4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/seq_file.h>
40 #include <linux/spinlock.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/ipmi.h>
44 #include <linux/ipmi_smi.h>
45 #include <linux/notifier.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/rcupdate.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
57 static int initialized
;
60 static struct proc_dir_entry
*proc_ipmi_root
;
61 #endif /* CONFIG_PROC_FS */
63 /* Remain in auto-maintenance mode for this amount of time (in ms). */
64 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
66 #define MAX_EVENTS_IN_QUEUE 25
69 * Don't let a message sit in a queue forever, always time it with at lest
70 * the max message timer. This is in milliseconds.
72 #define MAX_MSG_TIMEOUT 60000
75 * The main "user" data structure.
78 struct list_head link
;
80 /* Set to "0" when the user is destroyed. */
85 /* The upper layer that handles receive messages. */
86 struct ipmi_user_hndl
*handler
;
89 /* The interface this user is bound to. */
92 /* Does this interface receive IPMI events? */
97 struct list_head link
;
105 * This is used to form a linked lised during mass deletion.
106 * Since this is in an RCU list, we cannot use the link above
107 * or change any data until the RCU period completes. So we
108 * use this next variable during mass deletion so we can have
109 * a list and don't have to wait and restart the search on
110 * every individual deletion of a command.
112 struct cmd_rcvr
*next
;
116 unsigned int inuse
: 1;
117 unsigned int broadcast
: 1;
119 unsigned long timeout
;
120 unsigned long orig_timeout
;
121 unsigned int retries_left
;
124 * To verify on an incoming send message response that this is
125 * the message that the response is for, we keep a sequence id
126 * and increment it every time we send a message.
131 * This is held so we can properly respond to the message on a
132 * timeout, and it is used to hold the temporary data for
133 * retransmission, too.
135 struct ipmi_recv_msg
*recv_msg
;
139 * Store the information in a msgid (long) to allow us to find a
140 * sequence table entry from the msgid.
142 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
144 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
146 seq = ((msgid >> 26) & 0x3f); \
147 seqid = (msgid & 0x3fffff); \
150 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
152 struct ipmi_channel
{
153 unsigned char medium
;
154 unsigned char protocol
;
157 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
158 * but may be changed by the user.
160 unsigned char address
;
163 * My LUN. This should generally stay the SMS LUN, but just in
169 #ifdef CONFIG_PROC_FS
170 struct ipmi_proc_entry
{
172 struct ipmi_proc_entry
*next
;
177 struct platform_device
*dev
;
178 struct ipmi_device_id id
;
179 unsigned char guid
[16];
182 struct kref refcount
;
184 /* bmc device attributes */
185 struct device_attribute device_id_attr
;
186 struct device_attribute provides_dev_sdrs_attr
;
187 struct device_attribute revision_attr
;
188 struct device_attribute firmware_rev_attr
;
189 struct device_attribute version_attr
;
190 struct device_attribute add_dev_support_attr
;
191 struct device_attribute manufacturer_id_attr
;
192 struct device_attribute product_id_attr
;
193 struct device_attribute guid_attr
;
194 struct device_attribute aux_firmware_rev_attr
;
198 * Various statistics for IPMI, these index stats[] in the ipmi_smi
201 enum ipmi_stat_indexes
{
202 /* Commands we got from the user that were invalid. */
203 IPMI_STAT_sent_invalid_commands
= 0,
205 /* Commands we sent to the MC. */
206 IPMI_STAT_sent_local_commands
,
208 /* Responses from the MC that were delivered to a user. */
209 IPMI_STAT_handled_local_responses
,
211 /* Responses from the MC that were not delivered to a user. */
212 IPMI_STAT_unhandled_local_responses
,
214 /* Commands we sent out to the IPMB bus. */
215 IPMI_STAT_sent_ipmb_commands
,
217 /* Commands sent on the IPMB that had errors on the SEND CMD */
218 IPMI_STAT_sent_ipmb_command_errs
,
220 /* Each retransmit increments this count. */
221 IPMI_STAT_retransmitted_ipmb_commands
,
224 * When a message times out (runs out of retransmits) this is
227 IPMI_STAT_timed_out_ipmb_commands
,
230 * This is like above, but for broadcasts. Broadcasts are
231 * *not* included in the above count (they are expected to
234 IPMI_STAT_timed_out_ipmb_broadcasts
,
236 /* Responses I have sent to the IPMB bus. */
237 IPMI_STAT_sent_ipmb_responses
,
239 /* The response was delivered to the user. */
240 IPMI_STAT_handled_ipmb_responses
,
242 /* The response had invalid data in it. */
243 IPMI_STAT_invalid_ipmb_responses
,
245 /* The response didn't have anyone waiting for it. */
246 IPMI_STAT_unhandled_ipmb_responses
,
248 /* Commands we sent out to the IPMB bus. */
249 IPMI_STAT_sent_lan_commands
,
251 /* Commands sent on the IPMB that had errors on the SEND CMD */
252 IPMI_STAT_sent_lan_command_errs
,
254 /* Each retransmit increments this count. */
255 IPMI_STAT_retransmitted_lan_commands
,
258 * When a message times out (runs out of retransmits) this is
261 IPMI_STAT_timed_out_lan_commands
,
263 /* Responses I have sent to the IPMB bus. */
264 IPMI_STAT_sent_lan_responses
,
266 /* The response was delivered to the user. */
267 IPMI_STAT_handled_lan_responses
,
269 /* The response had invalid data in it. */
270 IPMI_STAT_invalid_lan_responses
,
272 /* The response didn't have anyone waiting for it. */
273 IPMI_STAT_unhandled_lan_responses
,
275 /* The command was delivered to the user. */
276 IPMI_STAT_handled_commands
,
278 /* The command had invalid data in it. */
279 IPMI_STAT_invalid_commands
,
281 /* The command didn't have anyone waiting for it. */
282 IPMI_STAT_unhandled_commands
,
284 /* Invalid data in an event. */
285 IPMI_STAT_invalid_events
,
287 /* Events that were received with the proper format. */
290 /* Retransmissions on IPMB that failed. */
291 IPMI_STAT_dropped_rexmit_ipmb_commands
,
293 /* Retransmissions on LAN that failed. */
294 IPMI_STAT_dropped_rexmit_lan_commands
,
296 /* This *must* remain last, add new values above this. */
301 #define IPMI_IPMB_NUM_SEQ 64
302 #define IPMI_MAX_CHANNELS 16
304 /* What interface number are we? */
307 struct kref refcount
;
309 /* Used for a list of interfaces. */
310 struct list_head link
;
313 * The list of upper layers that are using me. seq_lock
316 struct list_head users
;
318 /* Information to supply to users. */
319 unsigned char ipmi_version_major
;
320 unsigned char ipmi_version_minor
;
322 /* Used for wake ups at startup. */
323 wait_queue_head_t waitq
;
325 struct bmc_device
*bmc
;
330 * This is the lower-layer's sender routine. Note that you
331 * must either be holding the ipmi_interfaces_mutex or be in
332 * an umpreemptible region to use this. You must fetch the
333 * value into a local variable and make sure it is not NULL.
335 struct ipmi_smi_handlers
*handlers
;
338 #ifdef CONFIG_PROC_FS
339 /* A list of proc entries for this interface. */
340 struct mutex proc_entry_lock
;
341 struct ipmi_proc_entry
*proc_entries
;
344 /* Driver-model device for the system interface. */
345 struct device
*si_dev
;
348 * A table of sequence numbers for this interface. We use the
349 * sequence numbers for IPMB messages that go out of the
350 * interface to match them up with their responses. A routine
351 * is called periodically to time the items in this list.
354 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
358 * Messages that were delayed for some reason (out of memory,
359 * for instance), will go in here to be processed later in a
360 * periodic timer interrupt.
362 spinlock_t waiting_msgs_lock
;
363 struct list_head waiting_msgs
;
366 * The list of command receivers that are registered for commands
369 struct mutex cmd_rcvrs_mutex
;
370 struct list_head cmd_rcvrs
;
373 * Events that were queues because no one was there to receive
376 spinlock_t events_lock
; /* For dealing with event stuff. */
377 struct list_head waiting_events
;
378 unsigned int waiting_events_count
; /* How many events in queue? */
379 char delivering_events
;
380 char event_msg_printed
;
383 * The event receiver for my BMC, only really used at panic
384 * shutdown as a place to store this.
386 unsigned char event_receiver
;
387 unsigned char event_receiver_lun
;
388 unsigned char local_sel_device
;
389 unsigned char local_event_generator
;
391 /* For handling of maintenance mode. */
392 int maintenance_mode
;
393 int maintenance_mode_enable
;
394 int auto_maintenance_timeout
;
395 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
398 * A cheap hack, if this is non-null and a message to an
399 * interface comes in with a NULL user, call this routine with
400 * it. Note that the message will still be freed by the
401 * caller. This only works on the system interface.
403 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
406 * When we are scanning the channels for an SMI, this will
407 * tell which channel we are scanning.
411 /* Channel information */
412 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
415 struct proc_dir_entry
*proc_dir
;
416 char proc_dir_name
[10];
418 atomic_t stats
[IPMI_NUM_STATS
];
421 * run_to_completion duplicate of smb_info, smi_info
422 * and ipmi_serial_info structures. Used to decrease numbers of
423 * parameters passed by "low" level IPMI code.
425 int run_to_completion
;
427 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
430 * The driver model view of the IPMI messaging driver.
432 static struct platform_driver ipmidriver
= {
435 .bus
= &platform_bus_type
438 static DEFINE_MUTEX(ipmidriver_mutex
);
440 static LIST_HEAD(ipmi_interfaces
);
441 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
444 * List of watchers that want to know when smi's are added and deleted.
446 static LIST_HEAD(smi_watchers
);
447 static DEFINE_MUTEX(smi_watchers_mutex
);
450 #define ipmi_inc_stat(intf, stat) \
451 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
452 #define ipmi_get_stat(intf, stat) \
453 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
455 static int is_lan_addr(struct ipmi_addr
*addr
)
457 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
460 static int is_ipmb_addr(struct ipmi_addr
*addr
)
462 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
465 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
467 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
470 static void free_recv_msg_list(struct list_head
*q
)
472 struct ipmi_recv_msg
*msg
, *msg2
;
474 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
475 list_del(&msg
->link
);
476 ipmi_free_recv_msg(msg
);
480 static void free_smi_msg_list(struct list_head
*q
)
482 struct ipmi_smi_msg
*msg
, *msg2
;
484 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
485 list_del(&msg
->link
);
486 ipmi_free_smi_msg(msg
);
490 static void clean_up_interface_data(ipmi_smi_t intf
)
493 struct cmd_rcvr
*rcvr
, *rcvr2
;
494 struct list_head list
;
496 free_smi_msg_list(&intf
->waiting_msgs
);
497 free_recv_msg_list(&intf
->waiting_events
);
500 * Wholesale remove all the entries from the list in the
501 * interface and wait for RCU to know that none are in use.
503 mutex_lock(&intf
->cmd_rcvrs_mutex
);
504 INIT_LIST_HEAD(&list
);
505 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
506 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
508 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
511 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
512 if ((intf
->seq_table
[i
].inuse
)
513 && (intf
->seq_table
[i
].recv_msg
))
514 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
518 static void intf_free(struct kref
*ref
)
520 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
522 clean_up_interface_data(intf
);
526 struct watcher_entry
{
529 struct list_head link
;
532 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
535 LIST_HEAD(to_deliver
);
536 struct watcher_entry
*e
, *e2
;
538 mutex_lock(&smi_watchers_mutex
);
540 mutex_lock(&ipmi_interfaces_mutex
);
542 /* Build a list of things to deliver. */
543 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
544 if (intf
->intf_num
== -1)
546 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
549 kref_get(&intf
->refcount
);
551 e
->intf_num
= intf
->intf_num
;
552 list_add_tail(&e
->link
, &to_deliver
);
555 /* We will succeed, so add it to the list. */
556 list_add(&watcher
->link
, &smi_watchers
);
558 mutex_unlock(&ipmi_interfaces_mutex
);
560 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
562 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
563 kref_put(&e
->intf
->refcount
, intf_free
);
567 mutex_unlock(&smi_watchers_mutex
);
572 mutex_unlock(&ipmi_interfaces_mutex
);
573 mutex_unlock(&smi_watchers_mutex
);
574 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
576 kref_put(&e
->intf
->refcount
, intf_free
);
581 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
583 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
585 mutex_lock(&smi_watchers_mutex
);
586 list_del(&(watcher
->link
));
587 mutex_unlock(&smi_watchers_mutex
);
590 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
593 * Must be called with smi_watchers_mutex held.
