staging: rtl8188eu: cleanup comments in update_hw_ht_param
[linux/fpc-iii.git] / drivers / cpufreq / powernv-cpufreq.c
blob6061850e59c90e012cf8765cde1f9b91c3e35aea
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * POWERNV cpufreq driver for the IBM POWER processors
5 * (C) Copyright IBM 2014
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
10 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/cpu.h>
22 #include <linux/hashtable.h>
23 #include <trace/events/power.h>
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
27 #include <asm/reg.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29 #include <asm/opal.h>
30 #include <linux/timer.h>
32 #define POWERNV_MAX_PSTATES_ORDER 8
33 #define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34 #define PMSR_PSAFE_ENABLE (1UL << 30)
35 #define PMSR_SPR_EM_DISABLE (1UL << 31)
36 #define MAX_PSTATE_SHIFT 32
37 #define LPSTATE_SHIFT 48
38 #define GPSTATE_SHIFT 56
40 #define MAX_RAMP_DOWN_TIME 5120
42 * On an idle system we want the global pstate to ramp-down from max value to
43 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
44 * then ramp-down rapidly later on.
46 * This gives a percentage rampdown for time elapsed in milliseconds.
47 * ramp_down_percentage = ((ms * ms) >> 18)
48 * ~= 3.8 * (sec * sec)
50 * At 0 ms ramp_down_percent = 0
51 * At 5120 ms ramp_down_percent = 100
53 #define ramp_down_percent(time) ((time * time) >> 18)
55 /* Interval after which the timer is queued to bring down global pstate */
56 #define GPSTATE_TIMER_INTERVAL 2000
58 /**
59 * struct global_pstate_info - Per policy data structure to maintain history of
60 * global pstates
61 * @highest_lpstate_idx: The local pstate index from which we are
62 * ramping down
63 * @elapsed_time: Time in ms spent in ramping down from
64 * highest_lpstate_idx
65 * @last_sampled_time: Time from boot in ms when global pstates were
66 * last set
67 * @last_lpstate_idx, Last set value of local pstate and global
68 * last_gpstate_idx pstate in terms of cpufreq table index
69 * @timer: Is used for ramping down if cpu goes idle for
70 * a long time with global pstate held high
71 * @gpstate_lock: A spinlock to maintain synchronization between
72 * routines called by the timer handler and
73 * governer's target_index calls
75 struct global_pstate_info {
76 int highest_lpstate_idx;
77 unsigned int elapsed_time;
78 unsigned int last_sampled_time;
79 int last_lpstate_idx;
80 int last_gpstate_idx;
81 spinlock_t gpstate_lock;
82 struct timer_list timer;
83 struct cpufreq_policy *policy;
86 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
88 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
89 /**
90 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
91 * indexed by a function of pstate id.
93 * @pstate_id: pstate id for this entry.
95 * @cpufreq_table_idx: Index into the powernv_freqs
96 * cpufreq_frequency_table for frequency
97 * corresponding to pstate_id.
99 * @hentry: hlist_node that hooks this entry into the pstate_revmap
100 * hashtable
102 struct pstate_idx_revmap_data {
103 u8 pstate_id;
104 unsigned int cpufreq_table_idx;
105 struct hlist_node hentry;
108 static bool rebooting, throttled, occ_reset;
110 static const char * const throttle_reason[] = {
111 "No throttling",
112 "Power Cap",
113 "Processor Over Temperature",
114 "Power Supply Failure",
115 "Over Current",
116 "OCC Reset"
119 enum throttle_reason_type {
120 NO_THROTTLE = 0,
121 POWERCAP,
122 CPU_OVERTEMP,
123 POWER_SUPPLY_FAILURE,
124 OVERCURRENT,
125 OCC_RESET_THROTTLE,
126 OCC_MAX_REASON
129 static struct chip {
130 unsigned int id;
131 bool throttled;
132 bool restore;
133 u8 throttle_reason;
134 cpumask_t mask;
135 struct work_struct throttle;
136 int throttle_turbo;
137 int throttle_sub_turbo;
138 int reason[OCC_MAX_REASON];
139 } *chips;
141 static int nr_chips;
142 static DEFINE_PER_CPU(struct chip *, chip_info);
145 * Note:
146 * The set of pstates consists of contiguous integers.
