2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
46 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
48 static int __init
init_dax_wait_table(void)
52 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
53 init_waitqueue_head(wait_table
+ i
);
56 fs_initcall(init_dax_wait_table
);
58 static int dax_is_pmd_entry(void *entry
)
60 return (unsigned long)entry
& RADIX_DAX_PMD
;
63 static int dax_is_pte_entry(void *entry
)
65 return !((unsigned long)entry
& RADIX_DAX_PMD
);
68 static int dax_is_zero_entry(void *entry
)
70 return (unsigned long)entry
& RADIX_DAX_HZP
;
73 static int dax_is_empty_entry(void *entry
)
75 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
79 * DAX radix tree locking
81 struct exceptional_entry_key
{
82 struct address_space
*mapping
;
86 struct wait_exceptional_entry_queue
{
87 wait_queue_entry_t wait
;
88 struct exceptional_entry_key key
;
91 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
92 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
97 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 * queue to the start of that PMD. This ensures that all offsets in
99 * the range covered by the PMD map to the same bit lock.
101 if (dax_is_pmd_entry(entry
))
102 index
&= ~((1UL << (PMD_SHIFT
- PAGE_SHIFT
)) - 1);
104 key
->mapping
= mapping
;
105 key
->entry_start
= index
;
107 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
108 return wait_table
+ hash
;
111 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
112 int sync
, void *keyp
)
114 struct exceptional_entry_key
*key
= keyp
;
115 struct wait_exceptional_entry_queue
*ewait
=
116 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
118 if (key
->mapping
!= ewait
->key
.mapping
||
119 key
->entry_start
!= ewait
->key
.entry_start
)
121 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
125 * Check whether the given slot is locked. The function must be called with
126 * mapping->tree_lock held
128 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
130 unsigned long entry
= (unsigned long)
131 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
132 return entry
& RADIX_DAX_ENTRY_LOCK
;
136 * Mark the given slot is locked. The function must be called with
137 * mapping->tree_lock held
139 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
141 unsigned long entry
= (unsigned long)
142 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
144 entry
|= RADIX_DAX_ENTRY_LOCK
;
145 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
146 return (void *)entry
;
150 * Mark the given slot is unlocked. The function must be called with
151 * mapping->tree_lock held
153 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
155 unsigned long entry
= (unsigned long)
156 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
158 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
159 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
160 return (void *)entry
;
164 * Lookup entry in radix tree, wait for it to become unlocked if it is
165 * exceptional entry and return it. The caller must call
166 * put_unlocked_mapping_entry() when he decided not to lock the entry or
167 * put_locked_mapping_entry() when he locked the entry and now wants to
170 * The function must be called with mapping->tree_lock held.
172 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
173 pgoff_t index
, void ***slotp
)
176 struct wait_exceptional_entry_queue ewait
;
177 wait_queue_head_t
*wq
;
179 init_wait(&ewait
.wait
);
180 ewait
.wait
.func
= wake_exceptional_entry_func
;
183 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
,
185 if (!entry
|| !radix_tree_exceptional_entry(entry
) ||
186 !slot_locked(mapping
, slot
)) {
192 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
193 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
194 TASK_UNINTERRUPTIBLE
);
195 spin_unlock_irq(&mapping
->tree_lock
);
197 finish_wait(wq
, &ewait
.wait
);
198 spin_lock_irq(&mapping
->tree_lock
);
202 static void dax_unlock_mapping_entry(struct address_space
*mapping
,
207 spin_lock_irq(&mapping
->tree_lock
);
208 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
, &slot
);
209 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
210 !slot_locked(mapping
, slot
))) {
211 spin_unlock_irq(&mapping
->tree_lock
);
214 unlock_slot(mapping
, slot
);
215 spin_unlock_irq(&mapping
->tree_lock
);
216 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
219 static void put_locked_mapping_entry(struct address_space
*mapping
,
220 pgoff_t index
, void *entry
)
222 if (!radix_tree_exceptional_entry(entry
)) {
226 dax_unlock_mapping_entry(mapping
, index
);
231 * Called when we are done with radix tree entry we looked up via
232 * get_unlocked_mapping_entry() and which we didn't lock in the end.
