media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / drivers / infiniband / sw / rdmavt / qp.c
blob7858d499db03390cb73069b0e795b58478c12004
1 /*
2 * Copyright(c) 2016 - 2019 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
61 #define RVT_RWQ_COUNT_THRESHOLD 16
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 enum ib_qp_type type);
68 * Convert the AETH RNR timeout code into the number of microseconds.
70 static const u32 ib_rvt_rnr_table[32] = {
71 655360, /* 00: 655.36 */
72 10, /* 01: .01 */
73 20, /* 02 .02 */
74 30, /* 03: .03 */
75 40, /* 04: .04 */
76 60, /* 05: .06 */
77 80, /* 06: .08 */
78 120, /* 07: .12 */
79 160, /* 08: .16 */
80 240, /* 09: .24 */
81 320, /* 0A: .32 */
82 480, /* 0B: .48 */
83 640, /* 0C: .64 */
84 960, /* 0D: .96 */
85 1280, /* 0E: 1.28 */
86 1920, /* 0F: 1.92 */
87 2560, /* 10: 2.56 */
88 3840, /* 11: 3.84 */
89 5120, /* 12: 5.12 */
90 7680, /* 13: 7.68 */
91 10240, /* 14: 10.24 */
92 15360, /* 15: 15.36 */
93 20480, /* 16: 20.48 */
94 30720, /* 17: 30.72 */
95 40960, /* 18: 40.96 */
96 61440, /* 19: 61.44 */
97 81920, /* 1A: 81.92 */
98 122880, /* 1B: 122.88 */
99 163840, /* 1C: 163.84 */
100 245760, /* 1D: 245.76 */
101 327680, /* 1E: 327.68 */
102 491520 /* 1F: 491.52 */
106 * Note that it is OK to post send work requests in the SQE and ERR
107 * states; rvt_do_send() will process them and generate error
108 * completions as per IB 1.2 C10-96.
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 [IB_QPS_RESET] = 0,
112 [IB_QPS_INIT] = RVT_POST_RECV_OK,
113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 RVT_PROCESS_NEXT_SEND_OK,
117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
124 EXPORT_SYMBOL(ib_rvt_state_ops);
126 /* platform specific: return the last level cache (llc) size, in KiB */
127 static int rvt_wss_llc_size(void)
129 /* assume that the boot CPU value is universal for all CPUs */
130 return boot_cpu_data.x86_cache_size;
133 /* platform specific: cacheless copy */
134 static void cacheless_memcpy(void *dst, void *src, size_t n)
137 * Use the only available X64 cacheless copy. Add a __user cast
138 * to quiet sparse. The src agument is already in the kernel so
139 * there are no security issues. The extra fault recovery machinery
140 * is not invoked.
142 __copy_user_nocache(dst, (void __user *)src, n, 0);
145 void rvt_wss_exit(struct rvt_dev_info *rdi)
147 struct rvt_wss *wss = rdi->wss;
149 if (!wss)
150 return;
152 /* coded to handle partially initialized and repeat callers */
153 kfree(wss->entries);
154 wss->entries = NULL;
155 kfree(rdi->wss);
156 rdi->wss = NULL;
160 * rvt_wss_init - Init wss data structures
162 * Return: 0 on success
164 int rvt_wss_init(struct rvt_dev_info *rdi)
166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 long llc_size;
170 long llc_bits;
171 long table_size;
172 long table_bits;
173 struct rvt_wss *wss;
174 int node = rdi->dparms.node;
176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 rdi->wss = NULL;
178 return 0;
181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 if (!rdi->wss)
183 return -ENOMEM;
184 wss = rdi->wss;
186 /* check for a valid percent range - default to 80 if none or invalid */
187 if (wss_threshold < 1 || wss_threshold > 100)
188 wss_threshold = 80;
190 /* reject a wildly large period */
191 if (wss_clean_period > 1000000)
192 wss_clean_period = 256;
194 /* reject a zero period */
195 if (wss_clean_period == 0)
196 wss_clean_period = 1;
199 * Calculate the table size - the next power of 2 larger than the
200 * LLC size. LLC size is in KiB.
202 llc_size = rvt_wss_llc_size() * 1024;
203 table_size = roundup_pow_of_two(llc_size);
205 /* one bit per page in rounded up table */
206 llc_bits = llc_size / PAGE_SIZE;
207 table_bits = table_size / PAGE_SIZE;
208 wss->pages_mask = table_bits - 1;
209 wss->num_entries = table_bits / BITS_PER_LONG;
211 wss->threshold = (llc_bits * wss_threshold) / 100;
212 if (wss->threshold == 0)
213 wss->threshold = 1;
215 wss->clean_period = wss_clean_period;
216 atomic_set(&wss->clean_counter, wss_clean_period);
218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 GFP_KERNEL, node);
220 if (!wss->entries) {
221 rvt_wss_exit(rdi);
222 return -ENOMEM;
225 return 0;
229 * Advance the clean counter. When the clean period has expired,
230 * clean an entry.
232 * This is implemented in atomics to avoid locking. Because multiple
233 * variables are involved, it can be racy which can lead to slightly
234 * inaccurate information. Since this is only a heuristic, this is
235 * OK. Any innaccuracies will clean themselves out as the counter
236 * advances. That said, it is unlikely the entry clean operation will
237 * race - the next possible racer will not start until the next clean
238 * period.
240 * The clean counter is implemented as a decrement to zero. When zero
241 * is reached an entry is cleaned.
243 static void wss_advance_clean_counter(struct rvt_wss *wss)
245 int entry;
246 int weight;
247 unsigned long bits;
249 /* become the cleaner if we decrement the counter to zero */
250 if (atomic_dec_and_test(&wss->clean_counter)) {
252 * Set, not add, the clean period. This avoids an issue
253 * where the counter could decrement below the clean period.
254 * Doing a set can result in lost decrements, slowing the
255 * clean advance. Since this a heuristic, this possible
256 * slowdown is OK.
258 * An alternative is to loop, advancing the counter by a
259 * clean period until the result is > 0. However, this could
260 * lead to several threads keeping another in the clean loop.
261 * This could be mitigated by limiting the number of times
262 * we stay in the loop.
264 atomic_set(&wss->clean_counter, wss->clean_period);
267 * Uniquely grab the entry to clean and move to next.
268 * The current entry is always the lower bits of
269 * wss.clean_entry. The table size, wss.num_entries,
270 * is always a power-of-2.
272 entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 & (wss->num_entries - 1);
275 /* clear the entry and count the bits */
276 bits = xchg(&wss->entries[entry], 0);
277 weight = hweight64((u64)bits);
278 /* only adjust the contended total count if needed */
279 if (weight)
280 atomic_sub(weight, &wss->total_count);
285 * Insert the given address into the working set array.
287 static void wss_insert(struct rvt_wss *wss, void *address)
289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 u32 nr = page & (BITS_PER_LONG - 1);
293 if (!test_and_set_bit(nr, &wss->entries[entry]))
294 atomic_inc(&wss->total_count);
296 wss_advance_clean_counter(wss);
300 * Is the working set larger than the threshold?
302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
304 return atomic_read(&wss->total_count) >= wss->threshold;
307 static void get_map_page(struct rvt_qpn_table *qpt,
308 struct rvt_qpn_map *map)
310 unsigned long page = get_zeroed_page(GFP_KERNEL);
313 * Free the page if someone raced with us installing it.
316 spin_lock(&qpt->lock);
317 if (map->page)
318 free_page(page);
319 else
320 map->page = (void *)page;
321 spin_unlock(&qpt->lock);
325 * init_qpn_table - initialize the QP number table for a device
326 * @qpt: the QPN table
328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
330 u32 offset, i;
331 struct rvt_qpn_map *map;
332 int ret = 0;
334 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335 return -EINVAL;
337 spin_lock_init(&qpt->lock);
339 qpt->last = rdi->dparms.qpn_start;
340 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
343 * Drivers may want some QPs beyond what we need for verbs let them use
344 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345 * for those. The reserved range must be *after* the range which verbs
346 * will pick from.
349 /* Figure out number of bit maps needed before reserved range */
350 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
352 /* This should always be zero */
353 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
355 /* Starting with the first reserved bit map */
356 map = &qpt->map[qpt->nmaps];
358 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361 if (!map->page) {
362 get_map_page(qpt, map);
363 if (!map->page) {
364 ret = -ENOMEM;
365 break;
368 set_bit(offset, map->page);
369 offset++;
370 if (offset == RVT_BITS_PER_PAGE) {
371 /* next page */
372 qpt->nmaps++;
373 map++;
374 offset = 0;
377 return ret;
381 * free_qpn_table - free the QP number table for a device
382 * @qpt: the QPN table
384 static void free_qpn_table(struct rvt_qpn_table *qpt)
386 int i;
388 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389 free_page((unsigned long)qpt->map[i].page);
393 * rvt_driver_qp_init - Init driver qp resources
394 * @rdi: rvt dev strucutre
396 * Return: 0 on success
398 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
400 int i;
401 int ret = -ENOMEM;
403 if (!rdi->dparms.qp_table_size)
404 return -EINVAL;
407 * If driver is not doing any QP allocation then make sure it is
408 * providing the necessary QP functions.
410 if (!rdi->driver_f.free_all_qps ||
411 !rdi->driver_f.qp_priv_alloc ||
412 !rdi->driver_f.qp_priv_free ||
413 !rdi->driver_f.notify_qp_reset ||
414 !rdi->driver_f.notify_restart_rc)
415 return -EINVAL;
417 /* allocate parent object */
418 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419 rdi->dparms.node);
420 if (!rdi->qp_dev)
421 return -ENOMEM;
423 /* allocate hash table */
424 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426 rdi->qp_dev->qp_table =
427 kmalloc_array_node(rdi->qp_dev->qp_table_size,
428 sizeof(*rdi->qp_dev->qp_table),
429 GFP_KERNEL, rdi->dparms.node);
430 if (!rdi->qp_dev->qp_table)
431 goto no_qp_table;
433 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
436 spin_lock_init(&rdi->qp_dev->qpt_lock);
438 /* initialize qpn map */
439 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440 goto fail_table;
442 spin_lock_init(&rdi->n_qps_lock);
444 return 0;
446 fail_table:
447 kfree(rdi->qp_dev->qp_table);
448 free_qpn_table(&rdi->qp_dev->qpn_table);
450 no_qp_table:
451 kfree(rdi->qp_dev);
453 return ret;
457 * rvt_free_qp_cb - callback function to reset a qp
458 * @qp: the qp to reset
459 * @v: a 64-bit value
461 * This function resets the qp and removes it from the
462 * qp hash table.
464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
466 unsigned int *qp_inuse = (unsigned int *)v;
467 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
469 /* Reset the qp and remove it from the qp hash list */
470 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
472 /* Increment the qp_inuse count */
473 (*qp_inuse)++;
477 * rvt_free_all_qps - check for QPs still in use
478 * @rdi: rvt device info structure
480 * There should not be any QPs still in use.
481 * Free memory for table.
482 * Return the number of QPs still in use.
484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
486 unsigned int qp_inuse = 0;
488 qp_inuse += rvt_mcast_tree_empty(rdi);
490 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
492 return qp_inuse;
496 * rvt_qp_exit - clean up qps on device exit
497 * @rdi: rvt dev structure
499 * Check for qp leaks and free resources.