147 * powernv_pstate_info stores the index of the frequency table for
148 * max, min and nominal frequencies. It also stores number of
149 * available frequencies.
151 * powernv_pstate_info.nominal indicates the index to the highest
152 * non-turbo frequency.
154 static struct powernv_pstate_info {
155 unsigned int min;
156 unsigned int max;
157 unsigned int nominal;
158 unsigned int nr_pstates;
159 bool wof_enabled;
160 } powernv_pstate_info;
162 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
164 return ((pmsr_val >> shift) & 0xFF);
167 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
168 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
169 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
171 /* Use following functions for conversions between pstate_id and index */
174 * idx_to_pstate : Returns the pstate id corresponding to the
175 * frequency in the cpufreq frequency table
176 * powernv_freqs indexed by @i.
178 * If @i is out of bound, this will return the pstate
179 * corresponding to the nominal frequency.
181 static inline u8 idx_to_pstate(unsigned int i)
183 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
184 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
185 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
188 return powernv_freqs[i].driver_data;
192 * pstate_to_idx : Returns the index in the cpufreq frequencytable
193 * powernv_freqs for the frequency whose corresponding
194 * pstate id is @pstate.
196 * If no frequency corresponding to @pstate is found,
197 * this will return the index of the nominal
198 * frequency.
200 static unsigned int pstate_to_idx(u8 pstate)
202 unsigned int key = pstate % POWERNV_MAX_PSTATES;
203 struct pstate_idx_revmap_data *revmap_data;
205 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
206 if (revmap_data->pstate_id == pstate)
207 return revmap_data->cpufreq_table_idx;
210 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
211 return powernv_pstate_info.nominal;
214 static inline void reset_gpstates(struct cpufreq_policy *policy)
216 struct global_pstate_info *gpstates = policy->driver_data;
218 gpstates->highest_lpstate_idx = 0;
219 gpstates->elapsed_time = 0;
220 gpstates->last_sampled_time = 0;
221 gpstates->last_lpstate_idx = 0;
222 gpstates->last_gpstate_idx = 0;
226 * Initialize the freq table based on data obtained
227 * from the firmware passed via device-tree
229 static int init_powernv_pstates(void)
231 struct device_node *power_mgt;
232 int i, nr_pstates = 0;
233 const __be32 *pstate_ids, *pstate_freqs;
234 u32 len_ids, len_freqs;
235 u32 pstate_min, pstate_max, pstate_nominal;
236 u32 pstate_turbo, pstate_ultra_turbo;
237 int rc = -ENODEV;
239 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
240 if (!power_mgt) {
241 pr_warn("power-mgt node not found\n");
242 return -ENODEV;
245 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
246 pr_warn("ibm,pstate-min node not found\n");
247 goto out;
250 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
251 pr_warn("ibm,pstate-max node not found\n");
252 goto out;
255 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
256 &pstate_nominal)) {
257 pr_warn("ibm,pstate-nominal not found\n");
258 goto out;
261 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
262 &pstate_ultra_turbo)) {
263 powernv_pstate_info.wof_enabled = false;
264 goto next;
267 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
268 &pstate_turbo)) {
269 powernv_pstate_info.wof_enabled = false;
270 goto next;
273 if (pstate_turbo == pstate_ultra_turbo)
274 powernv_pstate_info.wof_enabled = false;
275 else
276 powernv_pstate_info.wof_enabled = true;
278 next:
279 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
280 pstate_nominal, pstate_max);
281 pr_info("Workload Optimized Frequency is %s in the platform\n",
282 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
284 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
285 if (!pstate_ids) {
286 pr_warn("ibm,pstate-ids not found\n");
287 goto out;
290 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
291 &len_freqs);
292 if (!pstate_freqs) {
293 pr_warn("ibm,pstate-frequencies-mhz not found\n");
294 goto out;
297 if (len_ids != len_freqs) {
298 pr_warn("Entries in ibm,pstate-ids and "