234 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
235 pgoff_t index
, void *entry
)
237 if (!radix_tree_exceptional_entry(entry
))
240 /* We have to wake up next waiter for the radix tree entry lock */
241 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
245 * Find radix tree entry at given index. If it points to a page, return with
246 * the page locked. If it points to the exceptional entry, return with the
247 * radix tree entry locked. If the radix tree doesn't contain given index,
248 * create empty exceptional entry for the index and return with it locked.
250 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251 * either return that locked entry or will return an error. This error will
252 * happen if there are any 4k entries (either zero pages or DAX entries)
253 * within the 2MiB range that we are requesting.
255 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
257 * insertion will fail if it finds any 4k entries already in the tree, and a
258 * 4k insertion will cause an existing 2MiB entry to be unmapped and
259 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
260 * well as 2MiB empty entries.
262 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263 * real storage backing them. We will leave these real 2MiB DAX entries in
264 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
266 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267 * persistent memory the benefit is doubtful. We can add that later if we can
270 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
271 unsigned long size_flag
)
273 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
277 spin_lock_irq(&mapping
->tree_lock
);
278 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
281 if (size_flag
& RADIX_DAX_PMD
) {
282 if (!radix_tree_exceptional_entry(entry
) ||
283 dax_is_pte_entry(entry
)) {
284 put_unlocked_mapping_entry(mapping
, index
,
286 entry
= ERR_PTR(-EEXIST
);
289 } else { /* trying to grab a PTE entry */
290 if (radix_tree_exceptional_entry(entry
) &&
291 dax_is_pmd_entry(entry
) &&
292 (dax_is_zero_entry(entry
) ||
293 dax_is_empty_entry(entry
))) {
294 pmd_downgrade
= true;
299 /* No entry for given index? Make sure radix tree is big enough. */
300 if (!entry
|| pmd_downgrade
) {
305 * Make sure 'entry' remains valid while we drop
306 * mapping->tree_lock.
308 entry
= lock_slot(mapping
, slot
);
311 spin_unlock_irq(&mapping
->tree_lock
);
313 * Besides huge zero pages the only other thing that gets
314 * downgraded are empty entries which don't need to be
317 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
318 unmap_mapping_range(mapping
,
319 (index
<< PAGE_SHIFT
) & PMD_MASK
, PMD_SIZE
, 0);
321 err
= radix_tree_preload(
322 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
325 put_locked_mapping_entry(mapping
, index
, entry
);
328 spin_lock_irq(&mapping
->tree_lock
);
332 * We needed to drop the page_tree lock while calling
333 * radix_tree_preload() and we didn't have an entry to
334 * lock. See if another thread inserted an entry at
335 * our index during this time.
337 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
,
340 radix_tree_preload_end();
341 spin_unlock_irq(&mapping
->tree_lock
);
347 radix_tree_delete(&mapping
->page_tree
, index
);
348 mapping
->nrexceptional
--;
349 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
353 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
355 err
= __radix_tree_insert(&mapping
->page_tree
, index
,
356 dax_radix_order(entry
), entry
);
357 radix_tree_preload_end();
359 spin_unlock_irq(&mapping
->tree_lock
);
361 * Our insertion of a DAX entry failed, most likely
362 * because we were inserting a PMD entry and it
363 * collided with a PTE sized entry at a different
364 * index in the PMD range. We haven't inserted
365 * anything into the radix tree and have no waiters to
370 /* Good, we have inserted empty locked entry into the tree. */
371 mapping
->nrexceptional
++;
372 spin_unlock_irq(&mapping
->tree_lock
);
375 /* Normal page in radix tree? */
376 if (!radix_tree_exceptional_entry(entry
)) {
377 struct page
*page
= entry
;
380 spin_unlock_irq(&mapping
->tree_lock
);
382 /* Page got truncated? Retry... */
383 if (unlikely(page
->mapping
!= mapping
)) {
390 entry
= lock_slot(mapping
, slot
);
392 spin_unlock_irq(&mapping
->tree_lock
);
397 * We do not necessarily hold the mapping->tree_lock when we call this
398 * function so it is possible that 'entry' is no longer a valid item in the
399 * radix tree. This is okay because all we really need to do is to find the
400 * correct waitqueue where tasks might be waiting for that old 'entry' and
403 void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
404 pgoff_t index
, void *entry
, bool wake_all
)
406 struct exceptional_entry_key key
;
407 wait_queue_head_t
*wq
;
409 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
412 * Checking for locked entry and prepare_to_wait_exclusive() happens
413 * under mapping->tree_lock, ditto for entry handling in our callers.
