1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
21 #include <trace/events/block.h>
23 #include "blk-rq-qos.h"
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
29 #define BIO_INLINE_VECS 4
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
46 struct bio_set fs_bio_set
;
47 EXPORT_SYMBOL(fs_bio_set
);
50 * Our slab pool management
53 struct kmem_cache
*slab
;
54 unsigned int slab_ref
;
55 unsigned int slab_size
;
58 static DEFINE_MUTEX(bio_slab_lock
);
59 static struct bio_slab
*bio_slabs
;
60 static unsigned int bio_slab_nr
, bio_slab_max
;
62 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
64 unsigned int sz
= sizeof(struct bio
) + extra_size
;
65 struct kmem_cache
*slab
= NULL
;
66 struct bio_slab
*bslab
, *new_bio_slabs
;
67 unsigned int new_bio_slab_max
;
68 unsigned int i
, entry
= -1;
70 mutex_lock(&bio_slab_lock
);
73 while (i
< bio_slab_nr
) {
74 bslab
= &bio_slabs
[i
];
76 if (!bslab
->slab
&& entry
== -1)
78 else if (bslab
->slab_size
== sz
) {
89 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
90 new_bio_slab_max
= bio_slab_max
<< 1;
91 new_bio_slabs
= krealloc(bio_slabs
,
92 new_bio_slab_max
* sizeof(struct bio_slab
),
96 bio_slab_max
= new_bio_slab_max
;
97 bio_slabs
= new_bio_slabs
;
100 entry
= bio_slab_nr
++;
102 bslab
= &bio_slabs
[entry
];
104 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
105 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
106 SLAB_HWCACHE_ALIGN
, NULL
);
112 bslab
->slab_size
= sz
;
114 mutex_unlock(&bio_slab_lock
);
118 static void bio_put_slab(struct bio_set
*bs
)
120 struct bio_slab
*bslab
= NULL
;
123 mutex_lock(&bio_slab_lock
);
125 for (i
= 0; i
< bio_slab_nr
; i
++) {
126 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
127 bslab
= &bio_slabs
[i
];
132 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
135 WARN_ON(!bslab
->slab_ref
);
137 if (--bslab
->slab_ref
)
140 kmem_cache_destroy(bslab
->slab
);
144 mutex_unlock(&bio_slab_lock
);
147 unsigned int bvec_nr_vecs(unsigned short idx
)
149 return bvec_slabs
[--idx
].nr_vecs
;
152 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
158 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
160 if (idx
== BVEC_POOL_MAX
) {
161 mempool_free(bv
, pool
);
163 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
165 kmem_cache_free(bvs
->slab
, bv
);
169 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
175 * see comment near bvec_array define!
193 case 129 ... BIO_MAX_PAGES
:
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
204 if (*idx
== BVEC_POOL_MAX
) {
206 bvl
= mempool_alloc(pool
, gfp_mask
);
208 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
209 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
216 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
222 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
223 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
224 *idx
= BVEC_POOL_MAX
;
233 void bio_uninit(struct bio
*bio
)
235 bio_disassociate_blkg(bio
);
237 if (bio_integrity(bio
))
238 bio_integrity_free(bio
);
240 EXPORT_SYMBOL(bio_uninit
);
242 static void bio_free(struct bio
*bio
)
244 struct bio_set
*bs
= bio
->bi_pool
;
250 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
253 * If we have front padding, adjust the bio pointer before freeing
258 mempool_free(p
, &bs
->bio_pool
);
260 /* Bio was allocated by bio_kmalloc() */
266 * Users of this function have their own bio allocation. Subsequently,
267 * they must remember to pair any call to bio_init() with bio_uninit()
268 * when IO has completed, or when the bio is released.
270 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
271 unsigned short max_vecs
)
273 memset(bio
, 0, sizeof(*bio
));
274 atomic_set(&bio
->__bi_remaining
, 1);
275 atomic_set(&bio
->__bi_cnt
, 1);
277 bio
->bi_io_vec
= table
;
278 bio
->bi_max_vecs
= max_vecs
;
280 EXPORT_SYMBOL(bio_init
);
283 * bio_reset - reinitialize a bio
287 * After calling bio_reset(), @bio will be in the same state as a freshly
288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
289 * preserved are the ones that are initialized by bio_alloc_bioset(). See
290 * comment in struct bio.
292 void bio_reset(struct bio
*bio
)
294 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
298 memset(bio
, 0, BIO_RESET_BYTES
);
299 bio
->bi_flags
= flags
;
300 atomic_set(&bio
->__bi_remaining
, 1);
302 EXPORT_SYMBOL(bio_reset
);
304 static struct bio
*__bio_chain_endio(struct bio
*bio
)
306 struct bio
*parent
= bio
->bi_private
;
308 if (!parent
->bi_status
)
309 parent
->bi_status
= bio
->bi_status
;
314 static void bio_chain_endio(struct bio
*bio
)
316 bio_endio(__bio_chain_endio(bio
));
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
328 * The caller must not set bi_private or bi_end_io in @bio.
330 void bio_chain(struct bio
*bio
, struct bio
*parent
)
332 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
334 bio
->bi_private
= parent
;
335 bio
->bi_end_io
= bio_chain_endio
;
336 bio_inc_remaining(parent
);
338 EXPORT_SYMBOL(bio_chain
);
340 static void bio_alloc_rescue(struct work_struct
*work
)
342 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
346 spin_lock(&bs
->rescue_lock
);
347 bio
= bio_list_pop(&bs
->rescue_list
);
348 spin_unlock(&bs
->rescue_lock
);
353 generic_make_request(bio
);
357 static void punt_bios_to_rescuer(struct bio_set
*bs
)
359 struct bio_list punt
, nopunt
;
362 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
365 * In order to guarantee forward progress we must punt only bios that
366 * were allocated from this bio_set; otherwise, if there was a bio on
367 * there for a stacking driver higher up in the stack, processing it
368 * could require allocating bios from this bio_set, and doing that from
369 * our own rescuer would be bad.
