mutex */
4099 mutex_unlock(&fs_info
->balance_mutex
);
4100 mutex_lock(&fs_info
->volume_mutex
);
4101 mutex_lock(&fs_info
->balance_mutex
);
4103 if (fs_info
->balance_ctl
)
4104 __cancel_balance(fs_info
);
4106 mutex_unlock(&fs_info
->volume_mutex
);
4109 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4110 atomic_dec(&fs_info
->balance_cancel_req
);
4111 mutex_unlock(&fs_info
->balance_mutex
);
4115 static int btrfs_uuid_scan_kthread(void *data
)
4117 struct btrfs_fs_info
*fs_info
= data
;
4118 struct btrfs_root
*root
= fs_info
->tree_root
;
4119 struct btrfs_key key
;
4120 struct btrfs_key max_key
;
4121 struct btrfs_path
*path
= NULL
;
4123 struct extent_buffer
*eb
;
4125 struct btrfs_root_item root_item
;
4127 struct btrfs_trans_handle
*trans
= NULL
;
4129 path
= btrfs_alloc_path();
4136 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4139 max_key
.objectid
= (u64
)-1;
4140 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4141 max_key
.offset
= (u64
)-1;
4144 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4151 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4152 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4153 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4154 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4157 eb
= path
->nodes
[0];
4158 slot
= path
->slots
[0];
4159 item_size
= btrfs_item_size_nr(eb
, slot
);
4160 if (item_size
< sizeof(root_item
))
4163 read_extent_buffer(eb
, &root_item
,
4164 btrfs_item_ptr_offset(eb
, slot
),
4165 (int)sizeof(root_item
));
4166 if (btrfs_root_refs(&root_item
) == 0)
4169 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4170 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4174 btrfs_release_path(path
);
4176 * 1 - subvol uuid item
4177 * 1 - received_subvol uuid item
4179 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4180 if (IS_ERR(trans
)) {
4181 ret
= PTR_ERR(trans
);
4189 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4190 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4192 BTRFS_UUID_KEY_SUBVOL
,
4195 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4201 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4202 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4203 root_item
.received_uuid
,
4204 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4207 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4215 ret
= btrfs_end_transaction(trans
);
4221 btrfs_release_path(path
);
4222 if (key
.offset
< (u64
)-1) {
4224 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4226 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4227 } else if (key
.objectid
< (u64
)-1) {
4229 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4238 btrfs_free_path(path
);
4239 if (trans
&& !IS_ERR(trans
))
4240 btrfs_end_transaction(trans
);
4242 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4244 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4245 up(&fs_info
->uuid_tree_rescan_sem
);
4250 * Callback for btrfs_uuid_tree_iterate().
4252 * 0 check succeeded, the entry is not outdated.
4253 * < 0 if an error occurred.
4254 * > 0 if the check failed, which means the caller shall remove the entry.
4256 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4257 u8
*uuid
, u8 type
, u64 subid
)
4259 struct btrfs_key key
;
4261 struct btrfs_root
*subvol_root
;
4263 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4264 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4267 key
.objectid
= subid
;
4268 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4269 key
.offset
= (u64
)-1;
4270 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4271 if (IS_ERR(subvol_root
)) {
4272 ret
= PTR_ERR(subvol_root
);
4279 case BTRFS_UUID_KEY_SUBVOL
:
4280 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4283 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4284 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4294 static int btrfs_uuid_rescan_kthread(void *data
)
4296 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4300 * 1st step is to iterate through the existing UUID tree and
4301 * to delete all entries that contain outdated data.
4302 * 2nd step is to add all missing entries to the UUID tree.
4304 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4306 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4307 up(&fs_info
->uuid_tree_rescan_sem
);
4310 return btrfs_uuid_scan_kthread(data
);
4313 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4315 struct btrfs_trans_handle
*trans
;
4316 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4317 struct btrfs_root
*uuid_root
;
4318 struct task_struct
*task
;
4325 trans
= btrfs_start_transaction(tree_root
, 2);
4327 return PTR_ERR(trans
);
4329 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4330 BTRFS_UUID_TREE_OBJECTID
);
4331 if (IS_ERR(uuid_root
)) {
4332 ret
= PTR_ERR(uuid_root
);
4333 btrfs_abort_transaction(trans
, ret
);
4334 btrfs_end_transaction(trans
);
4338 fs_info
->uuid_root
= uuid_root
;
4340 ret
= btrfs_commit_transaction(trans
);
4344 down(&fs_info
->uuid_tree_rescan_sem
);
4345 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4347 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4348 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4349 up(&fs_info
->uuid_tree_rescan_sem
);
4350 return PTR_ERR(task
);
4356 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4358 struct task_struct
*task
;
4360 down(&fs_info
->uuid_tree_rescan_sem
);
4361 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4363 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4364 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4365 up(&fs_info
->uuid_tree_rescan_sem
);
4366 return PTR_ERR(task
);
4373 * shrinking a device means finding all of the device extents past
4374 * the new size, and then following the back refs to the chunks.
4375 * The chunk relocation code actually frees the device extent
4377 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4379 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4380 struct btrfs_root
*root
= fs_info
->dev_root
;
4381 struct btrfs_trans_handle
*trans
;
4382 struct btrfs_dev_extent
*dev_extent
= NULL
;
4383 struct btrfs_path
*path
;
4389 bool retried
= false;
4390 bool checked_pending_chunks
= false;
4391 struct extent_buffer
*l
;
4392 struct btrfs_key key
;
4393 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4394 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4395 u64 old_size
= btrfs_device_get_total_bytes(device
);
4396 u64 diff
= old_size
- new_size
;
4398 if (device
->is_tgtdev_for_dev_replace
)
4401 path
= btrfs_alloc_path();
4405 path
->reada
= READA_FORWARD
;
4407 mutex_lock(&fs_info
->chunk_mutex
);
4409 btrfs_device_set_total_bytes(device
, new_size
);
4410 if (device
->writeable
) {
4411 device
->fs_devices
->total_rw_bytes
-= diff
;
4412 spin_lock(&fs_info
->free_chunk_lock
);
4413 fs_info
->free_chunk_space
-= diff
;
4414 spin_unlock(&fs_info
->free_chunk_lock
);
4416 mutex_unlock(&fs_info
->chunk_mutex
);
4419 key
.objectid
= device
->devid
;
4420 key
.offset
= (u64
)-1;
4421 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4424 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4425 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4427 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4431 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4433 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4438 btrfs_release_path(path
);
4443 slot
= path
->slots
[0];
4444 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4446 if (key
.objectid
!= device
->devid
) {
4447 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4448 btrfs_release_path(path
);
4452 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4453 length
= btrfs_dev_extent_length(l
, dev_extent
);
4455 if (key
.offset
+ length
<= new_size
) {
4456 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4457 btrfs_release_path(path
);
4461 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4462 btrfs_release_path(path
);
4464 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4465 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4466 if (ret
&& ret
!= -ENOSPC
)
4470 } while (key
.offset
-- > 0);
4472 if (failed
&& !retried
) {
4476 } else if (failed
&& retried
) {
4481 /* Shrinking succeeded, else we would be at "done". */
4482 trans
= btrfs_start_transaction(root
, 0);
4483 if (IS_ERR(trans
)) {
4484 ret
= PTR_ERR(trans
);
4488 mutex_lock(&fs_info
->chunk_mutex
);
4491 * We checked in the above loop all device extents that were already in
4492 * the device tree. However before we have updated the device's
4493 * total_bytes to the new size, we might have had chunk allocations that
4494 * have not complete yet (new block groups attached to transaction
4495 * handles), and therefore their device extents were not yet in the
4496 * device tree and we missed them in the loop above. So if we have any
4497 * pending chunk using a device extent that overlaps the device range
4498 * that we can not use anymore, commit the current transaction and
4499 * repeat the search on the device tree - this way we guarantee we will
4500 * not have chunks using device extents that end beyond 'new_size'.
