1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
11 #include "free-space-cache.h"
12 #include "inode-map.h"
13 #include "transaction.h"
14 #include "delalloc-space.h"
16 static void fail_caching_thread(struct btrfs_root
*root
)
18 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
20 btrfs_warn(fs_info
, "failed to start inode caching task");
21 btrfs_clear_pending_and_info(fs_info
, INODE_MAP_CACHE
,
22 "disabling inode map caching");
23 spin_lock(&root
->ino_cache_lock
);
24 root
->ino_cache_state
= BTRFS_CACHE_ERROR
;
25 spin_unlock(&root
->ino_cache_lock
);
26 wake_up(&root
->ino_cache_wait
);
29 static int caching_kthread(void *data
)
31 struct btrfs_root
*root
= data
;
32 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
33 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
35 struct btrfs_path
*path
;
36 struct extent_buffer
*leaf
;
41 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
44 path
= btrfs_alloc_path();
46 fail_caching_thread(root
);
50 /* Since the commit root is read-only, we can safely skip locking. */
51 path
->skip_locking
= 1;
52 path
->search_commit_root
= 1;
53 path
->reada
= READA_FORWARD
;
55 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
57 key
.type
= BTRFS_INODE_ITEM_KEY
;
59 /* need to make sure the commit_root doesn't disappear */
60 down_read(&fs_info
->commit_root_sem
);
62 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
67 if (btrfs_fs_closing(fs_info
))
70 leaf
= path
->nodes
[0];
71 slot
= path
->slots
[0];
72 if (slot
>= btrfs_header_nritems(leaf
)) {
73 ret
= btrfs_next_leaf(root
, path
);
80 btrfs_transaction_in_commit(fs_info
)) {
81 leaf
= path
->nodes
[0];
83 if (WARN_ON(btrfs_header_nritems(leaf
) == 0))
87 * Save the key so we can advances forward
90 btrfs_item_key_to_cpu(leaf
, &key
, 0);
91 btrfs_release_path(path
);
92 root
->ino_cache_progress
= last
;
93 up_read(&fs_info
->commit_root_sem
);
100 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
102 if (key
.type
!= BTRFS_INODE_ITEM_KEY
)
105 if (key
.objectid
>= root
->highest_objectid
)
108 if (last
!= (u64
)-1 && last
+ 1 != key
.objectid
) {
109 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
110 key
.objectid
- last
- 1);
111 wake_up(&root
->ino_cache_wait
);
119 if (last
< root
->highest_objectid
- 1) {
120 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
121 root
->highest_objectid
- last
- 1);
124 spin_lock(&root
->ino_cache_lock
);
125 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
126 spin_unlock(&root
->ino_cache_lock
);
128 root
->ino_cache_progress
= (u64
)-1;
129 btrfs_unpin_free_ino(root
);
131 wake_up(&root
->ino_cache_wait
);
132 up_read(&fs_info
->commit_root_sem
);
134 btrfs_free_path(path
);
139 static void start_caching(struct btrfs_root
*root
)
141 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
142 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
143 struct task_struct
*tsk
;
147 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
150 spin_lock(&root
->ino_cache_lock
);
151 if (root
->ino_cache_state
!= BTRFS_CACHE_NO
) {
152 spin_unlock(&root
->ino_cache_lock
);
156 root
->ino_cache_state
= BTRFS_CACHE_STARTED
;
157 spin_unlock(&root
->ino_cache_lock
);
159 ret
= load_free_ino_cache(fs_info
, root
);
161 spin_lock(&root
->ino_cache_lock
);
162 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
163 spin_unlock(&root
->ino_cache_lock
);
164 wake_up(&root
->ino_cache_wait
);
169 * It can be quite time-consuming to fill the cache by searching
170 * through the extent tree, and this can keep ino allocation path
171 * waiting. Therefore at start we quickly find out the highest
172 * inode number and we know we can use inode numbers which fall in
173 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
175 ret
= btrfs_find_free_objectid(root
, &objectid
);
176 if (!ret
&& objectid
<= BTRFS_LAST_FREE_OBJECTID
) {
177 __btrfs_add_free_space(fs_info
, ctl
, objectid
,
178 BTRFS_LAST_FREE_OBJECTID
- objectid
+ 1);
179 wake_up(&root
->ino_cache_wait
);
182 tsk
= kthread_run(caching_kthread
, root
, "btrfs-ino-cache-%llu",
183 root
->root_key
.objectid
);
185 fail_caching_thread(root
);
188 int btrfs_find_free_ino(struct btrfs_root
*root
, u64
*objectid
)
190 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
191 return btrfs_find_free_objectid(root
, objectid
);
194 *objectid
= btrfs_find_ino_for_alloc(root
);
201 wait_event(root
->ino_cache_wait
,
202 root
->ino_cache_state
== BTRFS_CACHE_FINISHED
||
203 root
->ino_cache_state
== BTRFS_CACHE_ERROR
||
204 root