596 call_smi_watchers(int i
, struct device
*dev
)
598 struct ipmi_smi_watcher
*w
;
600 list_for_each_entry(w
, &smi_watchers
, link
) {
601 if (try_module_get(w
->owner
)) {
603 module_put(w
->owner
);
609 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
611 if (addr1
->addr_type
!= addr2
->addr_type
)
614 if (addr1
->channel
!= addr2
->channel
)
617 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
618 struct ipmi_system_interface_addr
*smi_addr1
619 = (struct ipmi_system_interface_addr
*) addr1
;
620 struct ipmi_system_interface_addr
*smi_addr2
621 = (struct ipmi_system_interface_addr
*) addr2
;
622 return (smi_addr1
->lun
== smi_addr2
->lun
);
625 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
626 struct ipmi_ipmb_addr
*ipmb_addr1
627 = (struct ipmi_ipmb_addr
*) addr1
;
628 struct ipmi_ipmb_addr
*ipmb_addr2
629 = (struct ipmi_ipmb_addr
*) addr2
;
631 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
632 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
635 if (is_lan_addr(addr1
)) {
636 struct ipmi_lan_addr
*lan_addr1
637 = (struct ipmi_lan_addr
*) addr1
;
638 struct ipmi_lan_addr
*lan_addr2
639 = (struct ipmi_lan_addr
*) addr2
;
641 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
642 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
643 && (lan_addr1
->session_handle
644 == lan_addr2
->session_handle
)
645 && (lan_addr1
->lun
== lan_addr2
->lun
));
651 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
653 if (len
< sizeof(struct ipmi_system_interface_addr
))
656 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
657 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
662 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
663 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
664 || (addr
->channel
< 0))
667 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
668 if (len
< sizeof(struct ipmi_ipmb_addr
))
673 if (is_lan_addr(addr
)) {
674 if (len
< sizeof(struct ipmi_lan_addr
))
681 EXPORT_SYMBOL(ipmi_validate_addr
);
683 unsigned int ipmi_addr_length(int addr_type
)
685 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
686 return sizeof(struct ipmi_system_interface_addr
);
688 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
689 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
690 return sizeof(struct ipmi_ipmb_addr
);
692 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
693 return sizeof(struct ipmi_lan_addr
);
697 EXPORT_SYMBOL(ipmi_addr_length
);
699 static void deliver_response(struct ipmi_recv_msg
*msg
)
702 ipmi_smi_t intf
= msg
->user_msg_data
;
704 /* Special handling for NULL users. */
705 if (intf
->null_user_handler
) {
706 intf
->null_user_handler(intf
, msg
);
707 ipmi_inc_stat(intf
, handled_local_responses
);
709 /* No handler, so give up. */
710 ipmi_inc_stat(intf
, unhandled_local_responses
);
712 ipmi_free_recv_msg(msg
);
714 ipmi_user_t user
= msg
->user
;
715 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
720 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
722 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
723 msg
->msg_data
[0] = err
;
724 msg
->msg
.netfn
|= 1; /* Convert to a response. */
725 msg
->msg
.data_len
= 1;
726 msg
->msg
.data
= msg
->msg_data
;
727 deliver_response(msg
);
731 * Find the next sequence number not being used and add the given
732 * message with the given timeout to the sequence table. This must be
733 * called with the interface's seq_lock held.
735 static int intf_next_seq(ipmi_smi_t intf
,
736 struct ipmi_recv_msg
*recv_msg
,
737 unsigned long timeout
,
746 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
747 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
748 if (!intf
->seq_table
[i
].inuse
)
752 if (!intf
->seq_table
[i
].inuse
) {
753 intf
->seq_table
[i
].recv_msg
= recv_msg
;
756 * Start with the maximum timeout, when the send response
757 * comes in we will start the real timer.
759 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
760 intf
->seq_table
[i
].orig_timeout
= timeout
;
761 intf
->seq_table
[i
].retries_left
= retries
;
762 intf
->seq_table
[i
].broadcast
= broadcast
;
763 intf
->seq_table
[i
].inuse
= 1;
764 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
766 *seqid
= intf
->seq_table
[i
].seqid
;
767 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
776 * Return the receive message for the given sequence number and
777 * release the sequence number so it can be reused. Some other data
778 * is passed in to be sure the message matches up correctly (to help
779 * guard against message coming in after their timeout and the
780 * sequence number being reused).
782 static int intf_find_seq(ipmi_smi_t intf
,
787 struct ipmi_addr
*addr
,
788 struct ipmi_recv_msg
**recv_msg
)
793 if (seq
>= IPMI_IPMB_NUM_SEQ
)
796 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
797 if (intf
->seq_table
[seq
].inuse
) {
798 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
800 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
801 && (msg
->msg
.netfn
== netfn
)
802 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
804 intf
->seq_table
[seq
].inuse
= 0;
808 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
814 /* Start the timer for a specific sequence table entry. */
815 static int intf_start_seq_timer(ipmi_smi_t intf
,
824 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
826 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
828 * We do this verification because the user can be deleted
829 * while a message is outstanding.
831 if ((intf
->seq_table
[seq
].inuse
)
832 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
833 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
834 ent
->timeout
= ent
->orig_timeout
;
837 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
842 /* Got an error for the send message for a specific sequence number. */
843 static int intf_err_seq(ipmi_smi_t intf
,
851 struct ipmi_recv_msg
*msg
= NULL
;
854 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
856 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
858 * We do this verification because the user can be deleted
859 * while a message is outstanding.
861 if ((intf
->seq_table
[seq
].inuse
)
862 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
863 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
869 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
872 deliver_err_response(msg
, err
);
878 int ipmi_create_user(unsigned int if_num
,
879 struct ipmi_user_hndl
*handler
,
884 ipmi_user_t new_user
;
889 * There is no module usecount here, because it's not
890 * required. Since this can only be used by and called from
891 * other modules, they will implicitly use this module, and
892 * thus this can't be removed unless the other modules are
900 * Make sure the driver is actually initialized, this handles
901 * problems with initialization order.
904 rv
= ipmi_init_msghandler();
909 * The init code doesn't return an error if it was turned
910 * off, but it won't initialize. Check that.
916 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
920 mutex_lock(&ipmi_interfaces_mutex
);
921 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
922 if (intf
->intf_num
== if_num
)
925 /* Not found, return an error */
930 /* Note that each existing user holds a refcount to the interface. */
931 kref_get(&intf
->refcount
);
933 kref_init(&new_user
->refcount
);
934 new_user
->handler
= handler
;
935 new_user
->handler_data
= handler_data
;
936 new_user
->intf
= intf
;
937 new_user
->gets_events
= 0;
939 if (!try_module_get(intf
->handlers
->owner
)) {
944 if (intf
->handlers
->inc_usecount
) {
945 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
947 module_put(intf
->handlers
->owner
);
953 * Hold the lock so intf->handlers is guaranteed to be good
956 mutex_unlock(&ipmi_interfaces_mutex
);
959 spin_lock_irqsave(&intf
->seq_lock
, flags
);
960 list_add_rcu(&new_user
->link
, &intf
->users
);
961 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
966 kref_put(&intf
->refcount
, intf_free
);
968 mutex_unlock(&ipmi_interfaces_mutex
);
972 EXPORT_SYMBOL(ipmi_create_user
);
974 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
978 struct ipmi_smi_handlers
*handlers
;
980 mutex_lock(&ipmi_interfaces_mutex
);
981 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
982 if (intf
->intf_num
== if_num
)
985 /* Not found, return an error */
987 mutex_unlock(&ipmi_interfaces_mutex
);
991 handlers
= intf
->handlers
;
993 if (handlers
->get_smi_info
)
994 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
995 mutex_unlock(&ipmi_interfaces_mutex
);
999 EXPORT_SYMBOL(ipmi_get_smi_info
);
1001 static void free_user(struct kref
*ref
)
1003 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1007 int ipmi_destroy_user(ipmi_user_t user
)
1009 ipmi_smi_t intf
= user
->intf
;
1011 unsigned long flags
;
1012 struct cmd_rcvr
*rcvr
;
1013 struct cmd_rcvr
*rcvrs
= NULL
;
1017 /* Remove the user from the interface's sequence table. */
1018 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1019 list_del_rcu(&user
->link
);
1021 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1022 if (intf
->seq_table
[i
].inuse
1023 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1024 intf
->seq_table
[i
].inuse
= 0;
1025 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1028 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1031 * Remove the user from the command receiver's table. First
1032 * we build a list of everything (not using the standard link,
1033 * since other things may be using it till we do
1034 * synchronize_rcu()) then free everything in that list.
1036 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1037 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1038 if (rcvr
->user
== user
) {
1039 list_del_rcu(&rcvr
->link
);
1044 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1052 mutex_lock(&ipmi_interfaces_mutex
);
1053 if (intf
->handlers
) {
1054 module_put(intf
->handlers
->owner
);
1055 if (intf
->handlers
->dec_usecount
)
1056 intf
->handlers
->dec_usecount(intf
->send_info
);
1058 mutex_unlock(&ipmi_interfaces_mutex
);
1060 kref_put(&intf
->refcount
, intf_free
);
1062 kref_put(&user
->refcount
, free_user
);
1066 EXPORT_SYMBOL(ipmi_destroy_user
);
1068 void ipmi_get_version(ipmi_user_t user
,
1069 unsigned char *major
,
1070 unsigned char *minor
)
1072 *major
= user
->intf
->ipmi_version_major
;
1073 *minor
= user
->intf
->ipmi_version_minor
;
1075 EXPORT_SYMBOL(ipmi_get_version
);
1077 int ipmi_set_my_address(ipmi_user_t user
,
1078 unsigned int channel
,
1079 unsigned char address
)
1081 if (channel
>= IPMI_MAX_CHANNELS
)
1083 user
->intf
->channels
[channel
].address
= address
;
1086 EXPORT_SYMBOL(ipmi_set_my_address
);
1088 int ipmi_get_my_address(ipmi_user_t user
,
1089 unsigned int channel
,
1090 unsigned char *address
)
1092 if (channel
>= IPMI_MAX_CHANNELS
)
1094 *address
= user
->intf
->channels
[channel
].address
;
1097 EXPORT_SYMBOL(ipmi_get_my_address
);
1099 int ipmi_set_my_LUN(ipmi_user_t user
,
1100 unsigned int channel
,
1103 if (channel
>= IPMI_MAX_CHANNELS
)
1105 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1108 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1110 int ipmi_get_my_LUN(ipmi_user_t user
,
1111 unsigned int channel
,
1112 unsigned char *address
)
1114 if (channel
>= IPMI_MAX_CHANNELS
)
1116 *address
= user
->intf
->channels
[channel
].lun
;
1119 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1121 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1124 unsigned long flags
;
1126 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1127 mode
= user
->intf
->maintenance_mode
;
1128 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1132 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1134 static void maintenance_mode_update(ipmi_smi_t intf
)
1136 if (intf
->handlers
->set_maintenance_mode
)
1137 intf
->handlers
->set_maintenance_mode(
1138 intf
->send_info
, intf
->maintenance_mode_enable
);
1141 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1144 unsigned long flags
;
1145 ipmi_smi_t intf
= user
->intf
;
1147 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1148 if (intf
->maintenance_mode
!= mode
) {
1150 case IPMI_MAINTENANCE_MODE_AUTO
:
1151 intf
->maintenance_mode
= mode
;
1152 intf
->maintenance_mode_enable
1153 = (intf
->auto_maintenance_timeout
> 0);
1156 case IPMI_MAINTENANCE_MODE_OFF
:
1157 intf
->maintenance_mode
= mode
;
1158 intf
->maintenance_mode_enable
= 0;
1161 case IPMI_MAINTENANCE_MODE_ON
:
1162 intf
->maintenance_mode
= mode
;
1163 intf
->maintenance_mode_enable
= 1;
1171 maintenance_mode_update(intf
);
1174 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1178 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1180 int ipmi_set_gets_events(ipmi_user_t user
, int val
)
1182 unsigned long flags
;
1183 ipmi_smi_t intf
= user
->intf
;
1184 struct ipmi_recv_msg
*msg
, *msg2
;
1185 struct list_head msgs
;
1187 INIT_LIST_HEAD(&msgs
);
1189 spin_lock_irqsave(&intf
->events_lock
, flags
);
1190 user
->gets_events
= val
;
1192 if (intf
->delivering_events
)
1194 * Another thread is delivering events for this, so
1195 * let it handle any new events.
