1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // helpers.c -- Voltage/Current Regulator framework helper functions.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 #include <linux/kernel.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
19 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21 * @rdev: regulator to operate on
23 * Regulators that use regmap for their register I/O can set the
24 * enable_reg and enable_mask fields in their descriptor and then use
25 * this as their is_enabled operation, saving some code.
27 int regulator_is_enabled_regmap(struct regulator_dev
*rdev
)
32 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->enable_reg
, &val
);
36 val
&= rdev
->desc
->enable_mask
;
38 if (rdev
->desc
->enable_is_inverted
) {
39 if (rdev
->desc
->enable_val
)
40 return val
!= rdev
->desc
->enable_val
;
43 if (rdev
->desc
->enable_val
)
44 return val
== rdev
->desc
->enable_val
;
48 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap
);
51 * regulator_enable_regmap - standard enable() for regmap users
53 * @rdev: regulator to operate on
55 * Regulators that use regmap for their register I/O can set the
56 * enable_reg and enable_mask fields in their descriptor and then use
57 * this as their enable() operation, saving some code.
59 int regulator_enable_regmap(struct regulator_dev
*rdev
)
63 if (rdev
->desc
->enable_is_inverted
) {
64 val
= rdev
->desc
->disable_val
;
66 val
= rdev
->desc
->enable_val
;
68 val
= rdev
->desc
->enable_mask
;
71 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->enable_reg
,
72 rdev
->desc
->enable_mask
, val
);
74 EXPORT_SYMBOL_GPL(regulator_enable_regmap
);
77 * regulator_disable_regmap - standard disable() for regmap users
79 * @rdev: regulator to operate on
81 * Regulators that use regmap for their register I/O can set the
82 * enable_reg and enable_mask fields in their descriptor and then use
83 * this as their disable() operation, saving some code.
85 int regulator_disable_regmap(struct regulator_dev
*rdev
)
89 if (rdev
->desc
->enable_is_inverted
) {
90 val
= rdev
->desc
->enable_val
;
92 val
= rdev
->desc
->enable_mask
;
94 val
= rdev
->desc
->disable_val
;
97 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->enable_reg
,
98 rdev
->desc
->enable_mask
, val
);
100 EXPORT_SYMBOL_GPL(regulator_disable_regmap
);
102 static int regulator_range_selector_to_index(struct regulator_dev
*rdev
,
107 if (!rdev
->desc
->linear_range_selectors
)
110 rval
&= rdev
->desc
->vsel_range_mask
;
112 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
113 if (rdev
->desc
->linear_range_selectors
[i
] == rval
)
120 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
122 * @rdev: regulator to operate on
124 * Regulators that use regmap for their register I/O and use pickable
125 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126 * fields in their descriptor and then use this as their get_voltage_vsel
127 * operation, saving some code.
129 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev
*rdev
)
135 unsigned int voltages_in_range
= 0;
137 if (!rdev
->desc
->linear_ranges
)
140 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_reg
, &val
);
144 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_range_reg
, &r_val
);
148 val
&= rdev
->desc
->vsel_mask
;
149 val
>>= ffs(rdev
->desc
->vsel_mask
) - 1;
151 range
= regulator_range_selector_to_index(rdev
, r_val
);
155 for (i
= 0; i
< range
; i
++)
156 voltages_in_range
+= (rdev
->desc
->linear_ranges
[i
].max_sel
-
157 rdev
->desc
->linear_ranges
[i
].min_sel
) + 1;
159 return val
+ voltages_in_range
;
161 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap
);
164 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
166 * @rdev: regulator to operate on
167 * @sel: Selector to set
169 * Regulators that use regmap for their register I/O and use pickable
170 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
171 * fields in their descriptor and then use this as their set_voltage_vsel
172 * operation, saving some code.