371 * Since bio lists are singly linked, pop them all instead of trying to
372 * remove from the middle of the list:
375 bio_list_init(&punt
);
376 bio_list_init(&nopunt
);
378 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
379 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
380 current
->bio_list
[0] = nopunt
;
382 bio_list_init(&nopunt
);
383 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
384 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
385 current
->bio_list
[1] = nopunt
;
387 spin_lock(&bs
->rescue_lock
);
388 bio_list_merge(&bs
->rescue_list
, &punt
);
389 spin_unlock(&bs
->rescue_lock
);
391 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_* mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
427 * Pointer to new bio on success, NULL on failure.
429 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
432 gfp_t saved_gfp
= gfp_mask
;
434 unsigned inline_vecs
;
435 struct bio_vec
*bvl
= NULL
;
440 if (nr_iovecs
> UIO_MAXIOV
)
443 p
= kmalloc(sizeof(struct bio
) +
444 nr_iovecs
* sizeof(struct bio_vec
),
447 inline_vecs
= nr_iovecs
;
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
454 * generic_make_request() converts recursion to iteration; this
455 * means if we're running beneath it, any bios we allocate and
456 * submit will not be submitted (and thus freed) until after we
459 * This exposes us to a potential deadlock if we allocate
460 * multiple bios from the same bio_set() while running
461 * underneath generic_make_request(). If we were to allocate
462 * multiple bios (say a stacking block driver that was splitting
463 * bios), we would deadlock if we exhausted the mempool's
466 * We solve this, and guarantee forward progress, with a rescuer
467 * workqueue per bio_set. If we go to allocate and there are
468 * bios on current->bio_list, we first try the allocation
469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 * bios we would be blocking to the rescuer workqueue before
471 * we retry with the original gfp_flags.
474 if (current
->bio_list
&&
475 (!bio_list_empty(¤t
->bio_list
[0]) ||
476 !bio_list_empty(¤t
->bio_list
[1])) &&
477 bs
->rescue_workqueue
)
478 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
480 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
481 if (!p
&& gfp_mask
!= saved_gfp
) {
482 punt_bios_to_rescuer(bs
);
483 gfp_mask
= saved_gfp
;
484 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
487 front_pad
= bs
->front_pad
;
488 inline_vecs
= BIO_INLINE_VECS
;
495 bio_init(bio
, NULL
, 0);
497 if (nr_iovecs
> inline_vecs
) {
498 unsigned long idx
= 0;
500 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
501 if (!bvl
&& gfp_mask
!= saved_gfp
) {
502 punt_bios_to_rescuer(bs
);
503 gfp_mask
= saved_gfp
;
504 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
510 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
511 } else if (nr_iovecs
) {
512 bvl
= bio
->bi_inline_vecs
;
516 bio
->bi_max_vecs
= nr_iovecs
;
517 bio
->bi_io_vec
= bvl
;
521 mempool_free(p
, &bs
->bio_pool
);
524 EXPORT_SYMBOL(bio_alloc_bioset
);
526 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
530 struct bvec_iter iter
;
532 __bio_for_each_segment(bv
, bio
, iter
, start
) {
533 char *data
= bvec_kmap_irq(&bv
, &flags
);
534 memset(data
, 0, bv
.bv_len
);
535 flush_dcache_page(bv
.bv_page
);
536 bvec_kunmap_irq(data
, &flags
);
539 EXPORT_SYMBOL(zero_fill_bio_iter
);
542 * bio_put - release a reference to a bio
543 * @bio: bio to release reference to
546 * Put a reference to a &struct bio, either one you have gotten with
547 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
549 void bio_put(struct bio
*bio
)
551 if (!bio_flagged(bio
, BIO_REFFED
))
554 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
559 if (atomic_dec_and_test(&bio
->__bi_cnt
))
563 EXPORT_SYMBOL(bio_put
);
566 * __bio_clone_fast - clone a bio that shares the original bio's biovec
567 * @bio: destination bio
568 * @bio_src: bio to clone
570 * Clone a &bio. Caller will own the returned bio, but not
571 * the actual data it points to. Reference count of returned
574 * Caller must ensure that @bio_src is not freed before @bio.
576 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
578 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
581 * most users will be overriding ->bi_disk with a new target,
582 * so we don't set nor calculate new physical/hw segment counts here
584 bio
->bi_disk
= bio_src
->bi_disk
;
585 bio
->bi_partno
= bio_src
->bi_partno
;
586 bio_set_flag(bio
, BIO_CLONED
);
587 if (bio_flagged(bio_src
, BIO_THROTTLED
))
588 bio_set_flag(bio
, BIO_THROTTLED
);
589 bio
->bi_opf
= bio_src
->bi_opf
;
590 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
591 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
592 bio
->bi_iter
= bio_src
->bi_iter
;
593 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
595 bio_clone_blkg_association(bio
, bio_src
);
596 blkcg_bio_issue_init(bio
);
598 EXPORT_SYMBOL(__bio_clone_fast
);
601 * bio_clone_fast - clone a bio that shares the original bio's biovec
603 * @gfp_mask: allocation priority
604 * @bs: bio_set to allocate from
606 * Like __bio_clone_fast, only also allocates the returned bio
608 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
612 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
616 __bio_clone_fast(b
, bio
);
618 if (bio_integrity(bio
)) {
621 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
631 EXPORT_SYMBOL(bio_clone_fast
);
633 static inline bool page_is_mergeable(const struct bio_vec
*bv
,
634 struct page
*page
, unsigned int len
, unsigned int off
,
637 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) +
638 bv
->bv_offset
+ bv
->bv_len
- 1;
639 phys_addr_t page_addr
= page_to_phys(page
);
641 if (vec_end_addr
+ 1 != page_addr
+ off
)
643 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
646 *same_page
= ((vec_end_addr
& PAGE_MASK
) == page_addr
);
647 if (!*same_page
&& pfn_to_page(PFN_DOWN(vec_end_addr
)) + 1 != page
)
652 static bool bio_try_merge_pc_page(struct request_queue
*q
, struct bio
*bio
,
653 struct page
*page
, unsigned len
, unsigned offset
,
656 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
657 unsigned long mask
= queue_segment_boundary(q
);
658 phys_addr_t addr1
= page_to_phys(bv
->bv_page
) + bv
->bv_offset
;
659 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
661 if ((addr1
| mask
) != (addr2
| mask
))
663 if (bv
->bv_len
+ len
> queue_max_segment_size(q
))
665 return __bio_try_merge_page(bio
, page
, len
, offset
, same_page
);
669 * __bio_add_pc_page - attempt to add page to passthrough bio
670 * @q: the target queue
671 * @bio: destination bio
673 * @len: vec entry length
674 * @offset: vec entry offset
675 * @same_page: return if the merge happen inside the same page
677 * Attempt to add a page to the bio_vec maplist. This can fail for a
678 * number of reasons, such as the bio being full or target block device
679 * limitations. The target block device must allow bio's up to PAGE_SIZE,
680 * so it is always possible to add a single page to an empty bio.
