2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list.
27 static const struct address_space_operations swap_aops
= {
28 .writepage
= swap_writepage
,
29 .set_page_dirty
= swap_set_page_dirty
,
30 #ifdef CONFIG_MIGRATION
31 .migratepage
= migrate_page
,
35 struct address_space swapper_spaces
[MAX_SWAPFILES
] = {
36 [0 ... MAX_SWAPFILES
- 1] = {
37 .page_tree
= RADIX_TREE_INIT(GFP_ATOMIC
|__GFP_NOWARN
),
38 .i_mmap_writable
= ATOMIC_INIT(0),
43 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
46 unsigned long add_total
;
47 unsigned long del_total
;
48 unsigned long find_success
;
49 unsigned long find_total
;
52 unsigned long total_swapcache_pages(void)
55 unsigned long ret
= 0;
57 for (i
= 0; i
< MAX_SWAPFILES
; i
++)
58 ret
+= swapper_spaces
[i
].nrpages
;
62 static atomic_t swapin_readahead_hits
= ATOMIC_INIT(4);
64 void show_swap_cache_info(void)
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
68 swap_cache_info
.add_total
, swap_cache_info
.del_total
,
69 swap_cache_info
.find_success
, swap_cache_info
.find_total
);
70 printk("Free swap = %ldkB\n",
71 get_nr_swap_pages() << (PAGE_SHIFT
- 10));
72 printk("Total swap = %lukB\n", total_swap_pages
<< (PAGE_SHIFT
- 10));
76 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
77 * but sets SwapCache flag and private instead of mapping and index.
79 int __add_to_swap_cache(struct page
*page
, swp_entry_t entry
)
82 struct address_space
*address_space
;
84 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
85 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
86 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
89 SetPageSwapCache(page
);
90 set_page_private(page
, entry
.val
);
92 address_space
= swap_address_space(entry
);
93 spin_lock_irq(&address_space
->tree_lock
);
94 error
= radix_tree_insert(&address_space
->page_tree
,
97 address_space
->nrpages
++;
98 __inc_zone_page_state(page
, NR_FILE_PAGES
);
99 INC_CACHE_INFO(add_total
);
101 spin_unlock_irq(&address_space
->tree_lock
);
103 if (unlikely(error
)) {
105 * Only the context which have set SWAP_HAS_CACHE flag
106 * would call add_to_swap_cache().
107 * So add_to_swap_cache() doesn't returns -EEXIST.
109 VM_BUG_ON(error
== -EEXIST
);
110 set_page_private(page
, 0UL);
111 ClearPageSwapCache(page
);
112 page_cache_release(page
);
119 int add_to_swap_cache(struct page
*page
, swp_entry_t entry
, gfp_t gfp_mask
)
123 error
= radix_tree_maybe_preload(gfp_mask
);
125 error
= __add_to_swap_cache(page
, entry
);
126 radix_tree_preload_end();
132 * This must be called only on pages that have
133 * been verified to be in the swap cache.
135 void __delete_from_swap_cache(struct page
*page
)
138 struct address_space
*address_space
;
140 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
141 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
142 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
144 entry
.val
= page_private(page
);
145 address_space
= swap_address_space(entry
);
146 radix_tree_delete(&address_space
->page_tree
, page_private(page
));
147 set_page_private(page
, 0);
148 ClearPageSwapCache(page
);
149 address_space
->nrpages
--;
150 __dec_zone_page_state(page
, NR_FILE_PAGES
);
151 INC_CACHE_INFO(del_total
);
155 * add_to_swap - allocate swap space for a page
156 * @page: page we want to move to swap
158 * Allocate swap space for the page and add the page to the
159 * swap cache. Caller needs to hold the page lock.
161 int add_to_swap(struct page
*page
, struct list_head
*list
)
166 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
167 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
169 entry
= get_swap_page();
173 if (unlikely(PageTransHuge(page
)))
174 if (unlikely(split_huge_page_to_list(page
, list
))) {
175 swapcache_free(entry
);
180 * Radix-tree node allocations from PF_MEMALLOC contexts could
181 * completely exhaust the page allocator. __GFP_NOMEMALLOC
182 * stops emergency reserves from being allocated.