4502 if (!checked_pending_chunks
) {
4503 u64 start
= new_size
;
4504 u64 len
= old_size
- new_size
;
4506 if (contains_pending_extent(trans
->transaction
, device
,
4508 mutex_unlock(&fs_info
->chunk_mutex
);
4509 checked_pending_chunks
= true;
4512 ret
= btrfs_commit_transaction(trans
);
4519 btrfs_device_set_disk_total_bytes(device
, new_size
);
4520 if (list_empty(&device
->resized_list
))
4521 list_add_tail(&device
->resized_list
,
4522 &fs_info
->fs_devices
->resized_devices
);
4524 WARN_ON(diff
> old_total
);
4525 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4526 mutex_unlock(&fs_info
->chunk_mutex
);
4528 /* Now btrfs_update_device() will change the on-disk size. */
4529 ret
= btrfs_update_device(trans
, device
);
4530 btrfs_end_transaction(trans
);
4532 btrfs_free_path(path
);
4534 mutex_lock(&fs_info
->chunk_mutex
);
4535 btrfs_device_set_total_bytes(device
, old_size
);
4536 if (device
->writeable
)
4537 device
->fs_devices
->total_rw_bytes
+= diff
;
4538 spin_lock(&fs_info
->free_chunk_lock
);
4539 fs_info
->free_chunk_space
+= diff
;
4540 spin_unlock(&fs_info
->free_chunk_lock
);
4541 mutex_unlock(&fs_info
->chunk_mutex
);
4546 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4547 struct btrfs_key
*key
,
4548 struct btrfs_chunk
*chunk
, int item_size
)
4550 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4551 struct btrfs_disk_key disk_key
;
4555 mutex_lock(&fs_info
->chunk_mutex
);
4556 array_size
= btrfs_super_sys_array_size(super_copy
);
4557 if (array_size
+ item_size
+ sizeof(disk_key
)
4558 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4559 mutex_unlock(&fs_info
->chunk_mutex
);
4563 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4564 btrfs_cpu_key_to_disk(&disk_key
, key
);
4565 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4566 ptr
+= sizeof(disk_key
);
4567 memcpy(ptr
, chunk
, item_size
);
4568 item_size
+= sizeof(disk_key
);
4569 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4570 mutex_unlock(&fs_info
->chunk_mutex
);
4576 * sort the devices in descending order by max_avail, total_avail
4578 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4580 const struct btrfs_device_info
*di_a
= a
;
4581 const struct btrfs_device_info
*di_b
= b
;
4583 if (di_a
->max_avail
> di_b
->max_avail
)
4585 if (di_a
->max_avail
< di_b
->max_avail
)
4587 if (di_a
->total_avail
> di_b
->total_avail
)
4589 if (di_a
->total_avail
< di_b
->total_avail
)
4594 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4596 /* TODO allow them to set a preferred stripe size */
4600 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4602 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4605 btrfs_set_fs_incompat(info
, RAID56
);
4608 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4609 - sizeof(struct btrfs_chunk)) \
4610 / sizeof(struct btrfs_stripe) + 1)
4612 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4613 - 2 * sizeof(struct btrfs_disk_key) \
4614 - 2 * sizeof(struct btrfs_chunk)) \
4615 / sizeof(struct btrfs_stripe) + 1)
4617 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4618 u64 start
, u64 type
)
4620 struct btrfs_fs_info
*info
= trans
->fs_info
;
4621 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4622 struct list_head
*cur
;
4623 struct map_lookup
*map
= NULL
;
4624 struct extent_map_tree
*em_tree
;
4625 struct extent_map
*em
;
4626 struct btrfs_device_info
*devices_info
= NULL
;
4628 int num_stripes
; /* total number of stripes to allocate */
4629 int data_stripes
; /* number of stripes that count for
4631 int sub_stripes
; /* sub_stripes info for map */
4632 int dev_stripes
; /* stripes per dev */
4633 int devs_max
; /* max devs to use */
4634 int devs_min
; /* min devs needed */
4635 int devs_increment
; /* ndevs has to be a multiple of this */
4636 int ncopies
; /* how many copies to data has */
4638 u64 max_stripe_size
;
4642 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4648 BUG_ON(!alloc_profile_is_valid(type
, 0));
4650 if (list_empty(&fs_devices
->alloc_list
))
4653 index
= __get_raid_index(type
);
4655 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4656 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4657 devs_max
= btrfs_raid_array
[index
].devs_max
;
4658 devs_min
= btrfs_raid_array
[index
].devs_min
;
4659 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4660 ncopies
= btrfs_raid_array
[index
].ncopies
;
4662 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4663 max_stripe_size
= SZ_1G
;
4664 max_chunk_size
= 10 * max_stripe_size
;
4666 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4667 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4668 /* for larger filesystems, use larger metadata chunks */
4669 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4670 max_stripe_size
= SZ_1G
;
4672 max_stripe_size
= SZ_256M
;
4673 max_chunk_size
= max_stripe_size
;
4675 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4676 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4677 max_stripe_size
= SZ_32M
;
4678 max_chunk_size
= 2 * max_stripe_size
;
4680 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4682 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4687 /* we don't want a chunk larger than 10% of writeable space */
4688 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4691 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4696 cur
= fs_devices
->alloc_list
.next
;
4699 * in the first pass through the devices list, we gather information
4700 * about the available holes on each device.
4703 while (cur
!= &fs_devices
->alloc_list
) {
4704 struct btrfs_device
*device
;
4708 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4712 if (!device
->writeable
) {
4714 "BTRFS: read-only device in alloc_list\n");
4718 if (!device
->in_fs_metadata
||
4719 device
->is_tgtdev_for_dev_replace
)
4722 if (device
->total_bytes
> device
->bytes_used
)
4723 total_avail
= device
->total_bytes
- device
->bytes_used
;
4727 /* If there is no space on this device, skip it. */
4728 if (total_avail
== 0)
4731 ret
= find_free_dev_extent(trans
, device
,
4732 max_stripe_size
* dev_stripes
,
4733 &dev_offset
, &max_avail
);
4734 if (ret
&& ret
!= -ENOSPC
)
4738 max_avail
= max_stripe_size
* dev_stripes
;
4740 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4743 if (ndevs
== fs_devices
->rw_devices
) {
4744 WARN(1, "%s: found more than %llu devices\n",
4745 __func__
, fs_devices
->rw_devices
);
4748 devices_info
[ndevs
].dev_offset
= dev_offset
;
4749 devices_info
[ndevs
].max_avail
= max_avail
;
4750 devices_info
[ndevs
].total_avail
= total_avail
;
4751 devices_info
[ndevs
].dev
= device
;
4756 * now sort the devices by hole size / available space
4758 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4759 btrfs_cmp_device_info
, NULL
);
4761 /* round down to number of usable stripes */
4762 ndevs
-= ndevs
% devs_increment
;
4764 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4769 if (devs_max
&& ndevs
> devs_max
)
4772 * the primary goal is to maximize the number of stripes, so use as many
4773 * devices as possible, even if the stripes are not maximum sized.
4775 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4776 num_stripes
= ndevs
* dev_stripes
;
4779 * this will have to be fixed for RAID1 and RAID10 over
4782 data_stripes
= num_stripes
/ ncopies
;
4784 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4785 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4787 data_stripes
= num_stripes
- 1;
4789 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4790 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4792 data_stripes
= num_stripes
- 2;
4796 * Use the number of data stripes to figure out how big this chunk
4797 * is really going to be in terms of logical address space,
4798 * and compare that answer with the max chunk size
4800 if (stripe_size
* data_stripes
> max_chunk_size
) {
4801 u64 mask
= (1ULL << 24) - 1;
4803 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4805 /* bump the answer up to a 16MB boundary */
4806 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4808 /* but don't go higher than the limits we found
4809 * while searching for free extents
4811 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4812 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4815 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4817 /* align to BTRFS_STRIPE_LEN */
4818 stripe_size
= div64_u64(stripe_size
, raid_stripe_len
);
4819 stripe_size
*= raid_stripe_len
;
4821 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4826 map
->num_stripes
= num_stripes
;
4828 for (i
= 0; i
< ndevs
; ++i
) {
4829 for (j
= 0; j
< dev_stripes
; ++j
) {
4830 int s
= i
* dev_stripes
+ j
;
4831 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4832 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4836 map
->sector_size
= info
->sectorsize
;
4837 map
->stripe_len
= raid_stripe_len
;
4838 map
->io_align
= raid_stripe_len
;
4839 map
->io_width
= raid_stripe_len
;
4841 map
->sub_stripes
= sub_stripes
;
4843 num_bytes
= stripe_size
* data_stripes
;
4845 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4847 em
= alloc_extent_map();
4853 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4854 em
->map_lookup
= map
;
4856 em
->len
= num_bytes
;
4857 em
->block_start
= 0;
4858 em
->block_len
= em
->len
;
4859 em
->orig_block_len
= stripe_size
;
4861 em_tree
= &info
->mapping_tree
.map_tree
;
4862 write_lock(&em_tree
->lock
);
4863 ret
= add_extent_mapping(em_tree
, em
, 0);
4865 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4866 refcount_inc(&em
->refs
);
4868 write_unlock(&em_tree
->lock
);
4870 free_extent_map(em
);
4874 ret
= btrfs_make_block_group(trans
, info
, 0, type
,
4875 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4878 goto error_del_extent
;
4880 for (i
= 0; i
< map
->num_stripes
; i
++) {
4881 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4882 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4885 spin_lock(&info
->free_chunk_lock
);
4886 info
->free_chunk_space
-= (stripe_size
* map
->num_stripes
);
4887 spin_unlock(&info
->free_chunk_lock
);
4889 free_extent_map(em
);
4890 check_raid56_incompat_flag(info
, type
);
4892 kfree(devices_info
);
4896 write_lock(&em_tree
->lock
);
4897 remove_extent_mapping(em_tree
, em
);
4898 write_unlock(&em_tree
->lock
);
4900 /* One for our allocation */
4901 free_extent_map(em
);
4902 /* One for the tree reference */
4903 free_extent_map(em
);
4904 /* One for the pending_chunks list reference */
4905 free_extent_map(em
);
4907 kfree(devices_info
);
4911 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4912 struct btrfs_fs_info
*fs_info
,
4913 u64 chunk_offset
, u64 chunk_size
)
4915 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4916 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4917 struct btrfs_key key
;
4918 struct btrfs_device
*device
;
4919 struct btrfs_chunk
*chunk
;
4920 struct btrfs_stripe
*stripe
;
4921 struct extent_map
*em
;
4922 struct map_lookup
*map
;
4929 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4933 map
= em
->map_lookup
;
4934 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4935 stripe_size
= em
->orig_block_len
;
4937 chunk
= kzalloc(item_size
, GFP_NOFS
);
4944 * Take the device list mutex to prevent races with the final phase of
4945 * a device replace operation that replaces the device object associated
4946 * with the map's stripes, because the device object's id can change
4947 * at any time during that final phase of the device replace operation
4948 * (dev-replace.c:btrfs_dev_replace_finishing()).
