2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
15 #include "cpudeadline.h"
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED 1
23 #define TASK_ON_RQ_MIGRATING 2
25 extern __read_mostly
int scheduler_running
;
27 extern unsigned long calc_load_update
;
28 extern atomic_long_t calc_load_tasks
;
30 extern void calc_global_load_tick(struct rq
*this_rq
);
31 extern long calc_load_fold_active(struct rq
*this_rq
, long adjust
);
34 extern void cpu_load_update_active(struct rq
*this_rq
);
36 static inline void cpu_load_update_active(struct rq
*this_rq
) { }
40 * Helpers for converting nanosecond timing to jiffy resolution
42 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
59 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
63 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
77 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
87 * These are the 'tuning knobs' of the scheduler:
91 * single value that denotes runtime == period, ie unlimited time.
93 #define RUNTIME_INF ((u64)~0ULL)
95 static inline int idle_policy(int policy
)
97 return policy
== SCHED_IDLE
;
99 static inline int fair_policy(int policy
)
101 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
104 static inline int rt_policy(int policy
)
106 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
109 static inline int dl_policy(int policy
)
111 return policy
== SCHED_DEADLINE
;
113 static inline bool valid_policy(int policy
)
115 return idle_policy(policy
) || fair_policy(policy
) ||
116 rt_policy(policy
) || dl_policy(policy
);
119 static inline int task_has_rt_policy(struct task_struct
*p
)
121 return rt_policy(p
->policy
);
124 static inline int task_has_dl_policy(struct task_struct
*p
)
126 return dl_policy(p
->policy
);
130 * Tells if entity @a should preempt entity @b.
133 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
135 return dl_time_before(a
->deadline
, b
->deadline
);
139 * This is the priority-queue data structure of the RT scheduling class:
141 struct rt_prio_array
{
142 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
143 struct list_head queue
[MAX_RT_PRIO
];
146 struct rt_bandwidth
{
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock
;
151 struct hrtimer rt_period_timer
;
152 unsigned int rt_period_active
;
155 void __dl_clear_params(struct task_struct
*p
);
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
181 struct dl_bandwidth
{
182 raw_spinlock_t dl_runtime_lock
;
187 static inline int dl_bandwidth_enabled(void)
189 return sysctl_sched_rt_runtime
>= 0;
192 extern struct dl_bw
*dl_bw_of(int i
);
200 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
202 dl_b
->total_bw
-= tsk_bw
;
206 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
208 dl_b
->total_bw
+= tsk_bw
;
212 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
214 return dl_b
->bw
!= -1 &&
215 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
218 extern struct mutex sched_domains_mutex
;
220 #ifdef CONFIG_CGROUP_SCHED
222 #include <linux/cgroup.h>
227 extern struct list_head task_groups
;
229 struct cfs_bandwidth
{
230 #ifdef CONFIG_CFS_BANDWIDTH
234 s64 hierarchical_quota
;
237 int idle
, period_active
;
238 struct hrtimer period_timer
, slack_timer
;
239 struct list_head throttled_cfs_rq
;
242 int nr_periods
, nr_throttled
;
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
264 atomic_long_t load_avg ____cacheline_aligned
;
268 #ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity
**rt_se
;
270 struct rt_rq
**rt_rq
;
272 struct rt_bandwidth rt_bandwidth
;
276 struct list_head list
;
278 struct task_group
*parent
;
279 struct list_head siblings
;
280 struct list_head children
;
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup
*autogroup
;
286 struct cfs_bandwidth cfs_bandwidth
;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
300 #define MIN_SHARES (1UL << 1)
301 #define MAX_SHARES (1UL << 18)
304 typedef int (*tg_visitor
)(struct task_group
*, void *);
306 extern int walk_tg_tree_from(struct task_group
*from
,
307 tg_visitor down
, tg_visitor up
, void *data
);
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
313 * Caller must hold rcu_lock or sufficient equivalent.