1199 /* Deliver any queued events. */
1200 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1201 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1202 list_move_tail(&msg
->link
, &msgs
);
1203 intf
->waiting_events_count
= 0;
1204 if (intf
->event_msg_printed
) {
1205 printk(KERN_WARNING PFX
"Event queue no longer"
1207 intf
->event_msg_printed
= 0;
1210 intf
->delivering_events
= 1;
1211 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1213 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1215 kref_get(&user
->refcount
);
1216 deliver_response(msg
);
1219 spin_lock_irqsave(&intf
->events_lock
, flags
);
1220 intf
->delivering_events
= 0;
1224 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1228 EXPORT_SYMBOL(ipmi_set_gets_events
);
1230 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1231 unsigned char netfn
,
1235 struct cmd_rcvr
*rcvr
;
1237 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1238 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1239 && (rcvr
->chans
& (1 << chan
)))
1245 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1246 unsigned char netfn
,
1250 struct cmd_rcvr
*rcvr
;
1252 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1253 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1254 && (rcvr
->chans
& chans
))
1260 int ipmi_register_for_cmd(ipmi_user_t user
,
1261 unsigned char netfn
,
1265 ipmi_smi_t intf
= user
->intf
;
1266 struct cmd_rcvr
*rcvr
;
1270 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1274 rcvr
->netfn
= netfn
;
1275 rcvr
->chans
= chans
;
1278 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1279 /* Make sure the command/netfn is not already registered. */
1280 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1285 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1288 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1294 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1296 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1297 unsigned char netfn
,
1301 ipmi_smi_t intf
= user
->intf
;
1302 struct cmd_rcvr
*rcvr
;
1303 struct cmd_rcvr
*rcvrs
= NULL
;
1304 int i
, rv
= -ENOENT
;
1306 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1307 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1308 if (((1 << i
) & chans
) == 0)
1310 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1313 if (rcvr
->user
== user
) {
1315 rcvr
->chans
&= ~chans
;
1316 if (rcvr
->chans
== 0) {
1317 list_del_rcu(&rcvr
->link
);
1323 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1332 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1334 static unsigned char
1335 ipmb_checksum(unsigned char *data
, int size
)
1337 unsigned char csum
= 0;
1339 for (; size
> 0; size
--, data
++)
1345 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1346 struct kernel_ipmi_msg
*msg
,
1347 struct ipmi_ipmb_addr
*ipmb_addr
,
1349 unsigned char ipmb_seq
,
1351 unsigned char source_address
,
1352 unsigned char source_lun
)
1356 /* Format the IPMB header data. */
1357 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1358 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1359 smi_msg
->data
[2] = ipmb_addr
->channel
;
1361 smi_msg
->data
[3] = 0;
1362 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1363 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1364 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1365 smi_msg
->data
[i
+6] = source_address
;
1366 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1367 smi_msg
->data
[i
+8] = msg
->cmd
;
1369 /* Now tack on the data to the message. */
1370 if (msg
->data_len
> 0)
1371 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1373 smi_msg
->data_size
= msg
->data_len
+ 9;
1375 /* Now calculate the checksum and tack it on. */
1376 smi_msg
->data
[i
+smi_msg
->data_size
]
1377 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1378 smi_msg
->data_size
-6);
1381 * Add on the checksum size and the offset from the
1384 smi_msg
->data_size
+= 1 + i
;
1386 smi_msg
->msgid
= msgid
;
1389 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1390 struct kernel_ipmi_msg
*msg
,
1391 struct ipmi_lan_addr
*lan_addr
,
1393 unsigned char ipmb_seq
,
1394 unsigned char source_lun
)
1396 /* Format the IPMB header data. */
1397 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1398 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1399 smi_msg
->data
[2] = lan_addr
->channel
;
1400 smi_msg
->data
[3] = lan_addr
->session_handle
;
1401 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1402 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1403 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1404 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1405 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1406 smi_msg
->data
[9] = msg
->cmd
;
1408 /* Now tack on the data to the message. */
1409 if (msg
->data_len
> 0)
1410 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1412 smi_msg
->data_size
= msg
->data_len
+ 10;
1414 /* Now calculate the checksum and tack it on. */
1415 smi_msg
->data
[smi_msg
->data_size
]
1416 = ipmb_checksum(&(smi_msg
->data
[7]),
1417 smi_msg
->data_size
-7);
1420 * Add on the checksum size and the offset from the
1423 smi_msg
->data_size
+= 1;
1425 smi_msg
->msgid
= msgid
;
1429 * Separate from ipmi_request so that the user does not have to be
1430 * supplied in certain circumstances (mainly at panic time). If
1431 * messages are supplied, they will be freed, even if an error
1434 static int i_ipmi_request(ipmi_user_t user
,
1436 struct ipmi_addr
*addr
,
1438 struct kernel_ipmi_msg
*msg
,
1439 void *user_msg_data
,
1441 struct ipmi_recv_msg
*supplied_recv
,
1443 unsigned char source_address
,
1444 unsigned char source_lun
,
1446 unsigned int retry_time_ms
)
1449 struct ipmi_smi_msg
*smi_msg
;
1450 struct ipmi_recv_msg
*recv_msg
;
1451 unsigned long flags
;
1452 struct ipmi_smi_handlers
*handlers
;
1456 recv_msg
= supplied_recv
;
1458 recv_msg
= ipmi_alloc_recv_msg();
1459 if (recv_msg
== NULL
)
1462 recv_msg
->user_msg_data
= user_msg_data
;
1465 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1467 smi_msg
= ipmi_alloc_smi_msg();
1468 if (smi_msg
== NULL
) {
1469 ipmi_free_recv_msg(recv_msg
);
1475 handlers
= intf
->handlers
;
1481 recv_msg
->user
= user
;
1483 kref_get(&user
->refcount
);
1484 recv_msg
->msgid
= msgid
;
1486 * Store the message to send in the receive message so timeout
1487 * responses can get the proper response data.
1489 recv_msg
->msg
= *msg
;
1491 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1492 struct ipmi_system_interface_addr
*smi_addr
;
1494 if (msg
->netfn
& 1) {
1495 /* Responses are not allowed to the SMI. */
1500 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1501 if (smi_addr
->lun
> 3) {
1502 ipmi_inc_stat(intf
, sent_invalid_commands
);
1507 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1509 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1510 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1511 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1512 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1514 * We don't let the user do these, since we manage
1515 * the sequence numbers.
1517 ipmi_inc_stat(intf
, sent_invalid_commands
);
1522 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1523 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1524 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1525 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1526 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1527 intf
->auto_maintenance_timeout
1528 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1529 if (!intf
->maintenance_mode
1530 && !intf
->maintenance_mode_enable
) {
1531 intf
->maintenance_mode_enable
= 1;
1532 maintenance_mode_update(intf
);
1534 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1538 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1539 ipmi_inc_stat(intf
, sent_invalid_commands
);
1544 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1545 smi_msg
->data
[1] = msg
->cmd
;
1546 smi_msg
->msgid
= msgid
;
1547 smi_msg
->user_data
= recv_msg
;
1548 if (msg
->data_len
> 0)
1549 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1550 smi_msg
->data_size
= msg
->data_len
+ 2;
1551 ipmi_inc_stat(intf
, sent_local_commands
);
1552 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1553 struct ipmi_ipmb_addr
*ipmb_addr
;
1554 unsigned char ipmb_seq
;
1558 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1559 ipmi_inc_stat(intf
, sent_invalid_commands
);
1564 if (intf
->channels
[addr
->channel
].medium
1565 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1566 ipmi_inc_stat(intf
, sent_invalid_commands
);
1572 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1573 retries
= 0; /* Don't retry broadcasts. */
1577 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1579 * Broadcasts add a zero at the beginning of the
1580 * message, but otherwise is the same as an IPMB
1583 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1588 /* Default to 1 second retries. */
1589 if (retry_time_ms
== 0)
1590 retry_time_ms
= 1000;
1593 * 9 for the header and 1 for the checksum, plus
1594 * possibly one for the broadcast.
1596 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1597 ipmi_inc_stat(intf
, sent_invalid_commands
);
1602 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1603 if (ipmb_addr
->lun
> 3) {
1604 ipmi_inc_stat(intf
, sent_invalid_commands
);
1609 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1611 if (recv_msg
->msg
.netfn
& 0x1) {
1613 * It's a response, so use the user's sequence
1616 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1617 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1619 source_address
, source_lun
);
1622 * Save the receive message so we can use it
1623 * to deliver the response.
1625 smi_msg
->user_data
= recv_msg
;
1627 /* It's a command, so get a sequence for it. */
1629 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1632 * Create a sequence number with a 1 second
1633 * timeout and 4 retries.
1635 rv
= intf_next_seq(intf
,
1644 * We have used up all the sequence numbers,
1645 * probably, so abort.
1647 spin_unlock_irqrestore(&(intf
->seq_lock
),
1652 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1655 * Store the sequence number in the message,
1656 * so that when the send message response
1657 * comes back we can start the timer.
1659 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1660 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1661 ipmb_seq
, broadcast
,
1662 source_address
, source_lun
);
1665 * Copy the message into the recv message data, so we
1666 * can retransmit it later if necessary.
1668 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1669 smi_msg
->data_size
);
1670 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1671 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1674 * We don't unlock until here, because we need
1675 * to copy the completed message into the
1676 * recv_msg before we release the lock.
1677 * Otherwise, race conditions may bite us. I
1678 * know that's pretty paranoid, but I prefer
1681 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1683 } else if (is_lan_addr(addr
)) {
1684 struct ipmi_lan_addr
*lan_addr
;
1685 unsigned char ipmb_seq
;
1688 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1689 ipmi_inc_stat(intf
, sent_invalid_commands
);
1694 if ((intf
->channels
[addr
->channel
].medium
1695 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1696 && (intf
->channels
[addr
->channel
].medium
1697 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1698 ipmi_inc_stat(intf
, sent_invalid_commands
);
1705 /* Default to 1 second retries. */
1706 if (retry_time_ms
== 0)
1707 retry_time_ms
= 1000;
1709 /* 11 for the header and 1 for the checksum. */
1710 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1711 ipmi_inc_stat(intf
, sent_invalid_commands
);
1716 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1717 if (lan_addr
->lun
> 3) {
1718 ipmi_inc_stat(intf
, sent_invalid_commands
);
1723 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1725 if (recv_msg
->msg
.netfn
& 0x1) {
1727 * It's a response, so use the user's sequence
1730 ipmi_inc_stat(intf
, sent_lan_responses
);
1731 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1735 * Save the receive message so we can use it
1736 * to deliver the response.
1738 smi_msg
->user_data
= recv_msg
;
1740 /* It's a command, so get a sequence for it. */
1742 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1745 * Create a sequence number with a 1 second
1746 * timeout and 4 retries.
1748 rv
= intf_next_seq(intf
,
1757 * We have used up all the sequence numbers,
1758 * probably, so abort.
1760 spin_unlock_irqrestore(&(intf
->seq_lock
),
1765 ipmi_inc_stat(intf
, sent_lan_commands
);
1768 * Store the sequence number in the message,
1769 * so that when the send message response
1770 * comes back we can start the timer.
1772 format_lan_msg(smi_msg
, msg
, lan_addr
,
1773 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1774 ipmb_seq
, source_lun
);
1777 * Copy the message into the recv message data, so we
1778 * can retransmit it later if necessary.
1780 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1781 smi_msg
->data_size
);
1782 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1783 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1786 * We don't unlock until here, because we need
1787 * to copy the completed message into the
1788 * recv_msg before we release the lock.