4950 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4951 for (i
= 0; i
< map
->num_stripes
; i
++) {
4952 device
= map
->stripes
[i
].dev
;
4953 dev_offset
= map
->stripes
[i
].physical
;
4955 ret
= btrfs_update_device(trans
, device
);
4958 ret
= btrfs_alloc_dev_extent(trans
, device
,
4959 chunk_root
->root_key
.objectid
,
4960 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4961 chunk_offset
, dev_offset
,
4967 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4971 stripe
= &chunk
->stripe
;
4972 for (i
= 0; i
< map
->num_stripes
; i
++) {
4973 device
= map
->stripes
[i
].dev
;
4974 dev_offset
= map
->stripes
[i
].physical
;
4976 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4977 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4978 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4981 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4983 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4984 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4985 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4986 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4987 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4988 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4989 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4990 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
4991 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4993 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4994 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4995 key
.offset
= chunk_offset
;
4997 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4998 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5000 * TODO: Cleanup of inserted chunk root in case of
5003 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5008 free_extent_map(em
);
5013 * Chunk allocation falls into two parts. The first part does works
5014 * that make the new allocated chunk useable, but not do any operation
5015 * that modifies the chunk tree. The second part does the works that
5016 * require modifying the chunk tree. This division is important for the
5017 * bootstrap process of adding storage to a seed btrfs.
5019 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5020 struct btrfs_fs_info
*fs_info
, u64 type
)
5024 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5025 chunk_offset
= find_next_chunk(fs_info
);
5026 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5029 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5030 struct btrfs_fs_info
*fs_info
)
5032 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5034 u64 sys_chunk_offset
;
5038 chunk_offset
= find_next_chunk(fs_info
);
5039 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5040 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5044 sys_chunk_offset
= find_next_chunk(fs_info
);
5045 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5046 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5050 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5054 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5055 BTRFS_BLOCK_GROUP_RAID10
|
5056 BTRFS_BLOCK_GROUP_RAID5
|
5057 BTRFS_BLOCK_GROUP_DUP
)) {
5059 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5068 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5070 struct extent_map
*em
;
5071 struct map_lookup
*map
;
5076 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5080 map
= em
->map_lookup
;
5081 for (i
= 0; i
< map
->num_stripes
; i
++) {
5082 if (map
->stripes
[i
].dev
->missing
) {
5087 if (!map
->stripes
[i
].dev
->writeable
) {
5094 * If the number of missing devices is larger than max errors,
5095 * we can not write the data into that chunk successfully, so
5098 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5101 free_extent_map(em
);
5105 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5107 extent_map_tree_init(&tree
->map_tree
);
5110 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5112 struct extent_map
*em
;
5115 write_lock(&tree
->map_tree
.lock
);
5116 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5118 remove_extent_mapping(&tree
->map_tree
, em
);
5119 write_unlock(&tree
->map_tree
.lock
);
5123 free_extent_map(em
);
5124 /* once for the tree */
5125 free_extent_map(em
);
5129 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5131 struct extent_map
*em
;
5132 struct map_lookup
*map
;
5135 em
= get_chunk_map(fs_info
, logical
, len
);
5138 * We could return errors for these cases, but that could get
5139 * ugly and we'd probably do the same thing which is just not do
5140 * anything else and exit, so return 1 so the callers don't try
5141 * to use other copies.
5145 map
= em
->map_lookup
;
5146 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5147 ret
= map
->num_stripes
;
5148 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5149 ret
= map
->sub_stripes
;
5150 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5152 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5156 free_extent_map(em
);
5158 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5159 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5160 fs_info
->dev_replace
.tgtdev
)
5162 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5167 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5168 struct btrfs_mapping_tree
*map_tree
,
5171 struct extent_map
*em
;
5172 struct map_lookup
*map
;
5173 unsigned long len
= fs_info
->sectorsize
;
5175 em
= get_chunk_map(fs_info
, logical
, len
);
5176 WARN_ON(IS_ERR(em
));
5178 map
= em
->map_lookup
;
5179 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5180 len
= map
->stripe_len
* nr_data_stripes(map
);
5181 free_extent_map(em
);
5185 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
,
5186 u64 logical
, u64 len
, int mirror_num
)
5188 struct extent_map
*em
;
5189 struct map_lookup
*map
;
5192 em
= get_chunk_map(fs_info
, logical
, len
);
5193 WARN_ON(IS_ERR(em
));
5195 map
= em
->map_lookup
;
5196 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5198 free_extent_map(em
);
5202 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5203 struct map_lookup
*map
, int first
, int num
,
5204 int optimal
, int dev_replace_is_ongoing
)
5208 struct btrfs_device
*srcdev
;
5210 if (dev_replace_is_ongoing
&&
5211 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5212 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5213 srcdev
= fs_info
->dev_replace
.srcdev
;
5218 * try to avoid the drive that is the source drive for a
5219 * dev-replace procedure, only choose it if no other non-missing
5220 * mirror is available
5222 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5223 if (map
->stripes
[optimal
].dev
->bdev
&&
5224 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5226 for (i
= first
; i
< first
+ num
; i
++) {
5227 if (map
->stripes
[i
].dev
->bdev
&&
5228 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5233 /* we couldn't find one that doesn't fail. Just return something
5234 * and the io error handling code will clean up eventually
5239 static inline int parity_smaller(u64 a
, u64 b
)
5244 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5245 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5247 struct btrfs_bio_stripe s
;
5254 for (i
= 0; i
< num_stripes
- 1; i
++) {
5255 if (parity_smaller(bbio
->raid_map
[i
],
5256 bbio
->raid_map
[i
+1])) {
5257 s
= bbio
->stripes
[i
];
5258 l
= bbio
->raid_map
[i
];
5259 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5260 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5261 bbio
->stripes
[i
+1] = s
;
5262 bbio
->raid_map
[i
+1] = l
;
5270 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5272 struct btrfs_bio
*bbio
= kzalloc(
5273 /* the size of the btrfs_bio */
5274 sizeof(struct btrfs_bio
) +
5275 /* plus the variable array for the stripes */
5276 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5277 /* plus the variable array for the tgt dev */
5278 sizeof(int) * (real_stripes
) +
5280 * plus the raid_map, which includes both the tgt dev
5283 sizeof(u64
) * (total_stripes
),
5284 GFP_NOFS
|__GFP_NOFAIL
);
5286 atomic_set(&bbio
->error
, 0);
5287 refcount_set(&bbio
->refs
, 1);
5292 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5294 WARN_ON(!refcount_read(&bbio
->refs
));
5295 refcount_inc(&bbio
->refs
);
5298 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5302 if (refcount_dec_and_test(&bbio
->refs
))
5306 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5308 * Please note that, discard won't be sent to target device of device
5311 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5312 u64 logical
, u64 length
,
5313 struct btrfs_bio
**bbio_ret
)
5315 struct extent_map
*em
;
5316 struct map_lookup
*map
;
5317 struct btrfs_bio
*bbio
;
5321 u64 stripe_end_offset
;
5328 u32 sub_stripes
= 0;
5329 u64 stripes_per_dev
= 0;
5330 u32 remaining_stripes
= 0;
5331 u32 last_stripe
= 0;
5335 /* discard always return a bbio */
5338 em
= get_chunk_map(fs_info
, logical
, length
);
5342 map
= em
->map_lookup
;
5343 /* we don't discard raid56 yet */