315 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
317 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
320 extern int tg_nop(struct task_group
*tg
, void *data
);
322 extern void free_fair_sched_group(struct task_group
*tg
);
323 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
324 extern void online_fair_sched_group(struct task_group
*tg
);
325 extern void unregister_fair_sched_group(struct task_group
*tg
);
326 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
327 struct sched_entity
*se
, int cpu
,
328 struct sched_entity
*parent
);
329 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
331 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
332 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
333 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
335 extern void free_rt_sched_group(struct task_group
*tg
);
336 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
337 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
338 struct sched_rt_entity
*rt_se
, int cpu
,
339 struct sched_rt_entity
*parent
);
341 extern struct task_group
*sched_create_group(struct task_group
*parent
);
342 extern void sched_online_group(struct task_group
*tg
,
343 struct task_group
*parent
);
344 extern void sched_destroy_group(struct task_group
*tg
);
345 extern void sched_offline_group(struct task_group
*tg
);
347 extern void sched_move_task(struct task_struct
*tsk
);
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
353 extern void set_task_rq_fair(struct sched_entity
*se
,
354 struct cfs_rq
*prev
, struct cfs_rq
*next
);
355 #else /* !CONFIG_SMP */
356 static inline void set_task_rq_fair(struct sched_entity
*se
,
357 struct cfs_rq
*prev
, struct cfs_rq
*next
) { }
358 #endif /* CONFIG_SMP */
359 #endif /* CONFIG_FAIR_GROUP_SCHED */
361 #else /* CONFIG_CGROUP_SCHED */
363 struct cfs_bandwidth
{ };
365 #endif /* CONFIG_CGROUP_SCHED */
367 /* CFS-related fields in a runqueue */
369 struct load_weight load
;
370 unsigned int nr_running
, h_nr_running
;
375 u64 min_vruntime_copy
;
378 struct rb_root tasks_timeline
;
379 struct rb_node
*rb_leftmost
;
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
385 struct sched_entity
*curr
, *next
, *last
, *skip
;
387 #ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over
;
395 struct sched_avg avg
;
396 u64 runnable_load_sum
;
397 unsigned long runnable_load_avg
;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 unsigned long tg_load_avg_contrib
;
401 atomic_long_t removed_load_avg
, removed_util_avg
;
403 u64 load_last_update_time_copy
;
406 #ifdef CONFIG_FAIR_GROUP_SCHED
408 * h_load = weight * f(tg)
410 * Where f(tg) is the recursive weight fraction assigned to
413 unsigned long h_load
;
414 u64 last_h_load_update
;
415 struct sched_entity
*h_load_next
;
416 #endif /* CONFIG_FAIR_GROUP_SCHED */
417 #endif /* CONFIG_SMP */
419 #ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
431 struct list_head leaf_cfs_rq_list
;
432 struct task_group
*tg
; /* group that "owns" this runqueue */
434 #ifdef CONFIG_CFS_BANDWIDTH
437 s64 runtime_remaining
;
439 u64 throttled_clock
, throttled_clock_task
;
440 u64 throttled_clock_task_time
;
441 int throttled
, throttle_count
;
442 struct list_head throttled_list
;
443 #endif /* CONFIG_CFS_BANDWIDTH */
444 #endif /* CONFIG_FAIR_GROUP_SCHED */
447 static inline int rt_bandwidth_enabled(void)
449 return sysctl_sched_rt_runtime
>= 0;
452 /* RT IPI pull logic requires IRQ_WORK */
453 #ifdef CONFIG_IRQ_WORK
454 # define HAVE_RT_PUSH_IPI
457 /* Real-Time classes' related field in a runqueue: */
459 struct rt_prio_array active
;
460 unsigned int rt_nr_running
;
461 unsigned int rr_nr_running
;
462 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
464 int curr
; /* highest queued rt task prio */
466 int next
; /* next highest */
471 unsigned long rt_nr_migratory
;
472 unsigned long rt_nr_total
;
474 struct plist_head pushable_tasks
;
475 #ifdef HAVE_RT_PUSH_IPI
478 struct irq_work push_work
;
479 raw_spinlock_t push_lock
;
481 #endif /* CONFIG_SMP */
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock
;
490 #ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted
;
494 struct task_group
*tg
;
498 /* Deadline class' related fields in a runqueue */
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root
;
502 struct rb_node
*rb_leftmost
;
504 unsigned long dl_nr_running
;
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
518 unsigned long dl_nr_migratory
;
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
526 struct rb_root pushable_dl_tasks_root
;
527 struct rb_node
*pushable_dl_tasks_leftmost
;
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
548 cpumask_var_t online
;
550 /* Indicate more than one runnable task for any CPU */
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
557 cpumask_var_t dlo_mask
;
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
566 cpumask_var_t rto_mask
;
567 struct cpupri cpupri
;
570 extern struct root_domain def_root_domain
;
572 #endif /* CONFIG_SMP */
575 * This is the main, per-CPU runqueue data structure.
577 * Locking rule: those places that want to lock multiple runqueues
578 * (such as the load balancing or the thread migration code), lock
579 * acquire operations must be ordered by ascending &runqueue.
586 * nr_running and cpu_load should be in the same cacheline because
587 * remote CPUs use both these fields when doing load calculation.