414 * So at this point all tasks that could have seen our entry locked
415 * must be in the waitqueue and the following check will see them.
417 if (waitqueue_active(wq
))
418 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
421 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
422 pgoff_t index
, bool trunc
)
426 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
428 spin_lock_irq(&mapping
->tree_lock
);
429 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
430 if (!entry
|| !radix_tree_exceptional_entry(entry
))
433 (radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_DIRTY
) ||
434 radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
)))
436 radix_tree_delete(page_tree
, index
);
437 mapping
->nrexceptional
--;
440 put_unlocked_mapping_entry(mapping
, index
, entry
);
441 spin_unlock_irq(&mapping
->tree_lock
);
445 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446 * entry to get unlocked before deleting it.
448 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
450 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
453 * This gets called from truncate / punch_hole path. As such, the caller
454 * must hold locks protecting against concurrent modifications of the
455 * radix tree (usually fs-private i_mmap_sem for writing). Since the
456 * caller has seen exceptional entry for this index, we better find it
457 * at that index as well...
464 * Invalidate exceptional DAX entry if it is clean.
466 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
469 return __dax_invalidate_mapping_entry(mapping
, index
, false);
473 * The user has performed a load from a hole in the file. Allocating
474 * a new page in the file would cause excessive storage usage for
475 * workloads with sparse files. We allocate a page cache page instead.
476 * We'll kick it out of the page cache if it's ever written to,
477 * otherwise it will simply fall out of the page cache under memory
478 * pressure without ever having been dirtied.
480 static int dax_load_hole(struct address_space
*mapping
, void **entry
,
481 struct vm_fault
*vmf
)
483 struct inode
*inode
= mapping
->host
;
487 /* Hole page already exists? Return it... */
488 if (!radix_tree_exceptional_entry(*entry
)) {
493 /* This will replace locked radix tree entry with a hole page */
494 page
= find_or_create_page(mapping
, vmf
->pgoff
,
495 vmf
->gfp_mask
| __GFP_ZERO
);
503 ret
= finish_fault(vmf
);
507 /* Grab reference for PTE that is now referencing the page */
509 ret
= VM_FAULT_NOPAGE
;
512 trace_dax_load_hole(inode
, vmf
, ret
);
516 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
517 sector_t sector
, size_t size
, struct page
*to
,
526 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
530 id
= dax_read_lock();
531 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
536 vto
= kmap_atomic(to
);
537 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
544 * By this point grab_mapping_entry() has ensured that we have a locked entry
545 * of the appropriate size so we don't have to worry about downgrading PMDs to
546 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
547 * already in the tree, we will skip the insertion and just dirty the PMD as
550 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
551 struct vm_fault
*vmf
,
552 void *entry
, sector_t sector
,
555 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
557 bool hole_fill
= false;
559 pgoff_t index
= vmf
->pgoff
;
561 if (vmf
->flags
& FAULT_FLAG_WRITE
)
562 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
564 /* Replacing hole page with block mapping? */
565 if (!radix_tree_exceptional_entry(entry
)) {
568 * Unmap the page now before we remove it from page cache below.
569 * The page is locked so it cannot be faulted in again.
571 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
573 error
= radix_tree_preload(vmf
->gfp_mask
& ~__GFP_HIGHMEM
);
575 return ERR_PTR(error
);
576 } else if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_HZP
)) {
577 /* replacing huge zero page with PMD block mapping */
578 unmap_mapping_range(mapping
,
579 (vmf
->pgoff
<< PAGE_SHIFT
) & PMD_MASK
, PMD_SIZE
, 0);
582 spin_lock_irq(&mapping
->tree_lock
);
583 new_entry
= dax_radix_locked_entry(sector
, flags
);
586 __delete_from_page_cache(entry
, NULL
);
587 /* Drop pagecache reference */
589 error
= __radix_tree_insert(page_tree
, index
,
590 dax_radix_order(new_entry
), new_entry
);
592 new_entry
= ERR_PTR(error
);
595 mapping
->nrexceptional
++;
596 } else if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
598 * Only swap our new entry into the radix tree if the current
599 * entry is a zero page or an empty entry. If a normal PTE or
600 * PMD entry is already in the tree, we leave it alone. This
601 * means that if we are trying to insert a PTE and the
602 * existing entry is a PMD, we will just leave the PMD in the
603 * tree and dirty it if necessary.