5344 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5349 offset
= logical
- em
->start
;
5350 length
= min_t(u64
, em
->len
- offset
, length
);
5352 stripe_len
= map
->stripe_len
;
5354 * stripe_nr counts the total number of stripes we have to stride
5355 * to get to this block
5357 stripe_nr
= div64_u64(offset
, stripe_len
);
5359 /* stripe_offset is the offset of this block in its stripe */
5360 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5362 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5363 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5364 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5365 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5368 * after this, stripe_nr is the number of stripes on this
5369 * device we have to walk to find the data, and stripe_index is
5370 * the number of our device in the stripe array
5374 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5375 BTRFS_BLOCK_GROUP_RAID10
)) {
5376 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5379 sub_stripes
= map
->sub_stripes
;
5381 factor
= map
->num_stripes
/ sub_stripes
;
5382 num_stripes
= min_t(u64
, map
->num_stripes
,
5383 sub_stripes
* stripe_cnt
);
5384 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5385 stripe_index
*= sub_stripes
;
5386 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5387 &remaining_stripes
);
5388 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5389 last_stripe
*= sub_stripes
;
5390 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5391 BTRFS_BLOCK_GROUP_DUP
)) {
5392 num_stripes
= map
->num_stripes
;
5394 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5398 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5404 for (i
= 0; i
< num_stripes
; i
++) {
5405 bbio
->stripes
[i
].physical
=
5406 map
->stripes
[stripe_index
].physical
+
5407 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5408 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5410 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5411 BTRFS_BLOCK_GROUP_RAID10
)) {
5412 bbio
->stripes
[i
].length
= stripes_per_dev
*
5415 if (i
/ sub_stripes
< remaining_stripes
)
5416 bbio
->stripes
[i
].length
+=
5420 * Special for the first stripe and
5423 * |-------|...|-------|
5427 if (i
< sub_stripes
)
5428 bbio
->stripes
[i
].length
-=
5431 if (stripe_index
>= last_stripe
&&
5432 stripe_index
<= (last_stripe
+
5434 bbio
->stripes
[i
].length
-=
5437 if (i
== sub_stripes
- 1)
5440 bbio
->stripes
[i
].length
= length
;
5444 if (stripe_index
== map
->num_stripes
) {
5451 bbio
->map_type
= map
->type
;
5452 bbio
->num_stripes
= num_stripes
;
5454 free_extent_map(em
);
5459 * In dev-replace case, for repair case (that's the only case where the mirror
5460 * is selected explicitly when calling btrfs_map_block), blocks left of the
5461 * left cursor can also be read from the target drive.
5463 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5465 * For READ, it also needs to be supported using the same mirror number.
5467 * If the requested block is not left of the left cursor, EIO is returned. This
5468 * can happen because btrfs_num_copies() returns one more in the dev-replace
5471 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5472 u64 logical
, u64 length
,
5473 u64 srcdev_devid
, int *mirror_num
,
5476 struct btrfs_bio
*bbio
= NULL
;
5478 int index_srcdev
= 0;
5480 u64 physical_of_found
= 0;
5484 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5485 logical
, &length
, &bbio
, 0, 0);
5487 ASSERT(bbio
== NULL
);
5491 num_stripes
= bbio
->num_stripes
;
5492 if (*mirror_num
> num_stripes
) {
5494 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5495 * that means that the requested area is not left of the left
5498 btrfs_put_bbio(bbio
);
5503 * process the rest of the function using the mirror_num of the source
5504 * drive. Therefore look it up first. At the end, patch the device
5505 * pointer to the one of the target drive.
5507 for (i
= 0; i
< num_stripes
; i
++) {
5508 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5512 * In case of DUP, in order to keep it simple, only add the
5513 * mirror with the lowest physical address
5516 physical_of_found
<= bbio
->stripes
[i
].physical
)
5521 physical_of_found
= bbio
->stripes
[i
].physical
;
5524 btrfs_put_bbio(bbio
);
5530 *mirror_num
= index_srcdev
+ 1;
5531 *physical
= physical_of_found
;
5535 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5536 struct btrfs_bio
**bbio_ret
,
5537 struct btrfs_dev_replace
*dev_replace
,
5538 int *num_stripes_ret
, int *max_errors_ret
)
5540 struct btrfs_bio
*bbio
= *bbio_ret
;
5541 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5542 int tgtdev_indexes
= 0;
5543 int num_stripes
= *num_stripes_ret
;
5544 int max_errors
= *max_errors_ret
;
5547 if (op
== BTRFS_MAP_WRITE
) {
5548 int index_where_to_add
;
5551 * duplicate the write operations while the dev replace
5552 * procedure is running. Since the copying of the old disk to
5553 * the new disk takes place at run time while the filesystem is
5554 * mounted writable, the regular write operations to the old
5555 * disk have to be duplicated to go to the new disk as well.
5557 * Note that device->missing is handled by the caller, and that
5558 * the write to the old disk is already set up in the stripes
5561 index_where_to_add
= num_stripes
;
5562 for (i
= 0; i
< num_stripes
; i
++) {
5563 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5564 /* write to new disk, too */
5565 struct btrfs_bio_stripe
*new =
5566 bbio
->stripes
+ index_where_to_add
;
5567 struct btrfs_bio_stripe
*old
=
5570 new->physical
= old
->physical
;
5571 new->length
= old
->length
;
5572 new->dev
= dev_replace
->tgtdev
;
5573 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5574 index_where_to_add
++;
5579 num_stripes
= index_where_to_add
;
5580 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5581 int index_srcdev
= 0;
5583 u64 physical_of_found
= 0;
5586 * During the dev-replace procedure, the target drive can also
5587 * be used to read data in case it is needed to repair a corrupt
5588 * block elsewhere. This is possible if the requested area is
5589 * left of the left cursor. In this area, the target drive is a
5590 * full copy of the source drive.
5592 for (i
= 0; i
< num_stripes
; i
++) {
5593 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5595 * In case of DUP, in order to keep it simple,
5596 * only add the mirror with the lowest physical
5600 physical_of_found
<=
5601 bbio
->stripes
[i
].physical
)
5605 physical_of_found
= bbio
->stripes
[i
].physical
;
5609 struct btrfs_bio_stripe
*tgtdev_stripe
=
5610 bbio
->stripes
+ num_stripes
;
5612 tgtdev_stripe
->physical
= physical_of_found
;
5613 tgtdev_stripe
->length
=
5614 bbio
->stripes
[index_srcdev
].length
;
5615 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5616 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5623 *num_stripes_ret
= num_stripes
;
5624 *max_errors_ret
= max_errors
;
5625 bbio
->num_tgtdevs
= tgtdev_indexes
;
5629 static bool need_full_stripe(enum btrfs_map_op op
)
5631 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5634 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5635 enum btrfs_map_op op
,
5636 u64 logical
, u64
*length
,
5637 struct btrfs_bio
**bbio_ret
,
5638 int mirror_num
, int need_raid_map
)
5640 struct extent_map
*em
;
5641 struct map_lookup
*map
;
5651 int tgtdev_indexes
= 0;
5652 struct btrfs_bio
*bbio
= NULL
;
5653 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5654 int dev_replace_is_ongoing
= 0;
5655 int num_alloc_stripes
;
5656 int patch_the_first_stripe_for_dev_replace
= 0;
5657 u64 physical_to_patch_in_first_stripe
= 0;
5658 u64 raid56_full_stripe_start
= (u64
)-1;
5660 if (op
== BTRFS_MAP_DISCARD
)
5661 return __btrfs_map_block_for_discard(fs_info
, logical
,
5664 em
= get_chunk_map(fs_info
, logical
, *length
);
5668 map
= em
->map_lookup
;
5669 offset
= logical
- em
->start
;
5671 stripe_len
= map
->stripe_len
;
5674 * stripe_nr counts the total number of stripes we have to stride
5675 * to get to this block
5677 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5679 stripe_offset
= stripe_nr
* stripe_len
;
5680 if (offset
< stripe_offset
) {
5682 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5683 stripe_offset
, offset
, em
->start
, logical
,
5685 free_extent_map(em
);
5689 /* stripe_offset is the offset of this block in its stripe*/
5690 stripe_offset
= offset
- stripe_offset
;
5692 /* if we're here for raid56, we need to know the stripe aligned start */
5693 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5694 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5695 raid56_full_stripe_start
= offset
;
5697 /* allow a write of a full stripe, but make sure we don't
5698 * allow straddling of stripes
5700 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5702 raid56_full_stripe_start
*= full_stripe_len
;
5705 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5707 /* For writes to RAID[56], allow a full stripeset across all disks.