501 void rvt_qp_exit(struct rvt_dev_info *rdi)
503 u32 qps_inuse = rvt_free_all_qps(rdi);
505 if (qps_inuse)
506 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507 qps_inuse);
508 if (!rdi->qp_dev)
509 return;
511 kfree(rdi->qp_dev->qp_table);
512 free_qpn_table(&rdi->qp_dev->qpn_table);
513 kfree(rdi->qp_dev);
516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
517 struct rvt_qpn_map *map, unsigned off)
519 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
524 * IB_QPT_SMI/IB_QPT_GSI
525 * @rdi: rvt device info structure
526 * @qpt: queue pair number table pointer
527 * @port_num: IB port number, 1 based, comes from core
529 * Return: The queue pair number
531 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
532 enum ib_qp_type type, u8 port_num)
534 u32 i, offset, max_scan, qpn;
535 struct rvt_qpn_map *map;
536 u32 ret;
538 if (rdi->driver_f.alloc_qpn)
539 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
541 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
542 unsigned n;
544 ret = type == IB_QPT_GSI;
545 n = 1 << (ret + 2 * (port_num - 1));
546 spin_lock(&qpt->lock);
547 if (qpt->flags & n)
548 ret = -EINVAL;
549 else
550 qpt->flags |= n;
551 spin_unlock(&qpt->lock);
552 goto bail;
555 qpn = qpt->last + qpt->incr;
556 if (qpn >= RVT_QPN_MAX)
557 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
558 /* offset carries bit 0 */
559 offset = qpn & RVT_BITS_PER_PAGE_MASK;
560 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
561 max_scan = qpt->nmaps - !offset;
562 for (i = 0;;) {
563 if (unlikely(!map->page)) {
564 get_map_page(qpt, map);
565 if (unlikely(!map->page))
566 break;
568 do {
569 if (!test_and_set_bit(offset, map->page)) {
570 qpt->last = qpn;
571 ret = qpn;
572 goto bail;
574 offset += qpt->incr;
576 * This qpn might be bogus if offset >= BITS_PER_PAGE.
577 * That is OK. It gets re-assigned below
579 qpn = mk_qpn(qpt, map, offset);
580 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
582 * In order to keep the number of pages allocated to a
583 * minimum, we scan the all existing pages before increasing
584 * the size of the bitmap table.
586 if (++i > max_scan) {
587 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
588 break;
589 map = &qpt->map[qpt->nmaps++];
590 /* start at incr with current bit 0 */
591 offset = qpt->incr | (offset & 1);
592 } else if (map < &qpt->map[qpt->nmaps]) {
593 ++map;
594 /* start at incr with current bit 0 */
595 offset = qpt->incr | (offset & 1);
596 } else {
597 map = &qpt->map[0];
598 /* wrap to first map page, invert bit 0 */
599 offset = qpt->incr | ((offset & 1) ^ 1);
601 /* there can be no set bits in low-order QoS bits */
602 WARN_ON(rdi->dparms.qos_shift > 1 &&
603 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
604 qpn = mk_qpn(qpt, map, offset);
607 ret = -ENOMEM;
609 bail:
610 return ret;
614 * rvt_clear_mr_refs - Drop help mr refs
615 * @qp: rvt qp data structure
616 * @clr_sends: If shoudl clear send side or not
618 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
620 unsigned n;
621 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
623 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
624 rvt_put_ss(&qp->s_rdma_read_sge);
626 rvt_put_ss(&qp->r_sge);
628 if (clr_sends) {
629 while (qp->s_last != qp->s_head) {
630 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
632 rvt_put_qp_swqe(qp, wqe);
633 if (++qp->s_last >= qp->s_size)
634 qp->s_last = 0;
635 smp_wmb(); /* see qp_set_savail */
637 if (qp->s_rdma_mr) {
638 rvt_put_mr(qp->s_rdma_mr);
639 qp->s_rdma_mr = NULL;
643 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
644 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
646 if (e->rdma_sge.mr) {
647 rvt_put_mr(e->rdma_sge.mr);
648 e->rdma_sge.mr = NULL;
654 * rvt_swqe_has_lkey - return true if lkey is used by swqe
655 * @wqe - the send wqe
656 * @lkey - the lkey
658 * Test the swqe for using lkey
660 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
662 int i;
664 for (i = 0; i < wqe->wr.num_sge; i++) {
665 struct rvt_sge *sge = &wqe->sg_list[i];
667 if (rvt_mr_has_lkey(sge->mr, lkey))
668 return true;
670 return false;
674 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
675 * @qp - the rvt_qp
676 * @lkey - the lkey
678 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
680 u32 s_last = qp->s_last;
682 while (s_last != qp->s_head) {
683 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
685 if (rvt_swqe_has_lkey(wqe, lkey))
686 return true;
688 if (++s_last >= qp->s_size)
689 s_last = 0;
691 if (qp->s_rdma_mr)
692 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
693 return true;
694 return false;
698 * rvt_qp_acks_has_lkey - return true if acks have lkey
699 * @qp - the qp
700 * @lkey - the lkey
702 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
704 int i;
705 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
707 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
708 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
710 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
711 return true;
713 return false;
717 * rvt_qp_mr_clean - clean up remote ops for lkey
718 * @qp - the qp
719 * @lkey - the lkey that is being de-registered
721 * This routine checks if the lkey is being used by
722 * the qp.
724 * If so, the qp is put into an error state to elminate
725 * any references from the qp.
727 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
729 bool lastwqe = false;
731 if (qp->ibqp.qp_type == IB_QPT_SMI ||
732 qp->ibqp.qp_type == IB_QPT_GSI)
733 /* avoid special QPs */
734 return;
735 spin_lock_irq(&qp->r_lock);
736 spin_lock(&qp->s_hlock);
737 spin_lock(&qp->s_lock);
739 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
740 goto check_lwqe;
742 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
743 rvt_qp_sends_has_lkey(qp, lkey) ||
744 rvt_qp_acks_has_lkey(qp, lkey))
745 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
746 check_lwqe:
747 spin_unlock(&qp->s_lock);
748 spin_unlock(&qp->s_hlock);
749 spin_unlock_irq(&qp->r_lock);
750 if (lastwqe) {
751 struct ib_event ev;
753 ev.device = qp->ibqp.device;
754 ev.element.qp = &qp->ibqp;
755 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
756 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
761 * rvt_remove_qp - remove qp form table
762 * @rdi: rvt dev struct
763 * @qp: qp to remove
765 * Remove the QP from the table so it can't be found asynchronously by
766 * the receive routine.
768 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
770 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
771 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
772 unsigned long flags;
773 int removed = 1;
775 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
777 if (rcu_dereference_protected(rvp->qp[0],
778 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
779 RCU_INIT_POINTER(rvp->qp[0], NULL);
780 } else if (rcu_dereference_protected(rvp->qp[1],
781 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
782 RCU_INIT_POINTER(rvp->qp[1], NULL);
783 } else {
784 struct rvt_qp *q;
785 struct rvt_qp __rcu **qpp;
787 removed = 0;
788 qpp = &rdi->qp_dev->qp_table[n];
789 for (; (q = rcu_dereference_protected(*qpp,
790 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
791 qpp = &q->next) {
792 if (q == qp) {
793 RCU_INIT_POINTER(*qpp,
794 rcu_dereference_protected(qp->next,
795 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
796 removed = 1;
797 trace_rvt_qpremove(qp, n);
798 break;
803 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
804 if (removed) {
805 synchronize_rcu();
806 rvt_put_qp(qp);
811 * rvt_alloc_rq - allocate memory for user or kernel buffer
812 * @rq: receive queue data structure
813 * @size: number of request queue entries
814 * @node: The NUMA node
815 * @udata: True if user data is available or not false
817 * Return: If memory allocation failed, return -ENONEM
818 * This function is used by both shared receive
819 * queues and non-shared receive queues to allocate
820 * memory.
822 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
823 struct ib_udata *udata)
825 if (udata) {
826 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
827 if (!rq->wq)
828 goto bail;
829 /* need kwq with no buffers */
830 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
831 if (!rq->kwq)
832 goto bail;
833 rq->kwq->curr_wq = rq->wq->wq;
834 } else {
835 /* need kwq with buffers */
836 rq->kwq =
837 vzalloc_node(sizeof(struct rvt_krwq) + size, node);
838 if (!rq->kwq)
839 goto bail;
840 rq->kwq->curr_wq = rq->kwq->wq;
843 spin_lock_init(&rq->kwq->p_lock);
844 spin_lock_init(&rq->kwq->c_lock);
845 return 0;
846 bail:
847 rvt_free_rq(rq);
848 return -ENOMEM;
852 * rvt_init_qp - initialize the QP state to the reset state
853 * @qp: the QP to init or reinit
854 * @type: the QP type
856 * This function is called from both rvt_create_qp() and
857 * rvt_reset_qp(). The difference is that the reset
858 * patch the necessary locks to protect against concurent
859 * access.
861 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
862 enum ib_qp_type type)
864 qp->remote_qpn = 0;
865 qp->qkey = 0;
866 qp->qp_access_flags = 0;
867 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
868 qp->s_hdrwords = 0;
869 qp->s_wqe = NULL;
870 qp->s_draining = 0;
871 qp->s_next_psn = 0;
872 qp->s_last_psn = 0;
873 qp->s_sending_psn = 0;
874 qp->s_sending_hpsn = 0;
875 qp->s_psn = 0;
876 qp->r_psn = 0;
877 qp->r_msn = 0;
878 if (type == IB_QPT_RC) {
879 qp->s_state = IB_OPCODE_RC_SEND_LAST;
880 qp->r_state = IB_OPCODE_RC_SEND_LAST;
881 } else {
882 qp->s_state = IB_OPCODE_UC_SEND_LAST;
883 qp->r_state = IB_OPCODE_UC_SEND_LAST;
885 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
886 qp->r_nak_state = 0;
887 qp->r_aflags = 0;
888 qp->r_flags = 0;
889 qp->s_head = 0;
890 qp->s_tail = 0;
891 qp->s_cur = 0;
892 qp->s_acked = 0;
893 qp->s_last = 0;
894 qp->s_ssn = 1;
895 qp->s_lsn = 0;
896 qp->s_mig_state = IB_MIG_MIGRATED;
897 qp->r_head_ack_queue = 0;
898 qp->s_tail_ack_queue = 0;
899 qp->s_acked_ack_queue = 0;
900 qp->s_num_rd_atomic = 0;
901 if (qp->r_rq.kwq)
902 qp->r_rq.kwq->count = qp->r_rq.size;
903 qp->r_sge.num_sge = 0;
904 atomic_set(&qp->s_reserved_used, 0);
908 * _rvt_reset_qp - initialize the QP state to the reset state
909 * @qp: the QP to reset
910 * @type: the QP type
912 * r_lock, s_hlock, and s_lock are required to be held by the caller
914 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
915 enum ib_qp_type type)
916 __must_hold(&qp->s_lock)
917 __must_hold(&qp->s_hlock)
918 __must_hold(&qp->r_lock)
920 lockdep_assert_held(&qp->r_lock);
921 lockdep_assert_held(&qp->s_hlock);
922 lockdep_assert_held(&qp->s_lock);
923 if (qp->state != IB_QPS_RESET) {
924 qp->state = IB_QPS_RESET;
926 /* Let drivers flush their waitlist */
927 rdi->driver_f.flush_qp_waiters(qp);
928 rvt_stop_rc_timers(qp);
929 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
930 spin_unlock(&qp->s_lock);
931 spin_unlock(&qp->s_hlock);
932 spin_unlock_irq(&qp->r_lock);
934 /* Stop the send queue and the retry timer */
935 rdi->driver_f.stop_send_queue(qp);
936 rvt_del_timers_sync(qp);
937 /* Wait for things to stop */
938 rdi->driver_f.quiesce_qp(qp);
940 /* take qp out the hash and wait for it to be unused */
941 rvt_remove_qp(rdi, qp);
943 /* grab the lock b/c it was locked at call time */
944 spin_lock_irq(&qp->r_lock);
945 spin_lock(&qp->s_hlock);
946 spin_lock(&qp->s_lock);
948 rvt_clear_mr_refs(qp, 1);
950 * Let the driver do any tear down or re-init it needs to for
951 * a qp that has been reset
953 rdi->driver_f.notify_qp_reset(qp);
955 rvt_init_qp(rdi, qp, type);
956 lockdep_assert_held(&qp->r_lock);
957 lockdep_assert_held(&qp->s_hlock);
958 lockdep_assert_held(&qp->s_lock);
962 * rvt_reset_qp - initialize the QP state to the reset state
963 * @rdi: the device info
964 * @qp: the QP to reset
965 * @type: the QP type
967 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
968 * before calling _rvt_reset_qp().