605 struct radix_tree_node
*node
;
609 ret
= __radix_tree_lookup(page_tree
, index
, &node
, &slot
);
610 WARN_ON_ONCE(ret
!= entry
);
611 __radix_tree_replace(page_tree
, node
, slot
,
612 new_entry
, NULL
, NULL
);
614 if (vmf
->flags
& FAULT_FLAG_WRITE
)
615 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
617 spin_unlock_irq(&mapping
->tree_lock
);
619 radix_tree_preload_end();
621 * We don't need hole page anymore, it has been replaced with
622 * locked radix tree entry now.
624 if (mapping
->a_ops
->freepage
)
625 mapping
->a_ops
->freepage(entry
);
632 static inline unsigned long
633 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
635 unsigned long address
;
637 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
638 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
642 /* Walk all mappings of a given index of a file and writeprotect them */
643 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
644 pgoff_t index
, unsigned long pfn
)
646 struct vm_area_struct
*vma
;
647 pte_t pte
, *ptep
= NULL
;
652 i_mmap_lock_read(mapping
);
653 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
654 unsigned long address
;
658 if (!(vma
->vm_flags
& VM_SHARED
))
661 address
= pgoff_address(index
, vma
);
663 if (follow_pte_pmd(vma
->vm_mm
, address
, &ptep
, &pmdp
, &ptl
))
667 #ifdef CONFIG_FS_DAX_PMD
670 if (pfn
!= pmd_pfn(*pmdp
))
672 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
675 flush_cache_page(vma
, address
, pfn
);
676 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
677 pmd
= pmd_wrprotect(pmd
);
678 pmd
= pmd_mkclean(pmd
);
679 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
685 if (pfn
!= pte_pfn(*ptep
))
687 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
690 flush_cache_page(vma
, address
, pfn
);
691 pte
= ptep_clear_flush(vma
, address
, ptep
);
692 pte
= pte_wrprotect(pte
);
693 pte
= pte_mkclean(pte
);
694 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
697 pte_unmap_unlock(ptep
, ptl
);
701 mmu_notifier_invalidate_page(vma
->vm_mm
, address
);
703 i_mmap_unlock_read(mapping
);
706 static int dax_writeback_one(struct block_device
*bdev
,
707 struct dax_device
*dax_dev
, struct address_space
*mapping
,
708 pgoff_t index
, void *entry
)
710 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
711 void *entry2
, **slot
, *kaddr
;
719 * A page got tagged dirty in DAX mapping? Something is seriously
722 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
725 spin_lock_irq(&mapping
->tree_lock
);
726 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
727 /* Entry got punched out / reallocated? */
728 if (!entry2
|| !radix_tree_exceptional_entry(entry2
))
731 * Entry got reallocated elsewhere? No need to writeback. We have to
732 * compare sectors as we must not bail out due to difference in lockbit
735 if (dax_radix_sector(entry2
) != dax_radix_sector(entry
))
737 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
738 dax_is_zero_entry(entry
))) {
743 /* Another fsync thread may have already written back this entry */
744 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
746 /* Lock the entry to serialize with page faults */
747 entry
= lock_slot(mapping
, slot
);
749 * We can clear the tag now but we have to be careful so that concurrent
750 * dax_writeback_one() calls for the same index cannot finish before we
751 * actually flush the caches. This is achieved as the calls will look
752 * at the entry only under tree_lock and once they do that they will
753 * see the entry locked and wait for it to unlock.
755 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
756 spin_unlock_irq(&mapping
->tree_lock
);
759 * Even if dax_writeback_mapping_range() was given a wbc->range_start
760 * in the middle of a PMD, the 'index' we are given will be aligned to
761 * the start index of the PMD, as will the sector we pull from
762 * 'entry'. This allows us to flush for PMD_SIZE and not have to
763 * worry about partial PMD writebacks.