5708 For other RAID types and for RAID[56] reads, just allow a single
5709 stripe (on a single disk). */
5710 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5711 (op
== BTRFS_MAP_WRITE
)) {
5712 max_len
= stripe_len
* nr_data_stripes(map
) -
5713 (offset
- raid56_full_stripe_start
);
5715 /* we limit the length of each bio to what fits in a stripe */
5716 max_len
= stripe_len
- stripe_offset
;
5718 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5720 *length
= em
->len
- offset
;
5723 /* This is for when we're called from btrfs_merge_bio_hook() and all
5724 it cares about is the length */
5728 btrfs_dev_replace_lock(dev_replace
, 0);
5729 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5730 if (!dev_replace_is_ongoing
)
5731 btrfs_dev_replace_unlock(dev_replace
, 0);
5733 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5735 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5736 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5737 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5738 dev_replace
->srcdev
->devid
,
5740 &physical_to_patch_in_first_stripe
);
5744 patch_the_first_stripe_for_dev_replace
= 1;
5745 } else if (mirror_num
> map
->num_stripes
) {
5751 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5752 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5754 if (op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_GET_READ_MIRRORS
)
5756 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5757 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5758 num_stripes
= map
->num_stripes
;
5759 else if (mirror_num
)
5760 stripe_index
= mirror_num
- 1;
5762 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5764 current
->pid
% map
->num_stripes
,
5765 dev_replace_is_ongoing
);
5766 mirror_num
= stripe_index
+ 1;
5769 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5770 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5771 num_stripes
= map
->num_stripes
;
5772 } else if (mirror_num
) {
5773 stripe_index
= mirror_num
- 1;
5778 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5779 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5781 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5782 stripe_index
*= map
->sub_stripes
;
5784 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5785 num_stripes
= map
->sub_stripes
;
5786 else if (mirror_num
)
5787 stripe_index
+= mirror_num
- 1;
5789 int old_stripe_index
= stripe_index
;
5790 stripe_index
= find_live_mirror(fs_info
, map
,
5792 map
->sub_stripes
, stripe_index
+
5793 current
->pid
% map
->sub_stripes
,
5794 dev_replace_is_ongoing
);
5795 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5798 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5799 if (need_raid_map
&&
5800 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
||
5802 /* push stripe_nr back to the start of the full stripe */
5803 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5804 stripe_len
* nr_data_stripes(map
));
5806 /* RAID[56] write or recovery. Return all stripes */
5807 num_stripes
= map
->num_stripes
;
5808 max_errors
= nr_parity_stripes(map
);
5810 *length
= map
->stripe_len
;
5815 * Mirror #0 or #1 means the original data block.
5816 * Mirror #2 is RAID5 parity block.
5817 * Mirror #3 is RAID6 Q block.
5819 stripe_nr
= div_u64_rem(stripe_nr
,
5820 nr_data_stripes(map
), &stripe_index
);
5822 stripe_index
= nr_data_stripes(map
) +
5825 /* We distribute the parity blocks across stripes */
5826 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5828 if ((op
!= BTRFS_MAP_WRITE
&&
5829 op
!= BTRFS_MAP_GET_READ_MIRRORS
) &&
5835 * after this, stripe_nr is the number of stripes on this
5836 * device we have to walk to find the data, and stripe_index is
5837 * the number of our device in the stripe array
5839 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5841 mirror_num
= stripe_index
+ 1;
5843 if (stripe_index
>= map
->num_stripes
) {
5845 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5846 stripe_index
, map
->num_stripes
);
5851 num_alloc_stripes
= num_stripes
;
5852 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5853 if (op
== BTRFS_MAP_WRITE
)
5854 num_alloc_stripes
<<= 1;
5855 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5856 num_alloc_stripes
++;
5857 tgtdev_indexes
= num_stripes
;
5860 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5865 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5866 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5868 /* build raid_map */
5869 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5870 (need_full_stripe(op
) || mirror_num
> 1)) {
5874 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5875 sizeof(struct btrfs_bio_stripe
) *
5877 sizeof(int) * tgtdev_indexes
);
5879 /* Work out the disk rotation on this stripe-set */
5880 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5882 /* Fill in the logical address of each stripe */
5883 tmp
= stripe_nr
* nr_data_stripes(map
);
5884 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5885 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5886 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5888 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5889 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5890 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5895 for (i
= 0; i
< num_stripes
; i
++) {
5896 bbio
->stripes
[i
].physical
=
5897 map
->stripes
[stripe_index
].physical
+
5899 stripe_nr
* map
->stripe_len
;
5900 bbio
->stripes
[i
].dev
=
5901 map
->stripes
[stripe_index
].dev
;
5905 if (need_full_stripe(op
))
5906 max_errors
= btrfs_chunk_max_errors(map
);
5909 sort_parity_stripes(bbio
, num_stripes
);
5911 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5912 need_full_stripe(op
)) {
5913 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5918 bbio
->map_type
= map
->type
;
5919 bbio
->num_stripes
= num_stripes
;
5920 bbio
->max_errors
= max_errors
;
5921 bbio
->mirror_num
= mirror_num
;
5924 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5925 * mirror_num == num_stripes + 1 && dev_replace target drive is
5926 * available as a mirror
5928 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5929 WARN_ON(num_stripes
> 1);
5930 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5931 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5932 bbio
->mirror_num
= map
->num_stripes
+ 1;
5935 if (dev_replace_is_ongoing
) {
5936 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5937 btrfs_dev_replace_unlock(dev_replace
, 0);
5939 free_extent_map(em
);
5943 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5944 u64 logical
, u64
*length
,
5945 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5947 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5951 /* For Scrub/replace */
5952 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5953 u64 logical
, u64
*length
,
5954 struct btrfs_bio
**bbio_ret
)
5956 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
5959 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5960 u64 chunk_start
, u64 physical
, u64 devid
,
5961 u64
**logical
, int *naddrs
, int *stripe_len
)
5963 struct extent_map
*em
;
5964 struct map_lookup
*map
;
5972 em
= get_chunk_map(fs_info
, chunk_start
, 1);
5976 map
= em
->map_lookup
;
5978 rmap_len
= map
->stripe_len
;
5980 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5981 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5982 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5983 length
= div_u64(length
, map
->num_stripes
);
5984 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5985 length
= div_u64(length
, nr_data_stripes(map
));
5986 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5989 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5990 BUG_ON(!buf
); /* -ENOMEM */
5992 for (i
= 0; i
< map
->num_stripes
; i
++) {
5993 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5995 if (map
->stripes
[i
].physical
> physical
||
5996 map
->stripes
[i
].physical
+ length
<= physical
)
5999 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6000 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6002 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6003 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6004 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6005 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6006 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6007 } /* else if RAID[56], multiply by nr_data_stripes().