682 * This should only be used by passthrough bios.
684 static int __bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
685 struct page
*page
, unsigned int len
, unsigned int offset
,
688 struct bio_vec
*bvec
;
691 * cloned bio must not modify vec list
693 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
696 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
699 if (bio
->bi_vcnt
> 0) {
700 if (bio_try_merge_pc_page(q
, bio
, page
, len
, offset
, same_page
))
704 * If the queue doesn't support SG gaps and adding this segment
705 * would create a gap, disallow it.
707 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
708 if (bvec_gap_to_prev(q
, bvec
, offset
))
712 if (bio_full(bio
, len
))
715 if (bio
->bi_vcnt
>= queue_max_segments(q
))
718 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
719 bvec
->bv_page
= page
;
721 bvec
->bv_offset
= offset
;
723 bio
->bi_iter
.bi_size
+= len
;
727 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
728 struct page
*page
, unsigned int len
, unsigned int offset
)
730 bool same_page
= false;
731 return __bio_add_pc_page(q
, bio
, page
, len
, offset
, &same_page
);
733 EXPORT_SYMBOL(bio_add_pc_page
);
736 * __bio_try_merge_page - try appending data to an existing bvec.
737 * @bio: destination bio
738 * @page: start page to add
739 * @len: length of the data to add
740 * @off: offset of the data relative to @page
741 * @same_page: return if the segment has been merged inside the same page
743 * Try to add the data at @page + @off to the last bvec of @bio. This is a
744 * a useful optimisation for file systems with a block size smaller than the
747 * Warn if (@len, @off) crosses pages in case that @same_page is true.
749 * Return %true on success or %false on failure.
751 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
752 unsigned int len
, unsigned int off
, bool *same_page
)
754 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
757 if (bio
->bi_vcnt
> 0) {
758 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
760 if (page_is_mergeable(bv
, page
, len
, off
, same_page
)) {
761 if (bio
->bi_iter
.bi_size
> UINT_MAX
- len
)
764 bio
->bi_iter
.bi_size
+= len
;
770 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
773 * __bio_add_page - add page(s) to a bio in a new segment
774 * @bio: destination bio
775 * @page: start page to add
776 * @len: length of the data to add, may cross pages
777 * @off: offset of the data relative to @page, may cross pages
779 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
780 * that @bio has space for another bvec.
782 void __bio_add_page(struct bio
*bio
, struct page
*page
,
783 unsigned int len
, unsigned int off
)
785 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
787 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
788 WARN_ON_ONCE(bio_full(bio
, len
));
794 bio
->bi_iter
.bi_size
+= len
;
797 if (!bio_flagged(bio
, BIO_WORKINGSET
) && unlikely(PageWorkingset(page
)))
798 bio_set_flag(bio
, BIO_WORKINGSET
);
800 EXPORT_SYMBOL_GPL(__bio_add_page
);
803 * bio_add_page - attempt to add page(s) to bio
804 * @bio: destination bio
805 * @page: start page to add
806 * @len: vec entry length, may cross pages
807 * @offset: vec entry offset relative to @page, may cross pages
809 * Attempt to add page(s) to the bio_vec maplist. This will only fail
810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
812 int bio_add_page(struct bio
*bio
, struct page
*page
,
813 unsigned int len
, unsigned int offset
)
815 bool same_page
= false;
817 if (!__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
818 if (bio_full(bio
, len
))
820 __bio_add_page(bio
, page
, len
, offset
);
824 EXPORT_SYMBOL(bio_add_page
);
826 void bio_release_pages(struct bio
*bio
, bool mark_dirty
)
828 struct bvec_iter_all iter_all
;
829 struct bio_vec
*bvec
;
831 if (bio_flagged(bio
, BIO_NO_PAGE_REF
))
834 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
835 if (mark_dirty
&& !PageCompound(bvec
->bv_page
))
836 set_page_dirty_lock(bvec
->bv_page
);
837 put_page(bvec
->bv_page
);
841 static int __bio_iov_bvec_add_pages(struct bio
*bio
, struct iov_iter
*iter
)
843 const struct bio_vec
*bv
= iter
->bvec
;
847 if (WARN_ON_ONCE(iter
->iov_offset
> bv
->bv_len
))
850 len
= min_t(size_t, bv
->bv_len
- iter
->iov_offset
, iter
->count
);
851 size
= bio_add_page(bio
, bv
->bv_page
, len
,
852 bv
->bv_offset
+ iter
->iov_offset
);
853 if (unlikely(size
!= len
))
855 iov_iter_advance(iter
, size
);
859 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
862 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
863 * @bio: bio to add pages to
864 * @iter: iov iterator describing the region to be mapped
866 * Pins pages from *iter and appends them to @bio's bvec array. The
867 * pages will have to be released using put_page() when done.