589 unsigned int nr_running
;
590 #ifdef CONFIG_NUMA_BALANCING
591 unsigned int nr_numa_running
;
592 unsigned int nr_preferred_running
;
594 #define CPU_LOAD_IDX_MAX 5
595 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
596 #ifdef CONFIG_NO_HZ_COMMON
598 unsigned long last_load_update_tick
;
599 #endif /* CONFIG_SMP */
601 unsigned long nohz_flags
;
602 #endif /* CONFIG_NO_HZ_COMMON */
603 #ifdef CONFIG_NO_HZ_FULL
604 unsigned long last_sched_tick
;
606 /* capture load from *all* tasks on this cpu: */
607 struct load_weight load
;
608 unsigned long nr_load_updates
;
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 /* list of leaf cfs_rq on this cpu: */
617 struct list_head leaf_cfs_rq_list
;
618 #endif /* CONFIG_FAIR_GROUP_SCHED */
621 * This is part of a global counter where only the total sum
622 * over all CPUs matters. A task can increase this counter on
623 * one CPU and if it got migrated afterwards it may decrease
624 * it on another CPU. Always updated under the runqueue lock:
626 unsigned long nr_uninterruptible
;
628 struct task_struct
*curr
, *idle
, *stop
;
629 unsigned long next_balance
;
630 struct mm_struct
*prev_mm
;
632 unsigned int clock_skip_update
;
639 struct root_domain
*rd
;
640 struct sched_domain
*sd
;
642 unsigned long cpu_capacity
;
643 unsigned long cpu_capacity_orig
;
645 struct callback_head
*balance_callback
;
647 unsigned char idle_balance
;
648 /* For active balancing */
651 struct cpu_stop_work active_balance_work
;
652 /* cpu of this runqueue: */
656 struct list_head cfs_tasks
;
663 /* This is used to determine avg_idle's max value */
664 u64 max_idle_balance_cost
;
667 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
670 #ifdef CONFIG_PARAVIRT
673 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
674 u64 prev_steal_time_rq
;
677 /* calc_load related fields */
678 unsigned long calc_load_update
;
679 long calc_load_active
;
681 #ifdef CONFIG_SCHED_HRTICK
683 int hrtick_csd_pending
;
684 struct call_single_data hrtick_csd
;
686 struct hrtimer hrtick_timer
;
689 #ifdef CONFIG_SCHEDSTATS
691 struct sched_info rq_sched_info
;
692 unsigned long long rq_cpu_time
;
693 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
695 /* sys_sched_yield() stats */
696 unsigned int yld_count
;
698 /* schedule() stats */
699 unsigned int sched_count
;
700 unsigned int sched_goidle
;
702 /* try_to_wake_up() stats */
703 unsigned int ttwu_count
;
704 unsigned int ttwu_local
;
708 struct llist_head wake_list
;
711 #ifdef CONFIG_CPU_IDLE
712 /* Must be inspected within a rcu lock section */
713 struct cpuidle_state
*idle_state
;
717 static inline int cpu_of(struct rq
*rq
)
726 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
728 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
729 #define this_rq() this_cpu_ptr(&runqueues)
730 #define task_rq(p) cpu_rq(task_cpu(p))
731 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
732 #define raw_rq() raw_cpu_ptr(&runqueues)
734 static inline u64
__rq_clock_broken(struct rq
*rq
)
736 return READ_ONCE(rq
->clock
);
739 static inline u64
rq_clock(struct rq
*rq
)
741 lockdep_assert_held(&rq
->lock
);
745 static inline u64
rq_clock_task(struct rq
*rq
)
747 lockdep_assert_held(&rq
->lock
);
748 return rq
->clock_task
;
751 #define RQCF_REQ_SKIP 0x01
752 #define RQCF_ACT_SKIP 0x02
754 static inline void rq_clock_skip_update(struct rq
*rq
, bool skip
)
756 lockdep_assert_held(&rq
->lock
);
758 rq
->clock_skip_update
|= RQCF_REQ_SKIP
;
760 rq
->clock_skip_update
&= ~RQCF_REQ_SKIP
;
764 enum numa_topology_type
{
769 extern enum numa_topology_type sched_numa_topology_type
;
770 extern int sched_max_numa_distance
;
771 extern bool find_numa_distance(int distance
);
774 #ifdef CONFIG_NUMA_BALANCING
775 /* The regions in numa_faults array from task_struct */
776 enum numa_faults_stats
{
782 extern void sched_setnuma(struct task_struct
*p
, int node
);
783 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
784 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
785 #endif /* CONFIG_NUMA_BALANCING */
790 queue_balance_callback(struct rq
*rq
,
791 struct callback_head
*head
,
792 void (*func
)(struct rq
*rq
))
794 lockdep_assert_held(&rq
->lock
);
796 if (unlikely(head
->next
))
799 head
->func
= (void (*)(struct callback_head
*))func
;
800 head
->next
= rq
->balance_callback
;
801 rq
->balance_callback
= head
;
804 extern void sched_ttwu_pending(void);
806 #define rcu_dereference_check_sched_domain(p) \
807 rcu_dereference_check((p), \
808 lockdep_is_held(&sched_domains_mutex))
811 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
812 * See detach_destroy_domains: synchronize_sched for details.
