1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/backing-dev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/gfp.h>
11 #include <linux/pagemap.h>
12 #include <linux/pagevec.h>
13 #include <linux/sched/signal.h>
14 #include <linux/swap.h>
15 #include <linux/uio.h>
16 #include <linux/writeback.h>
19 #include <linux/uaccess.h>
31 * ntfs_file_open - called when an inode is about to be opened
32 * @vi: inode to be opened
33 * @filp: file structure describing the inode
35 * Limit file size to the page cache limit on architectures where unsigned long
36 * is 32-bits. This is the most we can do for now without overflowing the page
37 * cache page index. Doing it this way means we don't run into problems because
38 * of existing too large files. It would be better to allow the user to read
39 * the beginning of the file but I doubt very much anyone is going to hit this
40 * check on a 32-bit architecture, so there is no point in adding the extra
41 * complexity required to support this.
43 * On 64-bit architectures, the check is hopefully optimized away by the
46 * After the check passes, just call generic_file_open() to do its work.
48 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
50 if (sizeof(unsigned long) < 8) {
51 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
54 return generic_file_open(vi
, filp
);
60 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
61 * @ni: ntfs inode of the attribute to extend
62 * @new_init_size: requested new initialized size in bytes
64 * Extend the initialized size of an attribute described by the ntfs inode @ni
65 * to @new_init_size bytes. This involves zeroing any non-sparse space between
66 * the old initialized size and @new_init_size both in the page cache and on
67 * disk (if relevant complete pages are already uptodate in the page cache then
68 * these are simply marked dirty).
70 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
71 * in the resident attribute case, it is tied to the initialized size and, in
72 * the non-resident attribute case, it may not fall below the initialized size.
74 * Note that if the attribute is resident, we do not need to touch the page
75 * cache at all. This is because if the page cache page is not uptodate we
76 * bring it uptodate later, when doing the write to the mft record since we
77 * then already have the page mapped. And if the page is uptodate, the
78 * non-initialized region will already have been zeroed when the page was
79 * brought uptodate and the region may in fact already have been overwritten
80 * with new data via mmap() based writes, so we cannot just zero it. And since
81 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
82 * is unspecified, we choose not to do zeroing and thus we do not need to touch
83 * the page at all. For a more detailed explanation see ntfs_truncate() in
86 * Return 0 on success and -errno on error. In the case that an error is
87 * encountered it is possible that the initialized size will already have been
88 * incremented some way towards @new_init_size but it is guaranteed that if
89 * this is the case, the necessary zeroing will also have happened and that all
90 * metadata is self-consistent.
92 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
95 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
)
99 pgoff_t index
, end_index
;
101 struct inode
*vi
= VFS_I(ni
);
103 MFT_RECORD
*m
= NULL
;
105 ntfs_attr_search_ctx
*ctx
= NULL
;
106 struct address_space
*mapping
;
107 struct page
*page
= NULL
;
112 read_lock_irqsave(&ni
->size_lock
, flags
);
113 old_init_size
= ni
->initialized_size
;
114 old_i_size
= i_size_read(vi
);
115 BUG_ON(new_init_size
> ni
->allocated_size
);
116 read_unlock_irqrestore(&ni
->size_lock
, flags
);
117 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
118 "old_initialized_size 0x%llx, "
119 "new_initialized_size 0x%llx, i_size 0x%llx.",
120 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
121 (unsigned long long)old_init_size
,
122 (unsigned long long)new_init_size
, old_i_size
);
126 base_ni
= ni
->ext
.base_ntfs_ino
;
127 /* Use goto to reduce indentation and we need the label below anyway. */
128 if (NInoNonResident(ni
))
129 goto do_non_resident_extend
;
130 BUG_ON(old_init_size
!= old_i_size
);
131 m
= map_mft_record(base_ni
);
137 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
138 if (unlikely(!ctx
)) {
142 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
143 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
151 BUG_ON(a
->non_resident
);
152 /* The total length of the attribute value. */
153 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
154 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
156 * Do the zeroing in the mft record and update the attribute size in
159 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
160 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
161 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
162 /* Finally, update the sizes in the vfs and ntfs inodes. */
163 write_lock_irqsave(&ni
->size_lock
, flags
);
164 i_size_write(vi
, new_init_size
);
165 ni
->initialized_size
= new_init_size
;
166 write_unlock_irqrestore(&ni
->size_lock
, flags
);
168 do_non_resident_extend
:
170 * If the new initialized size @new_init_size exceeds the current file
171 * size (vfs inode->i_size), we need to extend the file size to the
172 * new initialized size.
174 if (new_init_size
> old_i_size
) {
175 m
= map_mft_record(base_ni
);
181 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
182 if (unlikely(!ctx
)) {
186 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
187 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
195 BUG_ON(!a
->non_resident
);
196 BUG_ON(old_i_size
!= (loff_t
)
197 sle64_to_cpu(a
->data
.non_resident
.data_size
));
198 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
199 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
200 mark_mft_record_dirty(ctx
->ntfs_ino
);
201 /* Update the file size in the vfs inode. */
202 i_size_write(vi
, new_init_size
);
203 ntfs_attr_put_search_ctx(ctx
);
205 unmap_mft_record(base_ni
);
208 mapping
= vi
->i_mapping
;
209 index
= old_init_size
>> PAGE_SHIFT
;
210 end_index
= (new_init_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
213 * Read the page. If the page is not present, this will zero
214 * the uninitialized regions for us.
216 page
= read_mapping_page(mapping
, index
, NULL
);
221 if (unlikely(PageError(page
))) {
227 * Update the initialized size in the ntfs inode. This is
228 * enough to make ntfs_writepage() work.
230 write_lock_irqsave(&ni
->size_lock
, flags
);
231 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_SHIFT
;
232 if (ni
->initialized_size
> new_init_size
)
233 ni
->initialized_size
= new_init_size
;
234 write_unlock_irqrestore(&ni
->size_lock
, flags
);
235 /* Set the page dirty so it gets written out. */
236 set_page_dirty(page
);
239 * Play nice with the vm and the rest of the system. This is
240 * very much needed as we can potentially be modifying the
241 * initialised size from a very small value to a really huge
243 * f = open(somefile, O_TRUNC);
244 * truncate(f, 10GiB);
247 * And this would mean we would be marking dirty hundreds of
248 * thousands of pages or as in the above example more than
249 * two and a half million pages!
251 * TODO: For sparse pages could optimize this workload by using
252 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
253 * would be set in readpage for sparse pages and here we would
254 * not need to mark dirty any pages which have this bit set.