299 "ibm,pstate-frequencies-mhz does not match\n");
302 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
303 if (!nr_pstates) {
304 pr_warn("No PStates found\n");
305 goto out;
308 powernv_pstate_info.nr_pstates = nr_pstates;
309 pr_debug("NR PStates %d\n", nr_pstates);
311 for (i = 0; i < nr_pstates; i++) {
312 u32 id = be32_to_cpu(pstate_ids[i]);
313 u32 freq = be32_to_cpu(pstate_freqs[i]);
314 struct pstate_idx_revmap_data *revmap_data;
315 unsigned int key;
317 pr_debug("PState id %d freq %d MHz\n", id, freq);
318 powernv_freqs[i].frequency = freq * 1000; /* kHz */
319 powernv_freqs[i].driver_data = id & 0xFF;
321 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
322 if (!revmap_data) {
323 rc = -ENOMEM;
324 goto out;
327 revmap_data->pstate_id = id & 0xFF;
328 revmap_data->cpufreq_table_idx = i;
329 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
330 hash_add(pstate_revmap, &revmap_data->hentry, key);
332 if (id == pstate_max)
333 powernv_pstate_info.max = i;
334 if (id == pstate_nominal)
335 powernv_pstate_info.nominal = i;
336 if (id == pstate_min)
337 powernv_pstate_info.min = i;
339 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
340 int j;
342 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
343 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
347 /* End of list marker entry */
348 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
350 of_node_put(power_mgt);
351 return 0;
352 out:
353 of_node_put(power_mgt);
354 return rc;
357 /* Returns the CPU frequency corresponding to the pstate_id. */
358 static unsigned int pstate_id_to_freq(u8 pstate_id)
360 int i;
362 i = pstate_to_idx(pstate_id);
363 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
364 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
365 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
366 i = powernv_pstate_info.nominal;
369 return powernv_freqs[i].frequency;
373 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
374 * the firmware
376 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
377 char *buf)
379 return sprintf(buf, "%u\n",
380 powernv_freqs[powernv_pstate_info.nominal].frequency);
383 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
384 __ATTR_RO(cpuinfo_nominal_freq);
386 #define SCALING_BOOST_FREQS_ATTR_INDEX 2
388 static struct freq_attr *powernv_cpu_freq_attr[] = {
389 &cpufreq_freq_attr_scaling_available_freqs,
390 &cpufreq_freq_attr_cpuinfo_nominal_freq,
391 &cpufreq_freq_attr_scaling_boost_freqs,
392 NULL,
395 #define throttle_attr(name, member) \
396 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
398 struct chip *chip = per_cpu(chip_info, policy->cpu); \
400 return sprintf(buf, "%u\n", chip->member); \
403 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
405 throttle_attr(unthrottle, reason[NO_THROTTLE]);
406 throttle_attr(powercap, reason[POWERCAP]);
407 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
408 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
409 throttle_attr(overcurrent, reason[OVERCURRENT]);
410 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
411 throttle_attr(turbo_stat, throttle_turbo);
412 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
414 static struct attribute *throttle_attrs[] = {
415 &throttle_attr_unthrottle.attr,
416 &throttle_attr_powercap.attr,
417 &throttle_attr_overtemp.attr,
418 &throttle_attr_supply_fault.attr,
419 &throttle_attr_overcurrent.attr,
420 &throttle_attr_occ_reset.attr,
421 &throttle_attr_turbo_stat.attr,
422 &throttle_attr_sub_turbo_stat.attr,
423 NULL,
426 static const struct attribute_group throttle_attr_grp = {
427 .name = "throttle_stats",
428 .attrs = throttle_attrs,
431 /* Helper routines */
433 /* Access helpers to power mgt SPR */
435 static inline unsigned long get_pmspr(unsigned long sprn)
437 switch (sprn) {
438 case SPRN_PMCR:
439 return mfspr(SPRN_PMCR);
441 case SPRN_PMICR:
442 return mfspr(SPRN_PMICR);
444 case SPRN_PMSR:
445 return mfspr(SPRN_PMSR);
447 BUG();
450 static inline void set_pmspr(unsigned long sprn, unsigned long val)
452 switch (sprn) {
453 case SPRN_PMCR:
454 mtspr(SPRN_PMCR, val);
455 return;
457 case SPRN_PMICR:
458 mtspr(SPRN_PMICR, val);
459 return;
461 BUG();
465 * Use objects of this type to query/update
466 * pstates on a remote CPU via smp_call_function.