814 * The domain tree of any CPU may only be accessed from within
815 * preempt-disabled sections.
817 #define for_each_domain(cpu, __sd) \
818 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
819 __sd; __sd = __sd->parent)
821 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
824 * highest_flag_domain - Return highest sched_domain containing flag.
825 * @cpu: The cpu whose highest level of sched domain is to
827 * @flag: The flag to check for the highest sched_domain
830 * Returns the highest sched_domain of a cpu which contains the given flag.
832 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
834 struct sched_domain
*sd
, *hsd
= NULL
;
836 for_each_domain(cpu
, sd
) {
837 if (!(sd
->flags
& flag
))
845 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
847 struct sched_domain
*sd
;
849 for_each_domain(cpu
, sd
) {
850 if (sd
->flags
& flag
)
857 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
858 DECLARE_PER_CPU(int, sd_llc_size
);
859 DECLARE_PER_CPU(int, sd_llc_id
);
860 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
861 DECLARE_PER_CPU(struct sched_domain
*, sd_busy
);
862 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
864 struct sched_group_capacity
{
867 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
870 unsigned int capacity
;
871 unsigned long next_update
;
872 int imbalance
; /* XXX unrelated to capacity but shared group state */
874 * Number of busy cpus in this group.
876 atomic_t nr_busy_cpus
;
878 unsigned long cpumask
[0]; /* iteration mask */
882 struct sched_group
*next
; /* Must be a circular list */
885 unsigned int group_weight
;
886 struct sched_group_capacity
*sgc
;
889 * The CPUs this group covers.
891 * NOTE: this field is variable length. (Allocated dynamically
892 * by attaching extra space to the end of the structure,
893 * depending on how many CPUs the kernel has booted up with)
895 unsigned long cpumask
[0];
898 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
900 return to_cpumask(sg
->cpumask
);
904 * cpumask masking which cpus in the group are allowed to iterate up the domain
907 static inline struct cpumask
*sched_group_mask(struct sched_group
*sg
)
909 return to_cpumask(sg
->sgc
->cpumask
);
913 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
914 * @group: The group whose first cpu is to be returned.
916 static inline unsigned int group_first_cpu(struct sched_group
*group
)
918 return cpumask_first(sched_group_cpus(group
));
921 extern int group_balance_cpu(struct sched_group
*sg
);
923 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
924 void register_sched_domain_sysctl(void);
925 void unregister_sched_domain_sysctl(void);
927 static inline void register_sched_domain_sysctl(void)
930 static inline void unregister_sched_domain_sysctl(void)
937 static inline void sched_ttwu_pending(void) { }
939 #endif /* CONFIG_SMP */
942 #include "auto_group.h"
944 #ifdef CONFIG_CGROUP_SCHED
947 * Return the group to which this tasks belongs.
949 * We cannot use task_css() and friends because the cgroup subsystem
950 * changes that value before the cgroup_subsys::attach() method is called,
951 * therefore we cannot pin it and might observe the wrong value.
953 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
954 * core changes this before calling sched_move_task().
956 * Instead we use a 'copy' which is updated from sched_move_task() while
957 * holding both task_struct::pi_lock and rq::lock.
959 static inline struct task_group
*task_group(struct task_struct
*p
)
961 return p
->sched_task_group
;
964 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
965 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
967 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
968 struct task_group
*tg
= task_group(p
);
971 #ifdef CONFIG_FAIR_GROUP_SCHED
972 set_task_rq_fair(&p
->se
, p
->se
.cfs_rq
, tg
->cfs_rq
[cpu
]);
973 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
974 p
->se
.parent
= tg
->se
[cpu
];
977 #ifdef CONFIG_RT_GROUP_SCHED
978 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
979 p
->rt
.parent
= tg
->rt_se
[cpu
];
983 #else /* CONFIG_CGROUP_SCHED */
985 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
986 static inline struct task_group
*task_group(struct task_struct
*p
)
991 #endif /* CONFIG_CGROUP_SCHED */
993 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
998 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
999 * successfuly executed on another CPU. We must ensure that updates of
1000 * per-task data have been completed by this moment.