255 * The only caveat is that we have to clear the bit everywhere
256 * where we allocate any clusters that lie in the page or that
259 * TODO: An even greater optimization would be for us to only
260 * call readpage() on pages which are not in sparse regions as
261 * determined from the runlist. This would greatly reduce the
262 * number of pages we read and make dirty in the case of sparse
265 balance_dirty_pages_ratelimited(mapping
);
267 } while (++index
< end_index
);
268 read_lock_irqsave(&ni
->size_lock
, flags
);
269 BUG_ON(ni
->initialized_size
!= new_init_size
);
270 read_unlock_irqrestore(&ni
->size_lock
, flags
);
271 /* Now bring in sync the initialized_size in the mft record. */
272 m
= map_mft_record(base_ni
);
278 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
279 if (unlikely(!ctx
)) {
283 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
284 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
292 BUG_ON(!a
->non_resident
);
293 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
295 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
296 mark_mft_record_dirty(ctx
->ntfs_ino
);
298 ntfs_attr_put_search_ctx(ctx
);
300 unmap_mft_record(base_ni
);
301 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
302 (unsigned long long)new_init_size
, i_size_read(vi
));
305 write_lock_irqsave(&ni
->size_lock
, flags
);
306 ni
->initialized_size
= old_init_size
;
307 write_unlock_irqrestore(&ni
->size_lock
, flags
);
310 ntfs_attr_put_search_ctx(ctx
);
312 unmap_mft_record(base_ni
);
313 ntfs_debug("Failed. Returning error code %i.", err
);
317 static ssize_t
ntfs_prepare_file_for_write(struct kiocb
*iocb
,
318 struct iov_iter
*from
)
324 struct file
*file
= iocb
->ki_filp
;
325 struct inode
*vi
= file_inode(file
);
326 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
327 ntfs_volume
*vol
= ni
->vol
;
329 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
330 "0x%llx, count 0x%zx.", vi
->i_ino
,
331 (unsigned)le32_to_cpu(ni
->type
),
332 (unsigned long long)iocb
->ki_pos
,
333 iov_iter_count(from
));
334 err
= generic_write_checks(iocb
, from
);
335 if (unlikely(err
<= 0))
338 * All checks have passed. Before we start doing any writing we want
339 * to abort any totally illegal writes.
341 BUG_ON(NInoMstProtected(ni
));
342 BUG_ON(ni
->type
!= AT_DATA
);
343 /* If file is encrypted, deny access, just like NT4. */
344 if (NInoEncrypted(ni
)) {
345 /* Only $DATA attributes can be encrypted. */
347 * Reminder for later: Encrypted files are _always_
348 * non-resident so that the content can always be encrypted.
350 ntfs_debug("Denying write access to encrypted file.");
354 if (NInoCompressed(ni
)) {
355 /* Only unnamed $DATA attribute can be compressed. */
356 BUG_ON(ni
->name_len
);
358 * Reminder for later: If resident, the data is not actually
359 * compressed. Only on the switch to non-resident does
360 * compression kick in. This is in contrast to encrypted files
363 ntfs_error(vi
->i_sb
, "Writing to compressed files is not "
364 "implemented yet. Sorry.");
370 base_ni
= ni
->ext
.base_ntfs_ino
;
371 err
= file_remove_privs(file
);
375 * Our ->update_time method always succeeds thus file_update_time()
376 * cannot fail either so there is no need to check the return code.
378 file_update_time(file
);
380 /* The first byte after the last cluster being written to. */
381 end
= (pos
+ iov_iter_count(from
) + vol
->cluster_size_mask
) &
382 ~(u64
)vol
->cluster_size_mask
;
384 * If the write goes beyond the allocated size, extend the allocation
385 * to cover the whole of the write, rounded up to the nearest cluster.
387 read_lock_irqsave(&ni
->size_lock
, flags
);
388 ll
= ni
->allocated_size
;
389 read_unlock_irqrestore(&ni
->size_lock
, flags
);
392 * Extend the allocation without changing the data size.
394 * Note we ensure the allocation is big enough to at least
395 * write some data but we do not require the allocation to be
396 * complete, i.e. it may be partial.
398 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
399 if (likely(ll
>= 0)) {
401 /* If the extension was partial truncate the write. */
403 ntfs_debug("Truncating write to inode 0x%lx, "
404 "attribute type 0x%x, because "
405 "the allocation was only "
406 "partially extended.",
407 vi
->i_ino
, (unsigned)
408 le32_to_cpu(ni
->type
));
409 iov_iter_truncate(from
, ll
- pos
);
413 read_lock_irqsave(&ni
->size_lock
, flags
);
414 ll
= ni
->allocated_size
;
415 read_unlock_irqrestore(&ni
->size_lock
, flags
);
416 /* Perform a partial write if possible or fail. */
418 ntfs_debug("Truncating write to inode 0x%lx "
419 "attribute type 0x%x, because "
420 "extending the allocation "
421 "failed (error %d).",
422 vi
->i_ino
, (unsigned)
423 le32_to_cpu(ni
->type
),
425 iov_iter_truncate(from
, ll
- pos
);
428 ntfs_error(vi
->i_sb
, "Cannot perform "
431 "type 0x%x, because "
435 vi
->i_ino
, (unsigned)
436 le32_to_cpu(ni
->type
),
439 ntfs_debug("Cannot perform write to "
441 "attribute type 0x%x, "
442 "because there is not "
444 vi
->i_ino
, (unsigned)
445 le32_to_cpu(ni
->type
));
451 * If the write starts beyond the initialized size, extend it up to the
452 * beginning of the write and initialize all non-sparse space between
453 * the old initialized size and the new one. This automatically also
454 * increments the vfs inode->i_size to keep it above or equal to the
457 read_lock_irqsave(&ni
->size_lock
, flags
);
458 ll
= ni
->initialized_size
;
459 read_unlock_irqrestore(&ni
->size_lock
, flags
);
462 * Wait for ongoing direct i/o to complete before proceeding.
463 * New direct i/o cannot start as we hold i_mutex.
466 err
= ntfs_attr_extend_initialized(ni
, pos
);
467 if (unlikely(err
< 0))
468 ntfs_error(vi
->i_sb
, "Cannot perform write to inode "
469 "0x%lx, attribute type 0x%x, because "
470 "extending the initialized size "
471 "failed (error %d).", vi
->i_ino
,
472 (unsigned)le32_to_cpu(ni
->type
),
480 * __ntfs_grab_cache_pages - obtain a number of locked pages
481 * @mapping: address space mapping from which to obtain page cache pages
482 * @index: starting index in @mapping at which to begin obtaining pages
483 * @nr_pages: number of page cache pages to obtain
484 * @pages: array of pages in which to return the obtained page cache pages
485 * @cached_page: allocated but as yet unused page
487 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
488 * starting at index @index.
490 * If a page is newly created, add it to lru list
492 * Note, the page locks are obtained in ascending page index order.