468 struct powernv_smp_call_data {
469 unsigned int freq;
470 u8 pstate_id;
471 u8 gpstate_id;
475 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
477 * Called via smp_call_function.
479 * Note: The caller of the smp_call_function should pass an argument of
480 * the type 'struct powernv_smp_call_data *' along with this function.
482 * The current frequency on this CPU will be returned via
483 * ((struct powernv_smp_call_data *)arg)->freq;
485 static void powernv_read_cpu_freq(void *arg)
487 unsigned long pmspr_val;
488 struct powernv_smp_call_data *freq_data = arg;
490 pmspr_val = get_pmspr(SPRN_PMSR);
491 freq_data->pstate_id = extract_local_pstate(pmspr_val);
492 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
494 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
495 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
496 freq_data->freq);
500 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
501 * firmware for CPU 'cpu'. This value is reported through the sysfs
502 * file cpuinfo_cur_freq.
504 static unsigned int powernv_cpufreq_get(unsigned int cpu)
506 struct powernv_smp_call_data freq_data;
508 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
509 &freq_data, 1);
511 return freq_data.freq;
515 * set_pstate: Sets the pstate on this CPU.
517 * This is called via an smp_call_function.
519 * The caller must ensure that freq_data is of the type
520 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
521 * on this CPU should be present in freq_data->pstate_id.
523 static void set_pstate(void *data)
525 unsigned long val;
526 struct powernv_smp_call_data *freq_data = data;
527 unsigned long pstate_ul = freq_data->pstate_id;
528 unsigned long gpstate_ul = freq_data->gpstate_id;
530 val = get_pmspr(SPRN_PMCR);
531 val = val & 0x0000FFFFFFFFFFFFULL;
533 pstate_ul = pstate_ul & 0xFF;
534 gpstate_ul = gpstate_ul & 0xFF;
536 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
537 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
539 pr_debug("Setting cpu %d pmcr to %016lX\n",
540 raw_smp_processor_id(), val);
541 set_pmspr(SPRN_PMCR, val);
545 * get_nominal_index: Returns the index corresponding to the nominal
546 * pstate in the cpufreq table
548 static inline unsigned int get_nominal_index(void)
550 return powernv_pstate_info.nominal;
553 static void powernv_cpufreq_throttle_check(void *data)
555 struct chip *chip;
556 unsigned int cpu = smp_processor_id();
557 unsigned long pmsr;
558 u8 pmsr_pmax;
559 unsigned int pmsr_pmax_idx;
561 pmsr = get_pmspr(SPRN_PMSR);
562 chip = this_cpu_read(chip_info);
564 /* Check for Pmax Capping */
565 pmsr_pmax = extract_max_pstate(pmsr);
566 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
567 if (pmsr_pmax_idx != powernv_pstate_info.max) {
568 if (chip->throttled)
569 goto next;
570 chip->throttled = true;
571 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
572 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
573 cpu, chip->id, pmsr_pmax,
574 idx_to_pstate(powernv_pstate_info.nominal));
575 chip->throttle_sub_turbo++;
576 } else {
577 chip->throttle_turbo++;
579 trace_powernv_throttle(chip->id,
580 throttle_reason[chip->throttle_reason],
581 pmsr_pmax);
582 } else if (chip->throttled) {
583 chip->throttled = false;
584 trace_powernv_throttle(chip->id,
585 throttle_reason[chip->throttle_reason],
586 pmsr_pmax);
