2 * Freescale Memory Controller kernel module
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
6 * split out from mpc85xx_edac EDAC driver.
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 * Author: Dave Jiang <djiang@mvista.com>
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/ctype.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/edac.h>
24 #include <linux/smp.h>
25 #include <linux/gfp.h>
27 #include <linux/of_platform.h>
28 #include <linux/of_device.h>
29 #include <linux/of_address.h>
30 #include "edac_module.h"
31 #include "fsl_ddr_edac.h"
33 #define EDAC_MOD_STR "fsl_ddr_edac"
35 static int edac_mc_idx
;
37 static u32 orig_ddr_err_disable
;
38 static u32 orig_ddr_err_sbe
;
39 static bool little_endian
;
41 static inline u32
ddr_in32(void __iomem
*addr
)
43 return little_endian
? ioread32(addr
) : ioread32be(addr
);
46 static inline void ddr_out32(void __iomem
*addr
, u32 value
)
49 iowrite32(value
, addr
);
51 iowrite32be(value
, addr
);
54 #ifdef CONFIG_EDAC_DEBUG
55 /************************ MC SYSFS parts ***********************************/
57 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
59 static ssize_t
fsl_mc_inject_data_hi_show(struct device
*dev
,
60 struct device_attribute
*mattr
,
63 struct mem_ctl_info
*mci
= to_mci(dev
);
64 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
65 return sprintf(data
, "0x%08x",
66 ddr_in32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_HI
));
69 static ssize_t
fsl_mc_inject_data_lo_show(struct device
*dev
,
70 struct device_attribute
*mattr
,
73 struct mem_ctl_info
*mci
= to_mci(dev
);
74 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
75 return sprintf(data
, "0x%08x",
76 ddr_in32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_LO
));
79 static ssize_t
fsl_mc_inject_ctrl_show(struct device
*dev
,
80 struct device_attribute
*mattr
,
83 struct mem_ctl_info
*mci
= to_mci(dev
);
84 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
85 return sprintf(data
, "0x%08x",
86 ddr_in32(pdata
->mc_vbase
+ FSL_MC_ECC_ERR_INJECT
));
89 static ssize_t
fsl_mc_inject_data_hi_store(struct device
*dev
,
90 struct device_attribute
*mattr
,
91 const char *data
, size_t count
)
93 struct mem_ctl_info
*mci
= to_mci(dev
);
94 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
99 rc
= kstrtoul(data
, 0, &val
);
103 ddr_out32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_HI
, val
);
109 static ssize_t
fsl_mc_inject_data_lo_store(struct device
*dev
,
110 struct device_attribute
*mattr
,
111 const char *data
, size_t count
)
113 struct mem_ctl_info
*mci
= to_mci(dev
);
114 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
118 if (isdigit(*data
)) {
119 rc
= kstrtoul(data
, 0, &val
);
123 ddr_out32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_LO
, val
);
129 static ssize_t
fsl_mc_inject_ctrl_store(struct device
*dev
,
130 struct device_attribute
*mattr
,
131 const char *data
, size_t count
)
133 struct mem_ctl_info
*mci
= to_mci(dev
);
134 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
138 if (isdigit(*data
)) {
139 rc
= kstrtoul(data
, 0, &val
);
143 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ECC_ERR_INJECT
, val
);
149 static DEVICE_ATTR(inject_data_hi
, S_IRUGO
| S_IWUSR
,
150 fsl_mc_inject_data_hi_show
, fsl_mc_inject_data_hi_store
);
151 static DEVICE_ATTR(inject_data_lo
, S_IRUGO
| S_IWUSR
,
152 fsl_mc_inject_data_lo_show
, fsl_mc_inject_data_lo_store
);
153 static DEVICE_ATTR(inject_ctrl
, S_IRUGO
| S_IWUSR
,
154 fsl_mc_inject_ctrl_show
, fsl_mc_inject_ctrl_store
);
155 #endif /* CONFIG_EDAC_DEBUG */
157 static struct attribute
*fsl_ddr_dev_attrs
[] = {
158 #ifdef CONFIG_EDAC_DEBUG
159 &dev_attr_inject_data_hi
.attr
,
160 &dev_attr_inject_data_lo
.attr
,
161 &dev_attr_inject_ctrl
.attr
,
166 ATTRIBUTE_GROUPS(fsl_ddr_dev
);
168 /**************************** MC Err device ***************************/
171 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
172 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
173 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
174 * below correspond to Freescale's manuals.