494 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
495 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
496 struct page
**cached_page
)
503 pages
[nr
] = find_get_page_flags(mapping
, index
, FGP_LOCK
|
507 *cached_page
= page_cache_alloc(mapping
);
508 if (unlikely(!*cached_page
)) {
513 err
= add_to_page_cache_lru(*cached_page
, mapping
,
515 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
521 pages
[nr
] = *cached_page
;
526 } while (nr
< nr_pages
);
531 unlock_page(pages
[--nr
]);
537 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
541 bh
->b_end_io
= end_buffer_read_sync
;
542 return submit_bh(REQ_OP_READ
, 0, bh
);
546 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
547 * @pages: array of destination pages
548 * @nr_pages: number of pages in @pages
549 * @pos: byte position in file at which the write begins
550 * @bytes: number of bytes to be written
552 * This is called for non-resident attributes from ntfs_file_buffered_write()
553 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
554 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
555 * data has not yet been copied into the @pages.
557 * Need to fill any holes with actual clusters, allocate buffers if necessary,
558 * ensure all the buffers are mapped, and bring uptodate any buffers that are
559 * only partially being written to.
561 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
562 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
563 * the same cluster and that they are the entirety of that cluster, and that
564 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
566 * i_size is not to be modified yet.
568 * Return 0 on success or -errno on error.
570 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
571 unsigned nr_pages
, s64 pos
, size_t bytes
)
573 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
575 s64 bh_pos
, vcn_len
, end
, initialized_size
;
579 ntfs_inode
*ni
, *base_ni
= NULL
;
581 runlist_element
*rl
, *rl2
;
582 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
583 ntfs_attr_search_ctx
*ctx
= NULL
;
584 MFT_RECORD
*m
= NULL
;
585 ATTR_RECORD
*a
= NULL
;
587 u32 attr_rec_len
= 0;
588 unsigned blocksize
, u
;
590 bool rl_write_locked
, was_hole
, is_retry
;
591 unsigned char blocksize_bits
;
594 u8 mft_attr_mapped
:1;
597 } status
= { 0, 0, 0, 0 };
602 vi
= pages
[0]->mapping
->host
;
605 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
606 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
607 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
608 (long long)pos
, bytes
);
609 blocksize
= vol
->sb
->s_blocksize
;
610 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
616 * create_empty_buffers() will create uptodate/dirty buffers if
617 * the page is uptodate/dirty.
619 if (!page_has_buffers(page
)) {
620 create_empty_buffers(page
, blocksize
, 0);
621 if (unlikely(!page_has_buffers(page
)))
624 } while (++u
< nr_pages
);
625 rl_write_locked
= false;
632 cpos
= pos
>> vol
->cluster_size_bits
;
634 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
636 * Loop over each page and for each page over each buffer. Use goto to
637 * reduce indentation.
642 bh_pos
= (s64
)page
->index
<< PAGE_SHIFT
;
643 bh
= head
= page_buffers(page
);
649 /* Clear buffer_new on all buffers to reinitialise state. */
651 clear_buffer_new(bh
);
652 bh_end
= bh_pos
+ blocksize
;
653 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
654 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
655 if (buffer_mapped(bh
)) {
657 * The buffer is already mapped. If it is uptodate,
660 if (buffer_uptodate(bh
))
663 * The buffer is not uptodate. If the page is uptodate
664 * set the buffer uptodate and otherwise ignore it.
666 if (PageUptodate(page
)) {
667 set_buffer_uptodate(bh
);
671 * Neither the page nor the buffer are uptodate. If
672 * the buffer is only partially being written to, we
673 * need to read it in before the write, i.e. now.
675 if ((bh_pos
< pos
&& bh_end
> pos
) ||
676 (bh_pos
< end
&& bh_end
> end
)) {
678 * If the buffer is fully or partially within
679 * the initialized size, do an actual read.
680 * Otherwise, simply zero the buffer.
682 read_lock_irqsave(&ni
->size_lock
, flags
);
683 initialized_size
= ni
->initialized_size
;
684 read_unlock_irqrestore(&ni
->size_lock
, flags
);
685 if (bh_pos
< initialized_size
) {
686 ntfs_submit_bh_for_read(bh
);
689 zero_user(page
, bh_offset(bh
),
691 set_buffer_uptodate(bh
);
696 /* Unmapped buffer. Need to map it. */
697 bh
->b_bdev
= vol
->sb
->s_bdev
;
699 * If the current buffer is in the same clusters as the map
700 * cache, there is no need to check the runlist again. The
701 * map cache is made up of @vcn, which is the first cached file
702 * cluster, @vcn_len which is the number of cached file
703 * clusters, @lcn is the device cluster corresponding to @vcn,
704 * and @lcn_block is the block number corresponding to @lcn.
706 cdelta
= bh_cpos
- vcn
;
707 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
710 bh
->b_blocknr
= lcn_block
+
711 (cdelta
<< (vol
->cluster_size_bits
-
713 (bh_cofs
>> blocksize_bits
);
714 set_buffer_mapped(bh
);
716 * If the page is uptodate so is the buffer. If the
717 * buffer is fully outside the write, we ignore it if
718 * it was already allocated and we mark it dirty so it
719 * gets written out if we allocated it. On the other
720 * hand, if we allocated the buffer but we are not
721 * marking it dirty we set buffer_new so we can do
724 if (PageUptodate(page
)) {
725 if (!buffer_uptodate(bh
))
726 set_buffer_uptodate(bh
);
727 if (unlikely(was_hole
)) {
728 /* We allocated the buffer. */
729 clean_bdev_bh_alias(bh
);
730 if (bh_end
<= pos
|| bh_pos
>= end
)
731 mark_buffer_dirty(bh
);
737 /* Page is _not_ uptodate. */
738 if (likely(!was_hole
)) {
740 * Buffer was already allocated. If it is not
741 * uptodate and is only partially being written
742 * to, we need to read it in before the write,
745 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
750 * If the buffer is fully or partially
751 * within the initialized size, do an
752 * actual read. Otherwise, simply zero
755 read_lock_irqsave(&ni
->size_lock
,
757 initialized_size
= ni
->initialized_size
;
758 read_unlock_irqrestore(&ni
->size_lock
,
760 if (bh_pos
< initialized_size
) {
761 ntfs_submit_bh_for_read(bh
);
764 zero_user(page
, bh_offset(bh
),
766 set_buffer_uptodate(bh
);
771 /* We allocated the buffer. */
772 clean_bdev_bh_alias(bh
);
774 * If the buffer is fully outside the write, zero it,
775 * set it uptodate, and mark it dirty so it gets
776 * written out. If it is partially being written to,
777 * zero region surrounding the write but leave it to
778 * commit write to do anything else. Finally, if the
779 * buffer is fully being overwritten, do nothing.