970 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
971 enum ib_qp_type type)
973 spin_lock_irq(&qp->r_lock);
974 spin_lock(&qp->s_hlock);
975 spin_lock(&qp->s_lock);
976 _rvt_reset_qp(rdi, qp, type);
977 spin_unlock(&qp->s_lock);
978 spin_unlock(&qp->s_hlock);
979 spin_unlock_irq(&qp->r_lock);
982 /** rvt_free_qpn - Free a qpn from the bit map
983 * @qpt: QP table
984 * @qpn: queue pair number to free
986 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
988 struct rvt_qpn_map *map;
990 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
991 if (map->page)
992 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
996 * get_allowed_ops - Given a QP type return the appropriate allowed OP
997 * @type: valid, supported, QP type
999 static u8 get_allowed_ops(enum ib_qp_type type)
1001 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1002 IB_OPCODE_UC : IB_OPCODE_UD;
1006 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1007 * @qp: Valid QP with allowed_ops set
1009 * The rvt_swqe data structure being used is a union, so this is
1010 * only valid for UD QPs.
1012 static void free_ud_wq_attr(struct rvt_qp *qp)
1014 struct rvt_swqe *wqe;
1015 int i;
1017 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1018 wqe = rvt_get_swqe_ptr(qp, i);
1019 kfree(wqe->ud_wr.attr);
1020 wqe->ud_wr.attr = NULL;
1025 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1026 * @qp: Valid QP with allowed_ops set
1027 * @node: Numa node for allocation
1029 * The rvt_swqe data structure being used is a union, so this is
1030 * only valid for UD QPs.
1032 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1034 struct rvt_swqe *wqe;
1035 int i;
1037 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1038 wqe = rvt_get_swqe_ptr(qp, i);
1039 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1040 GFP_KERNEL, node);
1041 if (!wqe->ud_wr.attr) {
1042 free_ud_wq_attr(qp);
1043 return -ENOMEM;
1047 return 0;
1051 * rvt_create_qp - create a queue pair for a device
1052 * @ibpd: the protection domain who's device we create the queue pair for
1053 * @init_attr: the attributes of the queue pair
1054 * @udata: user data for libibverbs.so
1056 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1057 * unique idea of what queue pair numbers mean. For instance there is a reserved
1058 * range for PSM.
1060 * Return: the queue pair on success, otherwise returns an errno.
1062 * Called by the ib_create_qp() core verbs function.
1064 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1065 struct ib_qp_init_attr *init_attr,
1066 struct ib_udata *udata)
1068 struct rvt_qp *qp;
1069 int err;
1070 struct rvt_swqe *swq = NULL;
1071 size_t sz;
1072 size_t sg_list_sz;
1073 struct ib_qp *ret = ERR_PTR(-ENOMEM);
1074 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1075 void *priv = NULL;
1076 size_t sqsize;
1078 if (!rdi)
1079 return ERR_PTR(-EINVAL);
1081 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1082 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1083 init_attr->create_flags)
1084 return ERR_PTR(-EINVAL);
1086 /* Check receive queue parameters if no SRQ is specified. */
1087 if (!init_attr->srq) {
1088 if (init_attr->cap.max_recv_sge >
1089 rdi->dparms.props.max_recv_sge ||
1090 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1091 return ERR_PTR(-EINVAL);
1093 if (init_attr->cap.max_send_sge +
1094 init_attr->cap.max_send_wr +
1095 init_attr->cap.max_recv_sge +
1096 init_attr->cap.max_recv_wr == 0)
1097 return ERR_PTR(-EINVAL);
1099 sqsize =
1100 init_attr->cap.max_send_wr + 1 +
1101 rdi->dparms.reserved_operations;
1102 switch (init_attr->qp_type) {
1103 case IB_QPT_SMI:
1104 case IB_QPT_GSI:
1105 if (init_attr->port_num == 0 ||
1106 init_attr->port_num > ibpd->device->phys_port_cnt)
1107 return ERR_PTR(-EINVAL);
1108 /* fall through */
1109 case IB_QPT_UC:
1110 case IB_QPT_RC:
1111 case IB_QPT_UD:
1112 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1113 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1114 if (!swq)
1115 return ERR_PTR(-ENOMEM);
1117 sz = sizeof(*qp);
1118 sg_list_sz = 0;
1119 if (init_attr->srq) {
1120 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1122 if (srq->rq.max_sge > 1)
1123 sg_list_sz = sizeof(*qp->r_sg_list) *
1124 (srq->rq.max_sge - 1);
1125 } else if (init_attr->cap.max_recv_sge > 1)
1126 sg_list_sz = sizeof(*qp->r_sg_list) *
1127 (init_attr->cap.max_recv_sge - 1);
1128 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1129 rdi->dparms.node);
1130 if (!qp)
1131 goto bail_swq;
1132 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1134 RCU_INIT_POINTER(qp->next, NULL);
1135 if (init_attr->qp_type == IB_QPT_RC) {
1136 qp->s_ack_queue =
1137 kcalloc_node(rvt_max_atomic(rdi),
1138 sizeof(*qp->s_ack_queue),
1139 GFP_KERNEL,
1140 rdi->dparms.node);
1141 if (!qp->s_ack_queue)
1142 goto bail_qp;
1144 /* initialize timers needed for rc qp */
1145 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1146 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1147 HRTIMER_MODE_REL);
1148 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1151 * Driver needs to set up it's private QP structure and do any
1152 * initialization that is needed.
1154 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1155 if (IS_ERR(priv)) {
1156 ret = priv;
1157 goto bail_qp;
1159 qp->priv = priv;
1160 qp->timeout_jiffies =
1161 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1162 1000UL);
1163 if (init_attr->srq) {
1164 sz = 0;
1165 } else {
1166 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1167 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1168 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1169 sizeof(struct rvt_rwqe);
1170 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1171 rdi->dparms.node, udata);
1172 if (err) {
1173 ret = ERR_PTR(err);
1174 goto bail_driver_priv;
1179 * ib_create_qp() will initialize qp->ibqp
1180 * except for qp->ibqp.qp_num.
1182 spin_lock_init(&qp->r_lock);
1183 spin_lock_init(&qp->s_hlock);
1184 spin_lock_init(&qp->s_lock);
1185 atomic_set(&qp->refcount, 0);
1186 atomic_set(&qp->local_ops_pending, 0);
1187 init_waitqueue_head(&qp->wait);
1188 INIT_LIST_HEAD(&qp->rspwait);
1189 qp->state = IB_QPS_RESET;
1190 qp->s_wq = swq;
1191 qp->s_size = sqsize;
1192 qp->s_avail = init_attr->cap.max_send_wr;
1193 qp->s_max_sge = init_attr->cap.max_send_sge;
1194 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1195 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1196 err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1197 if (err) {
1198 ret = (ERR_PTR(err));
1199 goto bail_driver_priv;
1202 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1203 init_attr->qp_type,
1204 init_attr->port_num);
1205 if (err < 0) {
1206 ret = ERR_PTR(err);
1207 goto bail_rq_wq;
1209 qp->ibqp.qp_num = err;
1210 qp->port_num = init_attr->port_num;
1211 rvt_init_qp(rdi, qp, init_attr->qp_type);
1212 if (rdi->driver_f.qp_priv_init) {
1213 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1214 if (err) {
1215 ret = ERR_PTR(err);
1216 goto bail_rq_wq;
1219 break;
1221 default:
1222 /* Don't support raw QPs */
1223 return ERR_PTR(-EINVAL);
1226 init_attr->cap.max_inline_data = 0;
1229 * Return the address of the RWQ as the offset to mmap.
1230 * See rvt_mmap() for details.
1232 if (udata && udata->outlen >= sizeof(__u64)) {
1233 if (!qp->r_rq.wq) {
1234 __u64 offset = 0;
1236 err = ib_copy_to_udata(udata, &offset,
1237 sizeof(offset));
1238 if (err) {
1239 ret = ERR_PTR(err);
1240 goto bail_qpn;
1242 } else {
1243 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1245 qp->ip = rvt_create_mmap_info(rdi, s, udata,
1246 qp->r_rq.wq);
1247 if (!qp->ip) {
1248 ret = ERR_PTR(-ENOMEM);
1249 goto bail_qpn;
1252 err = ib_copy_to_udata(udata, &qp->ip->offset,
1253 sizeof(qp->ip->offset));
1254 if (err) {
1255 ret = ERR_PTR(err);
1256 goto bail_ip;
1259 qp->pid = current->pid;
1262 spin_lock(&rdi->n_qps_lock);
1263 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1264 spin_unlock(&rdi->n_qps_lock);
1265 ret = ERR_PTR(-ENOMEM);
1266 goto bail_ip;
1269 rdi->n_qps_allocated++;
1271 * Maintain a busy_jiffies variable that will be added to the timeout
1272 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1273 * is scaled by the number of rc qps created for the device to reduce
1274 * the number of timeouts occurring when there is a large number of
1275 * qps. busy_jiffies is incremented every rc qp scaling interval.
1276 * The scaling interval is selected based on extensive performance
1277 * evaluation of targeted workloads.
1279 if (init_attr->qp_type == IB_QPT_RC) {
1280 rdi->n_rc_qps++;
1281 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1283 spin_unlock(&rdi->n_qps_lock);
1285 if (qp->ip) {
1286 spin_lock_irq(&rdi->pending_lock);
1287 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1288 spin_unlock_irq(&rdi->pending_lock);
1291 ret = &qp->ibqp;
1293 return ret;
1295 bail_ip:
1296 if (qp->ip)
1297 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1299 bail_qpn:
1300 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1302 bail_rq_wq:
1303 rvt_free_rq(&qp->r_rq);
1304 free_ud_wq_attr(qp);
1306 bail_driver_priv:
1307 rdi->driver_f.qp_priv_free(rdi, qp);
1309 bail_qp:
1310 kfree(qp->s_ack_queue);
1311 kfree(qp);
1313 bail_swq:
1314 vfree(swq);
1316 return ret;
1320 * rvt_error_qp - put a QP into the error state
1321 * @qp: the QP to put into the error state
1322 * @err: the receive completion error to signal if a RWQE is active
1324 * Flushes both send and receive work queues.