1789 * Otherwise, race conditions may bite us. I
1790 * know that's pretty paranoid, but I prefer
1793 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1796 /* Unknown address type. */
1797 ipmi_inc_stat(intf
, sent_invalid_commands
);
1805 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1806 printk(" %2.2x", smi_msg
->data
[m
]);
1811 handlers
->sender(intf
->send_info
, smi_msg
, priority
);
1818 ipmi_free_smi_msg(smi_msg
);
1819 ipmi_free_recv_msg(recv_msg
);
1823 static int check_addr(ipmi_smi_t intf
,
1824 struct ipmi_addr
*addr
,
1825 unsigned char *saddr
,
1828 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1830 *lun
= intf
->channels
[addr
->channel
].lun
;
1831 *saddr
= intf
->channels
[addr
->channel
].address
;
1835 int ipmi_request_settime(ipmi_user_t user
,
1836 struct ipmi_addr
*addr
,
1838 struct kernel_ipmi_msg
*msg
,
1839 void *user_msg_data
,
1842 unsigned int retry_time_ms
)
1844 unsigned char saddr
, lun
;
1849 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1852 return i_ipmi_request(user
,
1865 EXPORT_SYMBOL(ipmi_request_settime
);
1867 int ipmi_request_supply_msgs(ipmi_user_t user
,
1868 struct ipmi_addr
*addr
,
1870 struct kernel_ipmi_msg
*msg
,
1871 void *user_msg_data
,
1873 struct ipmi_recv_msg
*supplied_recv
,
1876 unsigned char saddr
, lun
;
1881 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1884 return i_ipmi_request(user
,
1897 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1899 #ifdef CONFIG_PROC_FS
1900 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
1902 ipmi_smi_t intf
= m
->private;
1905 seq_printf(m
, "%x", intf
->channels
[0].address
);
1906 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
1907 seq_printf(m
, " %x", intf
->channels
[i
].address
);
1908 return seq_putc(m
, '\n');
1911 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
1913 return single_open(file
, smi_ipmb_proc_show
, PDE(inode
)->data
);
1916 static const struct file_operations smi_ipmb_proc_ops
= {
1917 .open
= smi_ipmb_proc_open
,
1919 .llseek
= seq_lseek
,
1920 .release
= single_release
,
1923 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
1925 ipmi_smi_t intf
= m
->private;
1927 return seq_printf(m
, "%u.%u\n",
1928 ipmi_version_major(&intf
->bmc
->id
),
1929 ipmi_version_minor(&intf
->bmc
->id
));
1932 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
1934 return single_open(file
, smi_version_proc_show
, PDE(inode
)->data
);
1937 static const struct file_operations smi_version_proc_ops
= {
1938 .open
= smi_version_proc_open
,
1940 .llseek
= seq_lseek
,
1941 .release
= single_release
,
1944 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
1946 ipmi_smi_t intf
= m
->private;
1948 seq_printf(m
, "sent_invalid_commands: %u\n",
1949 ipmi_get_stat(intf
, sent_invalid_commands
));
1950 seq_printf(m
, "sent_local_commands: %u\n",
1951 ipmi_get_stat(intf
, sent_local_commands
));
1952 seq_printf(m
, "handled_local_responses: %u\n",
1953 ipmi_get_stat(intf
, handled_local_responses
));
1954 seq_printf(m
, "unhandled_local_responses: %u\n",
1955 ipmi_get_stat(intf
, unhandled_local_responses
));
1956 seq_printf(m
, "sent_ipmb_commands: %u\n",
1957 ipmi_get_stat(intf
, sent_ipmb_commands
));
1958 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
1959 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
1960 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
1961 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
1962 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
1963 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
1964 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
1965 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
1966 seq_printf(m
, "sent_ipmb_responses: %u\n",
1967 ipmi_get_stat(intf
, sent_ipmb_responses
));
1968 seq_printf(m
, "handled_ipmb_responses: %u\n",
1969 ipmi_get_stat(intf
, handled_ipmb_responses
));
1970 seq_printf(m
, "invalid_ipmb_responses: %u\n",
1971 ipmi_get_stat(intf
, invalid_ipmb_responses
));
1972 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
1973 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
1974 seq_printf(m
, "sent_lan_commands: %u\n",
1975 ipmi_get_stat(intf
, sent_lan_commands
));
1976 seq_printf(m
, "sent_lan_command_errs: %u\n",
1977 ipmi_get_stat(intf
, sent_lan_command_errs
));
1978 seq_printf(m
, "retransmitted_lan_commands: %u\n",
1979 ipmi_get_stat(intf
, retransmitted_lan_commands
));
1980 seq_printf(m
, "timed_out_lan_commands: %u\n",
1981 ipmi_get_stat(intf
, timed_out_lan_commands
));
1982 seq_printf(m
, "sent_lan_responses: %u\n",
1983 ipmi_get_stat(intf
, sent_lan_responses
));
1984 seq_printf(m
, "handled_lan_responses: %u\n",
1985 ipmi_get_stat(intf
, handled_lan_responses
));
1986 seq_printf(m
, "invalid_lan_responses: %u\n",
1987 ipmi_get_stat(intf
, invalid_lan_responses
));
1988 seq_printf(m
, "unhandled_lan_responses: %u\n",
1989 ipmi_get_stat(intf
, unhandled_lan_responses
));
1990 seq_printf(m
, "handled_commands: %u\n",
1991 ipmi_get_stat(intf
, handled_commands
));
1992 seq_printf(m
, "invalid_commands: %u\n",
1993 ipmi_get_stat(intf
, invalid_commands
));
1994 seq_printf(m
, "unhandled_commands: %u\n",
1995 ipmi_get_stat(intf
, unhandled_commands
));
1996 seq_printf(m
, "invalid_events: %u\n",
1997 ipmi_get_stat(intf
, invalid_events
));
1998 seq_printf(m
, "events: %u\n",
1999 ipmi_get_stat(intf
, events
));
2000 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2001 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2002 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2003 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2007 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2009 return single_open(file
, smi_stats_proc_show
, PDE(inode
)->data
);
2012 static const struct file_operations smi_stats_proc_ops
= {
2013 .open
= smi_stats_proc_open
,
2015 .llseek
= seq_lseek
,
2016 .release
= single_release
,
2018 #endif /* CONFIG_PROC_FS */
2020 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2021 const struct file_operations
*proc_ops
,
2025 #ifdef CONFIG_PROC_FS
2026 struct proc_dir_entry
*file
;
2027 struct ipmi_proc_entry
*entry
;
2029 /* Create a list element. */
2030 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2033 entry
->name
= kmalloc(strlen(name
)+1, GFP_KERNEL
);
2038 strcpy(entry
->name
, name
);
2040 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2046 mutex_lock(&smi
->proc_entry_lock
);
2047 /* Stick it on the list. */
2048 entry
->next
= smi
->proc_entries
;
2049 smi
->proc_entries
= entry
;
2050 mutex_unlock(&smi
->proc_entry_lock
);
2052 #endif /* CONFIG_PROC_FS */
2056 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2058 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2062 #ifdef CONFIG_PROC_FS
2063 sprintf(smi
->proc_dir_name
, "%d", num
);
2064 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2069 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2070 &smi_stats_proc_ops
,
2074 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2079 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2080 &smi_version_proc_ops
,
2082 #endif /* CONFIG_PROC_FS */
2087 static void remove_proc_entries(ipmi_smi_t smi
)
2089 #ifdef CONFIG_PROC_FS
2090 struct ipmi_proc_entry
*entry
;
2092 mutex_lock(&smi
->proc_entry_lock
);
2093 while (smi
->proc_entries
) {
2094 entry
= smi
->proc_entries
;
2095 smi
->proc_entries
= entry
->next
;
2097 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2101 mutex_unlock(&smi
->proc_entry_lock
);
2102 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2103 #endif /* CONFIG_PROC_FS */
2106 static int __find_bmc_guid(struct device
*dev
, void *data
)
2108 unsigned char *id
= data
;
2109 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2110 return memcmp(bmc
->guid
, id
, 16) == 0;
2113 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2114 unsigned char *guid
)
2118 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2120 return dev_get_drvdata(dev
);
2125 struct prod_dev_id
{
2126 unsigned int product_id
;
2127 unsigned char device_id
;
2130 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2132 struct prod_dev_id
*id
= data
;
2133 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2135 return (bmc
->id
.product_id
== id
->product_id
2136 && bmc
->id
.device_id
== id
->device_id
);
2139 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2140 struct device_driver
*drv
,
2141 unsigned int product_id
, unsigned char device_id
)
2143 struct prod_dev_id id
= {
2144 .product_id
= product_id
,
2145 .device_id
= device_id
,
2149 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2151 return dev_get_drvdata(dev
);
2156 static ssize_t
device_id_show(struct device
*dev
,
2157 struct device_attribute
*attr
,
2160 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2162 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2165 static ssize_t
provides_dev_sdrs_show(struct device
*dev
,
2166 struct device_attribute
*attr
,
2169 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2171 return snprintf(buf
, 10, "%u\n",
2172 (bmc
->id
.device_revision
& 0x80) >> 7);
2175 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2178 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2180 return snprintf(buf
, 20, "%u\n",
2181 bmc
->id
.device_revision
& 0x0F);
2184 static ssize_t
firmware_rev_show(struct device
*dev
,
2185 struct device_attribute
*attr
,
2188 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2190 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2191 bmc
->id
.firmware_revision_2
);
2194 static ssize_t
ipmi_version_show(struct device
*dev
,
2195 struct device_attribute
*attr
,
2198 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2200 return snprintf(buf
, 20, "%u.%u\n",
2201 ipmi_version_major(&bmc
->id
),
2202 ipmi_version_minor(&bmc
->id
));
2205 static ssize_t
add_dev_support_show(struct device
*dev
,
2206 struct device_attribute
*attr
,
2209 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2211 return snprintf(buf
, 10, "0x%02x\n",
2212 bmc
->id
.additional_device_support
);
2215 static ssize_t
manufacturer_id_show(struct device
*dev
,
2216 struct device_attribute
*attr
,
2219 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2221 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2224 static ssize_t
product_id_show(struct device
*dev
,
2225 struct device_attribute
*attr
,
2228 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2230 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2233 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2234 struct device_attribute
*attr
,
2237 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2239 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2240 bmc
->id
.aux_firmware_revision
[3],
2241 bmc
->id
.aux_firmware_revision
[2],
2242 bmc
->id
.aux_firmware_revision
[1],
2243 bmc
->id
.aux_firmware_revision
[0]);
2246 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2249 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2251 return snprintf(buf
, 100, "%Lx%Lx\n",
2252 (long long) bmc
->guid
[0],
2253 (long long) bmc
->guid
[8]);
2256 static void remove_files(struct bmc_device
*bmc
)
2261 device_remove_file(&bmc
->dev
->dev
,
2262 &bmc
->device_id_attr
);
2263 device_remove_file(&bmc
->dev
->dev
,
2264 &bmc
->provides_dev_sdrs_attr
);
2265 device_remove_file(&bmc
->dev
->dev
,
2266 &bmc
->revision_attr
);
2267 device_remove_file(&bmc
->dev
->dev
,
2268 &bmc
->firmware_rev_attr
);
2269 device_remove_file(&bmc
->dev
->dev
,
2270 &bmc
->version_attr
);
2271 device_remove_file(&bmc
->dev
->dev
,
2272 &bmc
->add_dev_support_attr
);
2273 device_remove_file(&bmc
->dev
->dev
,
2274 &bmc
->manufacturer_id_attr
);
2275 device_remove_file(&bmc
->dev
->dev
,
2276 &bmc
->product_id_attr
);
2278 if (bmc
->id
.aux_firmware_revision_set
)
2279 device_remove_file(&bmc
->dev
->dev
,
2280 &bmc
->aux_firmware_rev_attr
);
2282 device_remove_file(&bmc
->dev
->dev
,
2287 cleanup_bmc_device(struct kref
*ref
)
2289 struct bmc_device
*bmc
;
2291 bmc