781 if (bh_end
<= pos
|| bh_pos
>= end
) {
782 if (!buffer_uptodate(bh
)) {
783 zero_user(page
, bh_offset(bh
),
785 set_buffer_uptodate(bh
);
787 mark_buffer_dirty(bh
);
791 if (!buffer_uptodate(bh
) &&
792 (bh_pos
< pos
|| bh_end
> end
)) {
796 kaddr
= kmap_atomic(page
);
798 pofs
= bh_pos
& ~PAGE_MASK
;
799 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
802 pofs
= end
& ~PAGE_MASK
;
803 memset(kaddr
+ pofs
, 0, bh_end
- end
);
805 kunmap_atomic(kaddr
);
806 flush_dcache_page(page
);
811 * Slow path: this is the first buffer in the cluster. If it
812 * is outside allocated size and is not uptodate, zero it and
815 read_lock_irqsave(&ni
->size_lock
, flags
);
816 initialized_size
= ni
->allocated_size
;
817 read_unlock_irqrestore(&ni
->size_lock
, flags
);
818 if (bh_pos
> initialized_size
) {
819 if (PageUptodate(page
)) {
820 if (!buffer_uptodate(bh
))
821 set_buffer_uptodate(bh
);
822 } else if (!buffer_uptodate(bh
)) {
823 zero_user(page
, bh_offset(bh
), blocksize
);
824 set_buffer_uptodate(bh
);
830 down_read(&ni
->runlist
.lock
);
834 if (likely(rl
!= NULL
)) {
835 /* Seek to element containing target cluster. */
836 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
838 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
839 if (likely(lcn
>= 0)) {
841 * Successful remap, setup the map cache and
842 * use that to deal with the buffer.
846 vcn_len
= rl
[1].vcn
- vcn
;
847 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
851 * If the number of remaining clusters touched
852 * by the write is smaller or equal to the
853 * number of cached clusters, unlock the
854 * runlist as the map cache will be used from
857 if (likely(vcn
+ vcn_len
>= cend
)) {
858 if (rl_write_locked
) {
859 up_write(&ni
->runlist
.lock
);
860 rl_write_locked
= false;
862 up_read(&ni
->runlist
.lock
);
865 goto map_buffer_cached
;
868 lcn
= LCN_RL_NOT_MAPPED
;
870 * If it is not a hole and not out of bounds, the runlist is
871 * probably unmapped so try to map it now.
873 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
874 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
875 /* Attempt to map runlist. */
876 if (!rl_write_locked
) {
878 * We need the runlist locked for
879 * writing, so if it is locked for
880 * reading relock it now and retry in
881 * case it changed whilst we dropped
884 up_read(&ni
->runlist
.lock
);
885 down_write(&ni
->runlist
.lock
);
886 rl_write_locked
= true;
889 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
896 * If @vcn is out of bounds, pretend @lcn is
897 * LCN_ENOENT. As long as the buffer is out
898 * of bounds this will work fine.
900 if (err
== -ENOENT
) {
903 goto rl_not_mapped_enoent
;
907 /* Failed to map the buffer, even after retrying. */
909 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
910 "attribute type 0x%x, vcn 0x%llx, "
911 "vcn offset 0x%x, because its "
912 "location on disk could not be "
913 "determined%s (error code %i).",
914 ni
->mft_no
, ni
->type
,
915 (unsigned long long)bh_cpos
,
917 vol
->cluster_size_mask
,
918 is_retry
? " even after retrying" : "",
922 rl_not_mapped_enoent
:
924 * The buffer is in a hole or out of bounds. We need to fill
925 * the hole, unless the buffer is in a cluster which is not
926 * touched by the write, in which case we just leave the buffer
927 * unmapped. This can only happen when the cluster size is
928 * less than the page cache size.
930 if (unlikely(vol
->cluster_size
< PAGE_SIZE
)) {
931 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
932 vol
->cluster_size_bits
;
933 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
936 * If the buffer is uptodate we skip it. If it
937 * is not but the page is uptodate, we can set
938 * the buffer uptodate. If the page is not
939 * uptodate, we can clear the buffer and set it
940 * uptodate. Whether this is worthwhile is
941 * debatable and this could be removed.
943 if (PageUptodate(page
)) {
944 if (!buffer_uptodate(bh
))
945 set_buffer_uptodate(bh
);
946 } else if (!buffer_uptodate(bh
)) {
947 zero_user(page
, bh_offset(bh
),
949 set_buffer_uptodate(bh
);
955 * Out of bounds buffer is invalid if it was not really out of
958 BUG_ON(lcn
!= LCN_HOLE
);
960 * We need the runlist locked for writing, so if it is locked
961 * for reading relock it now and retry in case it changed
962 * whilst we dropped the lock.
965 if (!rl_write_locked
) {
966 up_read(&ni
->runlist
.lock
);
967 down_write(&ni
->runlist
.lock
);
968 rl_write_locked
= true;
971 /* Find the previous last allocated cluster. */
972 BUG_ON(rl
->lcn
!= LCN_HOLE
);
975 while (--rl2
>= ni
->runlist
.rl
) {
977 lcn
= rl2
->lcn
+ rl2
->length
;
981 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
985 ntfs_debug("Failed to allocate cluster, error code %i.",
990 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
995 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
996 ntfs_error(vol
->sb
, "Failed to release "
997 "allocated cluster in error "
998 "code path. Run chkdsk to "
999 "recover the lost cluster.");
1005 ni
->runlist
.rl
= rl
;
1006 status
.runlist_merged
= 1;
1007 ntfs_debug("Allocated cluster, lcn 0x%llx.",
1008 (unsigned long long)lcn
);
1009 /* Map and lock the mft record and get the attribute record. */
1013 base_ni
= ni
->ext
.base_ntfs_ino
;
1014 m
= map_mft_record(base_ni
);
1019 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1020 if (unlikely(!ctx
)) {
1022 unmap_mft_record(base_ni
);
1025 status
.mft_attr_mapped
= 1;
1026 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1027 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
1028 if (unlikely(err
)) {
1036 * Find the runlist element with which the attribute extent
1037 * starts. Note, we cannot use the _attr_ version because we
1038 * have mapped the mft record. That is ok because we know the
1039 * runlist fragment must be mapped already to have ever gotten
1040 * here, so we can just use the _rl_ version.
1042 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
1043 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
1045 BUG_ON(!rl2
->length
);
1046 BUG_ON(rl2
->lcn
< LCN_HOLE
);
1047 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
1049 * If @highest_vcn is zero, calculate the real highest_vcn
1050 * (which can really be zero).
1053 highest_vcn
= (sle64_to_cpu(
1054 a
->data
.non_resident
.allocated_size
) >>
1055 vol
->cluster_size_bits
) - 1;
1057 * Determine the size of the mapping pairs array for the new
1058 * extent, i.e. the old extent with the hole filled.