174 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev
*rdev
,
179 unsigned int voltages_in_range
= 0;
181 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
182 voltages_in_range
= (rdev
->desc
->linear_ranges
[i
].max_sel
-
183 rdev
->desc
->linear_ranges
[i
].min_sel
) + 1;
184 if (sel
< voltages_in_range
)
186 sel
-= voltages_in_range
;
189 if (i
== rdev
->desc
->n_linear_ranges
)
192 sel
<<= ffs(rdev
->desc
->vsel_mask
) - 1;
193 sel
+= rdev
->desc
->linear_ranges
[i
].min_sel
;
195 range
= rdev
->desc
->linear_range_selectors
[i
];
197 if (rdev
->desc
->vsel_reg
== rdev
->desc
->vsel_range_reg
) {
198 ret
= regmap_update_bits(rdev
->regmap
,
199 rdev
->desc
->vsel_reg
,
200 rdev
->desc
->vsel_range_mask
|
201 rdev
->desc
->vsel_mask
, sel
| range
);
203 ret
= regmap_update_bits(rdev
->regmap
,
204 rdev
->desc
->vsel_range_reg
,
205 rdev
->desc
->vsel_range_mask
, range
);
209 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->vsel_reg
,
210 rdev
->desc
->vsel_mask
, sel
);
216 if (rdev
->desc
->apply_bit
)
217 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->apply_reg
,
218 rdev
->desc
->apply_bit
,
219 rdev
->desc
->apply_bit
);
222 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap
);
225 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
227 * @rdev: regulator to operate on
229 * Regulators that use regmap for their register I/O can set the
230 * vsel_reg and vsel_mask fields in their descriptor and then use this
231 * as their get_voltage_vsel operation, saving some code.
233 int regulator_get_voltage_sel_regmap(struct regulator_dev
*rdev
)
238 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->vsel_reg
, &val
);
242 val
&= rdev
->desc
->vsel_mask
;
243 val
>>= ffs(rdev
->desc
->vsel_mask
) - 1;
247 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap
);
250 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
252 * @rdev: regulator to operate on
253 * @sel: Selector to set
255 * Regulators that use regmap for their register I/O can set the
256 * vsel_reg and vsel_mask fields in their descriptor and then use this
257 * as their set_voltage_vsel operation, saving some code.
259 int regulator_set_voltage_sel_regmap(struct regulator_dev
*rdev
, unsigned sel
)
263 sel
<<= ffs(rdev
->desc
->vsel_mask
) - 1;
265 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->vsel_reg
,
266 rdev
->desc
->vsel_mask
, sel
);
270 if (rdev
->desc
->apply_bit
)
271 ret
= regmap_update_bits(rdev
->regmap
, rdev
->desc
->apply_reg
,
272 rdev
->desc
->apply_bit
,
273 rdev
->desc
->apply_bit
);
276 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap
);
279 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
281 * @rdev: Regulator to operate on
282 * @min_uV: Lower bound for voltage
283 * @max_uV: Upper bound for voltage
285 * Drivers implementing set_voltage_sel() and list_voltage() can use
286 * this as their map_voltage() operation. It will find a suitable
287 * voltage by calling list_voltage() until it gets something in bounds
288 * for the requested voltages.
290 int regulator_map_voltage_iterate(struct regulator_dev
*rdev
,
291 int min_uV
, int max_uV
)
293 int best_val
= INT_MAX
;
297 /* Find the smallest voltage that falls within the specified
300 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
301 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
305 if (ret
< best_val
&& ret
>= min_uV
&& ret
<= max_uV
) {
311 if (best_val
!= INT_MAX
)
316 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate
);
319 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
321 * @rdev: Regulator to operate on
322 * @min_uV: Lower bound for voltage
323 * @max_uV: Upper bound for voltage
325 * Drivers that have ascendant voltage list can use this as their
326 * map_voltage() operation.
328 int regulator_map_voltage_ascend(struct regulator_dev
*rdev
,
329 int min_uV
, int max_uV
)
333 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
334 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
341 if (ret
>= min_uV
&& ret
<= max_uV
)
347 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend
);
350 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
352 * @rdev: Regulator to operate on
353 * @min_uV: Lower bound for voltage
354 * @max_uV: Upper bound for voltage
356 * Drivers providing min_uV and uV_step in their regulator_desc can
357 * use this as their map_voltage() operation.
359 int regulator_map_voltage_linear(struct regulator_dev
*rdev
,
360 int min_uV
, int max_uV
)
364 /* Allow uV_step to be 0 for fixed voltage */
365 if (rdev
->desc
->n_voltages
== 1 && rdev
->desc
->uV_step
== 0) {
366 if (min_uV
<= rdev
->desc
->min_uV
&& rdev
->desc
->min_uV
<= max_uV
)
372 if (!rdev
->desc
->uV_step
) {
373 BUG_ON(!rdev
->desc
->uV_step
);
377 if (min_uV
< rdev
->desc
->min_uV
)
378 min_uV
= rdev
->desc
->min_uV
;
380 ret
= DIV_ROUND_UP(min_uV
- rdev
->desc
->min_uV
, rdev
->desc
->uV_step
);
384 ret
+= rdev
->desc
->linear_min_sel
;
386 /* Map back into a voltage to verify we're still in bounds */
387 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
388 if (voltage
< min_uV
|| voltage
> max_uV
)
393 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear
);
396 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
398 * @rdev: Regulator to operate on
399 * @min_uV: Lower bound for voltage
400 * @max_uV: Upper bound for voltage
402 * Drivers providing linear_ranges in their descriptor can use this as
403 * their map_voltage() callback.