868 * For multi-segment *iter, this function only adds pages from the
869 * the next non-empty segment of the iov iterator.
871 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
873 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
874 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
875 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
876 struct page
**pages
= (struct page
**)bv
;
877 bool same_page
= false;
883 * Move page array up in the allocated memory for the bio vecs as far as
884 * possible so that we can start filling biovecs from the beginning
885 * without overwriting the temporary page array.
887 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
888 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
890 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
891 if (unlikely(size
<= 0))
892 return size
? size
: -EFAULT
;
894 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
895 struct page
*page
= pages
[i
];
897 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
899 if (__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
903 if (WARN_ON_ONCE(bio_full(bio
, len
)))
905 __bio_add_page(bio
, page
, len
, offset
);
910 iov_iter_advance(iter
, size
);
915 * bio_iov_iter_get_pages - add user or kernel pages to a bio
916 * @bio: bio to add pages to
917 * @iter: iov iterator describing the region to be added
919 * This takes either an iterator pointing to user memory, or one pointing to
920 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
921 * map them into the kernel. On IO completion, the caller should put those
922 * pages. If we're adding kernel pages, and the caller told us it's safe to
923 * do so, we just have to add the pages to the bio directly. We don't grab an
924 * extra reference to those pages (the user should already have that), and we
925 * don't put the page on IO completion. The caller needs to check if the bio is
926 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
929 * The function tries, but does not guarantee, to pin as many pages as
930 * fit into the bio, or are requested in *iter, whatever is smaller. If
931 * MM encounters an error pinning the requested pages, it stops. Error
932 * is returned only if 0 pages could be pinned.
934 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
936 const bool is_bvec
= iov_iter_is_bvec(iter
);
939 if (WARN_ON_ONCE(bio
->bi_vcnt
))
944 ret
= __bio_iov_bvec_add_pages(bio
, iter
);
946 ret
= __bio_iov_iter_get_pages(bio
, iter
);
947 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
, 0));
950 bio_set_flag(bio
, BIO_NO_PAGE_REF
);
951 return bio
->bi_vcnt
? 0 : ret
;
954 static void submit_bio_wait_endio(struct bio
*bio
)
956 complete(bio
->bi_private
);
960 * submit_bio_wait - submit a bio, and wait until it completes
961 * @bio: The &struct bio which describes the I/O
963 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
964 * bio_endio() on failure.
966 * WARNING: Unlike to how submit_bio() is usually used, this function does not
967 * result in bio reference to be consumed. The caller must drop the reference
970 int submit_bio_wait(struct bio
*bio
)
972 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
974 bio
->bi_private
= &done
;
975 bio
->bi_end_io
= submit_bio_wait_endio
;
976 bio
->bi_opf
|= REQ_SYNC
;
978 wait_for_completion_io(&done
);
980 return blk_status_to_errno(bio
->bi_status
);
982 EXPORT_SYMBOL(submit_bio_wait
);
985 * bio_advance - increment/complete a bio by some number of bytes
986 * @bio: bio to advance
987 * @bytes: number of bytes to complete
989 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
990 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
991 * be updated on the last bvec as well.
993 * @bio will then represent the remaining, uncompleted portion of the io.
995 void bio_advance(struct bio
*bio
, unsigned bytes
)
997 if (bio_integrity(bio
))
998 bio_integrity_advance(bio
, bytes
);
1000 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1002 EXPORT_SYMBOL(bio_advance
);
1004 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1005 struct bio
*src
, struct bvec_iter
*src_iter
)
1007 struct bio_vec src_bv
, dst_bv
;
1008 void *src_p
, *dst_p
;
1011 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1012 src_bv
= bio_iter_iovec(src
, *src_iter
);
1013 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1015 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1017 src_p
= kmap_atomic(src_bv
.bv_page
);
1018 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1020 memcpy(dst_p
+ dst_bv
.bv_offset
,
1021 src_p
+ src_bv
.bv_offset
,
1024 kunmap_atomic(dst_p
);
1025 kunmap_atomic(src_p
);
1027 flush_dcache_page(dst_bv
.bv_page
);
1029 bio_advance_iter(src
, src_iter
, bytes
);
1030 bio_advance_iter(dst
, dst_iter
, bytes
);
1033 EXPORT_SYMBOL(bio_copy_data_iter
);
1036 * bio_copy_data - copy contents of data buffers from one bio to another
1038 * @dst: destination bio
1040 * Stops when it reaches the end of either @src or @dst - that is, copies
1041 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1043 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1045 struct bvec_iter src_iter
= src
->bi_iter
;
1046 struct bvec_iter dst_iter
= dst
->bi_iter
;
1048 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1050 EXPORT_SYMBOL(bio_copy_data
);
1053 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1055 * @src: source bio list
1056 * @dst: destination bio list
1058 * Stops when it reaches the end of either the @src list or @dst list - that is,
1059 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1062 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1064 struct bvec_iter src_iter
= src
->bi_iter
;
1065 struct bvec_iter dst_iter
= dst
->bi_iter
;
1068 if (!src_iter
.bi_size
) {
1073 src_iter
= src
->bi_iter
;
1076 if (!dst_iter
.bi_size
) {
1081 dst_iter
= dst
->bi_iter
;
1084 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1087 EXPORT_SYMBOL(bio_list_copy_data
);
1089 struct bio_map_data
{
1091 struct iov_iter iter
;
1095 static struct bio_map_data
*bio_alloc_map_data(struct iov_iter
*data
,
1098 struct bio_map_data
*bmd
;
1099 if (data
->nr_segs
> UIO_MAXIOV
)
1102 bmd
= kmalloc(struct_size(bmd
, iov
, data
->nr_segs
), gfp_mask
);
1105 memcpy(bmd
->iov
, data
->iov
, sizeof(struct iovec
) * data
->nr_segs
);
1107 bmd
->iter
.iov
= bmd
->iov
;
1112 * bio_copy_from_iter - copy all pages from iov_iter to bio
1113 * @bio: The &struct bio which describes the I/O as destination
1114 * @iter: iov_iter as source
1116 * Copy all pages from iov_iter to bio.