1060 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
1062 if (unlikely(mp_size
<= 0)) {
1063 if (!(err
= mp_size
))
1065 ntfs_debug("Failed to get size for mapping pairs "
1066 "array, error code %i.", err
);
1070 * Resize the attribute record to fit the new mapping pairs
1073 attr_rec_len
= le32_to_cpu(a
->length
);
1074 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
1075 a
->data
.non_resident
.mapping_pairs_offset
));
1076 if (unlikely(err
)) {
1077 BUG_ON(err
!= -ENOSPC
);
1078 // TODO: Deal with this by using the current attribute
1079 // and fill it with as much of the mapping pairs
1080 // array as possible. Then loop over each attribute
1081 // extent rewriting the mapping pairs arrays as we go
1082 // along and if when we reach the end we have not
1083 // enough space, try to resize the last attribute
1084 // extent and if even that fails, add a new attribute
1086 // We could also try to resize at each step in the hope
1087 // that we will not need to rewrite every single extent.
1088 // Note, we may need to decompress some extents to fill
1089 // the runlist as we are walking the extents...
1090 ntfs_error(vol
->sb
, "Not enough space in the mft "
1091 "record for the extended attribute "
1092 "record. This case is not "
1093 "implemented yet.");
1097 status
.mp_rebuilt
= 1;
1099 * Generate the mapping pairs array directly into the attribute
1102 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1103 a
->data
.non_resident
.mapping_pairs_offset
),
1104 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1105 if (unlikely(err
)) {
1106 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1107 "attribute type 0x%x, because building "
1108 "the mapping pairs failed with error "
1109 "code %i.", vi
->i_ino
,
1110 (unsigned)le32_to_cpu(ni
->type
), err
);
1114 /* Update the highest_vcn but only if it was not set. */
1115 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1116 a
->data
.non_resident
.highest_vcn
=
1117 cpu_to_sle64(highest_vcn
);
1119 * If the attribute is sparse/compressed, update the compressed
1120 * size in the ntfs_inode structure and the attribute record.
1122 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1124 * If we are not in the first attribute extent, switch
1125 * to it, but first ensure the changes will make it to
1128 if (a
->data
.non_resident
.lowest_vcn
) {
1129 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1130 mark_mft_record_dirty(ctx
->ntfs_ino
);
1131 ntfs_attr_reinit_search_ctx(ctx
);
1132 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1133 ni
->name_len
, CASE_SENSITIVE
,
1135 if (unlikely(err
)) {
1136 status
.attr_switched
= 1;
1139 /* @m is not used any more so do not set it. */
1142 write_lock_irqsave(&ni
->size_lock
, flags
);
1143 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1144 a
->data
.non_resident
.compressed_size
=
1145 cpu_to_sle64(ni
->itype
.compressed
.size
);
1146 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1148 /* Ensure the changes make it to disk. */
1149 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1150 mark_mft_record_dirty(ctx
->ntfs_ino
);
1151 ntfs_attr_put_search_ctx(ctx
);
1152 unmap_mft_record(base_ni
);
1153 /* Successfully filled the hole. */
1154 status
.runlist_merged
= 0;
1155 status
.mft_attr_mapped
= 0;
1156 status
.mp_rebuilt
= 0;
1157 /* Setup the map cache and use that to deal with the buffer. */
1161 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1164 * If the number of remaining clusters in the @pages is smaller
1165 * or equal to the number of cached clusters, unlock the
1166 * runlist as the map cache will be used from now on.
1168 if (likely(vcn
+ vcn_len
>= cend
)) {
1169 up_write(&ni
->runlist
.lock
);
1170 rl_write_locked
= false;
1173 goto map_buffer_cached
;
1174 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1175 /* If there are no errors, do the next page. */
1176 if (likely(!err
&& ++u
< nr_pages
))
1178 /* If there are no errors, release the runlist lock if we took it. */
1180 if (unlikely(rl_write_locked
)) {
1181 up_write(&ni
->runlist
.lock
);
1182 rl_write_locked
= false;
1183 } else if (unlikely(rl
))
1184 up_read(&ni
->runlist
.lock
);
1187 /* If we issued read requests, let them complete. */
1188 read_lock_irqsave(&ni
->size_lock
, flags
);
1189 initialized_size
= ni
->initialized_size
;
1190 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1191 while (wait_bh
> wait
) {
1194 if (likely(buffer_uptodate(bh
))) {
1196 bh_pos
= ((s64
)page
->index
<< PAGE_SHIFT
) +
1199 * If the buffer overflows the initialized size, need
1200 * to zero the overflowing region.
1202 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1205 if (likely(bh_pos
< initialized_size
))
1206 ofs
= initialized_size
- bh_pos
;
1207 zero_user_segment(page
, bh_offset(bh
) + ofs
,
1210 } else /* if (unlikely(!buffer_uptodate(bh))) */
1214 /* Clear buffer_new on all buffers. */
1217 bh
= head
= page_buffers(pages
[u
]);
1220 clear_buffer_new(bh
);
1221 } while ((bh
= bh
->b_this_page
) != head
);
1222 } while (++u
< nr_pages
);
1223 ntfs_debug("Done.");
1226 if (status
.attr_switched
) {
1227 /* Get back to the attribute extent we modified. */
1228 ntfs_attr_reinit_search_ctx(ctx
);
1229 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1230 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1231 ntfs_error(vol
->sb
, "Failed to find required "
1232 "attribute extent of attribute in "
1233 "error code path. Run chkdsk to "
1235 write_lock_irqsave(&ni
->size_lock
, flags
);
1236 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1237 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1238 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1239 mark_mft_record_dirty(ctx
->ntfs_ino
);
1241 * The only thing that is now wrong is the compressed
1242 * size of the base attribute extent which chkdsk
1243 * should be able to fix.
1249 status
.attr_switched
= 0;
1253 * If the runlist has been modified, need to restore it by punching a
1254 * hole into it and we then need to deallocate the on-disk cluster as
1255 * well. Note, we only modify the runlist if we are able to generate a
1256 * new mapping pairs array, i.e. only when the mapped attribute extent
1259 if (status
.runlist_merged
&& !status
.attr_switched
) {
1260 BUG_ON(!rl_write_locked
);
1261 /* Make the file cluster we allocated sparse in the runlist. */
1262 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1263 ntfs_error(vol
->sb
, "Failed to punch hole into "
1264 "attribute runlist in error code "
1265 "path. Run chkdsk to recover the "
1268 } else /* if (success) */ {
1269 status
.runlist_merged
= 0;
1271 * Deallocate the on-disk cluster we allocated but only
1272 * if we succeeded in punching its vcn out of the
1275 down_write(&vol
->lcnbmp_lock
);
1276 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1277 ntfs_error(vol
->sb
, "Failed to release "
1278 "allocated cluster in error "
1279 "code path. Run chkdsk to "
1280 "recover the lost cluster.");
1283 up_write(&vol
->lcnbmp_lock
);
1287 * Resize the attribute record to its old size and rebuild the mapping
1288 * pairs array. Note, we only can do this if the runlist has been
1289 * restored to its old state which also implies that the mapped
1290 * attribute extent is not switched.