589 /* Check if Psafe_mode_active is set in PMSR. */
590 next:
591 if (pmsr & PMSR_PSAFE_ENABLE) {
592 throttled = true;
593 pr_info("Pstate set to safe frequency\n");
596 /* Check if SPR_EM_DISABLE is set in PMSR */
597 if (pmsr & PMSR_SPR_EM_DISABLE) {
598 throttled = true;
599 pr_info("Frequency Control disabled from OS\n");
602 if (throttled) {
603 pr_info("PMSR = %16lx\n", pmsr);
604 pr_warn("CPU Frequency could be throttled\n");
609 * calc_global_pstate - Calculate global pstate
610 * @elapsed_time: Elapsed time in milliseconds
611 * @local_pstate_idx: New local pstate
612 * @highest_lpstate_idx: pstate from which its ramping down
614 * Finds the appropriate global pstate based on the pstate from which its
615 * ramping down and the time elapsed in ramping down. It follows a quadratic
616 * equation which ensures that it reaches ramping down to pmin in 5sec.
618 static inline int calc_global_pstate(unsigned int elapsed_time,
619 int highest_lpstate_idx,
620 int local_pstate_idx)
622 int index_diff;
625 * Using ramp_down_percent we get the percentage of rampdown
626 * that we are expecting to be dropping. Difference between
627 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
628 * number of how many pstates we will drop eventually by the end of
629 * 5 seconds, then just scale it get the number pstates to be dropped.
631 index_diff = ((int)ramp_down_percent(elapsed_time) *
632 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
634 /* Ensure that global pstate is >= to local pstate */
635 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
636 return local_pstate_idx;
637 else
638 return highest_lpstate_idx + index_diff;
641 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
643 unsigned int timer_interval;
646 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
647 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
648 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
649 * seconds of ramp down time.
651 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
652 > MAX_RAMP_DOWN_TIME)
653 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
654 else
655 timer_interval = GPSTATE_TIMER_INTERVAL;
657 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
661 * gpstate_timer_handler
663 * @data: pointer to cpufreq_policy on which timer was queued
665 * This handler brings down the global pstate closer to the local pstate
666 * according quadratic equation. Queues a new timer if it is still not equal
667 * to local pstate
669 void gpstate_timer_handler(struct timer_list *t)
671 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
672 struct cpufreq_policy *policy = gpstates->policy;
673 int gpstate_idx, lpstate_idx;
674 unsigned long val;
675 unsigned int time_diff = jiffies_to_msecs(jiffies)
676 - gpstates->last_sampled_time;
677 struct powernv_smp_call_data freq_data;
679 if (!spin_trylock(&gpstates->gpstate_lock))
680 return;
682 * If the timer has migrated to the different cpu then bring
683 * it back to one of the policy->cpus
685 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
686 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
687 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
688 spin_unlock(&gpstates->gpstate_lock);
689 return;
693 * If PMCR was last updated was using fast_swtich then
694 * We may have wrong in gpstate->last_lpstate_idx
695 * value. Hence, read from PMCR to get correct data.