765 sector
= dax_radix_sector(entry
);
766 size
= PAGE_SIZE
<< dax_radix_order(entry
);
768 id
= dax_read_lock();
769 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
774 * dax_direct_access() may sleep, so cannot hold tree_lock over
777 ret
= dax_direct_access(dax_dev
, pgoff
, size
/ PAGE_SIZE
, &kaddr
, &pfn
);
781 if (WARN_ON_ONCE(ret
< size
/ PAGE_SIZE
)) {
786 dax_mapping_entry_mkclean(mapping
, index
, pfn_t_to_pfn(pfn
));
787 wb_cache_pmem(kaddr
, size
);
789 * After we have flushed the cache, we can clear the dirty tag. There
790 * cannot be new dirty data in the pfn after the flush has completed as
791 * the pfn mappings are writeprotected and fault waits for mapping
794 spin_lock_irq(&mapping
->tree_lock
);
795 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
796 spin_unlock_irq(&mapping
->tree_lock
);
797 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
800 put_locked_mapping_entry(mapping
, index
, entry
);
804 put_unlocked_mapping_entry(mapping
, index
, entry2
);
805 spin_unlock_irq(&mapping
->tree_lock
);
810 * Flush the mapping to the persistent domain within the byte range of [start,
811 * end]. This is required by data integrity operations to ensure file data is
812 * on persistent storage prior to completion of the operation.
814 int dax_writeback_mapping_range(struct address_space
*mapping
,
815 struct block_device
*bdev
, struct writeback_control
*wbc
)
817 struct inode
*inode
= mapping
->host
;
818 pgoff_t start_index
, end_index
;
819 pgoff_t indices
[PAGEVEC_SIZE
];
820 struct dax_device
*dax_dev
;
825 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
828 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
831 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
835 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
836 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
838 trace_dax_writeback_range(inode
, start_index
, end_index
);
840 tag_pages_for_writeback(mapping
, start_index
, end_index
);
842 pagevec_init(&pvec
, 0);
844 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
845 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
846 pvec
.pages
, indices
);
851 for (i
= 0; i
< pvec
.nr
; i
++) {
852 if (indices
[i
] > end_index
) {
857 ret
= dax_writeback_one(bdev
, dax_dev
, mapping
,
858 indices
[i
], pvec
.pages
[i
]);
862 start_index
= indices
[pvec
.nr
- 1] + 1;
866 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
867 return (ret
< 0 ? ret
: 0);
869 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
871 static int dax_insert_mapping(struct address_space
*mapping
,
872 struct block_device
*bdev
, struct dax_device
*dax_dev
,
873 sector_t sector
, size_t size
, void **entryp
,
874 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
876 unsigned long vaddr
= vmf
->address
;
877 void *entry
= *entryp
;
883 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
887 id
= dax_read_lock();
888 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
895 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, sector
, 0);
900 trace_dax_insert_mapping(mapping
->host
, vmf
, ret
);
901 return vm_insert_mixed(vma
, vaddr
, pfn
);
905 * dax_pfn_mkwrite - handle first write to DAX page
906 * @vmf: The description of the fault
908 int dax_pfn_mkwrite(struct vm_fault
*vmf
)
910 struct file
*file
= vmf
->vma
->vm_file
;
911 struct address_space
*mapping
= file
->f_mapping
;
912 struct inode
*inode
= mapping
->host
;
914 pgoff_t index
= vmf
->pgoff
;
916 spin_lock_irq(&mapping
->tree_lock
);
917 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
918 if (!entry
|| !radix_tree_exceptional_entry(entry
)) {
920 put_unlocked_mapping_entry(mapping
, index
, entry
);
921 spin_unlock_irq(&mapping
->tree_lock
);
922 trace_dax_pfn_mkwrite_no_entry(inode
, vmf
, VM_FAULT_NOPAGE
);
923 return VM_FAULT_NOPAGE
;
925 radix_tree_tag_set(&mapping
->page_tree
, index
, PAGECACHE_TAG_DIRTY
);
926 entry
= lock_slot(mapping
, slot
);
927 spin_unlock_irq(&mapping
->tree_lock
);
929 * If we race with somebody updating the PTE and finish_mkwrite_fault()
930 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
931 * the fault in either case.