1292 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1293 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1294 ntfs_error(vol
->sb
, "Failed to restore attribute "
1295 "record in error code path. Run "
1296 "chkdsk to recover.");
1298 } else /* if (success) */ {
1299 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1300 le16_to_cpu(a
->data
.non_resident
.
1301 mapping_pairs_offset
), attr_rec_len
-
1302 le16_to_cpu(a
->data
.non_resident
.
1303 mapping_pairs_offset
), ni
->runlist
.rl
,
1304 vcn
, highest_vcn
, NULL
)) {
1305 ntfs_error(vol
->sb
, "Failed to restore "
1306 "mapping pairs array in error "
1307 "code path. Run chkdsk to "
1311 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1312 mark_mft_record_dirty(ctx
->ntfs_ino
);
1315 /* Release the mft record and the attribute. */
1316 if (status
.mft_attr_mapped
) {
1317 ntfs_attr_put_search_ctx(ctx
);
1318 unmap_mft_record(base_ni
);
1320 /* Release the runlist lock. */
1321 if (rl_write_locked
)
1322 up_write(&ni
->runlist
.lock
);
1324 up_read(&ni
->runlist
.lock
);
1326 * Zero out any newly allocated blocks to avoid exposing stale data.
1327 * If BH_New is set, we know that the block was newly allocated above
1328 * and that it has not been fully zeroed and marked dirty yet.
1332 end
= bh_cpos
<< vol
->cluster_size_bits
;
1335 bh
= head
= page_buffers(page
);
1337 if (u
== nr_pages
&&
1338 ((s64
)page
->index
<< PAGE_SHIFT
) +
1339 bh_offset(bh
) >= end
)
1341 if (!buffer_new(bh
))
1343 clear_buffer_new(bh
);
1344 if (!buffer_uptodate(bh
)) {
1345 if (PageUptodate(page
))
1346 set_buffer_uptodate(bh
);
1348 zero_user(page
, bh_offset(bh
),
1350 set_buffer_uptodate(bh
);
1353 mark_buffer_dirty(bh
);
1354 } while ((bh
= bh
->b_this_page
) != head
);
1355 } while (++u
<= nr_pages
);
1356 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1360 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1365 * Warning: Do not do the decrement at the same time as the call to
1366 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1367 * decrement never happens so the loop never terminates.
1371 flush_dcache_page(pages
[nr_pages
]);
1372 } while (nr_pages
> 0);
1376 * ntfs_commit_pages_after_non_resident_write - commit the received data
1377 * @pages: array of destination pages
1378 * @nr_pages: number of pages in @pages
1379 * @pos: byte position in file at which the write begins
1380 * @bytes: number of bytes to be written
1382 * See description of ntfs_commit_pages_after_write(), below.
1384 static inline int ntfs_commit_pages_after_non_resident_write(
1385 struct page
**pages
, const unsigned nr_pages
,
1386 s64 pos
, size_t bytes
)
1388 s64 end
, initialized_size
;
1390 ntfs_inode
*ni
, *base_ni
;
1391 struct buffer_head
*bh
, *head
;
1392 ntfs_attr_search_ctx
*ctx
;
1395 unsigned long flags
;
1396 unsigned blocksize
, u
;
1399 vi
= pages
[0]->mapping
->host
;
1401 blocksize
= vi
->i_sb
->s_blocksize
;
1410 bh_pos
= (s64
)page
->index
<< PAGE_SHIFT
;
1411 bh
= head
= page_buffers(page
);
1416 bh_end
= bh_pos
+ blocksize
;
1417 if (bh_end
<= pos
|| bh_pos
>= end
) {
1418 if (!buffer_uptodate(bh
))
1421 set_buffer_uptodate(bh
);
1422 mark_buffer_dirty(bh
);
1424 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1426 * If all buffers are now uptodate but the page is not, set the
1429 if (!partial
&& !PageUptodate(page
))
1430 SetPageUptodate(page
);
1431 } while (++u
< nr_pages
);
1433 * Finally, if we do not need to update initialized_size or i_size we
1436 read_lock_irqsave(&ni
->size_lock
, flags
);
1437 initialized_size
= ni
->initialized_size
;
1438 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1439 if (end
<= initialized_size
) {
1440 ntfs_debug("Done.");
1444 * Update initialized_size/i_size as appropriate, both in the inode and
1450 base_ni
= ni
->ext
.base_ntfs_ino
;
1451 /* Map, pin, and lock the mft record. */
1452 m
= map_mft_record(base_ni
);
1459 BUG_ON(!NInoNonResident(ni
));
1460 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1461 if (unlikely(!ctx
)) {
1465 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1466 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1467 if (unlikely(err
)) {
1473 BUG_ON(!a
->non_resident
);
1474 write_lock_irqsave(&ni
->size_lock
, flags
);
1475 BUG_ON(end
> ni
->allocated_size
);
1476 ni
->initialized_size
= end
;
1477 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1478 if (end
> i_size_read(vi
)) {
1479 i_size_write(vi
, end
);
1480 a
->data
.non_resident
.data_size
=
1481 a
->data
.non_resident
.initialized_size
;
1483 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1484 /* Mark the mft record dirty, so it gets written back. */
1485 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1486 mark_mft_record_dirty(ctx
->ntfs_ino
);
1487 ntfs_attr_put_search_ctx(ctx
);
1488 unmap_mft_record(base_ni
);
1489 ntfs_debug("Done.");
1493 ntfs_attr_put_search_ctx(ctx
);
1495 unmap_mft_record(base_ni
);
1496 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1499 NVolSetErrors(ni
->vol
);
1504 * ntfs_commit_pages_after_write - commit the received data
1505 * @pages: array of destination pages
1506 * @nr_pages: number of pages in @pages
1507 * @pos: byte position in file at which the write begins
1508 * @bytes: number of bytes to be written
1510 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1511 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1512 * locked but not kmap()ped. The source data has already been copied into the
1513 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1514 * the data was copied (for non-resident attributes only) and it returned
1517 * Need to set uptodate and mark dirty all buffers within the boundary of the
1518 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1520 * Setting the buffers dirty ensures that they get written out later when
1521 * ntfs_writepage() is invoked by the VM.
1523 * Finally, we need to update i_size and initialized_size as appropriate both
1524 * in the inode and the mft record.
1526 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1527 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1528 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1529 * that case, it also marks the inode dirty.