1326 * Return: true if last WQE event should be generated.
1327 * The QP r_lock and s_lock should be held and interrupts disabled.
1328 * If we are already in error state, just return.
1330 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1332 struct ib_wc wc;
1333 int ret = 0;
1334 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1336 lockdep_assert_held(&qp->r_lock);
1337 lockdep_assert_held(&qp->s_lock);
1338 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1339 goto bail;
1341 qp->state = IB_QPS_ERR;
1343 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1344 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1345 del_timer(&qp->s_timer);
1348 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1349 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1351 rdi->driver_f.notify_error_qp(qp);
1353 /* Schedule the sending tasklet to drain the send work queue. */
1354 if (READ_ONCE(qp->s_last) != qp->s_head)
1355 rdi->driver_f.schedule_send(qp);
1357 rvt_clear_mr_refs(qp, 0);
1359 memset(&wc, 0, sizeof(wc));
1360 wc.qp = &qp->ibqp;
1361 wc.opcode = IB_WC_RECV;
1363 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1364 wc.wr_id = qp->r_wr_id;
1365 wc.status = err;
1366 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1368 wc.status = IB_WC_WR_FLUSH_ERR;
1370 if (qp->r_rq.kwq) {
1371 u32 head;
1372 u32 tail;
1373 struct rvt_rwq *wq = NULL;
1374 struct rvt_krwq *kwq = NULL;
1376 spin_lock(&qp->r_rq.kwq->c_lock);
1377 /* qp->ip used to validate if there is a user buffer mmaped */
1378 if (qp->ip) {
1379 wq = qp->r_rq.wq;
1380 head = RDMA_READ_UAPI_ATOMIC(wq->head);
1381 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1382 } else {
1383 kwq = qp->r_rq.kwq;
1384 head = kwq->head;
1385 tail = kwq->tail;
1387 /* sanity check pointers before trusting them */
1388 if (head >= qp->r_rq.size)
1389 head = 0;
1390 if (tail >= qp->r_rq.size)
1391 tail = 0;
1392 while (tail != head) {
1393 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1394 if (++tail >= qp->r_rq.size)
1395 tail = 0;
1396 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1398 if (qp->ip)
1399 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1400 else
1401 kwq->tail = tail;
1402 spin_unlock(&qp->r_rq.kwq->c_lock);
1403 } else if (qp->ibqp.event_handler) {
1404 ret = 1;
1407 bail:
1408 return ret;
1410 EXPORT_SYMBOL(rvt_error_qp);
1413 * Put the QP into the hash table.
1414 * The hash table holds a reference to the QP.
1416 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1418 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1419 unsigned long flags;
1421 rvt_get_qp(qp);
1422 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1424 if (qp->ibqp.qp_num <= 1) {
1425 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1426 } else {
1427 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1429 qp->next = rdi->qp_dev->qp_table[n];
1430 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1431 trace_rvt_qpinsert(qp, n);
1434 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1438 * rvt_modify_qp - modify the attributes of a queue pair
1439 * @ibqp: the queue pair who's attributes we're modifying
1440 * @attr: the new attributes
1441 * @attr_mask: the mask of attributes to modify
1442 * @udata: user data for libibverbs.so
1444 * Return: 0 on success, otherwise returns an errno.
1446 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1447 int attr_mask, struct ib_udata *udata)
1449 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1450 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1451 enum ib_qp_state cur_state, new_state;
1452 struct ib_event ev;
1453 int lastwqe = 0;
1454 int mig = 0;
1455 int pmtu = 0; /* for gcc warning only */
1456 int opa_ah;
1458 spin_lock_irq(&qp->r_lock);
1459 spin_lock(&qp->s_hlock);
1460 spin_lock(&qp->s_lock);
1462 cur_state = attr_mask & IB_QP_CUR_STATE ?
1463 attr->cur_qp_state : qp->state;
1464 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1465 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1467 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1468 attr_mask))
1469 goto inval;
1471 if (rdi->driver_f.check_modify_qp &&
1472 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1473 goto inval;
1475 if (attr_mask & IB_QP_AV) {
1476 if (opa_ah) {
1477 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1478 opa_get_mcast_base(OPA_MCAST_NR))
1479 goto inval;
1480 } else {
1481 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1482 be16_to_cpu(IB_MULTICAST_LID_BASE))
1483 goto inval;
1486 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1487 goto inval;
1490 if (attr_mask & IB_QP_ALT_PATH) {
1491 if (opa_ah) {
1492 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1493 opa_get_mcast_base(OPA_MCAST_NR))
1494 goto inval;
1495 } else {
1496 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1497 be16_to_cpu(IB_MULTICAST_LID_BASE))
1498 goto inval;
1501 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1502 goto inval;
1503 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1504 goto inval;
1507 if (attr_mask & IB_QP_PKEY_INDEX)
1508 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1509 goto inval;
1511 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1512 if (attr->min_rnr_timer > 31)
1513 goto inval;
1515 if (attr_mask & IB_QP_PORT)
1516 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1517 qp->ibqp.qp_type == IB_QPT_GSI ||
1518 attr->port_num == 0 ||
1519 attr->port_num > ibqp->device->phys_port_cnt)
1520 goto inval;
1522 if (attr_mask & IB_QP_DEST_QPN)
1523 if (attr->dest_qp_num > RVT_QPN_MASK)
1524 goto inval;
1526 if (attr_mask & IB_QP_RETRY_CNT)
1527 if (attr->retry_cnt > 7)
1528 goto inval;
1530 if (attr_mask & IB_QP_RNR_RETRY)
1531 if (attr->rnr_retry > 7)
1532 goto inval;
1535 * Don't allow invalid path_mtu values. OK to set greater
1536 * than the active mtu (or even the max_cap, if we have tuned
1537 * that to a small mtu. We'll set qp->path_mtu
1538 * to the lesser of requested attribute mtu and active,
1539 * for packetizing messages.
1540 * Note that the QP port has to be set in INIT and MTU in RTR.
1542 if (attr_mask & IB_QP_PATH_MTU) {
1543 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1544 if (pmtu < 0)
1545 goto inval;
1548 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1549 if (attr->path_mig_state == IB_MIG_REARM) {
1550 if (qp->s_mig_state == IB_MIG_ARMED)
1551 goto inval;
1552 if (new_state != IB_QPS_RTS)
1553 goto inval;
1554 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1555 if (qp->s_mig_state == IB_MIG_REARM)
1556 goto inval;
1557 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1558 goto inval;
1559 if (qp->s_mig_state == IB_MIG_ARMED)
1560 mig = 1;
1561 } else {
1562 goto inval;
1566 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1567 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1568 goto inval;
1570 switch (new_state) {
1571 case IB_QPS_RESET:
1572 if (qp->state != IB_QPS_RESET)
1573 _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1574 break;
1576 case IB_QPS_RTR:
1577 /* Allow event to re-trigger if QP set to RTR more than once */
1578 qp->r_flags &= ~RVT_R_COMM_EST;
1579 qp->state = new_state;
1580 break;
1582 case IB_QPS_SQD:
1583 qp->s_draining = qp->s_last != qp->s_cur;
1584 qp->state = new_state;
1585 break;
1587 case IB_QPS_SQE:
1588 if (qp->ibqp.qp_type == IB_QPT_RC)
1589 goto inval;
1590 qp->state = new_state;
1591 break;
1593 case IB_QPS_ERR:
1594 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1595 break;
1597 default:
1598 qp->state = new_state;
1599 break;
1602 if (attr_mask & IB_QP_PKEY_INDEX)
1603 qp->s_pkey_index = attr->pkey_index;
1605 if (attr_mask & IB_QP_PORT)
1606 qp->port_num = attr->port_num;
1608 if (attr_mask & IB_QP_DEST_QPN)
1609 qp->remote_qpn = attr->dest_qp_num;
1611 if (attr_mask & IB_QP_SQ_PSN) {
1612 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1613 qp->s_psn = qp->s_next_psn;
1614 qp->s_sending_psn = qp->s_next_psn;
1615 qp->s_last_psn = qp->s_next_psn - 1;
1616 qp->s_sending_hpsn = qp->s_last_psn;
1619 if (attr_mask & IB_QP_RQ_PSN)
1620 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1622 if (attr_mask & IB_QP_ACCESS_FLAGS)
1623 qp->qp_access_flags = attr->qp_access_flags;
1625 if (attr_mask & IB_QP_AV) {
1626 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1627 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1628 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1631 if (attr_mask & IB_QP_ALT_PATH) {
1632 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1633 qp->s_alt_pkey_index = attr->alt_pkey_index;
1636 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1637 qp->s_mig_state = attr->path_mig_state;
1638 if (mig) {
1639 qp->remote_ah_attr = qp->alt_ah_attr;
1640 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1641 qp->s_pkey_index = qp->s_alt_pkey_index;
1645 if (attr_mask & IB_QP_PATH_MTU) {
1646 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1647 qp->log_pmtu = ilog2(qp->pmtu);
1650 if (attr_mask & IB_QP_RETRY_CNT) {
1651 qp->s_retry_cnt = attr->retry_cnt;
1652 qp->s_retry = attr->retry_cnt;
1655 if (attr_mask & IB_QP_RNR_RETRY) {
1656 qp->s_rnr_retry_cnt = attr->rnr_retry;
1657 qp->s_rnr_retry = attr->rnr_retry;
1660 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1661 qp->r_min_rnr_timer = attr->min_rnr_timer;
1663 if (attr_mask & IB_QP_TIMEOUT) {
1664 qp->timeout = attr->timeout;
1665 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1668 if (attr_mask & IB_QP_QKEY)
1669 qp->qkey = attr->qkey;
1671 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1672 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1674 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1675 qp->s_max_rd_atomic = attr->max_rd_atomic;
1677 if (rdi->driver_f.modify_qp)
1678 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1680 spin_unlock(&qp->s_lock);
1681 spin_unlock(&qp->s_hlock);
1682 spin_unlock_irq(&qp->r_lock);
1684 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1685 rvt_insert_qp(rdi, qp);
1687 if (lastwqe) {
1688 ev.device = qp->ibqp.device;
1689 ev.element.qp = &qp->ibqp;
1690 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1691 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1693 if (mig) {
1694 ev.device = qp->ibqp.device;
1695 ev.element.qp = &qp->ibqp;
1696 ev.event = IB_EVENT_PATH_MIG;
1697 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1699 return 0;
1701 inval:
1702 spin_unlock(&qp->s_lock);
1703 spin_unlock(&qp->s_hlock);
1704 spin_unlock_irq(&qp->r_lock);
1705 return -EINVAL;
1709 * rvt_destroy_qp - destroy a queue pair
1710 * @ibqp: the queue pair to destroy
1712 * Note that this can be called while the QP is actively sending or
1713 * receiving!
1715 * Return: 0 on success.