405 int regulator_map_voltage_linear_range(struct regulator_dev
*rdev
,
406 int min_uV
, int max_uV
)
408 const struct regulator_linear_range
*range
;
412 if (!rdev
->desc
->n_linear_ranges
) {
413 BUG_ON(!rdev
->desc
->n_linear_ranges
);
417 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
420 range
= &rdev
->desc
->linear_ranges
[i
];
421 linear_max_uV
= range
->min_uV
+
422 (range
->max_sel
- range
->min_sel
) * range
->uV_step
;
424 if (!(min_uV
<= linear_max_uV
&& max_uV
>= range
->min_uV
))
427 if (min_uV
<= range
->min_uV
)
428 min_uV
= range
->min_uV
;
430 /* range->uV_step == 0 means fixed voltage range */
431 if (range
->uV_step
== 0) {
434 ret
= DIV_ROUND_UP(min_uV
- range
->min_uV
,
440 ret
+= range
->min_sel
;
443 * Map back into a voltage to verify we're still in bounds.
444 * If we are not, then continue checking rest of the ranges.
446 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
447 if (voltage
>= min_uV
&& voltage
<= max_uV
)
451 if (i
== rdev
->desc
->n_linear_ranges
)
456 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range
);
459 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
461 * @rdev: Regulator to operate on
462 * @min_uV: Lower bound for voltage
463 * @max_uV: Upper bound for voltage
465 * Drivers providing pickable linear_ranges in their descriptor can use
466 * this as their map_voltage() callback.
468 int regulator_map_voltage_pickable_linear_range(struct regulator_dev
*rdev
,
469 int min_uV
, int max_uV
)
471 const struct regulator_linear_range
*range
;
474 unsigned int selector
= 0;
476 if (!rdev
->desc
->n_linear_ranges
) {
477 BUG_ON(!rdev
->desc
->n_linear_ranges
);
481 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
484 range
= &rdev
->desc
->linear_ranges
[i
];
485 linear_max_uV
= range
->min_uV
+
486 (range
->max_sel
- range
->min_sel
) * range
->uV_step
;
488 if (!(min_uV
<= linear_max_uV
&& max_uV
>= range
->min_uV
)) {
489 selector
+= (range
->max_sel
- range
->min_sel
+ 1);
493 if (min_uV
<= range
->min_uV
)
494 min_uV
= range
->min_uV
;
496 /* range->uV_step == 0 means fixed voltage range */
497 if (range
->uV_step
== 0) {
500 ret
= DIV_ROUND_UP(min_uV
- range
->min_uV
,
508 voltage
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
511 * Map back into a voltage to verify we're still in bounds.
512 * We may have overlapping voltage ranges. Hence we don't
513 * exit but retry until we have checked all ranges.