1531 * If things have gone as outlined in
1532 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1533 * content modifications here for non-resident attributes. For resident
1534 * attributes we need to do the uptodate bringing here which we combine with
1535 * the copying into the mft record which means we save one atomic kmap.
1537 * Return 0 on success or -errno on error.
1539 static int ntfs_commit_pages_after_write(struct page
**pages
,
1540 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1542 s64 end
, initialized_size
;
1545 ntfs_inode
*ni
, *base_ni
;
1547 ntfs_attr_search_ctx
*ctx
;
1550 char *kattr
, *kaddr
;
1551 unsigned long flags
;
1559 vi
= page
->mapping
->host
;
1561 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1562 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1563 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1564 (long long)pos
, bytes
);
1565 if (NInoNonResident(ni
))
1566 return ntfs_commit_pages_after_non_resident_write(pages
,
1567 nr_pages
, pos
, bytes
);
1568 BUG_ON(nr_pages
> 1);
1570 * Attribute is resident, implying it is not compressed, encrypted, or
1576 base_ni
= ni
->ext
.base_ntfs_ino
;
1577 BUG_ON(NInoNonResident(ni
));
1578 /* Map, pin, and lock the mft record. */
1579 m
= map_mft_record(base_ni
);
1586 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1587 if (unlikely(!ctx
)) {
1591 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1592 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1593 if (unlikely(err
)) {
1599 BUG_ON(a
->non_resident
);
1600 /* The total length of the attribute value. */
1601 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1602 i_size
= i_size_read(vi
);
1603 BUG_ON(attr_len
!= i_size
);
1604 BUG_ON(pos
> attr_len
);
1606 BUG_ON(end
> le32_to_cpu(a
->length
) -
1607 le16_to_cpu(a
->data
.resident
.value_offset
));
1608 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1609 kaddr
= kmap_atomic(page
);
1610 /* Copy the received data from the page to the mft record. */
1611 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1612 /* Update the attribute length if necessary. */
1613 if (end
> attr_len
) {
1615 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1618 * If the page is not uptodate, bring the out of bounds area(s)
1619 * uptodate by copying data from the mft record to the page.
1621 if (!PageUptodate(page
)) {
1623 memcpy(kaddr
, kattr
, pos
);
1625 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1626 /* Zero the region outside the end of the attribute value. */
1627 memset(kaddr
+ attr_len
, 0, PAGE_SIZE
- attr_len
);
1628 flush_dcache_page(page
);
1629 SetPageUptodate(page
);
1631 kunmap_atomic(kaddr
);
1632 /* Update initialized_size/i_size if necessary. */
1633 read_lock_irqsave(&ni
->size_lock
, flags
);
1634 initialized_size
= ni
->initialized_size
;
1635 BUG_ON(end
> ni
->allocated_size
);
1636 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1637 BUG_ON(initialized_size
!= i_size
);
1638 if (end
> initialized_size
) {
1639 write_lock_irqsave(&ni
->size_lock
, flags
);
1640 ni
->initialized_size
= end
;
1641 i_size_write(vi
, end
);
1642 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1644 /* Mark the mft record dirty, so it gets written back. */
1645 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1646 mark_mft_record_dirty(ctx
->ntfs_ino
);
1647 ntfs_attr_put_search_ctx(ctx
);
1648 unmap_mft_record(base_ni
);
1649 ntfs_debug("Done.");
1652 if (err
== -ENOMEM
) {
1653 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1654 "commit the write.");
1655 if (PageUptodate(page
)) {
1656 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1657 "dirty so the write will be retried "
1658 "later on by the VM.");
1660 * Put the page on mapping->dirty_pages, but leave its
1661 * buffers' dirty state as-is.
1663 __set_page_dirty_nobuffers(page
);
1666 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1667 "data has been lost.");
1669 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1670 "with error %i.", err
);
1671 NVolSetErrors(ni
->vol
);
1674 ntfs_attr_put_search_ctx(ctx
);
1676 unmap_mft_record(base_ni
);
1681 * Copy as much as we can into the pages and return the number of bytes which
1682 * were successfully copied. If a fault is encountered then clear the pages
1683 * out to (ofs + bytes) and return the number of bytes which were copied.
1685 static size_t ntfs_copy_from_user_iter(struct page
**pages
, unsigned nr_pages
,
1686 unsigned ofs
, struct iov_iter
*i
, size_t bytes
)
1688 struct page
**last_page
= pages
+ nr_pages
;
1690 struct iov_iter data
= *i
;
1691 unsigned len
, copied
;
1694 len
= PAGE_SIZE
- ofs
;
1697 copied
= iov_iter_copy_from_user_atomic(*pages
, &data
, ofs
,
1703 iov_iter_advance(&data
, copied
);
1707 } while (++pages
< last_page
);
1711 /* Zero the rest of the target like __copy_from_user(). */
1712 len
= PAGE_SIZE
- copied
;
1716 zero_user(*pages
, copied
, len
);
1720 } while (++pages
< last_page
);
1725 * ntfs_perform_write - perform buffered write to a file
1726 * @file: file to write to
1727 * @i: iov_iter with data to write
1728 * @pos: byte offset in file at which to begin writing to
1730 static ssize_t
ntfs_perform_write(struct file
*file
, struct iov_iter
*i
,
1733 struct address_space
*mapping
= file
->f_mapping
;
1734 struct inode
*vi
= mapping
->host
;
1735 ntfs_inode
*ni
= NTFS_I(vi
);
1736 ntfs_volume
*vol
= ni
->vol
;
1737 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1738 struct page
*cached_page
= NULL
;
1742 ssize_t status
, written
= 0;
1745 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1746 "0x%llx, count 0x%lx.", vi
->i_ino
,
1747 (unsigned)le32_to_cpu(ni
->type
),
1748 (unsigned long long)pos
,
1749 (unsigned long)iov_iter_count(i
));
1751 * If a previous ntfs_truncate() failed, repeat it and abort if it
1754 if (unlikely(NInoTruncateFailed(ni
))) {
1758 err
= ntfs_truncate(vi
);
1759 if (err
|| NInoTruncateFailed(ni
)) {
1762 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1763 "0x%lx, attribute type 0x%x, because "
1764 "ntfs_truncate() failed (error code "
1766 (unsigned)le32_to_cpu(ni
->type
), err
);
1771 * Determine the number of pages per cluster for non-resident
1775 if (vol
->cluster_size
> PAGE_SIZE
&& NInoNonResident(ni
))
1776 nr_pages
= vol
->cluster_size
>> PAGE_SHIFT
;
1780 pgoff_t idx
, start_idx
;
1781 unsigned ofs
, do_pages
, u
;
1784 start_idx
= idx
= pos
>> PAGE_SHIFT
;
1785 ofs
= pos
& ~PAGE_MASK
;
1786 bytes
= PAGE_SIZE
- ofs
;
1789 vcn
= pos
>> vol
->cluster_size_bits
;
1790 if (vcn
!= last_vcn
) {
1793 * Get the lcn of the vcn the write is in. If
1794 * it is a hole, need to lock down all pages in
1797 down_read(&ni
->runlist
.lock
);
1798 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1799 vol
->cluster_size_bits
, false);
1800 up_read(&ni
->runlist
.lock
);
1801 if (unlikely(lcn
< LCN_HOLE
)) {
1802 if (lcn
== LCN_ENOMEM
)
1806 ntfs_error(vol
->sb
, "Cannot "
1809 "attribute type 0x%x, "
1810 "because the attribute "
1812 vi
->i_ino
, (unsigned)
1813 le32_to_cpu(ni
->type
));
1817 if (lcn
== LCN_HOLE
) {
1818 start_idx
= (pos
& ~(s64
)
1819 vol
->cluster_size_mask
)
1821 bytes
= vol
->cluster_size
- (pos
&
1822 vol
->cluster_size_mask
);
1823 do_pages
= nr_pages
;
1827 if (bytes
> iov_iter_count(i
))
1828 bytes
= iov_iter_count(i
);
1831 * Bring in the user page(s) that we will copy from _first_.