1117 * Returns 0 on success, or error on failure.
1119 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter
*iter
)
1121 struct bio_vec
*bvec
;
1122 struct bvec_iter_all iter_all
;
1124 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1127 ret
= copy_page_from_iter(bvec
->bv_page
,
1132 if (!iov_iter_count(iter
))
1135 if (ret
< bvec
->bv_len
)
1143 * bio_copy_to_iter - copy all pages from bio to iov_iter
1144 * @bio: The &struct bio which describes the I/O as source
1145 * @iter: iov_iter as destination
1147 * Copy all pages from bio to iov_iter.
1148 * Returns 0 on success, or error on failure.
1150 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1152 struct bio_vec
*bvec
;
1153 struct bvec_iter_all iter_all
;
1155 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1158 ret
= copy_page_to_iter(bvec
->bv_page
,
1163 if (!iov_iter_count(&iter
))
1166 if (ret
< bvec
->bv_len
)
1173 void bio_free_pages(struct bio
*bio
)
1175 struct bio_vec
*bvec
;
1176 struct bvec_iter_all iter_all
;
1178 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1179 __free_page(bvec
->bv_page
);
1181 EXPORT_SYMBOL(bio_free_pages
);
1184 * bio_uncopy_user - finish previously mapped bio
1185 * @bio: bio being terminated
1187 * Free pages allocated from bio_copy_user_iov() and write back data
1188 * to user space in case of a read.
1190 int bio_uncopy_user(struct bio
*bio
)
1192 struct bio_map_data
*bmd
= bio
->bi_private
;
1195 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1197 * if we're in a workqueue, the request is orphaned, so
1198 * don't copy into a random user address space, just free
1199 * and return -EINTR so user space doesn't expect any data.
1203 else if (bio_data_dir(bio
) == READ
)
1204 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1205 if (bmd
->is_our_pages
)
1206 bio_free_pages(bio
);
1214 * bio_copy_user_iov - copy user data to bio
1215 * @q: destination block queue
1216 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1217 * @iter: iovec iterator
1218 * @gfp_mask: memory allocation flags
1220 * Prepares and returns a bio for indirect user io, bouncing data
1221 * to/from kernel pages as necessary. Must be paired with
1222 * call bio_uncopy_user() on io completion.
1224 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1225 struct rq_map_data
*map_data
,
1226 struct iov_iter
*iter
,
1229 struct bio_map_data
*bmd
;
1234 unsigned int len
= iter
->count
;
1235 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1237 bmd
= bio_alloc_map_data(iter
, gfp_mask
);
1239 return ERR_PTR(-ENOMEM
);
1242 * We need to do a deep copy of the iov_iter including the iovecs.
1243 * The caller provided iov might point to an on-stack or otherwise
1246 bmd
->is_our_pages
= map_data
? 0 : 1;
1248 nr_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1249 if (nr_pages
> BIO_MAX_PAGES
)
1250 nr_pages
= BIO_MAX_PAGES
;
1253 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1260 nr_pages
= 1 << map_data
->page_order
;
1261 i
= map_data
->offset
/ PAGE_SIZE
;
1264 unsigned int bytes
= PAGE_SIZE
;
1272 if (i
== map_data
->nr_entries
* nr_pages
) {
1277 page
= map_data
->pages
[i
/ nr_pages
];
1278 page
+= (i
% nr_pages
);
1282 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1289 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
) {
1303 map_data
->offset
+= bio
->bi_iter
.bi_size
;
1308 if ((iov_iter_rw(iter
) == WRITE
&& (!map_data
|| !map_data
->null_mapped
)) ||
1309 (map_data
&& map_data
->from_user
)) {
1310 ret
= bio_copy_from_iter(bio
, iter
);
1314 if (bmd
->is_our_pages
)
1316 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1319 bio
->bi_private
= bmd
;
1320 if (map_data
&& map_data
->null_mapped
)
1321 bio_set_flag(bio
, BIO_NULL_MAPPED
);
1325 bio_free_pages(bio
);
1329 return ERR_PTR(ret
);
1333 * bio_map_user_iov - map user iovec into bio
1334 * @q: the struct request_queue for the bio
1335 * @iter: iovec iterator
1336 * @gfp_mask: memory allocation flags
1338 * Map the user space address into a bio suitable for io to a block
1339 * device. Returns an error pointer in case of error.
1341 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1342 struct iov_iter
*iter
,
1349 if (!iov_iter_count(iter
))
1350 return ERR_PTR(-EINVAL
);
1352 bio
= bio_kmalloc(gfp_mask
, iov_iter_npages(iter
, BIO_MAX_PAGES
));
1354 return ERR_PTR(-ENOMEM
);
1356 while (iov_iter_count(iter
)) {
1357 struct page
**pages
;
1359 size_t offs
, added
= 0;
1362 bytes
= iov_iter_get_pages_alloc(iter
, &pages
, LONG_MAX
, &offs
);
1363 if (unlikely(bytes
<= 0)) {
1364 ret
= bytes
? bytes
: -EFAULT
;
1368 npages
= DIV_ROUND_UP(offs
+ bytes
, PAGE_SIZE
);
1370 if (unlikely(offs
& queue_dma_alignment(q
))) {
1374 for (j
= 0; j
< npages
; j
++) {
1375 struct page
*page
= pages
[j
];
1376 unsigned int n
= PAGE_SIZE
- offs
;
1377 bool same_page
= false;
1382 if (!__bio_add_pc_page(q
, bio
, page
, n
, offs
,
1393 iov_iter_advance(iter
, added
);
1396 * release the pages we didn't map into the bio, if any
1399 put_page(pages
[j
++]);
1401 /* couldn't stuff something into bio? */
1406 bio_set_flag(bio
, BIO_USER_MAPPED
);
1409 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1410 * it would normally disappear when its bi_end_io is run.