6008 * Alternatively, just use rmap_len below instead of
6009 * map->stripe_len */
6011 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6012 WARN_ON(nr
>= map
->num_stripes
);
6013 for (j
= 0; j
< nr
; j
++) {
6014 if (buf
[j
] == bytenr
)
6018 WARN_ON(nr
>= map
->num_stripes
);
6025 *stripe_len
= rmap_len
;
6027 free_extent_map(em
);
6031 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6033 bio
->bi_private
= bbio
->private;
6034 bio
->bi_end_io
= bbio
->end_io
;
6037 btrfs_put_bbio(bbio
);
6040 static void btrfs_end_bio(struct bio
*bio
)
6042 struct btrfs_bio
*bbio
= bio
->bi_private
;
6043 int is_orig_bio
= 0;
6045 if (bio
->bi_status
) {
6046 atomic_inc(&bbio
->error
);
6047 if (bio
->bi_status
== BLK_STS_IOERR
||
6048 bio
->bi_status
== BLK_STS_TARGET
) {
6049 unsigned int stripe_index
=
6050 btrfs_io_bio(bio
)->stripe_index
;
6051 struct btrfs_device
*dev
;
6053 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6054 dev
= bbio
->stripes
[stripe_index
].dev
;
6056 if (bio_op(bio
) == REQ_OP_WRITE
)
6057 btrfs_dev_stat_inc(dev
,
6058 BTRFS_DEV_STAT_WRITE_ERRS
);
6060 btrfs_dev_stat_inc(dev
,
6061 BTRFS_DEV_STAT_READ_ERRS
);
6062 if (bio
->bi_opf
& REQ_PREFLUSH
)
6063 btrfs_dev_stat_inc(dev
,
6064 BTRFS_DEV_STAT_FLUSH_ERRS
);
6065 btrfs_dev_stat_print_on_error(dev
);
6070 if (bio
== bbio
->orig_bio
)
6073 btrfs_bio_counter_dec(bbio
->fs_info
);
6075 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6078 bio
= bbio
->orig_bio
;
6081 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6082 /* only send an error to the higher layers if it is
6083 * beyond the tolerance of the btrfs bio
6085 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6086 bio
->bi_status
= BLK_STS_IOERR
;
6089 * this bio is actually up to date, we didn't
6090 * go over the max number of errors
6095 btrfs_end_bbio(bbio
, bio
);
6096 } else if (!is_orig_bio
) {
6102 * see run_scheduled_bios for a description of why bios are collected for
6105 * This will add one bio to the pending list for a device and make sure
6106 * the work struct is scheduled.
6108 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6111 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6112 int should_queue
= 1;
6113 struct btrfs_pending_bios
*pending_bios
;
6115 if (device
->missing
|| !device
->bdev
) {
6120 /* don't bother with additional async steps for reads, right now */
6121 if (bio_op(bio
) == REQ_OP_READ
) {
6123 btrfsic_submit_bio(bio
);
6129 * nr_async_bios allows us to reliably return congestion to the
6130 * higher layers. Otherwise, the async bio makes it appear we have
6131 * made progress against dirty pages when we've really just put it
6132 * on a queue for later
6134 atomic_inc(&fs_info
->nr_async_bios
);
6135 WARN_ON(bio
->bi_next
);
6136 bio
->bi_next
= NULL
;
6138 spin_lock(&device
->io_lock
);
6139 if (op_is_sync(bio
->bi_opf
))
6140 pending_bios
= &device
->pending_sync_bios
;
6142 pending_bios
= &device
->pending_bios
;
6144 if (pending_bios
->tail
)
6145 pending_bios
->tail
->bi_next
= bio
;
6147 pending_bios
->tail
= bio
;
6148 if (!pending_bios
->head
)
6149 pending_bios
->head
= bio
;
6150 if (device
->running_pending
)
6153 spin_unlock(&device
->io_lock
);
6156 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6159 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6160 u64 physical
, int dev_nr
, int async
)
6162 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6163 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6165 bio
->bi_private
= bbio
;
6166 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6167 bio
->bi_end_io
= btrfs_end_bio
;
6168 bio
->bi_iter
.bi_sector
= physical
>> 9;
6171 struct rcu_string
*name
;
6174 name
= rcu_dereference(dev
->name
);
6175 btrfs_debug(fs_info
,
6176 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6177 bio_op(bio
), bio
->bi_opf
,
6178 (u64
)bio
->bi_iter
.bi_sector
,
6179 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6180 bio
->bi_iter
.bi_size
);
6184 bio
->bi_bdev
= dev
->bdev
;
6186 btrfs_bio_counter_inc_noblocked(fs_info
);
6189 btrfs_schedule_bio(dev
, bio
);
6191 btrfsic_submit_bio(bio
);
6194 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6196 atomic_inc(&bbio
->error
);
6197 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6198 /* Should be the original bio. */
6199 WARN_ON(bio
!= bbio
->orig_bio
);
6201 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6202 bio
->bi_iter
.bi_sector
= logical
>> 9;
6203 bio
->bi_status
= BLK_STS_IOERR
;
6204 btrfs_end_bbio(bbio
, bio
);
6208 int btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6209 int mirror_num
, int async_submit
)
6211 struct btrfs_device
*dev
;
6212 struct bio
*first_bio
= bio
;
6213 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6219 struct btrfs_bio
*bbio
= NULL
;
6221 length
= bio
->bi_iter
.bi_size
;
6222 map_length
= length
;
6224 btrfs_bio_counter_inc_blocked(fs_info
);
6225 ret
= __btrfs_map_block(fs_info
, bio_op(bio
), logical
,
6226 &map_length
, &bbio
, mirror_num
, 1);
6228 btrfs_bio_counter_dec(fs_info
);
6232 total_devs
= bbio
->num_stripes
;
6233 bbio
->orig_bio
= first_bio
;
6234 bbio
->private = first_bio
->bi_private
;
6235 bbio
->end_io
= first_bio
->bi_end_io
;
6236 bbio
->fs_info
= fs_info
;
6237 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6239 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6240 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6241 /* In this case, map_length has been set to the length of
6242 a single stripe; not the whole write */
6243 if (bio_op(bio
) == REQ_OP_WRITE
) {
6244 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6247 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6248 map_length
, mirror_num
, 1);
6251 btrfs_bio_counter_dec(fs_info
);
6255 if (map_length
< length
) {
6257 "mapping failed logical %llu bio len %llu len %llu",
6258 logical
, length
, map_length
);
6262 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6263 dev
= bbio
->stripes
[dev_nr
].dev
;
6264 if (!dev
|| !dev
->bdev
||
6265 (bio_op(first_bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6266 bbio_error(bbio
, first_bio
, logical
);
6270 if (dev_nr
< total_devs
- 1) {
6271 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6272 BUG_ON(!bio
); /* -ENOMEM */
6276 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6277 dev_nr
, async_submit
);
6279 btrfs_bio_counter_dec(fs_info
);
6283 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6286 struct btrfs_device
*device
;
6287 struct btrfs_fs_devices
*cur_devices
;
6289 cur_devices
= fs_info
->fs_devices
;
6290 while (cur_devices
) {
6292 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6293 device
= __find_device(&cur_devices
->devices
,
6298 cur_devices
= cur_devices
->seed
;
6303 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6304 u64 devid
, u8
*dev_uuid
)
6306 struct btrfs_device
*device
;
6308 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6312 list_add(&device
->dev_list
, &fs_devices
->devices
);
6313 device
->fs_devices
= fs_devices
;
6314 fs_devices
->num_devices
++;
6316 device
->missing
= 1;
6317 fs_devices
->missing_devices
++;
6323 * btrfs_alloc_device - allocate struct btrfs_device
6324 * @fs_info: used only for generating a new devid, can be NULL if
6325 * devid is provided (i.e. @devid != NULL).
6326 * @devid: a pointer to devid for this device. If NULL a new devid
6328 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6331 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6332 * on error. Returned struct is not linked onto any lists and can be
6333 * destroyed with kfree() right away.