933 finish_mkwrite_fault(vmf
);
934 put_locked_mapping_entry(mapping
, index
, entry
);
935 trace_dax_pfn_mkwrite(inode
, vmf
, VM_FAULT_NOPAGE
);
936 return VM_FAULT_NOPAGE
;
938 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
940 static bool dax_range_is_aligned(struct block_device
*bdev
,
941 unsigned int offset
, unsigned int length
)
943 unsigned short sector_size
= bdev_logical_block_size(bdev
);
945 if (!IS_ALIGNED(offset
, sector_size
))
947 if (!IS_ALIGNED(length
, sector_size
))
953 int __dax_zero_page_range(struct block_device
*bdev
,
954 struct dax_device
*dax_dev
, sector_t sector
,
955 unsigned int offset
, unsigned int size
)
957 if (dax_range_is_aligned(bdev
, offset
, size
)) {
958 sector_t start_sector
= sector
+ (offset
>> 9);
960 return blkdev_issue_zeroout(bdev
, start_sector
,
961 size
>> 9, GFP_NOFS
, 0);
968 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
972 id
= dax_read_lock();
973 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
,
979 clear_pmem(kaddr
+ offset
, size
);
984 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
986 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
988 return iomap
->blkno
+ (((pos
& PAGE_MASK
) - iomap
->offset
) >> 9);
992 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
995 struct block_device
*bdev
= iomap
->bdev
;
996 struct dax_device
*dax_dev
= iomap
->dax_dev
;
997 struct iov_iter
*iter
= data
;
998 loff_t end
= pos
+ length
, done
= 0;
1002 if (iov_iter_rw(iter
) == READ
) {
1003 end
= min(end
, i_size_read(inode
));
1007 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1008 return iov_iter_zero(min(length
, end
- pos
), iter
);
1011 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1015 * Write can allocate block for an area which has a hole page mapped
1016 * into page tables. We have to tear down these mappings so that data
1017 * written by write(2) is visible in mmap.
1019 if (iomap
->flags
& IOMAP_F_NEW
) {
1020 invalidate_inode_pages2_range(inode
->i_mapping
,
1022 (end
- 1) >> PAGE_SHIFT
);
1025 id
= dax_read_lock();
1027 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1028 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1029 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1035 if (fatal_signal_pending(current
)) {
1040 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1044 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1051 map_len
= PFN_PHYS(map_len
);
1054 if (map_len
> end
- pos
)
1055 map_len
= end
- pos
;
1057 if (iov_iter_rw(iter
) == WRITE
)
1058 map_len
= copy_from_iter_pmem(kaddr
, map_len
, iter
);
1060 map_len
= copy_to_iter(kaddr
, map_len
, iter
);
1062 ret
= map_len
? map_len
: -EFAULT
;
1070 dax_read_unlock(id
);
1072 return done
? done
: ret
;
1076 * dax_iomap_rw - Perform I/O to a DAX file
1077 * @iocb: The control block for this I/O
1078 * @iter: The addresses to do I/O from or to
1079 * @ops: iomap ops passed from the file system
1081 * This function performs read and write operations to directly mapped
1082 * persistent memory. The callers needs to take care of read/write exclusion
1083 * and evicting any page cache pages in the region under I/O.
1086 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1087 const struct iomap_ops
*ops
)
1089 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1090 struct inode
*inode
= mapping
->host
;
1091 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1094 if (iov_iter_rw(iter
) == WRITE
) {
1095 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1096 flags
|= IOMAP_WRITE
;
1098 lockdep_assert_held(&inode
->i_rwsem
);
1101 while (iov_iter_count(iter
)) {
1102 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1103 iter
, dax_iomap_actor
);
1110 iocb
->ki_pos
+= done
;
1111 return done
? done
: ret
;
1113 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1115 static int dax_fault_return(int error
)
1118 return VM_FAULT_NOPAGE
;
1119 if (error
== -ENOMEM
)
1120 return VM_FAULT_OOM
;
1121 return VM_FAULT_SIGBUS
;
1124 static int dax_iomap_pte_fault(struct vm_fault
*vmf
,
1125 const struct iomap_ops
*ops
)
1127 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1128 struct inode
*inode
= mapping
->host
;
1129 unsigned long vaddr
= vmf
->address
;
1130 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1132 struct iomap iomap
= { 0 };
1133 unsigned flags
= IOMAP_FAULT
;
1134 int error
, major
= 0;
1138 trace_dax_pte_fault(inode
, vmf
, vmf_ret
);
1140 * Check whether offset isn't beyond end of file now. Caller is supposed
1141 * to hold locks serializing us with truncate / punch hole so this is
1144 if (pos
>= i_size_read(inode
)) {
1145 vmf_ret
= VM_FAULT_SIGBUS
;
1149 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && !vmf
->cow_page
)
1150 flags
|= IOMAP_WRITE
;
1152 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1153 if (IS_ERR(entry
)) {
1154 vmf_ret
= dax_fault_return(PTR_ERR(entry
));
1159 * It is possible, particularly with mixed reads & writes to private
1160 * mappings, that we have raced with a PMD fault that overlaps with
1161 * the PTE we need to set up. If so just return and the fault will be
1164 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1165 vmf_ret
= VM_FAULT_NOPAGE
;
1170 * Note that we don't bother to use iomap_apply here: DAX required
1171 * the file system block size to be equal the page size, which means
1172 * that we never have to deal with more than a single extent here.