1003 task_thread_info(p
)->cpu
= cpu
;
1009 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1011 #ifdef CONFIG_SCHED_DEBUG
1012 # include <linux/static_key.h>
1013 # define const_debug __read_mostly
1015 # define const_debug const
1018 extern const_debug
unsigned int sysctl_sched_features
;
1020 #define SCHED_FEAT(name, enabled) \
1021 __SCHED_FEAT_##name ,
1024 #include "features.h"
1030 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1031 #define SCHED_FEAT(name, enabled) \
1032 static __always_inline bool static_branch_##name(struct static_key *key) \
1034 return static_key_##enabled(key); \
1037 #include "features.h"
1041 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1042 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1043 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1044 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1045 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1047 extern struct static_key_false sched_numa_balancing
;
1048 extern struct static_key_false sched_schedstats
;
1050 static inline u64
global_rt_period(void)
1052 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1055 static inline u64
global_rt_runtime(void)
1057 if (sysctl_sched_rt_runtime
< 0)
1060 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1063 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1065 return rq
->curr
== p
;
1068 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1073 return task_current(rq
, p
);
1077 static inline int task_on_rq_queued(struct task_struct
*p
)
1079 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1082 static inline int task_on_rq_migrating(struct task_struct
*p
)
1084 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
1087 #ifndef prepare_arch_switch
1088 # define prepare_arch_switch(next) do { } while (0)
1090 #ifndef finish_arch_post_lock_switch
1091 # define finish_arch_post_lock_switch() do { } while (0)
1094 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1098 * We can optimise this out completely for !SMP, because the
1099 * SMP rebalancing from interrupt is the only thing that cares
1106 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1110 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1111 * We must ensure this doesn't happen until the switch is completely
1114 * In particular, the load of prev->state in finish_task_switch() must
1115 * happen before this.
1117 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1119 smp_store_release(&prev
->on_cpu
, 0);
1121 #ifdef CONFIG_DEBUG_SPINLOCK
1122 /* this is a valid case when another task releases the spinlock */
1123 rq
->lock
.owner
= current
;
1126 * If we are tracking spinlock dependencies then we have to
1127 * fix up the runqueue lock - which gets 'carried over' from
1128 * prev into current:
1130 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1132 raw_spin_unlock_irq(&rq
->lock
);
1138 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1139 #define WF_FORK 0x02 /* child wakeup after fork */
1140 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1143 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1144 * of tasks with abnormal "nice" values across CPUs the contribution that
1145 * each task makes to its run queue's load is weighted according to its
1146 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1147 * scaled version of the new time slice allocation that they receive on time
1151 #define WEIGHT_IDLEPRIO 3
1152 #define WMULT_IDLEPRIO 1431655765
1154 extern const int sched_prio_to_weight
[40];
1155 extern const u32 sched_prio_to_wmult
[40];
1158 * {de,en}queue flags:
1160 * DEQUEUE_SLEEP - task is no longer runnable
1161 * ENQUEUE_WAKEUP - task just became runnable
1163 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1164 * are in a known state which allows modification. Such pairs
1165 * should preserve as much state as possible.
1167 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1170 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1171 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1172 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1176 #define DEQUEUE_SLEEP 0x01
1177 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1178 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1180 #define ENQUEUE_WAKEUP 0x01
1181 #define ENQUEUE_RESTORE 0x02
1182 #define ENQUEUE_MOVE 0x04
1184 #define ENQUEUE_HEAD 0x08
1185 #define ENQUEUE_REPLENISH 0x10
1187 #define ENQUEUE_MIGRATED 0x20
1189 #define ENQUEUE_MIGRATED 0x00
1192 #define RETRY_TASK ((void *)-1UL)
1194 struct sched_class
{
1195 const struct sched_class
*next
;
1197 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1198 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1199 void (*yield_task
) (struct rq
*rq
);
1200 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1202 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1205 * It is the responsibility of the pick_next_task() method that will
1206 * return the next task to call put_prev_task() on the @prev task or
1207 * something equivalent.
1209 * May return RETRY_TASK when it finds a higher prio class has runnable
1212 struct task_struct
* (*pick_next_task
) (struct rq
*rq
,
1213 struct task_struct
*prev
,
1214 struct pin_cookie cookie
);
1215 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1218 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1219 void (*migrate_task_rq
)(struct task_struct
*p
);
1221 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1223 void (*set_cpus_allowed
)(struct task_struct
*p
,
1224 const struct cpumask
*newmask
);
1226 void (*rq_online
)(struct rq
*rq
);
1227 void (*rq_offline
)(struct rq
*rq
);
1230 void (*set_curr_task
) (struct rq
*rq
);
1231 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1232 void (*task_fork
) (struct task_struct
*p
);
1233 void (*task_dead
) (struct task_struct
*p
);
1236 * The switched_from() call is allowed to drop rq->lock, therefore we
1237 * cannot assume the switched_from/switched_to pair is serliazed by
1238 * rq->lock. They are however serialized by p->pi_lock.