->free_ino_ctl
->free_space
> 0);
206 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
&&
207 root
->free_ino_ctl
->free_space
== 0)
209 else if (root
->ino_cache_state
== BTRFS_CACHE_ERROR
)
210 return btrfs_find_free_objectid(root
, objectid
);
215 void btrfs_return_ino(struct btrfs_root
*root
, u64 objectid
)
217 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
218 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
220 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
223 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
224 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1);
226 down_write(&fs_info
->commit_root_sem
);
227 spin_lock(&root
->ino_cache_lock
);
228 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
229 spin_unlock(&root
->ino_cache_lock
);
230 up_write(&fs_info
->commit_root_sem
);
233 spin_unlock(&root
->ino_cache_lock
);
237 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1);
239 up_write(&fs_info
->commit_root_sem
);
244 * When a transaction is committed, we'll move those inode numbers which are
245 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
246 * others will just be dropped, because the commit root we were searching has
249 * Must be called with root->fs_info->commit_root_sem held
251 void btrfs_unpin_free_ino(struct btrfs_root
*root
)
253 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
254 struct rb_root
*rbroot
= &root
->free_ino_pinned
->free_space_offset
;
255 spinlock_t
*rbroot_lock
= &root
->free_ino_pinned
->tree_lock
;
256 struct btrfs_free_space
*info
;
260 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
264 spin_lock(rbroot_lock
);
265 n
= rb_first(rbroot
);
267 spin_unlock(rbroot_lock
);
271 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
272 BUG_ON(info
->bitmap
); /* Logic error */
274 if (info
->offset
> root
->ino_cache_progress
)
277 count
= min(root
->ino_cache_progress
- info
->offset
+ 1,
280 rb_erase(&info
->offset_index
, rbroot
);
281 spin_unlock(rbroot_lock
);
283 __btrfs_add_free_space(root
->fs_info
, ctl
,
284 info
->offset
, count
);
285 kmem_cache_free(btrfs_free_space_cachep
, info
);
289 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
290 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
293 * The goal is to keep the memory used by the free_ino tree won't
294 * exceed the memory if we use bitmaps only.
296 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
298 struct btrfs_free_space
*info
;
303 n
= rb_last(&ctl
->free_space_offset
);
305 ctl
->extents_thresh
= INIT_THRESHOLD
;
308 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
311 * Find the maximum inode number in the filesystem. Note we
312 * ignore the fact that this can be a bitmap, because we are
313 * not doing precise calculation.
315 max_ino
= info
->bytes
- 1;
317 max_bitmaps
= ALIGN(max_ino
, INODES_PER_BITMAP
) / INODES_PER_BITMAP
;
318 if (max_bitmaps
<= ctl
->total_bitmaps
) {
319 ctl
->extents_thresh
= 0;
323 ctl
->extents_thresh
= (max_bitmaps
- ctl
->total_bitmaps
) *
324 PAGE_SIZE
/ sizeof(*info
);
328 * We don't fall back to bitmap, if we are below the extents threshold
329 * or this chunk of inode numbers is a big one.
331 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
332 struct btrfs_free_space
*info
)
334 if (ctl
->free_extents
< ctl
->extents_thresh
||
335 info
->bytes
> INODES_PER_BITMAP
/ 10)
341 static const struct btrfs_free_space_op free_ino_op
= {
342 .recalc_thresholds
= recalculate_thresholds
,
343 .use_bitmap
= use_bitmap
,
346 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl
*ctl
)
350 static bool pinned_use_bitmap(struct btrfs_free_space_ctl
*ctl
,
351 struct btrfs_free_space
*info
)
354 * We always use extents for two reasons:
356 * - The pinned tree is only used during the process of caching
358 * - Make code simpler. See btrfs_unpin_free_ino().
363 static const struct btrfs_free_space_op pinned_free_ino_op
= {
364 .recalc_thresholds
= pinned_recalc_thresholds
,
365 .use_bitmap
= pinned_use_bitmap
,
368 void btrfs_init_free_ino_ctl(struct btrfs_root
*root
)
370 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
371 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
373 spin_lock_init(&ctl
->tree_lock
);
377 ctl
->op
= &free_ino_op
;
378 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
379 mutex_init(&ctl
->cache_writeout_mutex
);
382 * Initially we allow to use 16K of ram to cache chunks of
383 * inode numbers before we resort to bitmaps. This is somewhat
384 * arbitrary, but it will be adjusted in runtime.