1174 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1176 vmf_ret
= dax_fault_return(error
);
1179 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1180 error
= -EIO
; /* fs corruption? */
1181 goto error_finish_iomap
;
1184 sector
= dax_iomap_sector(&iomap
, pos
);
1186 if (vmf
->cow_page
) {
1187 switch (iomap
.type
) {
1189 case IOMAP_UNWRITTEN
:
1190 clear_user_highpage(vmf
->cow_page
, vaddr
);
1193 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1194 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1203 goto error_finish_iomap
;
1205 __SetPageUptodate(vmf
->cow_page
);
1206 vmf_ret
= finish_fault(vmf
);
1208 vmf_ret
= VM_FAULT_DONE_COW
;
1212 switch (iomap
.type
) {
1214 if (iomap
.flags
& IOMAP_F_NEW
) {
1215 count_vm_event(PGMAJFAULT
);
1216 mem_cgroup_count_vm_event(vmf
->vma
->vm_mm
, PGMAJFAULT
);
1217 major
= VM_FAULT_MAJOR
;
1219 error
= dax_insert_mapping(mapping
, iomap
.bdev
, iomap
.dax_dev
,
1220 sector
, PAGE_SIZE
, &entry
, vmf
->vma
, vmf
);
1221 /* -EBUSY is fine, somebody else faulted on the same PTE */
1222 if (error
== -EBUSY
)
1225 case IOMAP_UNWRITTEN
:
1227 if (!(vmf
->flags
& FAULT_FLAG_WRITE
)) {
1228 vmf_ret
= dax_load_hole(mapping
, &entry
, vmf
);
1239 vmf_ret
= dax_fault_return(error
) | major
;
1241 if (ops
->iomap_end
) {
1242 int copied
= PAGE_SIZE
;
1244 if (vmf_ret
& VM_FAULT_ERROR
)
1247 * The fault is done by now and there's no way back (other
1248 * thread may be already happily using PTE we have installed).
1249 * Just ignore error from ->iomap_end since we cannot do much
1252 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1255 put_locked_mapping_entry(mapping
, vmf
->pgoff
, entry
);
1257 trace_dax_pte_fault_done(inode
, vmf
, vmf_ret
);
1261 #ifdef CONFIG_FS_DAX_PMD
1263 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1264 * more often than one might expect in the below functions.