1240 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1241 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1242 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1245 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1246 struct task_struct
*task
);
1248 void (*update_curr
) (struct rq
*rq
);
1250 #define TASK_SET_GROUP 0
1251 #define TASK_MOVE_GROUP 1
1253 #ifdef CONFIG_FAIR_GROUP_SCHED
1254 void (*task_change_group
) (struct task_struct
*p
, int type
);
1258 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1260 prev
->sched_class
->put_prev_task(rq
, prev
);
1263 #define sched_class_highest (&stop_sched_class)
1264 #define for_each_class(class) \
1265 for (class = sched_class_highest; class; class = class->next)
1267 extern const struct sched_class stop_sched_class
;
1268 extern const struct sched_class dl_sched_class
;
1269 extern const struct sched_class rt_sched_class
;
1270 extern const struct sched_class fair_sched_class
;
1271 extern const struct sched_class idle_sched_class
;
1276 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1278 extern void trigger_load_balance(struct rq
*rq
);
1280 extern void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
);
1284 #ifdef CONFIG_CPU_IDLE
1285 static inline void idle_set_state(struct rq
*rq
,
1286 struct cpuidle_state
*idle_state
)
1288 rq
->idle_state
= idle_state
;
1291 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1293 WARN_ON(!rcu_read_lock_held());
1294 return rq
->idle_state
;
1297 static inline void idle_set_state(struct rq
*rq
,
1298 struct cpuidle_state
*idle_state
)
1302 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1308 extern void sysrq_sched_debug_show(void);
1309 extern void sched_init_granularity(void);
1310 extern void update_max_interval(void);
1312 extern void init_sched_dl_class(void);
1313 extern void init_sched_rt_class(void);
1314 extern void init_sched_fair_class(void);
1316 extern void resched_curr(struct rq
*rq
);
1317 extern void resched_cpu(int cpu
);
1319 extern struct rt_bandwidth def_rt_bandwidth
;
1320 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1322 extern struct dl_bandwidth def_dl_bandwidth
;
1323 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1324 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1326 unsigned long to_ratio(u64 period
, u64 runtime
);
1328 extern void init_entity_runnable_average(struct sched_entity
*se
);
1329 extern void post_init_entity_util_avg(struct sched_entity
*se
);
1331 #ifdef CONFIG_NO_HZ_FULL
1332 extern bool sched_can_stop_tick(struct rq
*rq
);
1335 * Tick may be needed by tasks in the runqueue depending on their policy and
1336 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1337 * nohz mode if necessary.
1339 static inline void sched_update_tick_dependency(struct rq
*rq
)
1343 if (!tick_nohz_full_enabled())
1348 if (!tick_nohz_full_cpu(cpu
))
1351 if (sched_can_stop_tick(rq
))
1352 tick_nohz_dep_clear_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1354 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1357 static inline void sched_update_tick_dependency(struct rq
*rq
) { }
1360 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1362 unsigned prev_nr
= rq
->nr_running
;
1364 rq
->nr_running
= prev_nr
+ count
;
1366 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1368 if (!rq
->rd
->overload
)
1369 rq
->rd
->overload
= true;
1373 sched_update_tick_dependency(rq
);
1376 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1378 rq
->nr_running
-= count
;
1379 /* Check if we still need preemption */
1380 sched_update_tick_dependency(rq
);
1383 static inline void rq_last_tick_reset(struct rq
*rq
)
1385 #ifdef CONFIG_NO_HZ_FULL
1386 rq
->last_sched_tick
= jiffies
;
1390 extern void update_rq_clock(struct rq
*rq
);
1392 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1393 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1395 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1397 extern const_debug
unsigned int sysctl_sched_time_avg
;
1398 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1399 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1401 static inline u64
sched_avg_period(void)
1403 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1406 #ifdef CONFIG_SCHED_HRTICK
1410 * - enabled by features
1411 * - hrtimer is actually high res
1413 static inline int hrtick_enabled(struct rq
*rq
)
1415 if (!sched_feat(HRTICK
))
1417 if (!cpu_active(cpu_of(rq
)))
1419 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1422 void hrtick_start(struct rq
*rq
, u64 delay
);
1426 static inline int hrtick_enabled(struct rq
*rq
)
1431 #endif /* CONFIG_SCHED_HRTICK */
1434 extern void sched_avg_update(struct rq
*rq
);
1436 #ifndef arch_scale_freq_capacity
1437 static __always_inline
1438 unsigned long arch_scale_freq_capacity(struct sched_domain
*sd
, int cpu
)
1440 return SCHED_CAPACITY_SCALE
;
1444 #ifndef arch_scale_cpu_capacity