= container_of(ref
, struct bmc_device
, refcount
);
2294 platform_device_unregister(bmc
->dev
);
2298 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2300 struct bmc_device
*bmc
= intf
->bmc
;
2302 if (intf
->sysfs_name
) {
2303 sysfs_remove_link(&intf
->si_dev
->kobj
, intf
->sysfs_name
);
2304 kfree(intf
->sysfs_name
);
2305 intf
->sysfs_name
= NULL
;
2307 if (intf
->my_dev_name
) {
2308 sysfs_remove_link(&bmc
->dev
->dev
.kobj
, intf
->my_dev_name
);
2309 kfree(intf
->my_dev_name
);
2310 intf
->my_dev_name
= NULL
;
2313 mutex_lock(&ipmidriver_mutex
);
2314 kref_put(&bmc
->refcount
, cleanup_bmc_device
);
2316 mutex_unlock(&ipmidriver_mutex
);
2319 static int create_files(struct bmc_device
*bmc
)
2323 bmc
->device_id_attr
.attr
.name
= "device_id";
2324 bmc
->device_id_attr
.attr
.mode
= S_IRUGO
;
2325 bmc
->device_id_attr
.show
= device_id_show
;
2326 sysfs_attr_init(&bmc
->device_id_attr
.attr
);
2328 bmc
->provides_dev_sdrs_attr
.attr
.name
= "provides_device_sdrs";
2329 bmc
->provides_dev_sdrs_attr
.attr
.mode
= S_IRUGO
;
2330 bmc
->provides_dev_sdrs_attr
.show
= provides_dev_sdrs_show
;
2331 sysfs_attr_init(&bmc
->provides_dev_sdrs_attr
.attr
);
2333 bmc
->revision_attr
.attr
.name
= "revision";
2334 bmc
->revision_attr
.attr
.mode
= S_IRUGO
;
2335 bmc
->revision_attr
.show
= revision_show
;
2336 sysfs_attr_init(&bmc
->revision_attr
.attr
);
2338 bmc
->firmware_rev_attr
.attr
.name
= "firmware_revision";
2339 bmc
->firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2340 bmc
->firmware_rev_attr
.show
= firmware_rev_show
;
2341 sysfs_attr_init(&bmc
->firmware_rev_attr
.attr
);
2343 bmc
->version_attr
.attr
.name
= "ipmi_version";
2344 bmc
->version_attr
.attr
.mode
= S_IRUGO
;
2345 bmc
->version_attr
.show
= ipmi_version_show
;
2346 sysfs_attr_init(&bmc
->version_attr
.attr
);
2348 bmc
->add_dev_support_attr
.attr
.name
= "additional_device_support";
2349 bmc
->add_dev_support_attr
.attr
.mode
= S_IRUGO
;
2350 bmc
->add_dev_support_attr
.show
= add_dev_support_show
;
2351 sysfs_attr_init(&bmc
->add_dev_support_attr
.attr
);
2353 bmc
->manufacturer_id_attr
.attr
.name
= "manufacturer_id";
2354 bmc
->manufacturer_id_attr
.attr
.mode
= S_IRUGO
;
2355 bmc
->manufacturer_id_attr
.show
= manufacturer_id_show
;
2356 sysfs_attr_init(&bmc
->manufacturer_id_attr
.attr
);
2358 bmc
->product_id_attr
.attr
.name
= "product_id";
2359 bmc
->product_id_attr
.attr
.mode
= S_IRUGO
;
2360 bmc
->product_id_attr
.show
= product_id_show
;
2361 sysfs_attr_init(&bmc
->product_id_attr
.attr
);
2363 bmc
->guid_attr
.attr
.name
= "guid";
2364 bmc
->guid_attr
.attr
.mode
= S_IRUGO
;
2365 bmc
->guid_attr
.show
= guid_show
;
2366 sysfs_attr_init(&bmc
->guid_attr
.attr
);
2368 bmc
->aux_firmware_rev_attr
.attr
.name
= "aux_firmware_revision";
2369 bmc
->aux_firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2370 bmc
->aux_firmware_rev_attr
.show
= aux_firmware_rev_show
;
2371 sysfs_attr_init(&bmc
->aux_firmware_rev_attr
.attr
);
2373 err
= device_create_file(&bmc
->dev
->dev
,
2374 &bmc
->device_id_attr
);
2377 err
= device_create_file(&bmc
->dev
->dev
,
2378 &bmc
->provides_dev_sdrs_attr
);
2381 err
= device_create_file(&bmc
->dev
->dev
,
2382 &bmc
->revision_attr
);
2385 err
= device_create_file(&bmc
->dev
->dev
,
2386 &bmc
->firmware_rev_attr
);
2389 err
= device_create_file(&bmc
->dev
->dev
,
2390 &bmc
->version_attr
);
2393 err
= device_create_file(&bmc
->dev
->dev
,
2394 &bmc
->add_dev_support_attr
);
2397 err
= device_create_file(&bmc
->dev
->dev
,
2398 &bmc
->manufacturer_id_attr
);
2401 err
= device_create_file(&bmc
->dev
->dev
,
2402 &bmc
->product_id_attr
);
2405 if (bmc
->id
.aux_firmware_revision_set
) {
2406 err
= device_create_file(&bmc
->dev
->dev
,
2407 &bmc
->aux_firmware_rev_attr
);
2411 if (bmc
->guid_set
) {
2412 err
= device_create_file(&bmc
->dev
->dev
,
2421 if (bmc
->id
.aux_firmware_revision_set
)
2422 device_remove_file(&bmc
->dev
->dev
,
2423 &bmc
->aux_firmware_rev_attr
);
2425 device_remove_file(&bmc
->dev
->dev
,
2426 &bmc
->product_id_attr
);
2428 device_remove_file(&bmc
->dev
->dev
,
2429 &bmc
->manufacturer_id_attr
);
2431 device_remove_file(&bmc
->dev
->dev
,
2432 &bmc
->add_dev_support_attr
);
2434 device_remove_file(&bmc
->dev
->dev
,
2435 &bmc
->version_attr
);
2437 device_remove_file(&bmc
->dev
->dev
,
2438 &bmc
->firmware_rev_attr
);
2440 device_remove_file(&bmc
->dev
->dev
,
2441 &bmc
->revision_attr
);
2443 device_remove_file(&bmc
->dev
->dev
,
2444 &bmc
->provides_dev_sdrs_attr
);
2446 device_remove_file(&bmc
->dev
->dev
,
2447 &bmc
->device_id_attr
);
2452 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
,
2453 const char *sysfs_name
)
2456 struct bmc_device
*bmc
= intf
->bmc
;
2457 struct bmc_device
*old_bmc
;
2461 mutex_lock(&ipmidriver_mutex
);
2464 * Try to find if there is an bmc_device struct
2465 * representing the interfaced BMC already
2468 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2470 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2475 * If there is already an bmc_device, free the new one,
2476 * otherwise register the new BMC device
2480 intf
->bmc
= old_bmc
;
2483 kref_get(&bmc
->refcount
);
2484 mutex_unlock(&ipmidriver_mutex
);
2487 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2488 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2489 bmc
->id
.manufacturer_id
,
2494 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2495 int warn_printed
= 0;
2497 snprintf(name
, sizeof(name
),
2498 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2500 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2502 bmc
->id
.device_id
)) {
2503 if (!warn_printed
) {
2504 printk(KERN_WARNING PFX
2505 "This machine has two different BMCs"
2506 " with the same product id and device"
2507 " id. This is an error in the"
2508 " firmware, but incrementing the"
2509 " device id to work around the problem."
2510 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2511 bmc
->id
.product_id
, bmc
->id
.device_id
);
2514 bmc
->id
.device_id
++; /* Wraps at 255 */
2515 if (bmc
->id
.device_id
== orig_dev_id
) {
2517 "Out of device ids!\n");
2522 bmc
->dev
= platform_device_alloc(name
, bmc
->id
.device_id
);
2524 mutex_unlock(&ipmidriver_mutex
);
2527 " Unable to allocate platform device\n");
2530 bmc
->dev
->dev
.driver
= &ipmidriver
.driver
;
2531 dev_set_drvdata(&bmc
->dev
->dev
, bmc
);
2532 kref_init(&bmc
->refcount
);
2534 rv
= platform_device_add(bmc
->dev
);
2535 mutex_unlock(&ipmidriver_mutex
);
2537 platform_device_put(bmc
->dev
);
2541 " Unable to register bmc device: %d\n",
2544 * Don't go to out_err, you can only do that if
2545 * the device is registered already.
2550 rv
= create_files(bmc
);
2552 mutex_lock(&ipmidriver_mutex
);
2553 platform_device_unregister(bmc
->dev
);
2554 mutex_unlock(&ipmidriver_mutex
);
2559 dev_info(intf
->si_dev
, "Found new BMC (man_id: 0x%6.6x, "
2560 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2561 bmc
->id
.manufacturer_id
,
2567 * create symlink from system interface device to bmc device
2570 intf
->sysfs_name
= kstrdup(sysfs_name
, GFP_KERNEL
);
2571 if (!intf
->sysfs_name
) {
2574 "ipmi_msghandler: allocate link to BMC: %d\n",
2579 rv
= sysfs_create_link(&intf
->si_dev
->kobj
,
2580 &bmc
->dev
->dev
.kobj
, intf
->sysfs_name
);
2582 kfree(intf
->sysfs_name
);
2583 intf
->sysfs_name
= NULL
;
2585 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2590 size
= snprintf(dummy
, 0, "ipmi%d", ifnum
);
2591 intf
->my_dev_name
= kmalloc(size
+1, GFP_KERNEL
);
2592 if (!intf
->my_dev_name
) {
2593 kfree(intf
->sysfs_name
);
2594 intf
->sysfs_name
= NULL
;
2597 "ipmi_msghandler: allocate link from BMC: %d\n",
2601 snprintf(intf
->my_dev_name
, size
+1, "ipmi%d", ifnum
);
2603 rv
= sysfs_create_link(&bmc
->dev
->dev
.kobj
, &intf
->si_dev
->kobj
,
2606 kfree(intf
->sysfs_name
);
2607 intf
->sysfs_name
= NULL
;
2608 kfree(intf
->my_dev_name
);
2609 intf
->my_dev_name
= NULL
;
2612 " Unable to create symlink to bmc: %d\n",
2620 ipmi_bmc_unregister(intf
);
2625 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2627 struct kernel_ipmi_msg msg
;
2628 struct ipmi_system_interface_addr si
;
2630 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2631 si
.channel
= IPMI_BMC_CHANNEL
;
2634 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2635 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2638 return i_ipmi_request(NULL
,
2640 (struct ipmi_addr
*) &si
,
2647 intf
->channels
[0].address
,
2648 intf
->channels
[0].lun
,
2653 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2655 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2656 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2657 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2661 if (msg
->msg
.data
[0] != 0) {
2662 /* Error from getting the GUID, the BMC doesn't have one. */
2663 intf
->bmc
->guid_set
= 0;
2667 if (msg
->msg
.data_len
< 17) {
2668 intf
->bmc
->guid_set
= 0;
2669 printk(KERN_WARNING PFX
2670 "guid_handler: The GUID response from the BMC was too"
2671 " short, it was %d but should have been 17. Assuming"
2672 " GUID is not available.\n",
2677 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2678 intf
->bmc
->guid_set
= 1;
2680 wake_up(&intf
->waitq
);
2684 get_guid(ipmi_smi_t intf
)
2688 intf
->bmc
->guid_set
= 0x2;
2689 intf
->null_user_handler
= guid_handler
;
2690 rv
= send_guid_cmd(intf
, 0);
2692 /* Send failed, no GUID available. */
2693 intf
->bmc
->guid_set
= 0;
2694 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2695 intf
->null_user_handler
= NULL
;
2699 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2701 struct kernel_ipmi_msg msg
;
2702 unsigned char data
[1];
2703 struct ipmi_system_interface_addr si
;
2705 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2706 si
.channel
= IPMI_BMC_CHANNEL
;
2709 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2710 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2714 return i_ipmi_request(NULL
,
2716 (struct ipmi_addr
*) &si
,
2723 intf
->channels
[0].address
,
2724 intf
->channels
[0].lun
,
2729 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2734 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2735 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2736 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2737 /* It's the one we want */
2738 if (msg
->msg
.data
[0] != 0) {
2739 /* Got an error from the channel, just go on. */
2741 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2743 * If the MC does not support this
2744 * command, that is legal. We just
2745 * assume it has one IPMB at channel
2748 intf
->channels
[0].medium
2749 = IPMI_CHANNEL_MEDIUM_IPMB
;
2750 intf
->channels
[0].protocol
2751 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2754 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2755 wake_up(&intf
->waitq
);
2760 if (msg
->msg
.data_len
< 4) {
2761 /* Message not big enough, just go on. */
2764 chan
= intf
->curr_channel
;
2765 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2766 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2769 intf
->curr_channel
++;
2770 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2771 wake_up(&intf
->waitq
);
2773 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2776 /* Got an error somehow, just give up. */
2777 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2778 wake_up(&intf
->waitq
);
2780 printk(KERN_WARNING PFX
2781 "Error sending channel information: %d\n",
2789 void ipmi_poll_interface(ipmi_user_t user
)
2791 ipmi_smi_t intf
= user
->intf
;
2793 if (intf
->handlers
->poll
)
2794 intf
->handlers
->poll(intf
->send_info
);
2796 EXPORT_SYMBOL(ipmi_poll_interface
);
2798 int ipmi_register_smi(struct ipmi_smi_handlers
*handlers
,
2800 struct ipmi_device_id
*device_id
,
2801 struct device
*si_dev
,
2802 const char *sysfs_name
,
2803 unsigned char slave_addr
)
2809 struct list_head
*link
;
2812 * Make sure the driver is actually initialized, this handles
2813 * problems with initialization order.