697 val = get_pmspr(SPRN_PMCR);
698 freq_data.gpstate_id = extract_global_pstate(val);
699 freq_data.pstate_id = extract_local_pstate(val);
700 if (freq_data.gpstate_id == freq_data.pstate_id) {
701 reset_gpstates(policy);
702 spin_unlock(&gpstates->gpstate_lock);
703 return;
706 gpstates->last_sampled_time += time_diff;
707 gpstates->elapsed_time += time_diff;
709 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
710 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
711 lpstate_idx = gpstate_idx;
712 reset_gpstates(policy);
713 gpstates->highest_lpstate_idx = gpstate_idx;
714 } else {
715 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
716 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
717 gpstates->highest_lpstate_idx,
718 lpstate_idx);
720 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
721 gpstates->last_gpstate_idx = gpstate_idx;
722 gpstates->last_lpstate_idx = lpstate_idx;
724 * If local pstate is equal to global pstate, rampdown is over
725 * So timer is not required to be queued.
727 if (gpstate_idx != gpstates->last_lpstate_idx)
728 queue_gpstate_timer(gpstates);
730 set_pstate(&freq_data);
731 spin_unlock(&gpstates->gpstate_lock);
735 * powernv_cpufreq_target_index: Sets the frequency corresponding to
736 * the cpufreq table entry indexed by new_index on the cpus in the
737 * mask policy->cpus
739 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
740 unsigned int new_index)
742 struct powernv_smp_call_data freq_data;
743 unsigned int cur_msec, gpstate_idx;
744 struct global_pstate_info *gpstates = policy->driver_data;
746 if (unlikely(rebooting) && new_index != get_nominal_index())
747 return 0;
749 if (!throttled) {
750 /* we don't want to be preempted while
751 * checking if the CPU frequency has been throttled
753 preempt_disable();
754 powernv_cpufreq_throttle_check(NULL);
755 preempt_enable();
758 cur_msec = jiffies_to_msecs(get_jiffies_64());
760 freq_data.pstate_id = idx_to_pstate(new_index);
761 if (!gpstates) {
762 freq_data.gpstate_id = freq_data.pstate_id;
763 goto no_gpstate;
766 spin_lock(&gpstates->gpstate_lock);
768 if (!gpstates->last_sampled_time) {
769 gpstate_idx = new_index;
770 gpstates->highest_lpstate_idx = new_index;
771 goto gpstates_done;
774 if (gpstates->last_gpstate_idx < new_index) {
775 gpstates->elapsed_time += cur_msec -
776 gpstates->last_sampled_time;
779 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
780 * we should be resetting all global pstate related data. Set it
781 * equal to local pstate to start fresh.
783 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
784 reset_gpstates(policy);
785 gpstates->highest_lpstate_idx = new_index;
786 gpstate_idx = new_index;
787 } else {
788 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
789 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
790 gpstates->highest_lpstate_idx,
791 new_index);
793 } else {
794 reset_gpstates(policy);
795 gpstates->highest_lpstate_idx = new_index;
796 gpstate_idx = new_index;
800 * If local pstate is equal to global pstate, rampdown is over
801 * So timer is not required to be queued.