1445 static __always_inline
1446 unsigned long arch_scale_cpu_capacity(struct sched_domain
*sd
, int cpu
)
1448 if (sd
&& (sd
->flags
& SD_SHARE_CPUCAPACITY
) && (sd
->span_weight
> 1))
1449 return sd
->smt_gain
/ sd
->span_weight
;
1451 return SCHED_CAPACITY_SCALE
;
1455 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1457 rq
->rt_avg
+= rt_delta
* arch_scale_freq_capacity(NULL
, cpu_of(rq
));
1458 sched_avg_update(rq
);
1461 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1462 static inline void sched_avg_update(struct rq
*rq
) { }
1466 unsigned long flags
;
1467 struct pin_cookie cookie
;
1470 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1471 __acquires(rq
->lock
);
1472 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1473 __acquires(p
->pi_lock
)
1474 __acquires(rq
->lock
);
1476 static inline void __task_rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1477 __releases(rq
->lock
)
1479 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1480 raw_spin_unlock(&rq
->lock
);
1484 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1485 __releases(rq
->lock
)
1486 __releases(p
->pi_lock
)
1488 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1489 raw_spin_unlock(&rq
->lock
);
1490 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
1494 #ifdef CONFIG_PREEMPT
1496 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1499 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1500 * way at the expense of forcing extra atomic operations in all
1501 * invocations. This assures that the double_lock is acquired using the
1502 * same underlying policy as the spinlock_t on this architecture, which
1503 * reduces latency compared to the unfair variant below. However, it
1504 * also adds more overhead and therefore may reduce throughput.
1506 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1507 __releases(this_rq
->lock
)
1508 __acquires(busiest
->lock
)
1509 __acquires(this_rq
->lock
)
1511 raw_spin_unlock(&this_rq
->lock
);
1512 double_rq_lock(this_rq
, busiest
);
1519 * Unfair double_lock_balance: Optimizes throughput at the expense of
1520 * latency by eliminating extra atomic operations when the locks are
1521 * already in proper order on entry. This favors lower cpu-ids and will
1522 * grant the double lock to lower cpus over higher ids under contention,
1523 * regardless of entry order into the function.
1525 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1526 __releases(this_rq
->lock
)
1527 __acquires(busiest
->lock
)
1528 __acquires(this_rq
->lock
)
1532 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1533 if (busiest
< this_rq
) {
1534 raw_spin_unlock(&this_rq
->lock
);
1535 raw_spin_lock(&busiest
->lock
);
1536 raw_spin_lock_nested(&this_rq
->lock
,
1537 SINGLE_DEPTH_NESTING
);
1540 raw_spin_lock_nested(&busiest
->lock
,
1541 SINGLE_DEPTH_NESTING
);
1546 #endif /* CONFIG_PREEMPT */
1549 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1551 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1553 if (unlikely(!irqs_disabled())) {
1554 /* printk() doesn't work good under rq->lock */
1555 raw_spin_unlock(&this_rq
->lock
);
1559 return _double_lock_balance(this_rq
, busiest
);
1562 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1563 __releases(busiest
->lock
)
1565 raw_spin_unlock(&busiest
->lock
);
1566 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1569 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1575 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1578 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1584 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1587 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1593 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1597 * double_rq_lock - safely lock two runqueues
1599 * Note this does not disable interrupts like task_rq_lock,
1600 * you need to do so manually before calling.
1602 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1603 __acquires(rq1
->lock
)
1604 __acquires(rq2
->lock
)
1606 BUG_ON(!irqs_disabled());
1608 raw_spin_lock(&rq1
->lock
);
1609 __acquire(rq2
->lock
); /* Fake it out ;) */
1612 raw_spin_lock(&rq1
->lock
);
1613 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1615 raw_spin_lock(&rq2
->lock
);
1616 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1622 * double_rq_unlock - safely unlock two runqueues
1624 * Note this does not restore interrupts like task_rq_unlock,
1625 * you need to do so manually after calling.
1627 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1628 __releases(rq1
->lock
)
1629 __releases(rq2
->lock
)
1631 raw_spin_unlock(&rq1
->lock
);
1633 raw_spin_unlock(&rq2
->lock
);
1635 __release(rq2
->lock
);
1638 #else /* CONFIG_SMP */
1641 * double_rq_lock - safely lock two runqueues
1643 * Note this does not disable interrupts like task_rq_lock,
1644 * you need to do so manually before calling.