515 if (voltage
< min_uV
|| voltage
> max_uV
)
516 selector
+= (range
->max_sel
- range
->min_sel
+ 1);
521 if (i
== rdev
->desc
->n_linear_ranges
)
526 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range
);
529 * regulator_list_voltage_linear - List voltages with simple calculation
531 * @rdev: Regulator device
532 * @selector: Selector to convert into a voltage
534 * Regulators with a simple linear mapping between voltages and
535 * selectors can set min_uV and uV_step in the regulator descriptor
536 * and then use this function as their list_voltage() operation,
538 int regulator_list_voltage_linear(struct regulator_dev
*rdev
,
539 unsigned int selector
)
541 if (selector
>= rdev
->desc
->n_voltages
)
543 if (selector
< rdev
->desc
->linear_min_sel
)
546 selector
-= rdev
->desc
->linear_min_sel
;
548 return rdev
->desc
->min_uV
+ (rdev
->desc
->uV_step
* selector
);
550 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear
);
553 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
555 * @rdev: Regulator device
556 * @selector: Selector to convert into a voltage
558 * list_voltage() operation, intended to be used by drivers utilizing pickable
561 int regulator_list_voltage_pickable_linear_range(struct regulator_dev
*rdev
,
562 unsigned int selector
)
564 const struct regulator_linear_range
*range
;
566 unsigned int all_sels
= 0;
568 if (!rdev
->desc
->n_linear_ranges
) {
569 BUG_ON(!rdev
->desc
->n_linear_ranges
);
573 for (i
= 0; i
< rdev
->desc
->n_linear_ranges
; i
++) {
574 unsigned int sels_in_range
;
576 range
= &rdev
->desc
->linear_ranges
[i
];
578 sels_in_range
= range
->max_sel
- range
->min_sel
;
580 if (all_sels
+ sels_in_range
>= selector
) {
581 selector
-= all_sels
;
582 return range
->min_uV
+ (range
->uV_step
* selector
);
585 all_sels
+= (sels_in_range
+ 1);
590 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range
);
593 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
595 * @desc: Regulator desc for regulator which volatges are to be listed
596 * @selector: Selector to convert into a voltage
598 * Regulators with a series of simple linear mappings between voltages
599 * and selectors who have set linear_ranges in the regulator descriptor
600 * can use this function prior regulator registration to list voltages.
601 * This is useful when voltages need to be listed during device-tree
604 int regulator_desc_list_voltage_linear_range(const struct regulator_desc
*desc
,
605 unsigned int selector
)
607 const struct regulator_linear_range
*range
;
610 if (!desc
->n_linear_ranges
) {
611 BUG_ON(!desc
->n_linear_ranges
);
615 for (i
= 0; i
< desc
->n_linear_ranges
; i
++) {
616 range
= &desc
->linear_ranges
[i
];
618 if (!(selector
>= range
->min_sel
&&
619 selector
<= range
->max_sel
))
622 selector
-= range
->min_sel
;
624 return range
->min_uV
+ (range
->uV_step
* selector
);
629 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range
);
632 * regulator_list_voltage_linear_range - List voltages for linear ranges
634 * @rdev: Regulator device
635 * @selector: Selector to convert into a voltage
637 * Regulators with a series of simple linear mappings between voltages
638 * and selectors can set linear_ranges in the regulator descriptor and
639 * then use this function as their list_voltage() operation,
641 int regulator_list_voltage_linear_range(struct regulator_dev
*rdev
,
642 unsigned int selector
)
644 return regulator_desc_list_voltage_linear_range(rdev
->desc
, selector
);
646 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range
);
649 * regulator_list_voltage_table - List voltages with table based mapping
651 * @rdev: Regulator device
652 * @selector: Selector to convert into a voltage
654 * Regulators with table based mapping between voltages and
655 * selectors can set volt_table in the regulator descriptor
656 * and then use this function as their list_voltage() operation.
658 int regulator_list_voltage_table(struct regulator_dev
*rdev
,
659 unsigned int selector
)
661 if (!rdev
->desc
->volt_table
) {
662 BUG_ON(!rdev
->desc
->volt_table
);
666 if (selector
>= rdev
->desc
->n_voltages
)
669 return rdev
->desc
->volt_table
[selector
];
671 EXPORT_SYMBOL_GPL(regulator_list_voltage_table
);
674 * regulator_set_bypass_regmap - Default set_bypass() using regmap
676 * @rdev: device to operate on.
677 * @enable: state to set.
679 int regulator_set_bypass_regmap(struct regulator_dev
*rdev
, bool enable
)
684 val
= rdev
->desc
->bypass_val_on
;
686 val
= rdev
->desc
->bypass_mask
;
688 val
= rdev
->desc
->bypass_val_off
;
691 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->bypass_reg
,
692 rdev
->desc
->bypass_mask
, val
);
694 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap
);
697 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
699 * @rdev: device to operate on.
701 int regulator_set_soft_start_regmap(struct regulator_dev
*rdev
)
705 val
= rdev
->desc
->soft_start_val_on
;
707 val
= rdev
->desc
->soft_start_mask
;
709 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->soft_start_reg
,
710 rdev
->desc
->soft_start_mask
, val
);
712 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap
);
715 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
717 * @rdev: device to operate on.
719 int regulator_set_pull_down_regmap(struct regulator_dev
*rdev
)
723 val
= rdev
->desc
->pull_down_val_on
;
725 val
= rdev
->desc
->pull_down_mask
;
727 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->pull_down_reg
,
728 rdev
->desc
->pull_down_mask
, val
);
730 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap
);
733 * regulator_get_bypass_regmap - Default get_bypass() using regmap
735 * @rdev: device to operate on.