176 static unsigned int ecc_table
[16] = {
179 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
180 0x00ff00ff, 0x00fff0ff,
181 0x0f0f0f0f, 0x0f0fff00,
182 0x11113333, 0x7777000f,
183 0x22224444, 0x8888222f,
184 0x44448888, 0xffff4441,
185 0x8888ffff, 0x11118882,
186 0xffff1111, 0x22221114, /* Syndrome bit 0 */
190 * Calculate the correct ECC value for a 64-bit value specified by high:low
192 static u8
calculate_ecc(u32 high
, u32 low
)
201 for (i
= 0; i
< 8; i
++) {
202 mask_high
= ecc_table
[i
* 2];
203 mask_low
= ecc_table
[i
* 2 + 1];
206 for (j
= 0; j
< 32; j
++) {
207 if ((mask_high
>> j
) & 1)
208 bit_cnt
^= (high
>> j
) & 1;
209 if ((mask_low
>> j
) & 1)
210 bit_cnt
^= (low
>> j
) & 1;
220 * Create the syndrome code which is generated if the data line specified by
221 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
222 * User's Manual and 9-61 in the MPC8572 User's Manual.
224 static u8
syndrome_from_bit(unsigned int bit
) {
229 * Cycle through the upper or lower 32-bit portion of each value in
230 * ecc_table depending on if 'bit' is in the upper or lower half of
233 for (i
= bit
< 32; i
< 16; i
+= 2)
234 syndrome
|= ((ecc_table
[i
] >> (bit
% 32)) & 1) << (i
/ 2);
240 * Decode data and ecc syndrome to determine what went wrong
241 * Note: This can only decode single-bit errors
243 static void sbe_ecc_decode(u32 cap_high
, u32 cap_low
, u32 cap_ecc
,
244 int *bad_data_bit
, int *bad_ecc_bit
)
253 * Calculate the ECC of the captured data and XOR it with the captured
254 * ECC to find an ECC syndrome value we can search for
256 syndrome
= calculate_ecc(cap_high
, cap_low
) ^ cap_ecc
;
258 /* Check if a data line is stuck... */
259 for (i
= 0; i
< 64; i
++) {
260 if (syndrome
== syndrome_from_bit(i
)) {
266 /* If data is correct, check ECC bits for errors... */
267 for (i
= 0; i
< 8; i
++) {
268 if ((syndrome
>> i
) & 0x1) {
275 #define make64(high, low) (((u64)(high) << 32) | (low))
277 static void fsl_mc_check(struct mem_ctl_info
*mci
)
279 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
280 struct csrow_info
*csrow
;
292 err_detect
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
);
296 fsl_mc_printk(mci
, KERN_ERR
, "Err Detect Register: %#8.8x\n",
299 /* no more processing if not ECC bit errors */
300 if (!(err_detect
& (DDR_EDE_SBE
| DDR_EDE_MBE
))) {
301 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, err_detect
);
305 syndrome
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_ECC
);
307 /* Mask off appropriate bits of syndrome based on bus width */
308 bus_width
= (ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
) &
309 DSC_DBW_MASK
) ? 32 : 64;
316 ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_EXT_ADDRESS
),
317 ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_ADDRESS
));
318 pfn
= err_addr
>> PAGE_SHIFT
;
320 for (row_index
= 0; row_index
< mci
->nr_csrows
; row_index
++) {
321 csrow
= mci
->csrows
[row_index
];
322 if ((pfn
>= csrow
->first_page
) && (pfn
<= csrow
->last_page
))
326 cap_high
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_DATA_HI
);
327 cap_low
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_DATA_LO
);
330 * Analyze single-bit errors on 64-bit wide buses
331 * TODO: Add support for 32-bit wide buses
333 if ((err_detect
& DDR_EDE_SBE
) && (bus_width
== 64)) {
334 sbe_ecc_decode(cap_high