1646 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1647 __acquires(rq1
->lock
)
1648 __acquires(rq2
->lock
)
1650 BUG_ON(!irqs_disabled());
1652 raw_spin_lock(&rq1
->lock
);
1653 __acquire(rq2
->lock
); /* Fake it out ;) */
1657 * double_rq_unlock - safely unlock two runqueues
1659 * Note this does not restore interrupts like task_rq_unlock,
1660 * you need to do so manually after calling.
1662 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1663 __releases(rq1
->lock
)
1664 __releases(rq2
->lock
)
1667 raw_spin_unlock(&rq1
->lock
);
1668 __release(rq2
->lock
);
1673 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1674 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1676 #ifdef CONFIG_SCHED_DEBUG
1677 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1678 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1679 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
1681 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
1683 #ifdef CONFIG_NUMA_BALANCING
1685 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
1687 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
1688 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
1689 #endif /* CONFIG_NUMA_BALANCING */
1690 #endif /* CONFIG_SCHED_DEBUG */
1692 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1693 extern void init_rt_rq(struct rt_rq
*rt_rq
);
1694 extern void init_dl_rq(struct dl_rq
*dl_rq
);
1696 extern void cfs_bandwidth_usage_inc(void);
1697 extern void cfs_bandwidth_usage_dec(void);
1699 #ifdef CONFIG_NO_HZ_COMMON
1700 enum rq_nohz_flag_bits
{
1705 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1707 extern void nohz_balance_exit_idle(unsigned int cpu
);
1709 static inline void nohz_balance_exit_idle(unsigned int cpu
) { }
1712 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1714 DECLARE_PER_CPU(u64
, cpu_hardirq_time
);
1715 DECLARE_PER_CPU(u64
, cpu_softirq_time
);
1717 #ifndef CONFIG_64BIT
1718 DECLARE_PER_CPU(seqcount_t
, irq_time_seq
);
1720 static inline void irq_time_write_begin(void)
1722 __this_cpu_inc(irq_time_seq
.sequence
);
1726 static inline void irq_time_write_end(void)
1729 __this_cpu_inc(irq_time_seq
.sequence
);
1732 static inline u64
irq_time_read(int cpu
)
1738 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1739 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1740 per_cpu(cpu_hardirq_time
, cpu
);
1741 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1745 #else /* CONFIG_64BIT */
1746 static inline void irq_time_write_begin(void)
1750 static inline void irq_time_write_end(void)
1754 static inline u64
irq_time_read(int cpu
)
1756 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1758 #endif /* CONFIG_64BIT */
1759 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1761 #ifdef CONFIG_CPU_FREQ
1762 DECLARE_PER_CPU(struct update_util_data
*, cpufreq_update_util_data
);
1765 * cpufreq_update_util - Take a note about CPU utilization changes.
1766 * @time: Current time.
1767 * @util: Current utilization.
1768 * @max: Utilization ceiling.
1770 * This function is called by the scheduler on every invocation of
1771 * update_load_avg() on the CPU whose utilization is being updated.
1773 * It can only be called from RCU-sched read-side critical sections.
1775 static inline void cpufreq_update_util(u64 time
, unsigned long util
, unsigned long max
)
1777 struct update_util_data
*data
;
1779 data
= rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data
));
1781 data
->func(data
, time
, util
, max
);
1785 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1786 * @time: Current time.
1788 * The way cpufreq is currently arranged requires it to evaluate the CPU
1789 * performance state (frequency/voltage) on a regular basis to prevent it from
1790 * being stuck in a completely inadequate performance level for too long.
1791 * That is not guaranteed to happen if the updates are only triggered from CFS,
1792 * though, because they may not be coming in if RT or deadline tasks are active
1793 * all the time (or there are RT and DL tasks only).
1795 * As a workaround for that issue, this function is called by the RT and DL
1796 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1797 * but that really is a band-aid. Going forward it should be replaced with
1798 * solutions targeted more specifically at RT and DL tasks.
1800 static inline void cpufreq_trigger_update(u64 time
)
1802 cpufreq_update_util(time
, ULONG_MAX
, 0);
1805 static inline void cpufreq_update_util(u64 time
, unsigned long util
, unsigned long max
) {}
1806 static inline void cpufreq_trigger_update(u64 time
) {}
1807 #endif /* CONFIG_CPU_FREQ */
1809 #ifdef arch_scale_freq_capacity
1810 #ifndef arch_scale_freq_invariant
1811 #define arch_scale_freq_invariant() (true)
1813 #else /* arch_scale_freq_capacity */
1814 #define arch_scale_freq_invariant() (false)