2816 rv
= ipmi_init_msghandler();
2820 * The init code doesn't return an error if it was turned
2821 * off, but it won't initialize. Check that.
2827 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2831 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2832 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2834 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2839 intf
->intf_num
= -1; /* Mark it invalid for now. */
2840 kref_init(&intf
->refcount
);
2841 intf
->bmc
->id
= *device_id
;
2842 intf
->si_dev
= si_dev
;
2843 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2844 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2845 intf
->channels
[j
].lun
= 2;
2847 if (slave_addr
!= 0)
2848 intf
->channels
[0].address
= slave_addr
;
2849 INIT_LIST_HEAD(&intf
->users
);
2850 intf
->handlers
= handlers
;
2851 intf
->send_info
= send_info
;
2852 spin_lock_init(&intf
->seq_lock
);
2853 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2854 intf
->seq_table
[j
].inuse
= 0;
2855 intf
->seq_table
[j
].seqid
= 0;
2858 #ifdef CONFIG_PROC_FS
2859 mutex_init(&intf
->proc_entry_lock
);
2861 spin_lock_init(&intf
->waiting_msgs_lock
);
2862 INIT_LIST_HEAD(&intf
->waiting_msgs
);
2863 spin_lock_init(&intf
->events_lock
);
2864 INIT_LIST_HEAD(&intf
->waiting_events
);
2865 intf
->waiting_events_count
= 0;
2866 mutex_init(&intf
->cmd_rcvrs_mutex
);
2867 spin_lock_init(&intf
->maintenance_mode_lock
);
2868 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2869 init_waitqueue_head(&intf
->waitq
);
2870 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2871 atomic_set(&intf
->stats
[i
], 0);
2873 intf
->proc_dir
= NULL
;
2875 mutex_lock(&smi_watchers_mutex
);
2876 mutex_lock(&ipmi_interfaces_mutex
);
2877 /* Look for a hole in the numbers. */
2879 link
= &ipmi_interfaces
;
2880 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2881 if (tintf
->intf_num
!= i
) {
2882 link
= &tintf
->link
;
2887 /* Add the new interface in numeric order. */
2889 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2891 list_add_tail_rcu(&intf
->link
, link
);
2893 rv
= handlers
->start_processing(send_info
, intf
);
2899 if ((intf
->ipmi_version_major
> 1)
2900 || ((intf
->ipmi_version_major
== 1)
2901 && (intf
->ipmi_version_minor
>= 5))) {
2903 * Start scanning the channels to see what is
2906 intf
->null_user_handler
= channel_handler
;
2907 intf
->curr_channel
= 0;
2908 rv
= send_channel_info_cmd(intf
, 0);
2912 /* Wait for the channel info to be read. */
2913 wait_event(intf
->waitq
,
2914 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2915 intf
->null_user_handler
= NULL
;
2917 /* Assume a single IPMB channel at zero. */
2918 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2919 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2920 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2924 rv
= add_proc_entries(intf
, i
);
2926 rv
= ipmi_bmc_register(intf
, i
, sysfs_name
);
2931 remove_proc_entries(intf
);
2932 intf
->handlers
= NULL
;
2933 list_del_rcu(&intf
->link
);
2934 mutex_unlock(&ipmi_interfaces_mutex
);
2935 mutex_unlock(&smi_watchers_mutex
);
2937 kref_put(&intf
->refcount
, intf_free
);
2940 * Keep memory order straight for RCU readers. Make
2941 * sure everything else is committed to memory before
2942 * setting intf_num to mark the interface valid.
2946 mutex_unlock(&ipmi_interfaces_mutex
);
2947 /* After this point the interface is legal to use. */
2948 call_smi_watchers(i
, intf
->si_dev
);
2949 mutex_unlock(&smi_watchers_mutex
);
2954 EXPORT_SYMBOL(ipmi_register_smi
);
2956 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2959 struct seq_table
*ent
;
2961 /* No need for locks, the interface is down. */
2962 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2963 ent
= &(intf
->seq_table
[i
]);
2966 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2970 int ipmi_unregister_smi(ipmi_smi_t intf
)
2972 struct ipmi_smi_watcher
*w
;
2973 int intf_num
= intf
->intf_num
;
2975 ipmi_bmc_unregister(intf
);
2977 mutex_lock(&smi_watchers_mutex
);
2978 mutex_lock(&ipmi_interfaces_mutex
);
2979 intf
->intf_num
= -1;
2980 intf
->handlers
= NULL
;
2981 list_del_rcu(&intf
->link
);
2982 mutex_unlock(&ipmi_interfaces_mutex
);
2985 cleanup_smi_msgs(intf
);
2987 remove_proc_entries(intf
);
2990 * Call all the watcher interfaces to tell them that
2991 * an interface is gone.
2993 list_for_each_entry(w
, &smi_watchers
, link
)
2994 w
->smi_gone(intf_num
);
2995 mutex_unlock(&smi_watchers_mutex
);
2997 kref_put(&intf
->refcount
, intf_free
);
3000 EXPORT_SYMBOL(ipmi_unregister_smi
);
3002 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3003 struct ipmi_smi_msg
*msg
)
3005 struct ipmi_ipmb_addr ipmb_addr
;
3006 struct ipmi_recv_msg
*recv_msg
;
3009 * This is 11, not 10, because the response must contain a
3012 if (msg
->rsp_size
< 11) {
3013 /* Message not big enough, just ignore it. */
3014 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3018 if (msg
->rsp
[2] != 0) {
3019 /* An error getting the response, just ignore it. */
3023 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3024 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3025 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3026 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3029 * It's a response from a remote entity. Look up the sequence
3030 * number and handle the response.
3032 if (intf_find_seq(intf
,
3036 (msg
->rsp
[4] >> 2) & (~1),
3037 (struct ipmi_addr
*) &(ipmb_addr
),
3040 * We were unable to find the sequence number,
3041 * so just nuke the message.
3043 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3047 memcpy(recv_msg
->msg_data
,
3051 * The other fields matched, so no need to set them, except
3052 * for netfn, which needs to be the response that was
3053 * returned, not the request value.
3055 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3056 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3057 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3058 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3059 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3060 deliver_response(recv_msg
);
3065 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3066 struct ipmi_smi_msg
*msg
)
3068 struct cmd_rcvr
*rcvr
;
3070 unsigned char netfn
;
3073 ipmi_user_t user
= NULL
;
3074 struct ipmi_ipmb_addr
*ipmb_addr
;
3075 struct ipmi_recv_msg
*recv_msg
;
3076 struct ipmi_smi_handlers
*handlers
;
3078 if (msg
->rsp_size
< 10) {
3079 /* Message not big enough, just ignore it. */
3080 ipmi_inc_stat(intf
, invalid_commands
);
3084 if (msg
->rsp
[2] != 0) {
3085 /* An error getting the response, just ignore it. */
3089 netfn
= msg
->rsp
[4] >> 2;
3091 chan
= msg
->rsp
[3] & 0xf;
3094 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3097 kref_get(&user
->refcount
);
3103 /* We didn't find a user, deliver an error response. */
3104 ipmi_inc_stat(intf
, unhandled_commands
);
3106 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3107 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3108 msg
->data
[2] = msg
->rsp
[3];
3109 msg
->data
[3] = msg
->rsp
[6];
3110 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3111 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3112 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3114 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3115 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3116 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3117 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3118 msg
->data_size
= 11;
3123 printk("Invalid command:");
3124 for (m
= 0; m
< msg
->data_size
; m
++)
3125 printk(" %2.2x", msg
->data
[m
]);
3130 handlers
= intf
->handlers
;
3132 handlers
->sender(intf
->send_info
, msg
, 0);
3134 * We used the message, so return the value
3135 * that causes it to not be freed or
3142 /* Deliver the message to the user. */
3143 ipmi_inc_stat(intf
, handled_commands
);
3145 recv_msg
= ipmi_alloc_recv_msg();
3148 * We couldn't allocate memory for the
3149 * message, so requeue it for handling
3153 kref_put(&user
->refcount
, free_user
);
3155 /* Extract the source address from the data. */
3156 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3157 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3158 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3159 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3160 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3163 * Extract the rest of the message information
3164 * from the IPMB header.
3166 recv_msg
->user
= user
;
3167 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3168 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3169 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3170 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3171 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3174 * We chop off 10, not 9 bytes because the checksum
3175 * at the end also needs to be removed.
3177 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3178 memcpy(recv_msg
->msg_data
,
3180 msg
->rsp_size
- 10);
3181 deliver_response(recv_msg
);
3188 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3189 struct ipmi_smi_msg
*msg
)
3191 struct ipmi_lan_addr lan_addr
;
3192 struct ipmi_recv_msg
*recv_msg
;
3196 * This is 13, not 12, because the response must contain a
3199 if (msg
->rsp_size
< 13) {
3200 /* Message not big enough, just ignore it. */
3201 ipmi_inc_stat(intf
, invalid_lan_responses
);
3205 if (msg
->rsp
[2] != 0) {
3206 /* An error getting the response, just ignore it. */
3210 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3211 lan_addr
.session_handle
= msg
->rsp
[4];
3212 lan_addr
.remote_SWID
= msg
->rsp
[8];
3213 lan_addr
.local_SWID
= msg
->rsp
[5];
3214 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3215 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3216 lan_addr
.lun
= msg
->rsp
[9] & 3;
3219 * It's a response from a remote entity. Look up the sequence
3220 * number and handle the response.
3222 if (intf_find_seq(intf
,
3226 (msg
->rsp
[6] >> 2) & (~1),
3227 (struct ipmi_addr
*) &(lan_addr
),
3230 * We were unable to find the sequence number,
3231 * so just nuke the message.
3233 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3237 memcpy(recv_msg
->msg_data
,
3239 msg
->rsp_size
- 11);
3241 * The other fields matched, so no need to set them, except
3242 * for netfn, which needs to be the response that was
3243 * returned, not the request value.
3245 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3246 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3247 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3248 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3249 ipmi_inc_stat(intf
, handled_lan_responses
);
3250 deliver_response(recv_msg
);
3255 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3256 struct ipmi_smi_msg
*msg
)
3258 struct cmd_rcvr
*rcvr
;
3260 unsigned char netfn
;
3263 ipmi_user_t user
= NULL
;
3264 struct ipmi_lan_addr
*lan_addr
;
3265 struct ipmi_recv_msg
*recv_msg
;
3267 if (msg
->rsp_size
< 12) {
3268 /* Message not big enough, just ignore it. */
3269 ipmi_inc_stat(intf
, invalid_commands
);
3273 if (msg
->rsp
[2] != 0) {
3274 /* An error getting the response, just ignore it. */
3278 netfn
= msg
->rsp
[6] >> 2;
3280 chan
= msg
->rsp
[3] & 0xf;
3283 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3286 kref_get(&user
->refcount
);
3292 /* We didn't find a user, just give up. */
3293 ipmi_inc_stat(intf
, unhandled_commands
);
3296 * Don't do anything with these messages, just allow
3301 /* Deliver the message to the user. */
3302 ipmi_inc_stat(intf
, handled_commands
);
3304 recv_msg
= ipmi_alloc_recv_msg();
3307 * We couldn't allocate memory for the
3308 * message, so requeue it for handling later.
3311 kref_put(&user
->refcount
, free_user
);
3313 /* Extract the source address from the data. */
3314 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3315 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3316 lan_addr
->session_handle
= msg
->rsp
[4];
3317 lan_addr
->remote_SWID
= msg
->rsp
[8];
3318 lan_addr
->local_SWID
= msg
->rsp
[5];
3319 lan_addr
->lun
= msg
->rsp
[9] & 3;
3320 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3321 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3324 * Extract the rest of the message information
3325 * from the IPMB header.