6335 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6339 struct btrfs_device
*dev
;
6342 if (WARN_ON(!devid
&& !fs_info
))
6343 return ERR_PTR(-EINVAL
);
6345 dev
= __alloc_device();
6354 ret
= find_next_devid(fs_info
, &tmp
);
6357 return ERR_PTR(ret
);
6363 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6365 generate_random_uuid(dev
->uuid
);
6367 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6368 pending_bios_fn
, NULL
, NULL
);
6373 /* Return -EIO if any error, otherwise return 0. */
6374 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6375 struct extent_buffer
*leaf
,
6376 struct btrfs_chunk
*chunk
, u64 logical
)
6384 length
= btrfs_chunk_length(leaf
, chunk
);
6385 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6386 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6387 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6388 type
= btrfs_chunk_type(leaf
, chunk
);
6391 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6395 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6396 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6399 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6400 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6401 btrfs_chunk_sector_size(leaf
, chunk
));
6404 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6405 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6408 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6409 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6413 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6415 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6416 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6417 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6418 btrfs_chunk_type(leaf
, chunk
));
6421 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6422 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6423 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6424 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6425 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6426 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6427 num_stripes
!= 1)) {
6429 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6430 num_stripes
, sub_stripes
,
6431 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6438 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6439 struct extent_buffer
*leaf
,
6440 struct btrfs_chunk
*chunk
)
6442 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6443 struct map_lookup
*map
;
6444 struct extent_map
*em
;
6449 u8 uuid
[BTRFS_UUID_SIZE
];
6454 logical
= key
->offset
;
6455 length
= btrfs_chunk_length(leaf
, chunk
);
6456 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6457 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6459 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6463 read_lock(&map_tree
->map_tree
.lock
);
6464 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6465 read_unlock(&map_tree
->map_tree
.lock
);
6467 /* already mapped? */
6468 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6469 free_extent_map(em
);
6472 free_extent_map(em
);
6475 em
= alloc_extent_map();
6478 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6480 free_extent_map(em
);
6484 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6485 em
->map_lookup
= map
;
6486 em
->start
= logical
;
6489 em
->block_start
= 0;
6490 em
->block_len
= em
->len
;
6492 map
->num_stripes
= num_stripes
;
6493 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6494 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6495 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6496 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6497 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6498 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6499 for (i
= 0; i
< num_stripes
; i
++) {
6500 map
->stripes
[i
].physical
=
6501 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6502 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6503 read_extent_buffer(leaf
, uuid
, (unsigned long)
6504 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6506 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6508 if (!map
->stripes
[i
].dev
&&
6509 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6510 free_extent_map(em
);
6513 if (!map
->stripes
[i
].dev
) {
6514 map
->stripes
[i
].dev
=
6515 add_missing_dev(fs_info
->fs_devices
, devid
,
6517 if (!map
->stripes
[i
].dev
) {
6518 free_extent_map(em
);
6521 btrfs_warn(fs_info
, "devid %llu uuid %pU is missing",
6524 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6527 write_lock(&map_tree
->map_tree
.lock
);
6528 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6529 write_unlock(&map_tree
->map_tree
.lock
);
6530 BUG_ON(ret
); /* Tree corruption */
6531 free_extent_map(em
);
6536 static void fill_device_from_item(struct extent_buffer
*leaf
,
6537 struct btrfs_dev_item
*dev_item
,
6538 struct btrfs_device
*device
)
6542 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6543 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6544 device
->total_bytes
= device
->disk_total_bytes
;
6545 device
->commit_total_bytes
= device
->disk_total_bytes
;
6546 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6547 device
->commit_bytes_used
= device
->bytes_used
;
6548 device
->type
= btrfs_device_type(leaf
, dev_item
);
6549 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6550 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6551 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6552 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6553 device
->is_tgtdev_for_dev_replace
= 0;
6555 ptr
= btrfs_device_uuid(dev_item
);
6556 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6559 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6562 struct btrfs_fs_devices
*fs_devices
;
6565 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6567 fs_devices
= fs_info
->fs_devices
->seed
;
6568 while (fs_devices
) {
6569 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6572 fs_devices
= fs_devices
->seed
;
6575 fs_devices
= find_fsid(fsid
);
6577 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6578 return ERR_PTR(-ENOENT
);
6580 fs_devices
= alloc_fs_devices(fsid
);
6581 if (IS_ERR(fs_devices
))
6584 fs_devices
->seeding
= 1;
6585 fs_devices
->opened
= 1;
6589 fs_devices
= clone_fs_devices(fs_devices
);
6590 if (IS_ERR(fs_devices
))
6593 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6594 fs_info
->bdev_holder
);
6596 free_fs_devices(fs_devices
);
6597 fs_devices
= ERR_PTR(ret
);
6601 if (!fs_devices
->seeding
) {
6602 __btrfs_close_devices(fs_devices
);
6603 free_fs_devices(fs_devices
);
6604 fs_devices
= ERR_PTR(-EINVAL
);
6608 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6609 fs_info
->fs_devices
->seed
= fs_devices
;
6614 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6615 struct extent_buffer
*leaf
,
6616 struct btrfs_dev_item
*dev_item
)
6618 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6619 struct btrfs_device
*device
;
6622 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6623 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6625 devid
= btrfs_device_id(leaf
, dev_item
);
6626 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6628 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6631 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6632 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6633 if (IS_ERR(fs_devices
))
6634 return PTR_ERR(fs_devices
);
6637 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6639 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6642 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6645 btrfs_warn(fs_info
, "devid %llu uuid %pU missing",
6648 if (!device
->bdev
&& !btrfs_test_opt(fs_info
, DEGRADED
))
6651 if(!device
->bdev
&& !device
->missing
) {
6653 * this happens when a device that was properly setup
6654 * in the device info lists suddenly goes bad.
6655 * device->bdev is NULL, and so we have to set
6656 * device->missing to one here
6658 device
->fs_devices
->missing_devices
++;
6659 device
->missing
= 1;
6662 /* Move the device to its own fs_devices */
6663 if (device
->fs_devices
!= fs_devices
) {
6664 ASSERT(device
->missing
);
6666 list_move(&device
->dev_list
, &fs_devices
->devices
);
6667 device
->fs_devices
->num_devices
--;
6668 fs_devices
->num_devices
++;
6670 device
->fs_devices
->missing_devices
--;
6671 fs_devices
->missing_devices
++;
6673 device
->fs_devices
= fs_devices
;
6677 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6678 BUG_ON(device
->writeable
);
6679 if (device
->generation
!=
6680 btrfs_device_generation(leaf
, dev_item
))
6684 fill_device_from_item(leaf
, dev_item
, device
);
6685 device
->in_fs_metadata
= 1;
6686 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6687 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6688 spin_lock(&fs_info
->free_chunk_lock
);
6689 fs_info
->free_chunk_space
+= device
->total_bytes
-
6691 spin_unlock(&fs_info
->free_chunk_lock
);
6697 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6699 struct btrfs_root
*root
= fs_info
->tree_root
;
6700 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6701 struct extent_buffer
*sb
;
6702 struct btrfs_disk_key
*disk_key
;
6703 struct btrfs_chunk
*chunk
;
6705 unsigned long sb_array_offset
;
6712 struct btrfs_key key
;
6714 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6716 * This will create extent buffer of nodesize, superblock size is
6717 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6718 * overallocate but we can keep it as-is, only the first page is used.
6720 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6723 set_extent_buffer_uptodate(sb
);
6724 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6726 * The sb extent buffer is artificial and just used to read the system array.
6727 * set_extent_buffer_uptodate() call does not properly mark all it's
6728 * pages up-to-date when the page is larger: extent does not cover the
6729 * whole page and consequently check_page_uptodate does not find all
6730 * the page's extents up-to-date (the hole beyond sb),
6731 * write_extent_buffer then triggers a WARN_ON.
6733 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6734 * but sb spans only this function. Add an explicit SetPageUptodate call
6735 * to silence the warning eg. on PowerPC 64.
6737 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6738 SetPageUptodate(sb
->pages
[0]);
6740 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6741 array_size
= btrfs_super_sys_array_size(super_copy
);
6743 array_ptr
= super_copy
->sys_chunk_array
;
6744 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6747 while (cur_offset
< array_size
) {
6748 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6749 len
= sizeof(*disk_key
);
6750 if (cur_offset
+ len
> array_size
)
6751 goto out_short_read
;
6753 btrfs_disk_key_to_cpu(&key
, disk_key
);
6756 sb_array_offset
+= len
;
6759 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6760 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6762 * At least one btrfs_chunk with one stripe must be
6763 * present, exact stripe count check comes afterwards
6765 len
= btrfs_chunk_item_size(1);
6766 if (cur_offset
+ len
> array_size
)
6767 goto out_short_read
;
6769 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6772 "invalid number of stripes %u in sys_array at offset %u",
6773 num_stripes
, cur_offset
);
6778 type
= btrfs_chunk_type(sb
, chunk
);
6779 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6781 "invalid chunk type %llu in sys_array at offset %u",
6787 len
= btrfs_chunk_item_size(num_stripes
);
6788 if (cur_offset
+ len
> array_size
)
6789 goto out_short_read
;
6791 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6796 "unexpected item type %u in sys_array at offset %u",
6797 (u32
)key
.type
, cur_offset
);
6802 sb_array_offset
+= len
;
6805 clear_extent_buffer_uptodate(sb
);
6806 free_extent_buffer_stale(sb
);
6810 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6812 clear_extent_buffer_uptodate(sb
);
6813 free_extent_buffer_stale(sb
);
6817 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6819 struct btrfs_root
*root
= fs_info
->chunk_root
;
6820 struct btrfs_path
*path
;
6821 struct extent_buffer
*leaf
;
6822 struct btrfs_key key
;
6823 struct btrfs_key found_key
;
6828 path
= btrfs_alloc_path();
6832 mutex_lock(&uuid_mutex
);
6833 mutex_lock(&fs_info
->chunk_mutex
);
6836 * Read all device items, and then all the chunk items. All
6837 * device items are found before any chunk item (their object id
6838 * is smaller than the lowest possible object id for a chunk
6839 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6841 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6844 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6848 leaf
= path
->nodes
[0];
6849 slot
= path
->slots
[0];
6850 if (slot
>= btrfs_header_nritems(leaf
)) {
6851 ret
= btrfs_next_leaf(root
, path
);
6858 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6859 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6860 struct btrfs_dev_item
*dev_item
;
6861 dev_item
= btrfs_item_ptr(leaf
, slot
,
6862 struct btrfs_dev_item
);
6863 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6867 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6868 struct btrfs_chunk
*chunk
;
6869 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6870 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6878 * After loading chunk tree, we've got all device information,
6879 * do another round of validation checks.