1411 * however, we need it for the unmap, so grab an extra
1418 bio_release_pages(bio
, false);
1420 return ERR_PTR(ret
);
1424 * bio_unmap_user - unmap a bio
1425 * @bio: the bio being unmapped
1427 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1430 * bio_unmap_user() may sleep.
1432 void bio_unmap_user(struct bio
*bio
)
1434 bio_release_pages(bio
, bio_data_dir(bio
) == READ
);
1439 static void bio_invalidate_vmalloc_pages(struct bio
*bio
)
1441 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1442 if (bio
->bi_private
&& !op_is_write(bio_op(bio
))) {
1443 unsigned long i
, len
= 0;
1445 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1446 len
+= bio
->bi_io_vec
[i
].bv_len
;
1447 invalidate_kernel_vmap_range(bio
->bi_private
, len
);
1452 static void bio_map_kern_endio(struct bio
*bio
)
1454 bio_invalidate_vmalloc_pages(bio
);
1459 * bio_map_kern - map kernel address into bio
1460 * @q: the struct request_queue for the bio
1461 * @data: pointer to buffer to map
1462 * @len: length in bytes
1463 * @gfp_mask: allocation flags for bio allocation
1465 * Map the kernel address into a bio suitable for io to a block
1466 * device. Returns an error pointer in case of error.
1468 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1471 unsigned long kaddr
= (unsigned long)data
;
1472 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1473 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1474 const int nr_pages
= end
- start
;
1475 bool is_vmalloc
= is_vmalloc_addr(data
);
1480 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1482 return ERR_PTR(-ENOMEM
);
1485 flush_kernel_vmap_range(data
, len
);
1486 bio
->bi_private
= data
;
1489 offset
= offset_in_page(kaddr
);
1490 for (i
= 0; i
< nr_pages
; i
++) {
1491 unsigned int bytes
= PAGE_SIZE
- offset
;
1500 page
= virt_to_page(data
);
1502 page
= vmalloc_to_page(data
);
1503 if (bio_add_pc_page(q
, bio
, page
, bytes
,
1505 /* we don't support partial mappings */
1507 return ERR_PTR(-EINVAL
);
1515 bio
->bi_end_io
= bio_map_kern_endio
;
1519 static void bio_copy_kern_endio(struct bio
*bio
)
1521 bio_free_pages(bio
);
1525 static void bio_copy_kern_endio_read(struct bio
*bio
)
1527 char *p
= bio
->bi_private
;
1528 struct bio_vec
*bvec
;
1529 struct bvec_iter_all iter_all
;
1531 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1532 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1536 bio_copy_kern_endio(bio
);
1540 * bio_copy_kern - copy kernel address into bio
1541 * @q: the struct request_queue for the bio
1542 * @data: pointer to buffer to copy
1543 * @len: length in bytes
1544 * @gfp_mask: allocation flags for bio and page allocation
1545 * @reading: data direction is READ
1547 * copy the kernel address into a bio suitable for io to a block
1548 * device. Returns an error pointer in case of error.
1550 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1551 gfp_t gfp_mask
, int reading
)
1553 unsigned long kaddr
= (unsigned long)data
;
1554 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1555 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1564 return ERR_PTR(-EINVAL
);
1566 nr_pages
= end
- start
;
1567 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1569 return ERR_PTR(-ENOMEM
);
1573 unsigned int bytes
= PAGE_SIZE
;
1578 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1583 memcpy(page_address(page
), p
, bytes
);
1585 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1593 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1594 bio
->bi_private
= data
;
1596 bio
->bi_end_io
= bio_copy_kern_endio
;
1602 bio_free_pages(bio
);
1604 return ERR_PTR(-ENOMEM
);
1608 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1609 * for performing direct-IO in BIOs.
1611 * The problem is that we cannot run set_page_dirty() from interrupt context
1612 * because the required locks are not interrupt-safe. So what we can do is to
1613 * mark the pages dirty _before_ performing IO. And in interrupt context,
1614 * check that the pages are still dirty. If so, fine. If not, redirty them
1615 * in process context.
1617 * We special-case compound pages here: normally this means reads into hugetlb
1618 * pages. The logic in here doesn't really work right for compound pages
1619 * because the VM does not uniformly chase down the head page in all cases.
1620 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1621 * handle them at all. So we skip compound pages here at an early stage.
1623 * Note that this code is very hard to test under normal circumstances because
1624 * direct-io pins the pages with get_user_pages(). This makes
1625 * is_page_cache_freeable return false, and the VM will not clean the pages.
1626 * But other code (eg, flusher threads) could clean the pages if they are mapped
1629 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1630 * deferred bio dirtying paths.
1634 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1636 void bio_set_pages_dirty(struct bio
*bio
)
1638 struct bio_vec
*bvec
;
1639 struct bvec_iter_all iter_all
;
1641 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1642 if (!PageCompound(bvec
->bv_page
))
1643 set_page_dirty_lock(bvec
->bv_page
);
1648 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1649 * If they are, then fine. If, however, some pages are clean then they must
1650 * have been written out during the direct-IO read. So we take another ref on
1651 * the BIO and re-dirty the pages in process context.
1653 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1654 * here on. It will run one put_page() against each page and will run one
1655 * bio_put() against the BIO.