1266 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1268 static int dax_pmd_insert_mapping(struct vm_fault
*vmf
, struct iomap
*iomap
,
1269 loff_t pos
, void **entryp
)
1271 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1272 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1273 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1274 struct block_device
*bdev
= iomap
->bdev
;
1275 struct inode
*inode
= mapping
->host
;
1276 const size_t size
= PMD_SIZE
;
1277 void *ret
= NULL
, *kaddr
;
1283 if (bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
) != 0)
1286 id
= dax_read_lock();
1287 length
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
1289 goto unlock_fallback
;
1290 length
= PFN_PHYS(length
);
1293 goto unlock_fallback
;
1294 if (pfn_t_to_pfn(pfn
) & PG_PMD_COLOUR
)
1295 goto unlock_fallback
;
1296 if (!pfn_t_devmap(pfn
))
1297 goto unlock_fallback
;
1298 dax_read_unlock(id
);
1300 ret
= dax_insert_mapping_entry(mapping
, vmf
, *entryp
, sector
,
1306 trace_dax_pmd_insert_mapping(inode
, vmf
, length
, pfn
, ret
);
1307 return vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1308 pfn
, vmf
->flags
& FAULT_FLAG_WRITE
);
1311 dax_read_unlock(id
);
1313 trace_dax_pmd_insert_mapping_fallback(inode
, vmf
, length
, pfn
, ret
);
1314 return VM_FAULT_FALLBACK
;
1317 static int dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1320 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1321 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1322 struct inode
*inode
= mapping
->host
;
1323 struct page
*zero_page
;
1328 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1330 if (unlikely(!zero_page
))
1333 ret
= dax_insert_mapping_entry(mapping
, vmf
, *entryp
, 0,
1334 RADIX_DAX_PMD
| RADIX_DAX_HZP
);
1339 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1340 if (!pmd_none(*(vmf
->pmd
))) {
1345 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1346 pmd_entry
= pmd_mkhuge(pmd_entry
);
1347 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1349 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1350 return VM_FAULT_NOPAGE
;
1353 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1354 return VM_FAULT_FALLBACK
;
1357 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1358 const struct iomap_ops
*ops
)
1360 struct vm_area_struct
*vma
= vmf
->vma
;
1361 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1362 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1363 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1364 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1365 struct inode
*inode
= mapping
->host
;
1366 int result
= VM_FAULT_FALLBACK
;
1367 struct iomap iomap
= { 0 };
1368 pgoff_t max_pgoff
, pgoff
;
1374 * Check whether offset isn't beyond end of file now. Caller is
1375 * supposed to hold locks serializing us with truncate / punch hole so
1376 * this is a reliable test.
1378 pgoff
= linear_page_index(vma
, pmd_addr
);
1379 max_pgoff
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
1381 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1383 /* Fall back to PTEs if we're going to COW */
1384 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1387 /* If the PMD would extend outside the VMA */
1388 if (pmd_addr
< vma
->vm_start
)
1390 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1393 if (pgoff
> max_pgoff
) {
1394 result
= VM_FAULT_SIGBUS
;
1398 /* If the PMD would extend beyond the file size */
1399 if ((pgoff
| PG_PMD_COLOUR
) > max_pgoff
)
1403 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1404 * PMD or a HZP entry. If it can't (because a 4k page is already in
1405 * the tree, for instance), it will return -EEXIST and we just fall
1406 * back to 4k entries.
1408 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1413 * It is possible, particularly with mixed reads & writes to private
1414 * mappings, that we have raced with a PTE fault that overlaps with
1415 * the PMD we need to set up. If so just return and the fault will be
1418 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1419 !pmd_devmap(*vmf
->pmd
)) {
1425 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1426 * setting up a mapping, so really we're using iomap_begin() as a way
1427 * to look up our filesystem block.
1429 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1430 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1434 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1437 switch (iomap
.type
) {
1439 result
= dax_pmd_insert_mapping(vmf
, &iomap
, pos
, &entry
);
1441 case IOMAP_UNWRITTEN
:
1443 if (WARN_ON_ONCE(write
))
1445 result
= dax_pmd_load_hole(vmf
, &iomap
, &entry
);
1453 if (ops
->iomap_end
) {
1454 int copied
= PMD_SIZE
;
1456 if (result
== VM_FAULT_FALLBACK
)
1459 * The fault is done by now and there's no way back (other
1460 * thread may be already happily using PMD we have installed).
1461 * Just ignore error from ->iomap_end since we cannot do much
1464 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1468 put_locked_mapping_entry(mapping
, pgoff
, entry
);
1470 if (result
== VM_FAULT_FALLBACK
) {
1471 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1472 count_vm_event(THP_FAULT_FALLBACK
);
1475 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1479 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1480 const struct iomap_ops
*ops
)
1482 return VM_FAULT_FALLBACK
;
1484 #endif /* CONFIG_FS_DAX_PMD */
1487 * dax_iomap_fault - handle a page fault on a DAX file
1488 * @vmf: The description of the fault
1489 * @ops: iomap ops passed from the file system
1491 * When a page fault occurs, filesystems may call this helper in
1492 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1493 * has done all the necessary locking for page fault to proceed
1496 int dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1497 const struct iomap_ops
*ops
)
1501 return dax_iomap_pte_fault(vmf
, ops
);
1503 return dax_iomap_pmd_fault(vmf
, ops
);
1505 return VM_FAULT_FALLBACK
;
1508 EXPORT_SYMBOL_GPL(dax_iomap_fault
);