1717 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1719 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1720 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1722 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1724 wait_event(qp->wait, !atomic_read(&qp->refcount));
1725 /* qpn is now available for use again */
1726 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1728 spin_lock(&rdi->n_qps_lock);
1729 rdi->n_qps_allocated--;
1730 if (qp->ibqp.qp_type == IB_QPT_RC) {
1731 rdi->n_rc_qps--;
1732 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1734 spin_unlock(&rdi->n_qps_lock);
1736 if (qp->ip)
1737 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1738 kvfree(qp->r_rq.kwq);
1739 rdi->driver_f.qp_priv_free(rdi, qp);
1740 kfree(qp->s_ack_queue);
1741 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1742 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1743 free_ud_wq_attr(qp);
1744 vfree(qp->s_wq);
1745 kfree(qp);
1746 return 0;
1750 * rvt_query_qp - query an ipbq
1751 * @ibqp: IB qp to query
1752 * @attr: attr struct to fill in
1753 * @attr_mask: attr mask ignored
1754 * @init_attr: struct to fill in
1756 * Return: always 0
1758 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1759 int attr_mask, struct ib_qp_init_attr *init_attr)
1761 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1762 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1764 attr->qp_state = qp->state;
1765 attr->cur_qp_state = attr->qp_state;
1766 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1767 attr->path_mig_state = qp->s_mig_state;
1768 attr->qkey = qp->qkey;
1769 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1770 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1771 attr->dest_qp_num = qp->remote_qpn;
1772 attr->qp_access_flags = qp->qp_access_flags;
1773 attr->cap.max_send_wr = qp->s_size - 1 -
1774 rdi->dparms.reserved_operations;
1775 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1776 attr->cap.max_send_sge = qp->s_max_sge;
1777 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1778 attr->cap.max_inline_data = 0;
1779 attr->ah_attr = qp->remote_ah_attr;
1780 attr->alt_ah_attr = qp->alt_ah_attr;
1781 attr->pkey_index = qp->s_pkey_index;
1782 attr->alt_pkey_index = qp->s_alt_pkey_index;
1783 attr->en_sqd_async_notify = 0;
1784 attr->sq_draining = qp->s_draining;
1785 attr->max_rd_atomic = qp->s_max_rd_atomic;
1786 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1787 attr->min_rnr_timer = qp->r_min_rnr_timer;
1788 attr->port_num = qp->port_num;
1789 attr->timeout = qp->timeout;
1790 attr->retry_cnt = qp->s_retry_cnt;
1791 attr->rnr_retry = qp->s_rnr_retry_cnt;
1792 attr->alt_port_num =
1793 rdma_ah_get_port_num(&qp->alt_ah_attr);
1794 attr->alt_timeout = qp->alt_timeout;
1796 init_attr->event_handler = qp->ibqp.event_handler;
1797 init_attr->qp_context = qp->ibqp.qp_context;
1798 init_attr->send_cq = qp->ibqp.send_cq;
1799 init_attr->recv_cq = qp->ibqp.recv_cq;
1800 init_attr->srq = qp->ibqp.srq;
1801 init_attr->cap = attr->cap;
1802 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1803 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1804 else
1805 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1806 init_attr->qp_type = qp->ibqp.qp_type;
1807 init_attr->port_num = qp->port_num;
1808 return 0;
1812 * rvt_post_receive - post a receive on a QP
1813 * @ibqp: the QP to post the receive on
1814 * @wr: the WR to post
1815 * @bad_wr: the first bad WR is put here
1817 * This may be called from interrupt context.
1819 * Return: 0 on success otherwise errno
1821 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1822 const struct ib_recv_wr **bad_wr)
1824 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1825 struct rvt_krwq *wq = qp->r_rq.kwq;
1826 unsigned long flags;
1827 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1828 !qp->ibqp.srq;
1830 /* Check that state is OK to post receive. */
1831 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1832 *bad_wr = wr;
1833 return -EINVAL;
1836 for (; wr; wr = wr->next) {
1837 struct rvt_rwqe *wqe;
1838 u32 next;
1839 int i;
1841 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1842 *bad_wr = wr;
1843 return -EINVAL;
1846 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1847 next = wq->head + 1;
1848 if (next >= qp->r_rq.size)
1849 next = 0;
1850 if (next == READ_ONCE(wq->tail)) {
1851 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1852 *bad_wr = wr;
1853 return -ENOMEM;
1855 if (unlikely(qp_err_flush)) {
1856 struct ib_wc wc;
1858 memset(&wc, 0, sizeof(wc));
1859 wc.qp = &qp->ibqp;
1860 wc.opcode = IB_WC_RECV;
1861 wc.wr_id = wr->wr_id;
1862 wc.status = IB_WC_WR_FLUSH_ERR;
1863 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1864 } else {
1865 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1866 wqe->wr_id = wr->wr_id;
1867 wqe->num_sge = wr->num_sge;
1868 for (i = 0; i < wr->num_sge; i++) {
1869 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1870 wqe->sg_list[i].length = wr->sg_list[i].length;
1871 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1874 * Make sure queue entry is written
1875 * before the head index.
1877 smp_store_release(&wq->head, next);
1879 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1881 return 0;
1885 * rvt_qp_valid_operation - validate post send wr request
1886 * @qp - the qp
1887 * @post-parms - the post send table for the driver
1888 * @wr - the work request
1890 * The routine validates the operation based on the
1891 * validation table an returns the length of the operation
1892 * which can extend beyond the ib_send_bw. Operation
1893 * dependent flags key atomic operation validation.
1895 * There is an exception for UD qps that validates the pd and
1896 * overrides the length to include the additional UD specific
1897 * length.
1899 * Returns a negative error or the length of the work request
1900 * for building the swqe.
1902 static inline int rvt_qp_valid_operation(
1903 struct rvt_qp *qp,
1904 const struct rvt_operation_params *post_parms,
1905 const struct ib_send_wr *wr)
1907 int len;
1909 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1910 return -EINVAL;
1911 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1912 return -EINVAL;
1913 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1914 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1915 return -EINVAL;
1916 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1917 (wr->num_sge == 0 ||
1918 wr->sg_list[0].length < sizeof(u64) ||
1919 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1920 return -EINVAL;
1921 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1922 !qp->s_max_rd_atomic)
1923 return -EINVAL;
1924 len = post_parms[wr->opcode].length;
1925 /* UD specific */
1926 if (qp->ibqp.qp_type != IB_QPT_UC &&
1927 qp->ibqp.qp_type != IB_QPT_RC) {
1928 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1929 return -EINVAL;
1930 len = sizeof(struct ib_ud_wr);
1932 return len;
1936 * rvt_qp_is_avail - determine queue capacity
1937 * @qp: the qp
1938 * @rdi: the rdmavt device
1939 * @reserved_op: is reserved operation
1941 * This assumes the s_hlock is held but the s_last
1942 * qp variable is uncontrolled.
1944 * For non reserved operations, the qp->s_avail
1945 * may be changed.
1947 * The return value is zero or a -ENOMEM.
1949 static inline int rvt_qp_is_avail(
1950 struct rvt_qp *qp,
1951 struct rvt_dev_info *rdi,
1952 bool reserved_op)
1954 u32 slast;
1955 u32 avail;
1956 u32 reserved_used;
1958 /* see rvt_qp_wqe_unreserve() */
1959 smp_mb__before_atomic();
1960 if (unlikely(reserved_op)) {
1961 /* see rvt_qp_wqe_unreserve() */
1962 reserved_used = atomic_read(&qp->s_reserved_used);
1963 if (reserved_used >= rdi->dparms.reserved_operations)
1964 return -ENOMEM;
1965 return 0;
1967 /* non-reserved operations */
1968 if (likely(qp->s_avail))
1969 return 0;
1970 /* See rvt_qp_complete_swqe() */
1971 slast = smp_load_acquire(&qp->s_last);
1972 if (qp->s_head >= slast)
1973 avail = qp->s_size - (qp->s_head - slast);
1974 else
1975 avail = slast - qp->s_head;
1977 reserved_used = atomic_read(&qp->s_reserved_used);
1978 avail = avail - 1 -
1979 (rdi->dparms.reserved_operations - reserved_used);
1980 /* insure we don't assign a negative s_avail */
1981 if ((s32)avail <= 0)
1982 return -ENOMEM;
1983 qp->s_avail = avail;
1984 if (WARN_ON(qp->s_avail >
1985 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1986 rvt_pr_err(rdi,
1987 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1988 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1989 qp->s_head, qp->s_tail, qp->s_cur,
1990 qp->s_acked, qp->s_last);
1991 return 0;
1995 * rvt_post_one_wr - post one RC, UC, or UD send work request
1996 * @qp: the QP to post on
1997 * @wr: the work request to send
1999 static int rvt_post_one_wr(struct rvt_qp *qp,
2000 const struct ib_send_wr *wr,
2001 bool *call_send)
2003 struct rvt_swqe *wqe;
2004 u32 next;
2005 int i;
2006 int j;
2007 int acc;
2008 struct rvt_lkey_table *rkt;
2009 struct rvt_pd *pd;
2010 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2011 u8 log_pmtu;
2012 int ret;
2013 size_t cplen;
2014 bool reserved_op;
2015 int local_ops_delayed = 0;
2017 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2019 /* IB spec says that num_sge == 0 is OK. */
2020 if (unlikely(wr->num_sge > qp->s_max_sge))
2021 return -EINVAL;
2023 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2024 if (ret < 0)
2025 return ret;
2026 cplen = ret;
2029 * Local operations include fast register and local invalidate.
2030 * Fast register needs to be processed immediately because the
2031 * registered lkey may be used by following work requests and the
2032 * lkey needs to be valid at the time those requests are posted.
2033 * Local invalidate can be processed immediately if fencing is
2034 * not required and no previous local invalidate ops are pending.
2035 * Signaled local operations that have been processed immediately
2036 * need to have requests with "completion only" flags set posted
2037 * to the send queue in order to generate completions.
2039 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2040 switch (wr->opcode) {
2041 case IB_WR_REG_MR:
2042 ret = rvt_fast_reg_mr(qp,
2043 reg_wr(wr)->mr,
2044 reg_wr(wr)->key,
2045 reg_wr(wr)->access);
2046 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2047 return ret;
2048 break;
2049 case IB_WR_LOCAL_INV:
2050 if ((wr->send_flags & IB_SEND_FENCE) ||
2051 atomic_read(&qp->local_ops_pending)) {
2052 local_ops_delayed = 1;
2053 } else {
2054 ret = rvt_invalidate_rkey(
2055 qp, wr->ex.invalidate_rkey);
2056 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2057 return ret;
2059 break;
2060 default:
2061 return -EINVAL;
2065 reserved_op = rdi->post_parms[wr->opcode].flags &
2066 RVT_OPERATION_USE_RESERVE;
2067 /* check for avail */
2068 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2069 if (ret)
2070 return ret;
2071 next = qp->s_head + 1;
2072 if (next >= qp->s_size)
2073 next = 0;
2075 rkt = &rdi->lkey_table;
2076 pd = ibpd_to_rvtpd(qp->ibqp.pd);
2077 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2079 /* cplen has length from above */
2080 memcpy(&wqe->wr, wr, cplen);
2082 wqe->length = 0;
2083 j = 0;
2084 if (wr->num_sge) {
2085 struct rvt_sge *last_sge = NULL;
2087 acc = wr->opcode >= IB_WR_RDMA_READ ?