1658 static void bio_dirty_fn(struct work_struct
*work
);
1660 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1661 static DEFINE_SPINLOCK(bio_dirty_lock
);
1662 static struct bio
*bio_dirty_list
;
1665 * This runs in process context
1667 static void bio_dirty_fn(struct work_struct
*work
)
1669 struct bio
*bio
, *next
;
1671 spin_lock_irq(&bio_dirty_lock
);
1672 next
= bio_dirty_list
;
1673 bio_dirty_list
= NULL
;
1674 spin_unlock_irq(&bio_dirty_lock
);
1676 while ((bio
= next
) != NULL
) {
1677 next
= bio
->bi_private
;
1679 bio_release_pages(bio
, true);
1684 void bio_check_pages_dirty(struct bio
*bio
)
1686 struct bio_vec
*bvec
;
1687 unsigned long flags
;
1688 struct bvec_iter_all iter_all
;
1690 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1691 if (!PageDirty(bvec
->bv_page
) && !PageCompound(bvec
->bv_page
))
1695 bio_release_pages(bio
, false);
1699 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1700 bio
->bi_private
= bio_dirty_list
;
1701 bio_dirty_list
= bio
;
1702 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1703 schedule_work(&bio_dirty_work
);
1706 void update_io_ticks(struct hd_struct
*part
, unsigned long now
)
1708 unsigned long stamp
;
1710 stamp
= READ_ONCE(part
->stamp
);
1711 if (unlikely(stamp
!= now
)) {
1712 if (likely(cmpxchg(&part
->stamp
, stamp
, now
) == stamp
)) {
1713 __part_stat_add(part
, io_ticks
, 1);
1717 part
= &part_to_disk(part
)->part0
;
1722 void generic_start_io_acct(struct request_queue
*q
, int op
,
1723 unsigned long sectors
, struct hd_struct
*part
)
1725 const int sgrp
= op_stat_group(op
);
1729 update_io_ticks(part
, jiffies
);
1730 part_stat_inc(part
, ios
[sgrp
]);
1731 part_stat_add(part
, sectors
[sgrp
], sectors
);
1732 part_inc_in_flight(q
, part
, op_is_write(op
));
1736 EXPORT_SYMBOL(generic_start_io_acct
);
1738 void generic_end_io_acct(struct request_queue
*q
, int req_op
,
1739 struct hd_struct
*part
, unsigned long start_time
)
1741 unsigned long now
= jiffies
;
1742 unsigned long duration
= now
- start_time
;
1743 const int sgrp
= op_stat_group(req_op
);
1747 update_io_ticks(part
, now
);
1748 part_stat_add(part
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1749 part_stat_add(part
, time_in_queue
, duration
);
1750 part_dec_in_flight(q
, part
, op_is_write(req_op
));
1754 EXPORT_SYMBOL(generic_end_io_acct
);
1756 static inline bool bio_remaining_done(struct bio
*bio
)
1759 * If we're not chaining, then ->__bi_remaining is always 1 and
1760 * we always end io on the first invocation.
1762 if (!bio_flagged(bio
, BIO_CHAIN
))
1765 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1767 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1768 bio_clear_flag(bio
, BIO_CHAIN
);
1776 * bio_endio - end I/O on a bio
1780 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1781 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1782 * bio unless they own it and thus know that it has an end_io function.
1784 * bio_endio() can be called several times on a bio that has been chained
1785 * using bio_chain(). The ->bi_end_io() function will only be called the
1786 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1787 * generated if BIO_TRACE_COMPLETION is set.
1789 void bio_endio(struct bio
*bio
)
1792 if (!bio_remaining_done(bio
))
1794 if (!bio_integrity_endio(bio
))
1798 rq_qos_done_bio(bio
->bi_disk
->queue
, bio
);
1801 * Need to have a real endio function for chained bios, otherwise
1802 * various corner cases will break (like stacking block devices that
1803 * save/restore bi_end_io) - however, we want to avoid unbounded
1804 * recursion and blowing the stack. Tail call optimization would
1805 * handle this, but compiling with frame pointers also disables
1806 * gcc's sibling call optimization.
1808 if (bio
->bi_end_io
== bio_chain_endio
) {
1809 bio
= __bio_chain_endio(bio
);
1813 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1814 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
,
1815 blk_status_to_errno(bio
->bi_status
));
1816 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1819 blk_throtl_bio_endio(bio
);
1820 /* release cgroup info */
1823 bio
->bi_end_io(bio
);
1825 EXPORT_SYMBOL(bio_endio
);
1828 * bio_split - split a bio
1829 * @bio: bio to split
1830 * @sectors: number of sectors to split from the front of @bio
1832 * @bs: bio set to allocate from
1834 * Allocates and returns a new bio which represents @sectors from the start of
1835 * @bio, and updates @bio to represent the remaining sectors.
1837 * Unless this is a discard request the newly allocated bio will point
1838 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1839 * neither @bio nor @bs are freed before the split bio.
1841 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1842 gfp_t gfp
, struct bio_set
*bs
)
1846 BUG_ON(sectors
<= 0);
1847 BUG_ON(sectors
>= bio_sectors(bio
));
1849 split
= bio_clone_fast(bio
, gfp
, bs
);
1853 split
->bi_iter
.bi_size
= sectors
<< 9;
1855 if (bio_integrity(split
))
1856 bio_integrity_trim(split
);
1858 bio_advance(bio
, split
->bi_iter
.bi_size
);
1860 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1861 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1865 EXPORT_SYMBOL(bio_split
);
1868 * bio_trim - trim a bio
1870 * @offset: number of sectors to trim from the front of @bio
1871 * @size: size we want to trim @bio to, in sectors
1873 void bio_trim(struct bio
*bio
, int offset
, int size
)
1875 /* 'bio' is a cloned bio which we need to trim to match
1876 * the given offset and size.
1880 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1883 bio_advance(bio
, offset
<< 9);
1884 bio
->bi_iter
.bi_size
= size
;
1886 if (bio_integrity(bio
))
1887 bio_integrity_trim(bio
);
1890 EXPORT_SYMBOL_GPL(bio_trim
);
1893 * create memory pools for biovec's in a bio_set.
1894 * use the global biovec slabs created for general use.