6881 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
6883 "super_num_devices %llu mismatch with num_devices %llu found here",
6884 btrfs_super_num_devices(fs_info
->super_copy
),
6889 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
6890 fs_info
->fs_devices
->total_rw_bytes
) {
6892 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6893 btrfs_super_total_bytes(fs_info
->super_copy
),
6894 fs_info
->fs_devices
->total_rw_bytes
);
6900 mutex_unlock(&fs_info
->chunk_mutex
);
6901 mutex_unlock(&uuid_mutex
);
6903 btrfs_free_path(path
);
6907 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6909 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6910 struct btrfs_device
*device
;
6912 while (fs_devices
) {
6913 mutex_lock(&fs_devices
->device_list_mutex
);
6914 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6915 device
->fs_info
= fs_info
;
6916 mutex_unlock(&fs_devices
->device_list_mutex
);
6918 fs_devices
= fs_devices
->seed
;
6922 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6926 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6927 btrfs_dev_stat_reset(dev
, i
);
6930 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6932 struct btrfs_key key
;
6933 struct btrfs_key found_key
;
6934 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6935 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6936 struct extent_buffer
*eb
;
6939 struct btrfs_device
*device
;
6940 struct btrfs_path
*path
= NULL
;
6943 path
= btrfs_alloc_path();
6949 mutex_lock(&fs_devices
->device_list_mutex
);
6950 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6952 struct btrfs_dev_stats_item
*ptr
;
6954 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6955 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6956 key
.offset
= device
->devid
;
6957 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6959 __btrfs_reset_dev_stats(device
);
6960 device
->dev_stats_valid
= 1;
6961 btrfs_release_path(path
);
6964 slot
= path
->slots
[0];
6965 eb
= path
->nodes
[0];
6966 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6967 item_size
= btrfs_item_size_nr(eb
, slot
);
6969 ptr
= btrfs_item_ptr(eb
, slot
,
6970 struct btrfs_dev_stats_item
);
6972 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6973 if (item_size
>= (1 + i
) * sizeof(__le64
))
6974 btrfs_dev_stat_set(device
, i
,
6975 btrfs_dev_stats_value(eb
, ptr
, i
));
6977 btrfs_dev_stat_reset(device
, i
);
6980 device
->dev_stats_valid
= 1;
6981 btrfs_dev_stat_print_on_load(device
);
6982 btrfs_release_path(path
);
6984 mutex_unlock(&fs_devices
->device_list_mutex
);
6987 btrfs_free_path(path
);
6988 return ret
< 0 ? ret
: 0;
6991 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6992 struct btrfs_fs_info
*fs_info
,
6993 struct btrfs_device
*device
)
6995 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6996 struct btrfs_path
*path
;
6997 struct btrfs_key key
;
6998 struct extent_buffer
*eb
;
6999 struct btrfs_dev_stats_item
*ptr
;
7003 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7004 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7005 key
.offset
= device
->devid
;
7007 path
= btrfs_alloc_path();
7010 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7012 btrfs_warn_in_rcu(fs_info
,
7013 "error %d while searching for dev_stats item for device %s",
7014 ret
, rcu_str_deref(device
->name
));
7019 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7020 /* need to delete old one and insert a new one */
7021 ret
= btrfs_del_item(trans
, dev_root
, path
);
7023 btrfs_warn_in_rcu(fs_info
,
7024 "delete too small dev_stats item for device %s failed %d",
7025 rcu_str_deref(device
->name
), ret
);
7032 /* need to insert a new item */
7033 btrfs_release_path(path
);
7034 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7035 &key
, sizeof(*ptr
));
7037 btrfs_warn_in_rcu(fs_info
,
7038 "insert dev_stats item for device %s failed %d",
7039 rcu_str_deref(device
->name
), ret
);
7044 eb
= path
->nodes
[0];
7045 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7046 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7047 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7048 btrfs_dev_stat_read(device
, i
));
7049 btrfs_mark_buffer_dirty(eb
);
7052 btrfs_free_path(path
);
7057 * called from commit_transaction. Writes all changed device stats to disk.
7059 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7060 struct btrfs_fs_info
*fs_info
)
7062 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7063 struct btrfs_device
*device
;
7067 mutex_lock(&fs_devices
->device_list_mutex
);
7068 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7069 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7072 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7073 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7075 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7077 mutex_unlock(&fs_devices
->device_list_mutex
);
7082 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7084 btrfs_dev_stat_inc(dev
, index
);
7085 btrfs_dev_stat_print_on_error(dev
);
7088 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7090 if (!dev
->dev_stats_valid
)
7092 btrfs_err_rl_in_rcu(dev
->fs_info
,
7093 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7094 rcu_str_deref(dev
->name
),
7095 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7096 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7097 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7098 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7099 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7102 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7106 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7107 if (btrfs_dev_stat_read(dev
, i
) != 0)
7109 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7110 return; /* all values == 0, suppress message */
7112 btrfs_info_in_rcu(dev
->fs_info
,
7113 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7114 rcu_str_deref(dev
->name
),
7115 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7116 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7117 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7118 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7119 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7122 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7123 struct btrfs_ioctl_get_dev_stats
*stats
)
7125 struct btrfs_device
*dev
;
7126 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7129 mutex_lock(&fs_devices
->device_list_mutex
);
7130 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7131 mutex_unlock(&fs_devices
->device_list_mutex
);
7134 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7136 } else if (!dev
->dev_stats_valid
) {
7137 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7139 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7140 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7141 if (stats
->nr_items
> i
)
7143 btrfs_dev_stat_read_and_reset(dev
, i
);
7145 btrfs_dev_stat_reset(dev
, i
);
7148 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7149 if (stats
->nr_items
> i
)
7150 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7152 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7153 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7157 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7159 struct buffer_head
*bh
;
7160 struct btrfs_super_block
*disk_super
;
7166 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7169 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7172 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7174 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7175 set_buffer_dirty(bh
);
7176 sync_dirty_buffer(bh
);
7180 /* Notify udev that device has changed */
7181 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7183 /* Update ctime/mtime for device path for libblkid */
7184 update_dev_time(device_path
);
7188 * Update the size of all devices, which is used for writing out the
7191 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7193 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7194 struct btrfs_device
*curr
, *next
;
7196 if (list_empty(&fs_devices
->resized_devices
))
7199 mutex_lock(&fs_devices
->device_list_mutex
);
7200 mutex_lock(&fs_info
->chunk_mutex
);
7201 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7203 list_del_init(&curr
->resized_list
);
7204 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7206 mutex_unlock(&fs_info
->chunk_mutex
);
7207 mutex_unlock(&fs_devices
->device_list_mutex
);
7210 /* Must be invoked during the transaction commit */
7211 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7212 struct btrfs_transaction
*transaction
)
7214 struct extent_map
*em
;
7215 struct map_lookup
*map
;
7216 struct btrfs_device
*dev
;
7219 if (list_empty(&transaction
->pending_chunks
))
7222 /* In order to kick the device replace finish process */
7223 mutex_lock(&fs_info
->chunk_mutex
);
7224 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7225 map
= em
->map_lookup
;
7227 for (i
= 0; i
< map
->num_stripes
; i
++) {
7228 dev
= map
->stripes
[i
].dev
;
7229 dev
->commit_bytes_used
= dev
->bytes_used
;
7232 mutex_unlock(&fs_info
->chunk_mutex
);
7235 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7237 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7238 while (fs_devices
) {
7239 fs_devices
->fs_info
= fs_info
;
7240 fs_devices
= fs_devices
->seed
;
7244 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7246 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7247 while (fs_devices
) {
7248 fs_devices
->fs_info
= NULL
;
7249 fs_devices
= fs_devices
->seed
;