2088 IB_ACCESS_LOCAL_WRITE : 0;
2089 for (i = 0; i < wr->num_sge; i++) {
2090 u32 length = wr->sg_list[i].length;
2092 if (length == 0)
2093 continue;
2094 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2095 &wr->sg_list[i], acc);
2096 if (unlikely(ret < 0))
2097 goto bail_inval_free;
2098 wqe->length += length;
2099 if (ret)
2100 last_sge = &wqe->sg_list[j];
2101 j += ret;
2103 wqe->wr.num_sge = j;
2107 * Calculate and set SWQE PSN values prior to handing it off
2108 * to the driver's check routine. This give the driver the
2109 * opportunity to adjust PSN values based on internal checks.
2111 log_pmtu = qp->log_pmtu;
2112 if (qp->allowed_ops == IB_OPCODE_UD) {
2113 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2115 log_pmtu = ah->log_pmtu;
2116 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2119 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2120 if (local_ops_delayed)
2121 atomic_inc(&qp->local_ops_pending);
2122 else
2123 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2124 wqe->ssn = 0;
2125 wqe->psn = 0;
2126 wqe->lpsn = 0;
2127 } else {
2128 wqe->ssn = qp->s_ssn++;
2129 wqe->psn = qp->s_next_psn;
2130 wqe->lpsn = wqe->psn +
2131 (wqe->length ?
2132 ((wqe->length - 1) >> log_pmtu) :
2136 /* general part of wqe valid - allow for driver checks */
2137 if (rdi->driver_f.setup_wqe) {
2138 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2139 if (ret < 0)
2140 goto bail_inval_free_ref;
2143 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2144 qp->s_next_psn = wqe->lpsn + 1;
2146 if (unlikely(reserved_op)) {
2147 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2148 rvt_qp_wqe_reserve(qp, wqe);
2149 } else {
2150 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2151 qp->s_avail--;
2153 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2154 smp_wmb(); /* see request builders */
2155 qp->s_head = next;
2157 return 0;
2159 bail_inval_free_ref:
2160 if (qp->allowed_ops == IB_OPCODE_UD)
2161 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2162 bail_inval_free:
2163 /* release mr holds */
2164 while (j) {
2165 struct rvt_sge *sge = &wqe->sg_list[--j];
2167 rvt_put_mr(sge->mr);
2169 return ret;
2173 * rvt_post_send - post a send on a QP
2174 * @ibqp: the QP to post the send on
2175 * @wr: the list of work requests to post
2176 * @bad_wr: the first bad WR is put here
2178 * This may be called from interrupt context.
2180 * Return: 0 on success else errno
2182 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2183 const struct ib_send_wr **bad_wr)
2185 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2186 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2187 unsigned long flags = 0;
2188 bool call_send;
2189 unsigned nreq = 0;
2190 int err = 0;
2192 spin_lock_irqsave(&qp->s_hlock, flags);
2195 * Ensure QP state is such that we can send. If not bail out early,
2196 * there is no need to do this every time we post a send.
2198 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2199 spin_unlock_irqrestore(&qp->s_hlock, flags);
2200 return -EINVAL;
2204 * If the send queue is empty, and we only have a single WR then just go
2205 * ahead and kick the send engine into gear. Otherwise we will always
2206 * just schedule the send to happen later.
2208 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2210 for (; wr; wr = wr->next) {
2211 err = rvt_post_one_wr(qp, wr, &call_send);
2212 if (unlikely(err)) {
2213 *bad_wr = wr;
2214 goto bail;
2216 nreq++;
2218 bail:
2219 spin_unlock_irqrestore(&qp->s_hlock, flags);
2220 if (nreq) {
2222 * Only call do_send if there is exactly one packet, and the
2223 * driver said it was ok.
2225 if (nreq == 1 && call_send)
2226 rdi->driver_f.do_send(qp);
2227 else
2228 rdi->driver_f.schedule_send_no_lock(qp);
2230 return err;
2234 * rvt_post_srq_receive - post a receive on a shared receive queue
2235 * @ibsrq: the SRQ to post the receive on
2236 * @wr: the list of work requests to post
2237 * @bad_wr: A pointer to the first WR to cause a problem is put here
2239 * This may be called from interrupt context.
2241 * Return: 0 on success else errno
2243 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2244 const struct ib_recv_wr **bad_wr)
2246 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2247 struct rvt_krwq *wq;
2248 unsigned long flags;
2250 for (; wr; wr = wr->next) {
2251 struct rvt_rwqe *wqe;
2252 u32 next;
2253 int i;
2255 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2256 *bad_wr = wr;
2257 return -EINVAL;
2260 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2261 wq = srq->rq.kwq;
2262 next = wq->head + 1;
2263 if (next >= srq->rq.size)
2264 next = 0;
2265 if (next == READ_ONCE(wq->tail)) {
2266 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2267 *bad_wr = wr;
2268 return -ENOMEM;
2271 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2272 wqe->wr_id = wr->wr_id;
2273 wqe->num_sge = wr->num_sge;
2274 for (i = 0; i < wr->num_sge; i++) {
2275 wqe->sg_list[i].addr = wr->sg_list[i].addr;
2276 wqe->sg_list[i].length = wr->sg_list[i].length;
2277 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2279 /* Make sure queue entry is written before the head index. */
2280 smp_store_release(&wq->head, next);
2281 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2283 return 0;
2287 * rvt used the internal kernel struct as part of its ABI, for now make sure
2288 * the kernel struct does not change layout. FIXME: rvt should never cast the
2289 * user struct to a kernel struct.
2291 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2293 BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2294 offsetof(struct rvt_wqe_sge, addr));
2295 BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2296 offsetof(struct rvt_wqe_sge, length));
2297 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2298 offsetof(struct rvt_wqe_sge, lkey));
2299 return (struct ib_sge *)sge;
2303 * Validate a RWQE and fill in the SGE state.
2304 * Return 1 if OK.
2306 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2308 int i, j, ret;
2309 struct ib_wc wc;
2310 struct rvt_lkey_table *rkt;
2311 struct rvt_pd *pd;
2312 struct rvt_sge_state *ss;
2313 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2315 rkt = &rdi->lkey_table;
2316 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2317 ss = &qp->r_sge;
2318 ss->sg_list = qp->r_sg_list;
2319 qp->r_len = 0;
2320 for (i = j = 0; i < wqe->num_sge; i++) {
2321 if (wqe->sg_list[i].length == 0)
2322 continue;
2323 /* Check LKEY */
2324 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2325 NULL, rvt_cast_sge(&wqe->sg_list[i]),
2326 IB_ACCESS_LOCAL_WRITE);
2327 if (unlikely(ret <= 0))
2328 goto bad_lkey;
2329 qp->r_len += wqe->sg_list[i].length;
2330 j++;
2332 ss->num_sge = j;
2333 ss->total_len = qp->r_len;
2334 return 1;
2336 bad_lkey:
2337 while (j) {
2338 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2340 rvt_put_mr(sge->mr);
2342 ss->num_sge = 0;
2343 memset(&wc, 0, sizeof(wc));
2344 wc.wr_id = wqe->wr_id;
2345 wc.status = IB_WC_LOC_PROT_ERR;
2346 wc.opcode = IB_WC_RECV;
2347 wc.qp = &qp->ibqp;
2348 /* Signal solicited completion event. */
2349 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2350 return 0;
2354 * get_count - count numbers of request work queue entries
2355 * in circular buffer
2356 * @rq: data structure for request queue entry
2357 * @tail: tail indices of the circular buffer
2358 * @head: head indices of the circular buffer
2360 * Return - total number of entries in the circular buffer
2362 static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
2364 u32 count;
2366 count = head;
2368 if (count >= rq->size)
2369 count = 0;
2370 if (count < tail)
2371 count += rq->size - tail;
2372 else
2373 count -= tail;
2375 return count;
2379 * get_rvt_head - get head indices of the circular buffer
2380 * @rq: data structure for request queue entry
2381 * @ip: the QP
2383 * Return - head index value
2385 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2387 u32 head;
2389 if (ip)
2390 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2391 else
2392 head = rq->kwq->head;
2394 return head;
2398 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2399 * @qp: the QP
2400 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2402 * Return -1 if there is a local error, 0 if no RWQE is available,
2403 * otherwise return 1.
2405 * Can be called from interrupt level.
2407 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2409 unsigned long flags;
2410 struct rvt_rq *rq;
2411 struct rvt_krwq *kwq = NULL;
2412 struct rvt_rwq *wq;
2413 struct rvt_srq *srq;
2414 struct rvt_rwqe *wqe;
2415 void (*handler)(struct ib_event *, void *);
2416 u32 tail;
2417 u32 head;
2418 int ret;
2419 void *ip = NULL;
2421 if (qp->ibqp.srq) {
2422 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2423 handler = srq->ibsrq.event_handler;
2424 rq = &srq->rq;
2425 ip = srq->ip;
2426 } else {
2427 srq = NULL;
2428 handler = NULL;
2429 rq = &qp->r_rq;
2430 ip = qp->ip;
2433 spin_lock_irqsave(&rq->kwq->c_lock, flags);
2434 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2435 ret = 0;
2436 goto unlock;
2438 kwq = rq->kwq;
2439 if (ip) {
2440 wq = rq->wq;
2441 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2442 } else {
2443 tail = kwq->tail;
2446 /* Validate tail before using it since it is user writable. */
2447 if (tail >= rq->size)
2448 tail = 0;
2450 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2451 head = get_rvt_head(rq, ip);
2452 kwq->count = get_count(rq, tail, head);
2454 if (unlikely(kwq->count == 0)) {
2455 ret = 0;
2456 goto unlock;
2458 /* Make sure entry is read after the count is read. */
2459 smp_rmb();
2460 wqe = rvt_get_rwqe_ptr(rq, tail);
2462 * Even though we update the tail index in memory, the verbs
2463 * consumer is not supposed to post more entries until a
2464 * completion is generated.
2466 if (++tail >= rq->size)
2467 tail = 0;
2468 if (ip)
2469 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2470 else
2471 kwq->tail = tail;
2472 if (!wr_id_only && !init_sge(qp, wqe)) {
2473 ret = -1;
2474 goto unlock;
2476 qp->r_wr_id = wqe->wr_id;
2478 kwq->count--;
2479 ret = 1;
2480 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2481 if (handler) {
2483 * Validate head pointer value and compute
2484 * the number of remaining WQEs.