1896 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1898 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1900 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1904 * bioset_exit - exit a bioset initialized with bioset_init()
1906 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1909 void bioset_exit(struct bio_set
*bs
)
1911 if (bs
->rescue_workqueue
)
1912 destroy_workqueue(bs
->rescue_workqueue
);
1913 bs
->rescue_workqueue
= NULL
;
1915 mempool_exit(&bs
->bio_pool
);
1916 mempool_exit(&bs
->bvec_pool
);
1918 bioset_integrity_free(bs
);
1921 bs
->bio_slab
= NULL
;
1923 EXPORT_SYMBOL(bioset_exit
);
1926 * bioset_init - Initialize a bio_set
1927 * @bs: pool to initialize
1928 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1929 * @front_pad: Number of bytes to allocate in front of the returned bio
1930 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1931 * and %BIOSET_NEED_RESCUER
1934 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1935 * to ask for a number of bytes to be allocated in front of the bio.
1936 * Front pad allocation is useful for embedding the bio inside
1937 * another structure, to avoid allocating extra data to go with the bio.
1938 * Note that the bio must be embedded at the END of that structure always,
1939 * or things will break badly.
1940 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1941 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1942 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1943 * dispatch queued requests when the mempool runs out of space.
1946 int bioset_init(struct bio_set
*bs
,
1947 unsigned int pool_size
,
1948 unsigned int front_pad
,
1951 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1953 bs
->front_pad
= front_pad
;
1955 spin_lock_init(&bs
->rescue_lock
);
1956 bio_list_init(&bs
->rescue_list
);
1957 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1959 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1963 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
1966 if ((flags
& BIOSET_NEED_BVECS
) &&
1967 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
1970 if (!(flags
& BIOSET_NEED_RESCUER
))
1973 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1974 if (!bs
->rescue_workqueue
)
1982 EXPORT_SYMBOL(bioset_init
);
1985 * Initialize and setup a new bio_set, based on the settings from
1988 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
1993 if (src
->bvec_pool
.min_nr
)
1994 flags
|= BIOSET_NEED_BVECS
;
1995 if (src
->rescue_workqueue
)
1996 flags
|= BIOSET_NEED_RESCUER
;
1998 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
2000 EXPORT_SYMBOL(bioset_init_from_src
);
2002 #ifdef CONFIG_BLK_CGROUP
2005 * bio_disassociate_blkg - puts back the blkg reference if associated
2008 * Helper to disassociate the blkg from @bio if a blkg is associated.
2010 void bio_disassociate_blkg(struct bio
*bio
)
2013 blkg_put(bio
->bi_blkg
);
2014 bio
->bi_blkg
= NULL
;
2017 EXPORT_SYMBOL_GPL(bio_disassociate_blkg
);
2020 * __bio_associate_blkg - associate a bio with the a blkg
2022 * @blkg: the blkg to associate
2024 * This tries to associate @bio with the specified @blkg. Association failure
2025 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2026 * be anything between @blkg and the root_blkg. This situation only happens
2027 * when a cgroup is dying and then the remaining bios will spill to the closest
2030 * A reference will be taken on the @blkg and will be released when @bio is
2033 static void __bio_associate_blkg(struct bio
*bio
, struct blkcg_gq
*blkg
)
2035 bio_disassociate_blkg(bio
);
2037 bio
->bi_blkg
= blkg_tryget_closest(blkg
);
2041 * bio_associate_blkg_from_css - associate a bio with a specified css
2045 * Associate @bio with the blkg found by combining the css's blkg and the
2046 * request_queue of the @bio. This falls back to the queue's root_blkg if
2047 * the association fails with the css.
2049 void bio_associate_blkg_from_css(struct bio
*bio
,
2050 struct cgroup_subsys_state
*css
)
2052 struct request_queue
*q
= bio
->bi_disk
->queue
;
2053 struct blkcg_gq
*blkg
;
2057 if (!css
|| !css
->parent
)
2058 blkg
= q
->root_blkg
;
2060 blkg
= blkg_lookup_create(css_to_blkcg(css
), q
);
2062 __bio_associate_blkg(bio
, blkg
);
2066 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css
);
2070 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2072 * @page: the page to lookup the blkcg from
2074 * Associate @bio with the blkg from @page's owning memcg and the respective
2075 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2078 void bio_associate_blkg_from_page(struct bio
*bio
, struct page
*page
)
2080 struct cgroup_subsys_state
*css
;
2082 if (!page
->mem_cgroup
)
2087 css
= cgroup_e_css(page
->mem_cgroup
->css
.cgroup
, &io_cgrp_subsys
);
2088 bio_associate_blkg_from_css(bio
, css
);
2092 #endif /* CONFIG_MEMCG */
2095 * bio_associate_blkg - associate a bio with a blkg
2098 * Associate @bio with the blkg found from the bio's css and request_queue.
2099 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2100 * already associated, the css is reused and association redone as the
2101 * request_queue may have changed.
2103 void bio_associate_blkg(struct bio
*bio
)
2105 struct cgroup_subsys_state
*css
;
2110 css
= &bio_blkcg(bio
)->css
;
2114 bio_associate_blkg_from_css(bio
, css
);
2118 EXPORT_SYMBOL_GPL(bio_associate_blkg
);
2121 * bio_clone_blkg_association - clone blkg association from src to dst bio
2122 * @dst: destination bio
2125 void bio_clone_blkg_association(struct bio
*dst
, struct bio
*src
)
2130 __bio_associate_blkg(dst
, src
->bi_blkg
);
2134 EXPORT_SYMBOL_GPL(bio_clone_blkg_association
);
2135 #endif /* CONFIG_BLK_CGROUP */
2137 static void __init
biovec_init_slabs(void)
2141 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2143 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2145 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2150 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2151 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2152 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2156 static int __init
init_bio(void)
2160 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
2163 BUILD_BUG_ON(BIO_FLAG_LAST
> BVEC_POOL_OFFSET
);
2166 panic("bio: can't allocate bios\n");
2168 bio_integrity_init();
2169 biovec_init_slabs();
2171 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
2172 panic("bio: can't allocate bios\n");
2174 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
2175 panic("bio: can't create integrity pool\n");
2179 subsys_initcall(init_bio
);