184 * TODO: this could cause a theoretical memory reclaim
185 * deadlock in the swap out path.
188 * Add it to the swap cache and mark it dirty
190 err
= add_to_swap_cache(page
, entry
,
191 __GFP_HIGH
|__GFP_NOMEMALLOC
|__GFP_NOWARN
);
193 if (!err
) { /* Success */
196 } else { /* -ENOMEM radix-tree allocation failure */
198 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
199 * clear SWAP_HAS_CACHE flag.
201 swapcache_free(entry
);
207 * This must be called only on pages that have
208 * been verified to be in the swap cache and locked.
209 * It will never put the page into the free list,
210 * the caller has a reference on the page.
212 void delete_from_swap_cache(struct page
*page
)
215 struct address_space
*address_space
;
217 entry
.val
= page_private(page
);
219 address_space
= swap_address_space(entry
);
220 spin_lock_irq(&address_space
->tree_lock
);
221 __delete_from_swap_cache(page
);
222 spin_unlock_irq(&address_space
->tree_lock
);
224 swapcache_free(entry
);
225 page_cache_release(page
);
229 * If we are the only user, then try to free up the swap cache.
231 * Its ok to check for PageSwapCache without the page lock
232 * here because we are going to recheck again inside
233 * try_to_free_swap() _with_ the lock.
236 static inline void free_swap_cache(struct page
*page
)
238 if (PageSwapCache(page
) && !page_mapped(page
) && trylock_page(page
)) {
239 try_to_free_swap(page
);
245 * Perform a free_page(), also freeing any swap cache associated with
246 * this page if it is the last user of the page.
248 void free_page_and_swap_cache(struct page
*page
)
250 free_swap_cache(page
);
251 page_cache_release(page
);
255 * Passed an array of pages, drop them all from swapcache and then release
256 * them. They are removed from the LRU and freed if this is their last use.
258 void free_pages_and_swap_cache(struct page
**pages
, int nr
)
260 struct page
**pagep
= pages
;
264 for (i
= 0; i
< nr
; i
++)
265 free_swap_cache(pagep
[i
]);
266 release_pages(pagep
, nr
, false);
270 * Lookup a swap entry in the swap cache. A found page will be returned
271 * unlocked and with its refcount incremented - we rely on the kernel
272 * lock getting page table operations atomic even if we drop the page
273 * lock before returning.
275 struct page
* lookup_swap_cache(swp_entry_t entry
)
279 page
= find_get_page(swap_address_space(entry
), entry
.val
);
282 INC_CACHE_INFO(find_success
);
283 if (TestClearPageReadahead(page
))
284 atomic_inc(&swapin_readahead_hits
);
287 INC_CACHE_INFO(find_total
);
292 * Locate a page of swap in physical memory, reserving swap cache space
293 * and reading the disk if it is not already cached.
294 * A failure return means that either the page allocation failed or that
295 * the swap entry is no longer in use.
297 struct page
*read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
298 struct vm_area_struct
*vma
, unsigned long addr
)
300 struct page
*found_page
, *new_page
= NULL
;
305 * First check the swap cache. Since this is normally
306 * called after lookup_swap_cache() failed, re-calling
307 * that would confuse statistics.
309 found_page
= find_get_page(swap_address_space(entry
),
315 * Get a new page to read into from swap.
318 new_page
= alloc_page_vma(gfp_mask
, vma
, addr
);
320 break; /* Out of memory */
324 * call radix_tree_preload() while we can wait.
326 err
= radix_tree_maybe_preload(gfp_mask
& GFP_KERNEL
);
331 * Swap entry may have been freed since our caller observed it.
333 err
= swapcache_prepare(entry
);
334 if (err
== -EEXIST
) {
335 radix_tree_preload_end();
337 * We might race against get_swap_page() and stumble
338 * across a SWAP_HAS_CACHE swap_map entry whose page
339 * has not been brought into the swapcache yet, while
340 * the other end is scheduled away waiting on discard
341 * I/O completion at scan_swap_map().