3327 recv_msg
->user
= user
;
3328 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3329 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3330 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3331 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3332 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3335 * We chop off 12, not 11 bytes because the checksum
3336 * at the end also needs to be removed.
3338 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3339 memcpy(recv_msg
->msg_data
,
3341 msg
->rsp_size
- 12);
3342 deliver_response(recv_msg
);
3350 * This routine will handle "Get Message" command responses with
3351 * channels that use an OEM Medium. The message format belongs to
3352 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3353 * Chapter 22, sections 22.6 and 22.24 for more details.
3355 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3356 struct ipmi_smi_msg
*msg
)
3358 struct cmd_rcvr
*rcvr
;
3360 unsigned char netfn
;
3363 ipmi_user_t user
= NULL
;
3364 struct ipmi_system_interface_addr
*smi_addr
;
3365 struct ipmi_recv_msg
*recv_msg
;
3368 * We expect the OEM SW to perform error checking
3369 * so we just do some basic sanity checks
3371 if (msg
->rsp_size
< 4) {
3372 /* Message not big enough, just ignore it. */
3373 ipmi_inc_stat(intf
, invalid_commands
);
3377 if (msg
->rsp
[2] != 0) {
3378 /* An error getting the response, just ignore it. */
3383 * This is an OEM Message so the OEM needs to know how
3384 * handle the message. We do no interpretation.
3386 netfn
= msg
->rsp
[0] >> 2;
3388 chan
= msg
->rsp
[3] & 0xf;
3391 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3394 kref_get(&user
->refcount
);
3400 /* We didn't find a user, just give up. */
3401 ipmi_inc_stat(intf
, unhandled_commands
);
3404 * Don't do anything with these messages, just allow
3410 /* Deliver the message to the user. */
3411 ipmi_inc_stat(intf
, handled_commands
);
3413 recv_msg
= ipmi_alloc_recv_msg();
3416 * We couldn't allocate memory for the
3417 * message, so requeue it for handling
3421 kref_put(&user
->refcount
, free_user
);
3424 * OEM Messages are expected to be delivered via
3425 * the system interface to SMS software. We might
3426 * need to visit this again depending on OEM
3429 smi_addr
= ((struct ipmi_system_interface_addr
*)
3431 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3432 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3433 smi_addr
->lun
= msg
->rsp
[0] & 3;
3435 recv_msg
->user
= user
;
3436 recv_msg
->user_msg_data
= NULL
;
3437 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3438 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3439 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3440 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3443 * The message starts at byte 4 which follows the
3444 * the Channel Byte in the "GET MESSAGE" command
3446 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3447 memcpy(recv_msg
->msg_data
,
3450 deliver_response(recv_msg
);
3457 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3458 struct ipmi_smi_msg
*msg
)
3460 struct ipmi_system_interface_addr
*smi_addr
;
3462 recv_msg
->msgid
= 0;
3463 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3464 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3465 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3466 smi_addr
->lun
= msg
->rsp
[0] & 3;
3467 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3468 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3469 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3470 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3471 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3472 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3475 static int handle_read_event_rsp(ipmi_smi_t intf
,
3476 struct ipmi_smi_msg
*msg
)
3478 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3479 struct list_head msgs
;
3482 int deliver_count
= 0;
3483 unsigned long flags
;
3485 if (msg
->rsp_size
< 19) {
3486 /* Message is too small to be an IPMB event. */
3487 ipmi_inc_stat(intf
, invalid_events
);
3491 if (msg
->rsp
[2] != 0) {
3492 /* An error getting the event, just ignore it. */
3496 INIT_LIST_HEAD(&msgs
);
3498 spin_lock_irqsave(&intf
->events_lock
, flags
);
3500 ipmi_inc_stat(intf
, events
);
3503 * Allocate and fill in one message for every user that is
3507 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3508 if (!user
->gets_events
)
3511 recv_msg
= ipmi_alloc_recv_msg();
3514 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3516 list_del(&recv_msg
->link
);
3517 ipmi_free_recv_msg(recv_msg
);
3520 * We couldn't allocate memory for the
3521 * message, so requeue it for handling
3530 copy_event_into_recv_msg(recv_msg
, msg
);
3531 recv_msg
->user
= user
;
3532 kref_get(&user
->refcount
);
3533 list_add_tail(&(recv_msg
->link
), &msgs
);
3537 if (deliver_count
) {
3538 /* Now deliver all the messages. */
3539 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3540 list_del(&recv_msg
->link
);
3541 deliver_response(recv_msg
);
3543 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3545 * No one to receive the message, put it in queue if there's
3546 * not already too many things in the queue.
3548 recv_msg
= ipmi_alloc_recv_msg();
3551 * We couldn't allocate memory for the
3552 * message, so requeue it for handling
3559 copy_event_into_recv_msg(recv_msg
, msg
);
3560 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3561 intf
->waiting_events_count
++;
3562 } else if (!intf
->event_msg_printed
) {
3564 * There's too many things in the queue, discard this
3567 printk(KERN_WARNING PFX
"Event queue full, discarding"
3568 " incoming events\n");
3569 intf
->event_msg_printed
= 1;
3573 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3578 static int handle_bmc_rsp(ipmi_smi_t intf
,
3579 struct ipmi_smi_msg
*msg
)
3581 struct ipmi_recv_msg
*recv_msg
;
3582 struct ipmi_user
*user
;
3584 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3585 if (recv_msg
== NULL
) {
3587 "IPMI message received with no owner. This\n"
3588 "could be because of a malformed message, or\n"
3589 "because of a hardware error. Contact your\n"
3590 "hardware vender for assistance\n");
3594 user
= recv_msg
->user
;
3595 /* Make sure the user still exists. */
3596 if (user
&& !user
->valid
) {
3597 /* The user for the message went away, so give up. */
3598 ipmi_inc_stat(intf
, unhandled_local_responses
);
3599 ipmi_free_recv_msg(recv_msg
);
3601 struct ipmi_system_interface_addr
*smi_addr
;
3603 ipmi_inc_stat(intf
, handled_local_responses
);
3604 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3605 recv_msg
->msgid
= msg
->msgid
;
3606 smi_addr
= ((struct ipmi_system_interface_addr
*)
3608 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3609 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3610 smi_addr
->lun
= msg
->rsp
[0] & 3;
3611 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3612 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3613 memcpy(recv_msg
->msg_data
,
3616 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3617 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3618 deliver_response(recv_msg
);
3625 * Handle a new message. Return 1 if the message should be requeued,
3626 * 0 if the message should be freed, or -1 if the message should not
3627 * be freed or requeued.
3629 static int handle_new_recv_msg(ipmi_smi_t intf
,
3630 struct ipmi_smi_msg
*msg
)
3638 for (m
= 0; m
< msg
->rsp_size
; m
++)
3639 printk(" %2.2x", msg
->rsp
[m
]);
3642 if (msg
->rsp_size
< 2) {
3643 /* Message is too small to be correct. */
3644 printk(KERN_WARNING PFX
"BMC returned to small a message"
3645 " for netfn %x cmd %x, got %d bytes\n",
3646 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3648 /* Generate an error response for the message. */
3649 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3650 msg
->rsp
[1] = msg
->data
[1];
3651 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3653 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3654 || (msg
->rsp
[1] != msg
->data
[1])) {
3656 * The NetFN and Command in the response is not even
3657 * marginally correct.
3659 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3660 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3661 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3662 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3664 /* Generate an error response for the message. */
3665 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3666 msg
->rsp
[1] = msg
->data
[1];
3667 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3671 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3672 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3673 && (msg
->user_data
!= NULL
)) {
3675 * It's a response to a response we sent. For this we
3676 * deliver a send message response to the user.
3678 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3681 if (msg
->rsp_size
< 2)
3682 /* Message is too small to be correct. */
3685 chan
= msg
->data
[2] & 0x0f;
3686 if (chan
>= IPMI_MAX_CHANNELS
)
3687 /* Invalid channel number */
3693 /* Make sure the user still exists. */
3694 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3697 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3698 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3699 recv_msg
->msg
.data_len
= 1;
3700 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3701 deliver_response(recv_msg
);
3702 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3703 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3704 /* It's from the receive queue. */
3705 chan
= msg
->rsp
[3] & 0xf;
3706 if (chan
>= IPMI_MAX_CHANNELS
) {
3707 /* Invalid channel number */
3713 * We need to make sure the channels have been initialized.
3714 * The channel_handler routine will set the "curr_channel"
3715 * equal to or greater than IPMI_MAX_CHANNELS when all the
3716 * channels for this interface have been initialized.
3718 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3719 requeue
= 0; /* Throw the message away */
3723 switch (intf
->channels
[chan
].medium
) {
3724 case IPMI_CHANNEL_MEDIUM_IPMB
:
3725 if (msg
->rsp
[4] & 0x04) {
3727 * It's a response, so find the
3728 * requesting message and send it up.
3730 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3733 * It's a command to the SMS from some other
3734 * entity. Handle that.
3736 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3740 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3741 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3742 if (msg
->rsp
[6] & 0x04) {
3744 * It's a response, so find the
3745 * requesting message and send it up.
3747 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3750 * It's a command to the SMS from some other
3751 * entity. Handle that.
3753 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3758 /* Check for OEM Channels. Clients had better
3759 register for these commands. */
3760 if ((intf
->channels
[chan
].medium
3761 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3762 && (intf
->channels
[chan
].medium
3763 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3764 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3767 * We don't handle the channel type, so just
3774 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3775 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3776 /* It's an asyncronous event. */
3777 requeue
= handle_read_event_rsp(intf
, msg
);
3779 /* It's a response from the local BMC. */
3780 requeue
= handle_bmc_rsp(intf
, msg
);
3787 /* Handle a new message from the lower layer. */
3788 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3789 struct ipmi_smi_msg
*msg
)
3791 unsigned long flags
= 0; /* keep us warning-free. */
3793 int run_to_completion
;
3796 if ((msg
->data_size
>= 2)
3797 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3798 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3799 && (msg
->user_data
== NULL
)) {
3801 * This is the local response to a command send, start
3802 * the timer for these. The user_data will not be
3803 * NULL if this is a response send, and we will let
3804 * response sends just go through.
3808 * Check for errors, if we get certain errors (ones
3809 * that mean basically we can try again later), we
3810 * ignore them and start the timer. Otherwise we
3811 * report the error immediately.
3813 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3814 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3815 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3816 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3817 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3818 int chan
= msg
->rsp
[3] & 0xf;
3820 /* Got an error sending the message, handle it. */
3821 if (chan
>= IPMI_MAX_CHANNELS
)
3822 ; /* This shouldn't happen */
3823 else if ((intf
->channels
[chan
].medium
3824 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3825 || (intf
->channels
[chan
].medium
3826 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3827 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3829 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3830 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3832 /* The message was sent, start the timer. */
3833 intf_start_seq_timer(intf
, msg
->msgid
);
3835 ipmi_free_smi_msg(msg
);
3840 * To preserve message order, if the list is not empty, we
3841 * tack this message onto the end of the list.
3843 run_to_completion
= intf
->run_to_completion
;
3844 if (!run_to_completion
)
3845 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3846 if (!list_empty(&intf
->waiting_msgs
)) {
3847 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3848 if (!run_to_completion
)
3849 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3852 if (!run_to_completion
)
3853 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3855 rv
= handle_new_recv_msg(intf
, msg
);
3858 * Could not handle the message now, just add it to a
3859 * list to handle later.
3861 run_to_completion
= intf
->run_to_completion
;
3862 if (!run_to_completion
)
3863 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3864 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3865 if (!run_to_completion
)
3866 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3867 } else if (rv
== 0) {
3868 ipmi_free_smi_msg(msg
);
3874 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3876 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3881 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3882 if (!user
->handler
->ipmi_watchdog_pretimeout
)
3885 user
->handler
->ipmi_watchdog_pretimeout(user
->handler_data
);
3889 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3891 static struct ipmi_smi_msg
*
3892 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3893 unsigned char seq
, long seqid
)
3895 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
3898 * If we can't allocate the message, then just return, we
3899 * get 4 retries, so this should be ok.