803 if (gpstate_idx != new_index)
804 queue_gpstate_timer(gpstates);
805 else
806 del_timer_sync(&gpstates->timer);
808 gpstates_done:
809 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
810 gpstates->last_sampled_time = cur_msec;
811 gpstates->last_gpstate_idx = gpstate_idx;
812 gpstates->last_lpstate_idx = new_index;
814 spin_unlock(&gpstates->gpstate_lock);
816 no_gpstate:
818 * Use smp_call_function to send IPI and execute the
819 * mtspr on target CPU. We could do that without IPI
820 * if current CPU is within policy->cpus (core)
822 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
823 return 0;
826 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
828 int base, i;
829 struct kernfs_node *kn;
830 struct global_pstate_info *gpstates;
832 base = cpu_first_thread_sibling(policy->cpu);
834 for (i = 0; i < threads_per_core; i++)
835 cpumask_set_cpu(base + i, policy->cpus);
837 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
838 if (!kn) {
839 int ret;
841 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
842 if (ret) {
843 pr_info("Failed to create throttle stats directory for cpu %d\n",
844 policy->cpu);
845 return ret;
847 } else {
848 kernfs_put(kn);
851 policy->freq_table = powernv_freqs;
852 policy->fast_switch_possible = true;
854 if (pvr_version_is(PVR_POWER9))
855 return 0;
857 /* Initialise Gpstate ramp-down timer only on POWER8 */
858 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
859 if (!gpstates)
860 return -ENOMEM;
862 policy->driver_data = gpstates;
864 /* initialize timer */
865 gpstates->policy = policy;
866 timer_setup(&gpstates->timer, gpstate_timer_handler,
867 TIMER_PINNED | TIMER_DEFERRABLE);
868 gpstates->timer.expires = jiffies +
869 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
870 spin_lock_init(&gpstates->gpstate_lock);
872 return 0;
875 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
877 /* timer is deleted in cpufreq_cpu_stop() */
878 kfree(policy->driver_data);
880 return 0;
883 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
884 unsigned long action, void *unused)
886 int cpu;
887 struct cpufreq_policy cpu_policy;
889 rebooting = true;
890 for_each_online_cpu(cpu) {
891 cpufreq_get_policy(&cpu_policy, cpu);
892 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
895 return NOTIFY_DONE;
898 static struct notifier_block powernv_cpufreq_reboot_nb = {
899 .notifier_call = powernv_cpufreq_reboot_notifier,
902 void powernv_cpufreq_work_fn(struct work_struct *work)
904 struct chip *chip = container_of(work, struct chip, throttle);
905 unsigned int cpu;
906 cpumask_t mask;
908 get_online_cpus();
909 cpumask_and(&mask, &chip->mask, cpu_online_mask);
910 smp_call_function_any(&mask,
911 powernv_cpufreq_throttle_check, NULL, 0);
913 if (!chip->restore)
914 goto out;
916 chip->restore = false;
917 for_each_cpu(cpu, &mask) {
918 int index;
919 struct cpufreq_policy policy;
921 cpufreq_get_policy(&policy, cpu);
922 index = cpufreq_table_find_index_c(&policy, policy.cur);
923 powernv_cpufreq_target_index(&policy, index);
924 cpumask_andnot(&mask, &mask, policy.cpus);
926 out:
927 put_online_cpus();
930 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
931 unsigned long msg_type, void *_msg)
933 struct opal_msg *msg = _msg;
934 struct opal_occ_msg omsg;
935 int i;
937 if (msg_type != OPAL_MSG_OCC)
938 return 0;
940 omsg.type = be64_to_cpu(msg->params[0]);
942 switch (omsg.type) {
943 case OCC_RESET:
944 occ_reset = true;
945 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
947 * powernv_cpufreq_throttle_check() is called in
948 * target() callback which can detect the throttle state
949 * for governors like ondemand.
950 * But static governors will not call target() often thus
951 * report throttling here.