, cap_low
, syndrome
,
335 &bad_data_bit
, &bad_ecc_bit
);
337 if (bad_data_bit
!= -1)
338 fsl_mc_printk(mci
, KERN_ERR
,
339 "Faulty Data bit: %d\n", bad_data_bit
);
340 if (bad_ecc_bit
!= -1)
341 fsl_mc_printk(mci
, KERN_ERR
,
342 "Faulty ECC bit: %d\n", bad_ecc_bit
);
344 fsl_mc_printk(mci
, KERN_ERR
,
345 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
346 cap_high
^ (1 << (bad_data_bit
- 32)),
347 cap_low
^ (1 << bad_data_bit
),
348 syndrome
^ (1 << bad_ecc_bit
));
351 fsl_mc_printk(mci
, KERN_ERR
,
352 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
353 cap_high
, cap_low
, syndrome
);
354 fsl_mc_printk(mci
, KERN_ERR
, "Err addr: %#8.8llx\n", err_addr
);
355 fsl_mc_printk(mci
, KERN_ERR
, "PFN: %#8.8x\n", pfn
);
357 /* we are out of range */
358 if (row_index
== mci
->nr_csrows
)
359 fsl_mc_printk(mci
, KERN_ERR
, "PFN out of range!\n");
361 if (err_detect
& DDR_EDE_SBE
)
362 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED
, mci
, 1,
363 pfn
, err_addr
& ~PAGE_MASK
, syndrome
,
367 if (err_detect
& DDR_EDE_MBE
)
368 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED
, mci
, 1,
369 pfn
, err_addr
& ~PAGE_MASK
, syndrome
,
373 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, err_detect
);
376 static irqreturn_t
fsl_mc_isr(int irq
, void *dev_id
)
378 struct mem_ctl_info
*mci
= dev_id
;
379 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
382 err_detect
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
);
391 static void fsl_ddr_init_csrows(struct mem_ctl_info
*mci
)
393 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
394 struct csrow_info
*csrow
;
395 struct dimm_info
*dimm
;
402 sdram_ctl
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
);
404 sdtype
= sdram_ctl
& DSC_SDTYPE_MASK
;
405 if (sdram_ctl
& DSC_RD_EN
) {
443 for (index
= 0; index
< mci
->nr_csrows
; index
++) {
447 csrow
= mci
->csrows
[index
];
448 dimm
= csrow
->channels
[0]->dimm
;
450 cs_bnds
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CS_BNDS_0
+
451 (index
* FSL_MC_CS_BNDS_OFS
));
453 start
= (cs_bnds
& 0xffff0000) >> 16;
454 end
= (cs_bnds
& 0x0000ffff);
457 continue; /* not populated */
459 start
<<= (24 - PAGE_SHIFT
);
460 end
<<= (24 - PAGE_SHIFT
);
461 end
|= (1 << (24 - PAGE_SHIFT
)) - 1;
463 csrow
->first_page
= start
;
464 csrow
->last_page
= end
;
466 dimm
->nr_pages
= end
+ 1 - start
;
469 dimm
->dtype
= DEV_UNKNOWN
;
470 if (sdram_ctl
& DSC_X32_EN
)
471 dimm
->dtype
= DEV_X32
;
472 dimm
->edac_mode
= EDAC_SECDED
;
476 int fsl_mc_err_probe(struct platform_device
*op
)
478 struct mem_ctl_info
*mci
;
479 struct edac_mc_layer layers
[2];
480 struct fsl_mc_pdata
*pdata
;
485 if (!devres_open_group(&op
->dev
, fsl_mc_err_probe
, GFP_KERNEL
))
488 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
490 layers
[0].is_virt_csrow
= true;
491 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
493 layers
[1].is_virt_csrow
= false;
494 mci
= edac_mc_alloc(edac_mc_idx
, ARRAY_SIZE(layers
), layers
,
497 devres_release_group(&op
->dev
, fsl_mc_err_probe
);
501 pdata
= mci
->pvt_info
;
502 pdata
->name
= "fsl_mc_err";
503 mci
->pdev
= &op
->dev
;
504 pdata
->edac_idx
= edac_mc_idx
++;
505 dev_set_drvdata(mci
->pdev
, mci
);
506 mci
->ctl_name
= pdata
->name
;
507 mci
->dev_name
= pdata
->name
;
510 * Get the endianness of DDR controller registers.