2486 if (kwq->count < srq->limit) {
2487 kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
2488 if (kwq->count < srq->limit) {
2489 struct ib_event ev;
2491 srq->limit = 0;
2492 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2493 ev.device = qp->ibqp.device;
2494 ev.element.srq = qp->ibqp.srq;
2495 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2496 handler(&ev, srq->ibsrq.srq_context);
2497 goto bail;
2501 unlock:
2502 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2503 bail:
2504 return ret;
2506 EXPORT_SYMBOL(rvt_get_rwqe);
2509 * qp_comm_est - handle trap with QP established
2510 * @qp: the QP
2512 void rvt_comm_est(struct rvt_qp *qp)
2514 qp->r_flags |= RVT_R_COMM_EST;
2515 if (qp->ibqp.event_handler) {
2516 struct ib_event ev;
2518 ev.device = qp->ibqp.device;
2519 ev.element.qp = &qp->ibqp;
2520 ev.event = IB_EVENT_COMM_EST;
2521 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2524 EXPORT_SYMBOL(rvt_comm_est);
2526 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2528 unsigned long flags;
2529 int lastwqe;
2531 spin_lock_irqsave(&qp->s_lock, flags);
2532 lastwqe = rvt_error_qp(qp, err);
2533 spin_unlock_irqrestore(&qp->s_lock, flags);
2535 if (lastwqe) {
2536 struct ib_event ev;
2538 ev.device = qp->ibqp.device;
2539 ev.element.qp = &qp->ibqp;
2540 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2541 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2544 EXPORT_SYMBOL(rvt_rc_error);
2547 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2548 * @index - the index
2549 * return usec from an index into ib_rvt_rnr_table
2551 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2553 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2555 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2557 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2559 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2560 IB_AETH_CREDIT_MASK];
2564 * rvt_add_retry_timer_ext - add/start a retry timer
2565 * @qp - the QP
2566 * @shift - timeout shift to wait for multiple packets
2567 * add a retry timer on the QP
2569 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2571 struct ib_qp *ibqp = &qp->ibqp;
2572 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2574 lockdep_assert_held(&qp->s_lock);
2575 qp->s_flags |= RVT_S_TIMER;
2576 /* 4.096 usec. * (1 << qp->timeout) */
2577 qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2578 (qp->timeout_jiffies << shift);
2579 add_timer(&qp->s_timer);
2581 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2584 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2585 * @qp: the QP
2586 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2588 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2590 u32 to;
2592 lockdep_assert_held(&qp->s_lock);
2593 qp->s_flags |= RVT_S_WAIT_RNR;
2594 to = rvt_aeth_to_usec(aeth);
2595 trace_rvt_rnrnak_add(qp, to);
2596 hrtimer_start(&qp->s_rnr_timer,
2597 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2599 EXPORT_SYMBOL(rvt_add_rnr_timer);
2602 * rvt_stop_rc_timers - stop all timers
2603 * @qp: the QP
2604 * stop any pending timers
2606 void rvt_stop_rc_timers(struct rvt_qp *qp)
2608 lockdep_assert_held(&qp->s_lock);
2609 /* Remove QP from all timers */
2610 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2611 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2612 del_timer(&qp->s_timer);
2613 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2616 EXPORT_SYMBOL(rvt_stop_rc_timers);
2619 * rvt_stop_rnr_timer - stop an rnr timer
2620 * @qp - the QP
2622 * stop an rnr timer and return if the timer
2623 * had been pending.
2625 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2627 lockdep_assert_held(&qp->s_lock);
2628 /* Remove QP from rnr timer */
2629 if (qp->s_flags & RVT_S_WAIT_RNR) {
2630 qp->s_flags &= ~RVT_S_WAIT_RNR;
2631 trace_rvt_rnrnak_stop(qp, 0);
2636 * rvt_del_timers_sync - wait for any timeout routines to exit
2637 * @qp: the QP
2639 void rvt_del_timers_sync(struct rvt_qp *qp)
2641 del_timer_sync(&qp->s_timer);
2642 hrtimer_cancel(&qp->s_rnr_timer);
2644 EXPORT_SYMBOL(rvt_del_timers_sync);
2647 * This is called from s_timer for missing responses.
2649 static void rvt_rc_timeout(struct timer_list *t)
2651 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2652 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2653 unsigned long flags;
2655 spin_lock_irqsave(&qp->r_lock, flags);
2656 spin_lock(&qp->s_lock);
2657 if (qp->s_flags & RVT_S_TIMER) {
2658 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2660 qp->s_flags &= ~RVT_S_TIMER;
2661 rvp->n_rc_timeouts++;
2662 del_timer(&qp->s_timer);
2663 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2664 if (rdi->driver_f.notify_restart_rc)
2665 rdi->driver_f.notify_restart_rc(qp,
2666 qp->s_last_psn + 1,
2668 rdi->driver_f.schedule_send(qp);
2670 spin_unlock(&qp->s_lock);
2671 spin_unlock_irqrestore(&qp->r_lock, flags);
2675 * This is called from s_timer for RNR timeouts.
2677 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2679 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2680 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2681 unsigned long flags;
2683 spin_lock_irqsave(&qp->s_lock, flags);
2684 rvt_stop_rnr_timer(qp);
2685 trace_rvt_rnrnak_timeout(qp, 0);
2686 rdi->driver_f.schedule_send(qp);
2687 spin_unlock_irqrestore(&qp->s_lock, flags);
2688 return HRTIMER_NORESTART;
2690 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2693 * rvt_qp_iter_init - initial for QP iteration
2694 * @rdi: rvt devinfo
2695 * @v: u64 value
2696 * @cb: user-defined callback
2698 * This returns an iterator suitable for iterating QPs
2699 * in the system.
2701 * The @cb is a user-defined callback and @v is a 64-bit
2702 * value passed to and relevant for processing in the
2703 * @cb. An example use case would be to alter QP processing
2704 * based on criteria not part of the rvt_qp.
2706 * Use cases that require memory allocation to succeed
2707 * must preallocate appropriately.
2709 * Return: a pointer to an rvt_qp_iter or NULL
2711 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2712 u64 v,
2713 void (*cb)(struct rvt_qp *qp, u64 v))
2715 struct rvt_qp_iter *i;
2717 i = kzalloc(sizeof(*i), GFP_KERNEL);
2718 if (!i)
2719 return NULL;
2721 i->rdi = rdi;
2722 /* number of special QPs (SMI/GSI) for device */
2723 i->specials = rdi->ibdev.phys_port_cnt * 2;
2724 i->v = v;
2725 i->cb = cb;
2727 return i;
2729 EXPORT_SYMBOL(rvt_qp_iter_init);
2732 * rvt_qp_iter_next - return the next QP in iter
2733 * @iter: the iterator
2735 * Fine grained QP iterator suitable for use
2736 * with debugfs seq_file mechanisms.
2738 * Updates iter->qp with the current QP when the return
2739 * value is 0.
2741 * Return: 0 - iter->qp is valid 1 - no more QPs
2743 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2744 __must_hold(RCU)
2746 int n = iter->n;
2747 int ret = 1;
2748 struct rvt_qp *pqp = iter->qp;
2749 struct rvt_qp *qp;
2750 struct rvt_dev_info *rdi = iter->rdi;
2753 * The approach is to consider the special qps
2754 * as additional table entries before the
2755 * real hash table. Since the qp code sets
2756 * the qp->next hash link to NULL, this works just fine.
2758 * iter->specials is 2 * # ports
2760 * n = 0..iter->specials is the special qp indices
2762 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2763 * the potential hash bucket entries
2766 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2767 if (pqp) {
2768 qp = rcu_dereference(pqp->next);
2769 } else {
2770 if (n < iter->specials) {
2771 struct rvt_ibport *rvp;
2772 int pidx;
2774 pidx = n % rdi->ibdev.phys_port_cnt;
2775 rvp = rdi->ports[pidx];
2776 qp = rcu_dereference(rvp->qp[n & 1]);
2777 } else {
2778 qp = rcu_dereference(
2779 rdi->qp_dev->qp_table[
2780 (n - iter->specials)]);
2783 pqp = qp;
2784 if (qp) {
2785 iter->qp = qp;
2786 iter->n = n;
2787 return 0;
2790 return ret;
2792 EXPORT_SYMBOL(rvt_qp_iter_next);
2795 * rvt_qp_iter - iterate all QPs
2796 * @rdi: rvt devinfo
2797 * @v: a 64-bit value
2798 * @cb: a callback
2800 * This provides a way for iterating all QPs.
2802 * The @cb is a user-defined callback and @v is a 64-bit
2803 * value passed to and relevant for processing in the
2804 * cb. An example use case would be to alter QP processing
2805 * based on criteria not part of the rvt_qp.
2807 * The code has an internal iterator to simplify
2808 * non seq_file use cases.
2810 void rvt_qp_iter(struct rvt_dev_info *rdi,
2811 u64 v,
2812 void (*cb)(struct rvt_qp *qp, u64 v))
2814 int ret;
2815 struct rvt_qp_iter i = {
2816 .rdi = rdi,
2817 .specials = rdi->ibdev.phys_port_cnt * 2,
2818 .v = v,
2819 .cb = cb
2822 rcu_read_lock();
2823 do {
2824 ret = rvt_qp_iter_next(&i);
2825 if (!ret) {
2826 rvt_get_qp(i.qp);
2827 rcu_read_unlock();
2828 i.cb(i.qp, i.v);
2829 rcu_read_lock();
2830 rvt_put_qp(i.qp);
2832 } while (!ret);
2833 rcu_read_unlock();
2835 EXPORT_SYMBOL(rvt_qp_iter);
2838 * This should be called with s_lock held.
2840 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2841 enum ib_wc_status status)
2843 u32 old_last, last;
2844 struct rvt_dev_info *rdi;
2846 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2847 return;
2848 rdi = ib_to_rvt(qp->ibqp.device);
2850 old_last = qp->s_last;
2851 trace_rvt_qp_send_completion(qp, wqe, old_last);
2852 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2853 status);
2854 if (qp->s_acked == old_last)
2855 qp->s_acked = last;
2856 if (qp->s_cur == old_last)
2857 qp->s_cur = last;
2858 if (qp->s_tail == old_last)
2859 qp->s_tail = last;
2860 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2861 qp->s_draining = 0;
2863 EXPORT_SYMBOL(rvt_send_complete);
2866 * rvt_copy_sge - copy data to SGE memory
2867 * @qp: associated QP
2868 * @ss: the SGE state
2869 * @data: the data to copy
2870 * @length: the length of the data
2871 * @release: boolean to release MR
2872 * @copy_last: do a separate copy of the last 8 bytes
2874 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2875 void *data, u32 length,
2876 bool release, bool copy_last)
2878 struct rvt_sge *sge = &ss->sge;
2879 int i;
2880 bool in_last = false;
2881 bool cacheless_copy = false;
2882 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2883 struct rvt_wss *wss = rdi->wss;
2884 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2886 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2887 cacheless_copy = length >= PAGE_SIZE;
2888 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2889 if (length >= PAGE_SIZE) {
2891 * NOTE: this *assumes*:
2892 * o The first vaddr is the dest.
2893 * o If multiple pages, then vaddr is sequential.
2895 wss_insert(wss, sge->vaddr);
2896 if (length >= (2 * PAGE_SIZE))
2897 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2899 cacheless_copy = wss_exceeds_threshold(wss);
2900 } else {
2901 wss_advance_clean_counter(wss);
2905 if (copy_last) {
2906 if (length > 8) {
2907 length -= 8;
2908 } else {
2909 copy_last = false;
2910 in_last = true;
2914 again:
2915 while (length) {
2916 u32 len = rvt_get_sge_length(sge, length);
2918 WARN_ON_ONCE(len == 0);
2919 if (unlikely(in_last)) {
2920 /* enforce byte transfer ordering */
2921 for (i = 0; i < len; i++)
2922 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2923 } else if (cacheless_copy) {
2924 cacheless_memcpy(sge->vaddr, data, len);
2925 } else {
2926 memcpy(sge->vaddr, data, len);
2928 rvt_update_sge(ss, len, release);
2929 data += len;
2930 length -= len;
2933 if (copy_last) {
2934 copy_last = false;
2935 in_last = true;
2936 length = 8;
2937 goto again;
2940 EXPORT_SYMBOL(rvt_copy_sge);
2942 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2943 struct rvt_qp *sqp)
2945 rvp->n_pkt_drops++;
2947 * For RC, the requester would timeout and retry so
2948 * shortcut the timeouts and just signal too many retries.