736 * @enable: current state.
738 int regulator_get_bypass_regmap(struct regulator_dev
*rdev
, bool *enable
)
741 unsigned int val_on
= rdev
->desc
->bypass_val_on
;
744 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->bypass_reg
, &val
);
749 val_on
= rdev
->desc
->bypass_mask
;
751 *enable
= (val
& rdev
->desc
->bypass_mask
) == val_on
;
755 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap
);
758 * regulator_set_active_discharge_regmap - Default set_active_discharge()
761 * @rdev: device to operate on.
762 * @enable: state to set, 0 to disable and 1 to enable.
764 int regulator_set_active_discharge_regmap(struct regulator_dev
*rdev
,
770 val
= rdev
->desc
->active_discharge_on
;
772 val
= rdev
->desc
->active_discharge_off
;
774 return regmap_update_bits(rdev
->regmap
,
775 rdev
->desc
->active_discharge_reg
,
776 rdev
->desc
->active_discharge_mask
, val
);
778 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap
);
781 * regulator_set_current_limit_regmap - set_current_limit for regmap users
783 * @rdev: regulator to operate on
784 * @min_uA: Lower bound for current limit
785 * @max_uA: Upper bound for current limit
787 * Regulators that use regmap for their register I/O can set curr_table,
788 * csel_reg and csel_mask fields in their descriptor and then use this
789 * as their set_current_limit operation, saving some code.
791 int regulator_set_current_limit_regmap(struct regulator_dev
*rdev
,
792 int min_uA
, int max_uA
)
794 unsigned int n_currents
= rdev
->desc
->n_current_limits
;
800 if (rdev
->desc
->curr_table
) {
801 const unsigned int *curr_table
= rdev
->desc
->curr_table
;
802 bool ascend
= curr_table
[n_currents
- 1] > curr_table
[0];
804 /* search for closest to maximum */
806 for (i
= n_currents
- 1; i
>= 0; i
--) {
807 if (min_uA
<= curr_table
[i
] &&
808 curr_table
[i
] <= max_uA
) {
814 for (i
= 0; i
< n_currents
; i
++) {
815 if (min_uA
<= curr_table
[i
] &&
816 curr_table
[i
] <= max_uA
) {
827 sel
<<= ffs(rdev
->desc
->csel_mask
) - 1;
829 return regmap_update_bits(rdev
->regmap
, rdev
->desc
->csel_reg
,
830 rdev
->desc
->csel_mask
, sel
);
832 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap
);
835 * regulator_get_current_limit_regmap - get_current_limit for regmap users
837 * @rdev: regulator to operate on
839 * Regulators that use regmap for their register I/O can set the
840 * csel_reg and csel_mask fields in their descriptor and then use this
841 * as their get_current_limit operation, saving some code.
843 int regulator_get_current_limit_regmap(struct regulator_dev
*rdev
)
848 ret
= regmap_read(rdev
->regmap
, rdev
->desc
->csel_reg
, &val
);
852 val
&= rdev
->desc
->csel_mask
;
853 val
>>= ffs(rdev
->desc
->csel_mask
) - 1;
855 if (rdev
->desc
->curr_table
) {
856 if (val
>= rdev
->desc
->n_current_limits
)
859 return rdev
->desc
->curr_table
[val
];
864 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap
);
867 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
868 * of regulator_bulk_data structs
870 * @consumers: array of regulator_bulk_data entries to initialize
871 * @supply_names: array of supply name strings
872 * @num_supplies: number of supply names to initialize
874 * Note: the 'consumers' array must be the size of 'num_supplies'.
876 void regulator_bulk_set_supply_names(struct regulator_bulk_data
*consumers
,
877 const char *const *supply_names
,
878 unsigned int num_supplies
)
882 for (i
= 0; i
< num_supplies
; i
++)
883 consumers
[i
].supply
= supply_names
[i
];
885 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names
);
888 * regulator_is_equal - test whether two regulators are the same
890 * @reg1: first regulator to operate on
891 * @reg2: second regulator to operate on
893 bool regulator_is_equal(struct regulator
*reg1
, struct regulator
*reg2
)
895 return reg1
->rdev
== reg2
->rdev
;
897 EXPORT_SYMBOL_GPL(regulator_is_equal
);