511 * Default is big endian.
513 little_endian
= of_property_read_bool(op
->dev
.of_node
, "little-endian");
515 res
= of_address_to_resource(op
->dev
.of_node
, 0, &r
);
517 pr_err("%s: Unable to get resource for MC err regs\n",
522 if (!devm_request_mem_region(&op
->dev
, r
.start
, resource_size(&r
),
524 pr_err("%s: Error while requesting mem region\n",
530 pdata
->mc_vbase
= devm_ioremap(&op
->dev
, r
.start
, resource_size(&r
));
531 if (!pdata
->mc_vbase
) {
532 pr_err("%s: Unable to setup MC err regs\n", __func__
);
537 sdram_ctl
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
);
538 if (!(sdram_ctl
& DSC_ECC_EN
)) {
540 pr_warn("%s: No ECC DIMMs discovered\n", __func__
);
545 edac_dbg(3, "init mci\n");
546 mci
->mtype_cap
= MEM_FLAG_DDR
| MEM_FLAG_RDDR
|
547 MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
|
548 MEM_FLAG_DDR3
| MEM_FLAG_RDDR3
|
549 MEM_FLAG_DDR4
| MEM_FLAG_RDDR4
;
550 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
| EDAC_FLAG_SECDED
;
551 mci
->edac_cap
= EDAC_FLAG_SECDED
;
552 mci
->mod_name
= EDAC_MOD_STR
;
554 if (edac_op_state
== EDAC_OPSTATE_POLL
)
555 mci
->edac_check
= fsl_mc_check
;
557 mci
->ctl_page_to_phys
= NULL
;
559 mci
->scrub_mode
= SCRUB_SW_SRC
;
561 fsl_ddr_init_csrows(mci
);
563 /* store the original error disable bits */
564 orig_ddr_err_disable
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
);
565 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
, 0);
567 /* clear all error bits */
568 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, ~0);
570 res
= edac_mc_add_mc_with_groups(mci
, fsl_ddr_dev_groups
);
572 edac_dbg(3, "failed edac_mc_add_mc()\n");
576 if (edac_op_state
== EDAC_OPSTATE_INT
) {
577 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_INT_EN
,
578 DDR_EIE_MBEE
| DDR_EIE_SBEE
);
580 /* store the original error management threshold */
581 orig_ddr_err_sbe
= ddr_in32(pdata
->mc_vbase
+
582 FSL_MC_ERR_SBE
) & 0xff0000;
584 /* set threshold to 1 error per interrupt */
585 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_SBE
, 0x10000);
587 /* register interrupts */
588 pdata
->irq
= platform_get_irq(op
, 0);
589 res
= devm_request_irq(&op
->dev
, pdata
->irq
,
592 "[EDAC] MC err", mci
);
594 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
595 __func__
, pdata
->irq
);
600 pr_info(EDAC_MOD_STR
" acquired irq %d for MC\n",
604 devres_remove_group(&op
->dev
, fsl_mc_err_probe
);
605 edac_dbg(3, "success\n");
606 pr_info(EDAC_MOD_STR
" MC err registered\n");
611 edac_mc_del_mc(&op
->dev
);
613 devres_release_group(&op
->dev
, fsl_mc_err_probe
);
618 int fsl_mc_err_remove(struct platform_device
*op
)
620 struct mem_ctl_info
*mci
= dev_get_drvdata(&op
->dev
);
621 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
625 if (edac_op_state
== EDAC_OPSTATE_INT
) {
626 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_INT_EN
, 0);
629 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
,
630 orig_ddr_err_disable
);
631 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_SBE
, orig_ddr_err_sbe
);
633 edac_mc_del_mc(&op
->dev
);