1832 * Otherwise there is a nasty deadlock on copying from the same
1833 * page(s) as we are writing to, without it/them being marked
1834 * up-to-date. Note, at present there is nothing to stop the
1835 * pages being swapped out between us bringing them into memory
1836 * and doing the actual copying.
1838 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
1842 /* Get and lock @do_pages starting at index @start_idx. */
1843 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
1844 pages
, &cached_page
);
1845 if (unlikely(status
))
1848 * For non-resident attributes, we need to fill any holes with
1849 * actual clusters and ensure all bufferes are mapped. We also
1850 * need to bring uptodate any buffers that are only partially
1853 if (NInoNonResident(ni
)) {
1854 status
= ntfs_prepare_pages_for_non_resident_write(
1855 pages
, do_pages
, pos
, bytes
);
1856 if (unlikely(status
)) {
1858 unlock_page(pages
[--do_pages
]);
1859 put_page(pages
[do_pages
]);
1864 u
= (pos
>> PAGE_SHIFT
) - pages
[0]->index
;
1865 copied
= ntfs_copy_from_user_iter(pages
+ u
, do_pages
- u
, ofs
,
1867 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
1869 if (likely(copied
== bytes
)) {
1870 status
= ntfs_commit_pages_after_write(pages
, do_pages
,
1876 unlock_page(pages
[--do_pages
]);
1877 put_page(pages
[do_pages
]);
1879 if (unlikely(status
< 0))
1883 if (unlikely(!copied
)) {
1887 * We failed to copy anything. Fall back to single
1888 * segment length write.
1890 * This is needed to avoid possible livelock in the
1891 * case that all segments in the iov cannot be copied
1892 * at once without a pagefault.
1894 sc
= iov_iter_single_seg_count(i
);
1899 iov_iter_advance(i
, copied
);
1902 balance_dirty_pages_ratelimited(mapping
);
1903 if (fatal_signal_pending(current
)) {
1907 } while (iov_iter_count(i
));
1909 put_page(cached_page
);
1910 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
1911 written
? "written" : "status", (unsigned long)written
,
1913 return written
? written
: status
;
1917 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1918 * @iocb: IO state structure
1919 * @from: iov_iter with data to write
1921 * Basically the same as generic_file_write_iter() except that it ends up
1922 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1923 * O_DIRECT is not implemented.
1925 static ssize_t
ntfs_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1927 struct file
*file
= iocb
->ki_filp
;
1928 struct inode
*vi
= file_inode(file
);
1929 ssize_t written
= 0;
1933 /* We can write back this queue in page reclaim. */
1934 current
->backing_dev_info
= inode_to_bdi(vi
);
1935 err
= ntfs_prepare_file_for_write(iocb
, from
);
1936 if (iov_iter_count(from
) && !err
)
1937 written
= ntfs_perform_write(file
, from
, iocb
->ki_pos
);
1938 current
->backing_dev_info
= NULL
;
1940 iocb
->ki_pos
+= written
;
1941 if (likely(written
> 0))
1942 written
= generic_write_sync(iocb
, written
);
1943 return written
? written
: err
;
1947 * ntfs_file_fsync - sync a file to disk
1948 * @filp: file to be synced
1949 * @datasync: if non-zero only flush user data and not metadata
1951 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
1952 * system calls. This function is inspired by fs/buffer.c::file_fsync().
1954 * If @datasync is false, write the mft record and all associated extent mft
1955 * records as well as the $DATA attribute and then sync the block device.
1957 * If @datasync is true and the attribute is non-resident, we skip the writing
1958 * of the mft record and all associated extent mft records (this might still
1959 * happen due to the write_inode_now() call).
1961 * Also, if @datasync is true, we do not wait on the inode to be written out
1962 * but we always wait on the page cache pages to be written out.
1964 * Locking: Caller must hold i_mutex on the inode.
1966 * TODO: We should probably also write all attribute/index inodes associated
1967 * with this inode but since we have no simple way of getting to them we ignore
1968 * this problem for now.
1970 static int ntfs_file_fsync(struct file
*filp
, loff_t start
, loff_t end
,
1973 struct inode
*vi
= filp
->f_mapping
->host
;
1976 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
1978 err
= file_write_and_wait_range(filp
, start
, end
);
1983 BUG_ON(S_ISDIR(vi
->i_mode
));
1984 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
1985 ret
= __ntfs_write_inode(vi
, 1);
1986 write_inode_now(vi
, !datasync
);
1988 * NOTE: If we were to use mapping->private_list (see ext2 and
1989 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1990 * sync_mapping_buffers(vi->i_mapping).
1992 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
1993 if (unlikely(err
&& !ret
))
1996 ntfs_debug("Done.");
1998 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
1999 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2004 #endif /* NTFS_RW */
2006 const struct file_operations ntfs_file_ops
= {
2007 .llseek
= generic_file_llseek
,
2008 .read_iter
= generic_file_read_iter
,
2010 .write_iter
= ntfs_file_write_iter
,
2011 .fsync
= ntfs_file_fsync
,
2012 #endif /* NTFS_RW */
2013 .mmap
= generic_file_mmap
,
2014 .open
= ntfs_file_open
,
2015 .splice_read
= generic_file_splice_read
,
2018 const struct inode_operations ntfs_file_inode_ops
= {
2020 .setattr
= ntfs_setattr
,
2021 #endif /* NTFS_RW */
2024 const struct file_operations ntfs_empty_file_ops
= {};
2026 const struct inode_operations ntfs_empty_inode_ops
= {};