386 ctl
->extents_thresh
= INIT_THRESHOLD
;
388 spin_lock_init(&pinned
->tree_lock
);
391 pinned
->private = NULL
;
392 pinned
->extents_thresh
= 0;
393 pinned
->op
= &pinned_free_ino_op
;
396 int btrfs_save_ino_cache(struct btrfs_root
*root
,
397 struct btrfs_trans_handle
*trans
)
399 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
400 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
401 struct btrfs_path
*path
;
403 struct btrfs_block_rsv
*rsv
;
404 struct extent_changeset
*data_reserved
= NULL
;
411 /* only fs tree and subvol/snap needs ino cache */
412 if (root
->root_key
.objectid
!= BTRFS_FS_TREE_OBJECTID
&&
413 (root
->root_key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
||
414 root
->root_key
.objectid
> BTRFS_LAST_FREE_OBJECTID
))
417 /* Don't save inode cache if we are deleting this root */
418 if (btrfs_root_refs(&root
->root_item
) == 0)
421 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
424 path
= btrfs_alloc_path();
428 rsv
= trans
->block_rsv
;
429 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
431 num_bytes
= trans
->bytes_reserved
;
433 * 1 item for inode item insertion if need
434 * 4 items for inode item update (in the worst case)
435 * 1 items for slack space if we need do truncation
436 * 1 item for free space object
437 * 3 items for pre-allocation
439 trans
->bytes_reserved
= btrfs_calc_insert_metadata_size(fs_info
, 10);
440 ret
= btrfs_block_rsv_add(root
, trans
->block_rsv
,
441 trans
->bytes_reserved
,
442 BTRFS_RESERVE_NO_FLUSH
);
445 trace_btrfs_space_reservation(fs_info
, "ino_cache", trans
->transid
,
446 trans
->bytes_reserved
, 1);
448 inode
= lookup_free_ino_inode(root
, path
);
449 if (IS_ERR(inode
) && (PTR_ERR(inode
) != -ENOENT
|| retry
)) {
450 ret
= PTR_ERR(inode
);
455 BUG_ON(retry
); /* Logic error */
458 ret
= create_free_ino_inode(root
, trans
, path
);
464 BTRFS_I(inode
)->generation
= 0;
465 ret
= btrfs_update_inode(trans
, root
, inode
);
467 btrfs_abort_transaction(trans
, ret
);
471 if (i_size_read(inode
) > 0) {
472 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
475 btrfs_abort_transaction(trans
, ret
);
480 spin_lock(&root
->ino_cache_lock
);
481 if (root
->ino_cache_state
!= BTRFS_CACHE_FINISHED
) {
483 spin_unlock(&root
->ino_cache_lock
);
486 spin_unlock(&root
->ino_cache_lock
);
488 spin_lock(&ctl
->tree_lock
);
489 prealloc
= sizeof(struct btrfs_free_space
) * ctl
->free_extents
;
490 prealloc
= ALIGN(prealloc
, PAGE_SIZE
);
491 prealloc
+= ctl
->total_bitmaps
* PAGE_SIZE
;
492 spin_unlock(&ctl
->tree_lock
);
494 /* Just to make sure we have enough space */
495 prealloc
+= 8 * PAGE_SIZE
;
497 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, 0, prealloc
);
501 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, prealloc
,
502 prealloc
, prealloc
, &alloc_hint
);
504 btrfs_delalloc_release_extents(BTRFS_I(inode
), prealloc
);
505 btrfs_delalloc_release_metadata(BTRFS_I(inode
), prealloc
, true);
509 ret
= btrfs_write_out_ino_cache(root
, trans
, path
, inode
);
510 btrfs_delalloc_release_extents(BTRFS_I(inode
), prealloc
);
514 trace_btrfs_space_reservation(fs_info
, "ino_cache", trans
->transid
,
515 trans
->bytes_reserved
, 0);
516 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
517 trans
->bytes_reserved
);
519 trans
->block_rsv
= rsv
;
520 trans
->bytes_reserved
= num_bytes
;
522 btrfs_free_path(path
);
523 extent_changeset_free(data_reserved
);
527 int btrfs_find_highest_objectid(struct btrfs_root
*root
, u64
*objectid
)
529 struct btrfs_path
*path
;
531 struct extent_buffer
*l
;
532 struct btrfs_key search_key
;
533 struct btrfs_key found_key
;
536 path
= btrfs_alloc_path();
540 search_key
.objectid
= BTRFS_LAST_FREE_OBJECTID
;
541 search_key
.type
= -1;
542 search_key
.offset
= (u64
)-1;
543 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
546 BUG_ON(ret
== 0); /* Corruption */
547 if (path
->slots
[0] > 0) {
548 slot
= path
->slots
[0] - 1;
550 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
551 *objectid
= max_t(u64
, found_key
.objectid
,
552 BTRFS_FIRST_FREE_OBJECTID
- 1);
554 *objectid
= BTRFS_FIRST_FREE_OBJECTID
- 1;
558 btrfs_free_path(path
);
562 int btrfs_find_free_objectid(struct btrfs_root
*root
, u64
*objectid
)
565 mutex_lock(&root
->objectid_mutex
);
567 if (unlikely(root
->highest_objectid
>= BTRFS_LAST_FREE_OBJECTID
)) {
568 btrfs_warn(root
->fs_info
,
569 "the objectid of root %llu reaches its highest value",
570 root
->root_key
.objectid
);
575 *objectid
= ++root
->highest_objectid
;
578 mutex_unlock(&root
->objectid_mutex
);