343 * In order to avoid turning this transitory state
344 * into a permanent loop around this -EEXIST case
345 * if !CONFIG_PREEMPT and the I/O completion happens
346 * to be waiting on the CPU waitqueue where we are now
347 * busy looping, we just conditionally invoke the
348 * scheduler here, if there are some more important
354 if (err
) { /* swp entry is obsolete ? */
355 radix_tree_preload_end();
359 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
360 __set_page_locked(new_page
);
361 SetPageSwapBacked(new_page
);
362 err
= __add_to_swap_cache(new_page
, entry
);
364 radix_tree_preload_end();
366 * Initiate read into locked page and return.
368 lru_cache_add_anon(new_page
);
369 swap_readpage(new_page
);
372 radix_tree_preload_end();
373 ClearPageSwapBacked(new_page
);
374 __clear_page_locked(new_page
);
376 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
377 * clear SWAP_HAS_CACHE flag.
379 swapcache_free(entry
);
380 } while (err
!= -ENOMEM
);
383 page_cache_release(new_page
);
387 static unsigned long swapin_nr_pages(unsigned long offset
)
389 static unsigned long prev_offset
;
390 unsigned int pages
, max_pages
, last_ra
;
391 static atomic_t last_readahead_pages
;
393 max_pages
= 1 << READ_ONCE(page_cluster
);
398 * This heuristic has been found to work well on both sequential and
399 * random loads, swapping to hard disk or to SSD: please don't ask
400 * what the "+ 2" means, it just happens to work well, that's all.
402 pages
= atomic_xchg(&swapin_readahead_hits
, 0) + 2;
405 * We can have no readahead hits to judge by: but must not get
406 * stuck here forever, so check for an adjacent offset instead
407 * (and don't even bother to check whether swap type is same).
409 if (offset
!= prev_offset
+ 1 && offset
!= prev_offset
- 1)
411 prev_offset
= offset
;
413 unsigned int roundup
= 4;
414 while (roundup
< pages
)
419 if (pages
> max_pages
)
422 /* Don't shrink readahead too fast */
423 last_ra
= atomic_read(&last_readahead_pages
) / 2;
426 atomic_set(&last_readahead_pages
, pages
);
432 * swapin_readahead - swap in pages in hope we need them soon
433 * @entry: swap entry of this memory
434 * @gfp_mask: memory allocation flags
435 * @vma: user vma this address belongs to
436 * @addr: target address for mempolicy
438 * Returns the struct page for entry and addr, after queueing swapin.
440 * Primitive swap readahead code. We simply read an aligned block of
441 * (1 << page_cluster) entries in the swap area. This method is chosen
442 * because it doesn't cost us any seek time. We also make sure to queue
443 * the 'original' request together with the readahead ones...
445 * This has been extended to use the NUMA policies from the mm triggering
448 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
450 struct page
*swapin_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
451 struct vm_area_struct
*vma
, unsigned long addr
)
454 unsigned long entry_offset
= swp_offset(entry
);
455 unsigned long offset
= entry_offset
;
456 unsigned long start_offset
, end_offset
;
458 struct blk_plug plug
;
460 mask
= swapin_nr_pages(offset
) - 1;
464 /* Read a page_cluster sized and aligned cluster around offset. */
465 start_offset
= offset
& ~mask
;
466 end_offset
= offset
| mask
;
467 if (!start_offset
) /* First page is swap header. */
470 blk_start_plug(&plug
);
471 for (offset
= start_offset
; offset
<= end_offset
; offset
++) {
472 /* Ok, do the async read-ahead now */
473 page
= read_swap_cache_async(swp_entry(swp_type(entry
), offset
),
474 gfp_mask
, vma
, addr
);
477 if (offset
!= entry_offset
)
478 SetPageReadahead(page
);
479 page_cache_release(page
);
481 blk_finish_plug(&plug
);
483 lru_add_drain(); /* Push any new pages onto the LRU now */
485 return read_swap_cache_async(entry
, gfp_mask
, vma
, addr
);