2950 return sqp->ibqp.qp_type == IB_QPT_RC ?
2951 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2955 * ruc_loopback - handle UC and RC loopback requests
2956 * @sqp: the sending QP
2958 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2959 * Note that although we are single threaded due to the send engine, we still
2960 * have to protect against post_send(). We don't have to worry about
2961 * receive interrupts since this is a connected protocol and all packets
2962 * will pass through here.
2964 void rvt_ruc_loopback(struct rvt_qp *sqp)
2966 struct rvt_ibport *rvp = NULL;
2967 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2968 struct rvt_qp *qp;
2969 struct rvt_swqe *wqe;
2970 struct rvt_sge *sge;
2971 unsigned long flags;
2972 struct ib_wc wc;
2973 u64 sdata;
2974 atomic64_t *maddr;
2975 enum ib_wc_status send_status;
2976 bool release;
2977 int ret;
2978 bool copy_last = false;
2979 int local_ops = 0;
2981 rcu_read_lock();
2982 rvp = rdi->ports[sqp->port_num - 1];
2985 * Note that we check the responder QP state after
2986 * checking the requester's state.
2989 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2990 sqp->remote_qpn);
2992 spin_lock_irqsave(&sqp->s_lock, flags);
2994 /* Return if we are already busy processing a work request. */
2995 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2996 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2997 goto unlock;
2999 sqp->s_flags |= RVT_S_BUSY;
3001 again:
3002 if (sqp->s_last == READ_ONCE(sqp->s_head))
3003 goto clr_busy;
3004 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
3006 /* Return if it is not OK to start a new work request. */
3007 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
3008 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3009 goto clr_busy;
3010 /* We are in the error state, flush the work request. */
3011 send_status = IB_WC_WR_FLUSH_ERR;
3012 goto flush_send;
3016 * We can rely on the entry not changing without the s_lock
3017 * being held until we update s_last.
3018 * We increment s_cur to indicate s_last is in progress.
3020 if (sqp->s_last == sqp->s_cur) {
3021 if (++sqp->s_cur >= sqp->s_size)
3022 sqp->s_cur = 0;
3024 spin_unlock_irqrestore(&sqp->s_lock, flags);
3026 if (!qp) {
3027 send_status = loopback_qp_drop(rvp, sqp);
3028 goto serr_no_r_lock;
3030 spin_lock_irqsave(&qp->r_lock, flags);
3031 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3032 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3033 send_status = loopback_qp_drop(rvp, sqp);
3034 goto serr;
3037 memset(&wc, 0, sizeof(wc));
3038 send_status = IB_WC_SUCCESS;
3040 release = true;
3041 sqp->s_sge.sge = wqe->sg_list[0];
3042 sqp->s_sge.sg_list = wqe->sg_list + 1;
3043 sqp->s_sge.num_sge = wqe->wr.num_sge;
3044 sqp->s_len = wqe->length;
3045 switch (wqe->wr.opcode) {
3046 case IB_WR_REG_MR:
3047 goto send_comp;
3049 case IB_WR_LOCAL_INV:
3050 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3051 if (rvt_invalidate_rkey(sqp,
3052 wqe->wr.ex.invalidate_rkey))
3053 send_status = IB_WC_LOC_PROT_ERR;
3054 local_ops = 1;
3056 goto send_comp;
3058 case IB_WR_SEND_WITH_INV:
3059 case IB_WR_SEND_WITH_IMM:
3060 case IB_WR_SEND:
3061 ret = rvt_get_rwqe(qp, false);
3062 if (ret < 0)
3063 goto op_err;
3064 if (!ret)
3065 goto rnr_nak;
3066 if (wqe->length > qp->r_len)
3067 goto inv_err;
3068 switch (wqe->wr.opcode) {
3069 case IB_WR_SEND_WITH_INV:
3070 if (!rvt_invalidate_rkey(qp,
3071 wqe->wr.ex.invalidate_rkey)) {
3072 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3073 wc.ex.invalidate_rkey =
3074 wqe->wr.ex.invalidate_rkey;
3076 break;
3077 case IB_WR_SEND_WITH_IMM:
3078 wc.wc_flags = IB_WC_WITH_IMM;
3079 wc.ex.imm_data = wqe->wr.ex.imm_data;
3080 break;
3081 default:
3082 break;
3084 break;
3086 case IB_WR_RDMA_WRITE_WITH_IMM:
3087 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3088 goto inv_err;
3089 wc.wc_flags = IB_WC_WITH_IMM;
3090 wc.ex.imm_data = wqe->wr.ex.imm_data;
3091 ret = rvt_get_rwqe(qp, true);
3092 if (ret < 0)
3093 goto op_err;
3094 if (!ret)
3095 goto rnr_nak;
3096 /* skip copy_last set and qp_access_flags recheck */
3097 goto do_write;
3098 case IB_WR_RDMA_WRITE:
3099 copy_last = rvt_is_user_qp(qp);
3100 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3101 goto inv_err;
3102 do_write:
3103 if (wqe->length == 0)
3104 break;
3105 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3106 wqe->rdma_wr.remote_addr,
3107 wqe->rdma_wr.rkey,
3108 IB_ACCESS_REMOTE_WRITE)))
3109 goto acc_err;
3110 qp->r_sge.sg_list = NULL;
3111 qp->r_sge.num_sge = 1;
3112 qp->r_sge.total_len = wqe->length;
3113 break;
3115 case IB_WR_RDMA_READ:
3116 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3117 goto inv_err;
3118 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3119 wqe->rdma_wr.remote_addr,
3120 wqe->rdma_wr.rkey,
3121 IB_ACCESS_REMOTE_READ)))
3122 goto acc_err;
3123 release = false;
3124 sqp->s_sge.sg_list = NULL;
3125 sqp->s_sge.num_sge = 1;
3126 qp->r_sge.sge = wqe->sg_list[0];
3127 qp->r_sge.sg_list = wqe->sg_list + 1;
3128 qp->r_sge.num_sge = wqe->wr.num_sge;
3129 qp->r_sge.total_len = wqe->length;
3130 break;
3132 case IB_WR_ATOMIC_CMP_AND_SWP:
3133 case IB_WR_ATOMIC_FETCH_AND_ADD:
3134 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3135 goto inv_err;
3136 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3137 wqe->atomic_wr.remote_addr,
3138 wqe->atomic_wr.rkey,
3139 IB_ACCESS_REMOTE_ATOMIC)))
3140 goto acc_err;
3141 /* Perform atomic OP and save result. */
3142 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3143 sdata = wqe->atomic_wr.compare_add;
3144 *(u64 *)sqp->s_sge.sge.vaddr =
3145 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3146 (u64)atomic64_add_return(sdata, maddr) - sdata :
3147 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3148 sdata, wqe->atomic_wr.swap);
3149 rvt_put_mr(qp->r_sge.sge.mr);
3150 qp->r_sge.num_sge = 0;
3151 goto send_comp;
3153 default:
3154 send_status = IB_WC_LOC_QP_OP_ERR;
3155 goto serr;
3158 sge = &sqp->s_sge.sge;
3159 while (sqp->s_len) {
3160 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3162 WARN_ON_ONCE(len == 0);
3163 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3164 len, release, copy_last);
3165 rvt_update_sge(&sqp->s_sge, len, !release);
3166 sqp->s_len -= len;
3168 if (release)
3169 rvt_put_ss(&qp->r_sge);
3171 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3172 goto send_comp;
3174 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3175 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3176 else
3177 wc.opcode = IB_WC_RECV;
3178 wc.wr_id = qp->r_wr_id;
3179 wc.status = IB_WC_SUCCESS;
3180 wc.byte_len = wqe->length;
3181 wc.qp = &qp->ibqp;
3182 wc.src_qp = qp->remote_qpn;
3183 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3184 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3185 wc.port_num = 1;
3186 /* Signal completion event if the solicited bit is set. */
3187 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3189 send_comp:
3190 spin_unlock_irqrestore(&qp->r_lock, flags);
3191 spin_lock_irqsave(&sqp->s_lock, flags);
3192 rvp->n_loop_pkts++;
3193 flush_send:
3194 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3195 rvt_send_complete(sqp, wqe, send_status);
3196 if (local_ops) {
3197 atomic_dec(&sqp->local_ops_pending);
3198 local_ops = 0;
3200 goto again;
3202 rnr_nak:
3203 /* Handle RNR NAK */
3204 if (qp->ibqp.qp_type == IB_QPT_UC)
3205 goto send_comp;
3206 rvp->n_rnr_naks++;
3208 * Note: we don't need the s_lock held since the BUSY flag
3209 * makes this single threaded.
3211 if (sqp->s_rnr_retry == 0) {
3212 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3213 goto serr;
3215 if (sqp->s_rnr_retry_cnt < 7)
3216 sqp->s_rnr_retry--;
3217 spin_unlock_irqrestore(&qp->r_lock, flags);
3218 spin_lock_irqsave(&sqp->s_lock, flags);
3219 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3220 goto clr_busy;
3221 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3222 IB_AETH_CREDIT_SHIFT);
3223 goto clr_busy;
3225 op_err:
3226 send_status = IB_WC_REM_OP_ERR;
3227 wc.status = IB_WC_LOC_QP_OP_ERR;
3228 goto err;
3230 inv_err:
3231 send_status =
3232 sqp->ibqp.qp_type == IB_QPT_RC ?
3233 IB_WC_REM_INV_REQ_ERR :
3234 IB_WC_SUCCESS;
3235 wc.status = IB_WC_LOC_QP_OP_ERR;
3236 goto err;
3238 acc_err:
3239 send_status = IB_WC_REM_ACCESS_ERR;
3240 wc.status = IB_WC_LOC_PROT_ERR;
3241 err:
3242 /* responder goes to error state */
3243 rvt_rc_error(qp, wc.status);
3245 serr:
3246 spin_unlock_irqrestore(&qp->r_lock, flags);
3247 serr_no_r_lock:
3248 spin_lock_irqsave(&sqp->s_lock, flags);
3249 rvt_send_complete(sqp, wqe, send_status);
3250 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3251 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3253 sqp->s_flags &= ~RVT_S_BUSY;
3254 spin_unlock_irqrestore(&sqp->s_lock, flags);
3255 if (lastwqe) {
3256 struct ib_event ev;
3258 ev.device = sqp->ibqp.device;
3259 ev.element.qp = &sqp->ibqp;
3260 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3261 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3263 goto done;
3265 clr_busy:
3266 sqp->s_flags &= ~RVT_S_BUSY;
3267 unlock:
3268 spin_unlock_irqrestore(&sqp->s_lock, flags);
3269 done:
3270 rcu_read_unlock();
3272 EXPORT_SYMBOL(rvt_ruc_loopback);