3903 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
3904 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
3905 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
3911 for (m
= 0; m
< smi_msg
->data_size
; m
++)
3912 printk(" %2.2x", smi_msg
->data
[m
]);
3919 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
3920 struct list_head
*timeouts
, long timeout_period
,
3921 int slot
, unsigned long *flags
)
3923 struct ipmi_recv_msg
*msg
;
3924 struct ipmi_smi_handlers
*handlers
;
3926 if (intf
->intf_num
== -1)
3932 ent
->timeout
-= timeout_period
;
3933 if (ent
->timeout
> 0)
3936 if (ent
->retries_left
== 0) {
3937 /* The message has used all its retries. */
3939 msg
= ent
->recv_msg
;
3940 list_add_tail(&msg
->link
, timeouts
);
3942 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
3943 else if (is_lan_addr(&ent
->recv_msg
->addr
))
3944 ipmi_inc_stat(intf
, timed_out_lan_commands
);
3946 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
3948 struct ipmi_smi_msg
*smi_msg
;
3949 /* More retries, send again. */
3952 * Start with the max timer, set to normal timer after
3953 * the message is sent.
3955 ent
->timeout
= MAX_MSG_TIMEOUT
;
3956 ent
->retries_left
--;
3957 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
3960 if (is_lan_addr(&ent
->recv_msg
->addr
))
3962 dropped_rexmit_lan_commands
);
3965 dropped_rexmit_ipmb_commands
);
3969 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
3972 * Send the new message. We send with a zero
3973 * priority. It timed out, I doubt time is that
3974 * critical now, and high priority messages are really
3975 * only for messages to the local MC, which don't get
3978 handlers
= intf
->handlers
;
3980 if (is_lan_addr(&ent
->recv_msg
->addr
))
3982 retransmitted_lan_commands
);
3985 retransmitted_ipmb_commands
);
3987 intf
->handlers
->sender(intf
->send_info
,
3990 ipmi_free_smi_msg(smi_msg
);
3992 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
3996 static void ipmi_timeout_handler(long timeout_period
)
3999 struct list_head timeouts
;
4000 struct ipmi_recv_msg
*msg
, *msg2
;
4001 struct ipmi_smi_msg
*smi_msg
, *smi_msg2
;
4002 unsigned long flags
;
4006 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4007 /* See if any waiting messages need to be processed. */
4008 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
4009 list_for_each_entry_safe(smi_msg
, smi_msg2
,
4010 &intf
->waiting_msgs
, link
) {
4011 if (!handle_new_recv_msg(intf
, smi_msg
)) {
4012 list_del(&smi_msg
->link
);
4013 ipmi_free_smi_msg(smi_msg
);
4016 * To preserve message order, quit if we
4017 * can't handle a message.
4022 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
4025 * Go through the seq table and find any messages that
4026 * have timed out, putting them in the timeouts
4029 INIT_LIST_HEAD(&timeouts
);
4030 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4031 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4032 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4033 &timeouts
, timeout_period
, i
,
4035 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4037 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4038 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4041 * Maintenance mode handling. Check the timeout
4042 * optimistically before we claim the lock. It may
4043 * mean a timeout gets missed occasionally, but that
4044 * only means the timeout gets extended by one period
4045 * in that case. No big deal, and it avoids the lock
4048 if (intf
->auto_maintenance_timeout
> 0) {
4049 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4050 if (intf
->auto_maintenance_timeout
> 0) {
4051 intf
->auto_maintenance_timeout
4053 if (!intf
->maintenance_mode
4054 && (intf
->auto_maintenance_timeout
<= 0)) {
4055 intf
->maintenance_mode_enable
= 0;
4056 maintenance_mode_update(intf
);
4059 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4066 static void ipmi_request_event(void)
4069 struct ipmi_smi_handlers
*handlers
;
4073 * Called from the timer, no need to check if handlers is
4076 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4077 /* No event requests when in maintenance mode. */
4078 if (intf
->maintenance_mode_enable
)
4081 handlers
= intf
->handlers
;
4083 handlers
->request_events(intf
->send_info
);
4088 static struct timer_list ipmi_timer
;
4090 /* Call every ~1000 ms. */
4091 #define IPMI_TIMEOUT_TIME 1000
4093 /* How many jiffies does it take to get to the timeout time. */
4094 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4097 * Request events from the queue every second (this is the number of
4098 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4099 * future, IPMI will add a way to know immediately if an event is in
4100 * the queue and this silliness can go away.
4102 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4104 static atomic_t stop_operation
;
4105 static unsigned int ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4107 static void ipmi_timeout(unsigned long data
)
4109 if (atomic_read(&stop_operation
))
4113 if (ticks_to_req_ev
== 0) {
4114 ipmi_request_event();
4115 ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4118 ipmi_timeout_handler(IPMI_TIMEOUT_TIME
);
4120 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4124 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4125 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4127 /* FIXME - convert these to slabs. */
4128 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4130 atomic_dec(&smi_msg_inuse_count
);
4134 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4136 struct ipmi_smi_msg
*rv
;
4137 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4139 rv
->done
= free_smi_msg
;
4140 rv
->user_data
= NULL
;
4141 atomic_inc(&smi_msg_inuse_count
);
4145 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4147 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4149 atomic_dec(&recv_msg_inuse_count
);
4153 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4155 struct ipmi_recv_msg
*rv
;
4157 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4160 rv
->done
= free_recv_msg
;
4161 atomic_inc(&recv_msg_inuse_count
);
4166 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4169 kref_put(&msg
->user
->refcount
, free_user
);
4172 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4174 #ifdef CONFIG_IPMI_PANIC_EVENT
4176 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4180 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4184 #ifdef CONFIG_IPMI_PANIC_STRING
4185 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4187 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4188 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4189 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4190 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4191 /* A get event receiver command, save it. */
4192 intf
->event_receiver
= msg
->msg
.data
[1];
4193 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4197 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4199 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4200 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4201 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4202 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4204 * A get device id command, save if we are an event
4205 * receiver or generator.
4207 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4208 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4213 static void send_panic_events(char *str
)
4215 struct kernel_ipmi_msg msg
;
4217 unsigned char data
[16];
4218 struct ipmi_system_interface_addr
*si
;
4219 struct ipmi_addr addr
;
4220 struct ipmi_smi_msg smi_msg
;
4221 struct ipmi_recv_msg recv_msg
;
4223 si
= (struct ipmi_system_interface_addr
*) &addr
;
4224 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4225 si
->channel
= IPMI_BMC_CHANNEL
;
4228 /* Fill in an event telling that we have failed. */
4229 msg
.netfn
= 0x04; /* Sensor or Event. */
4230 msg
.cmd
= 2; /* Platform event command. */
4233 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4234 data
[1] = 0x03; /* This is for IPMI 1.0. */
4235 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4236 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4237 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4240 * Put a few breadcrumbs in. Hopefully later we can add more things
4241 * to make the panic events more useful.
4249 smi_msg
.done
= dummy_smi_done_handler
;
4250 recv_msg
.done
= dummy_recv_done_handler
;
4252 /* For every registered interface, send the event. */
4253 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4254 if (!intf
->handlers
)
4255 /* Interface is not ready. */
4258 intf
->run_to_completion
= 1;
4259 /* Send the event announcing the panic. */
4260 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4261 i_ipmi_request(NULL
,
4270 intf
->channels
[0].address
,
4271 intf
->channels
[0].lun
,
4272 0, 1); /* Don't retry, and don't wait. */
4275 #ifdef CONFIG_IPMI_PANIC_STRING
4277 * On every interface, dump a bunch of OEM event holding the
4283 /* For every registered interface, send the event. */
4284 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4286 struct ipmi_ipmb_addr
*ipmb
;
4289 if (intf
->intf_num
== -1)
4290 /* Interface was not ready yet. */
4294 * intf_num is used as an marker to tell if the
4295 * interface is valid. Thus we need a read barrier to
4296 * make sure data fetched before checking intf_num
4302 * First job here is to figure out where to send the
4303 * OEM events. There's no way in IPMI to send OEM
4304 * events using an event send command, so we have to
4305 * find the SEL to put them in and stick them in
4309 /* Get capabilities from the get device id. */
4310 intf
->local_sel_device
= 0;
4311 intf
->local_event_generator
= 0;
4312 intf
->event_receiver
= 0;
4314 /* Request the device info from the local MC. */
4315 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4316 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4319 intf
->null_user_handler
= device_id_fetcher
;
4320 i_ipmi_request(NULL
,
4329 intf
->channels
[0].address
,
4330 intf
->channels
[0].lun
,
4331 0, 1); /* Don't retry, and don't wait. */
4333 if (intf
->local_event_generator
) {
4334 /* Request the event receiver from the local MC. */
4335 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4336 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4339 intf
->null_user_handler
= event_receiver_fetcher
;
4340 i_ipmi_request(NULL
,
4349 intf
->channels
[0].address
,
4350 intf
->channels
[0].lun
,
4351 0, 1); /* no retry, and no wait. */
4353 intf
->null_user_handler
= NULL
;
4356 * Validate the event receiver. The low bit must not
4357 * be 1 (it must be a valid IPMB address), it cannot
4358 * be zero, and it must not be my address.
4360 if (((intf
->event_receiver
& 1) == 0)
4361 && (intf
->event_receiver
!= 0)
4362 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4364 * The event receiver is valid, send an IPMB
4367 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4368 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4369 ipmb
->channel
= 0; /* FIXME - is this right? */
4370 ipmb
->lun
= intf
->event_receiver_lun
;
4371 ipmb
->slave_addr
= intf
->event_receiver
;
4372 } else if (intf
->local_sel_device
) {
4374 * The event receiver was not valid (or was
4375 * me), but I am an SEL device, just dump it
4378 si
= (struct ipmi_system_interface_addr
*) &addr
;
4379 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4380 si
->channel
= IPMI_BMC_CHANNEL
;
4383 continue; /* No where to send the event. */
4385 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4386 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4392 int size
= strlen(p
);
4398 data
[2] = 0xf0; /* OEM event without timestamp. */
4399 data
[3] = intf
->channels
[0].address
;
4400 data
[4] = j
++; /* sequence # */
4402 * Always give 11 bytes, so strncpy will fill
4403 * it with zeroes for me.
4405 strncpy(data
+5, p
, 11);
4408 i_ipmi_request(NULL
,
4417 intf
->channels
[0].address
,
4418 intf
->channels
[0].lun
,
4419 0, 1); /* no retry, and no wait. */
4422 #endif /* CONFIG_IPMI_PANIC_STRING */
4424 #endif /* CONFIG_IPMI_PANIC_EVENT */
4426 static int has_panicked
;
4428 static int panic_event(struct notifier_block
*this,
4429 unsigned long event
,
4438 /* For every registered interface, set it to run to completion. */
4439 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4440 if (!intf
->handlers
)
4441 /* Interface is not ready. */
4444 intf
->run_to_completion
= 1;
4445 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4448 #ifdef CONFIG_IPMI_PANIC_EVENT
4449 send_panic_events(ptr
);
4455 static struct notifier_block panic_block
= {
4456 .notifier_call
= panic_event
,
4458 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4461 static int ipmi_init_msghandler(void)
4468 rv
= driver_register(&ipmidriver
.driver
);
4470 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4474 printk(KERN_INFO
"ipmi message handler version "
4475 IPMI_DRIVER_VERSION
"\n");
4477 #ifdef CONFIG_PROC_FS
4478 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4479 if (!proc_ipmi_root
) {
4480 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4484 #endif /* CONFIG_PROC_FS */
4486 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4487 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4489 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4496 static int __init
ipmi_init_msghandler_mod(void)
4498 ipmi_init_msghandler();
4502 static void __exit
cleanup_ipmi(void)
4509 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4512 * This can't be called if any interfaces exist, so no worry
4513 * about shutting down the interfaces.
4517 * Tell the timer to stop, then wait for it to stop. This
4518 * avoids problems with race conditions removing the timer
4521 atomic_inc(&stop_operation
);
4522 del_timer_sync(&ipmi_timer
);
4524 #ifdef CONFIG_PROC_FS
4525 remove_proc_entry(proc_ipmi_root
->name
, NULL
);
4526 #endif /* CONFIG_PROC_FS */
4528 driver_unregister(&ipmidriver
.driver
);
4532 /* Check for buffer leaks. */
4533 count
= atomic_read(&smi_msg_inuse_count
);
4535 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4537 count
= atomic_read(&recv_msg_inuse_count
);
4539 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4542 module_exit(cleanup_ipmi
);
4544 module_init(ipmi_init_msghandler_mod
);
4545 MODULE_LICENSE("GPL");
4546 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4547 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4549 MODULE_VERSION(IPMI_DRIVER_VERSION
);