953 if (!throttled) {
954 throttled = true;
955 pr_warn("CPU frequency is throttled for duration\n");
958 break;
959 case OCC_LOAD:
960 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
961 break;
962 case OCC_THROTTLE:
963 omsg.chip = be64_to_cpu(msg->params[1]);
964 omsg.throttle_status = be64_to_cpu(msg->params[2]);
966 if (occ_reset) {
967 occ_reset = false;
968 throttled = false;
969 pr_info("OCC Active, CPU frequency is no longer throttled\n");
971 for (i = 0; i < nr_chips; i++) {
972 chips[i].restore = true;
973 schedule_work(&chips[i].throttle);
976 return 0;
979 for (i = 0; i < nr_chips; i++)
980 if (chips[i].id == omsg.chip)
981 break;
983 if (omsg.throttle_status >= 0 &&
984 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
985 chips[i].throttle_reason = omsg.throttle_status;
986 chips[i].reason[omsg.throttle_status]++;
989 if (!omsg.throttle_status)
990 chips[i].restore = true;
992 schedule_work(&chips[i].throttle);
994 return 0;
997 static struct notifier_block powernv_cpufreq_opal_nb = {
998 .notifier_call = powernv_cpufreq_occ_msg,
999 .next = NULL,
1000 .priority = 0,
1003 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1005 struct powernv_smp_call_data freq_data;
1006 struct global_pstate_info *gpstates = policy->driver_data;
1008 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1009 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1010 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1011 if (gpstates)
1012 del_timer_sync(&gpstates->timer);
1015 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1016 unsigned int target_freq)
1018 int index;
1019 struct powernv_smp_call_data freq_data;
1021 index = cpufreq_table_find_index_dl(policy, target_freq);
1022 freq_data.pstate_id = powernv_freqs[index].driver_data;
1023 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1024 set_pstate(&freq_data);
1026 return powernv_freqs[index].frequency;
1029 static struct cpufreq_driver powernv_cpufreq_driver = {
1030 .name = "powernv-cpufreq",
1031 .flags = CPUFREQ_CONST_LOOPS,
1032 .init = powernv_cpufreq_cpu_init,
1033 .exit = powernv_cpufreq_cpu_exit,
1034 .verify = cpufreq_generic_frequency_table_verify,
1035 .target_index = powernv_cpufreq_target_index,
1036 .fast_switch = powernv_fast_switch,
1037 .get = powernv_cpufreq_get,
1038 .stop_cpu = powernv_cpufreq_stop_cpu,
1039 .attr = powernv_cpu_freq_attr,
1042 static int init_chip_info(void)
1044 unsigned int chip[256];
1045 unsigned int cpu, i;
1046 unsigned int prev_chip_id = UINT_MAX;
1048 for_each_possible_cpu(cpu) {
1049 unsigned int id = cpu_to_chip_id(cpu);
1051 if (prev_chip_id != id) {
1052 prev_chip_id = id;
1053 chip[nr_chips++] = id;
1057 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1058 if (!chips)
1059 return -ENOMEM;
1061 for (i = 0; i < nr_chips; i++) {
1062 chips[i].id = chip[i];
1063 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1064 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1065 for_each_cpu(cpu, &chips[i].mask)
1066 per_cpu(chip_info, cpu) = &chips[i];
1069 return 0;
1072 static inline void clean_chip_info(void)
1074 kfree(chips);
1077 static inline void unregister_all_notifiers(void)
1079 opal_message_notifier_unregister(OPAL_MSG_OCC,
1080 &powernv_cpufreq_opal_nb);
1081 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1084 static int __init powernv_cpufreq_init(void)
1086 int rc = 0;
1088 /* Don't probe on pseries (guest) platforms */
1089 if (!firmware_has_feature(FW_FEATURE_OPAL))
1090 return -ENODEV;
1092 /* Discover pstates from device tree and init */
1093 rc = init_powernv_pstates();
1094 if (rc)
1095 goto out;
1097 /* Populate chip info */
1098 rc = init_chip_info();
1099 if (rc)
1100 goto out;
1102 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1103 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1105 if (powernv_pstate_info.wof_enabled)
1106 powernv_cpufreq_driver.boost_enabled = true;
1107 else
1108 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1110 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1111 if (rc) {
1112 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1113 goto cleanup_notifiers;
1116 if (powernv_pstate_info.wof_enabled)
1117 cpufreq_enable_boost_support();
1119 return 0;
1120 cleanup_notifiers:
1121 unregister_all_notifiers();
1122 clean_chip_info();
1123 out:
1124 pr_info("Platform driver disabled. System does not support PState control\n");
1125 return rc;
1127 module_init(powernv_cpufreq_init);
1129 static void __exit powernv_cpufreq_exit(void)
1131 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1132 unregister_all_notifiers();
1133 clean_chip_info();
1135 module_exit(powernv_cpufreq_exit);
1137 MODULE_LICENSE("GPL");
1138 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");