2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now
, struct sched_entity
*se
);
5 int __update_load_avg_se(u64 now
, struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
6 int __update_load_avg_cfs_rq(u64 now
, struct cfs_rq
*cfs_rq
);
7 int update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
8 int update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
);
13 static inline u64
thermal_load_avg(struct rq
*rq
)
15 return READ_ONCE(rq
->avg_thermal
.load_avg
);
19 update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
24 static inline u64
thermal_load_avg(struct rq
*rq
)
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq
*rq
, u64 running
);
34 update_irq_load_avg(struct rq
*rq
, u64 running
)
41 * When a task is dequeued, its estimated utilization should not be update if
42 * its util_avg has not been updated at least once.
43 * This flag is used to synchronize util_avg updates with util_est updates.
44 * We map this information into the LSB bit of the utilization saved at
45 * dequeue time (i.e. util_est.dequeued).
47 #define UTIL_AVG_UNCHANGED 0x1
49 static inline void cfs_se_util_change(struct sched_avg
*avg
)
51 unsigned int enqueued
;
53 if (!sched_feat(UTIL_EST
))
56 /* Avoid store if the flag has been already set */
57 enqueued
= avg
->util_est
.enqueued
;
58 if (!(enqueued
& UTIL_AVG_UNCHANGED
))
61 /* Reset flag to report util_avg has been updated */
62 enqueued
&= ~UTIL_AVG_UNCHANGED
;
63 WRITE_ONCE(avg
->util_est
.enqueued
, enqueued
);
67 * The clock_pelt scales the time to reflect the effective amount of
68 * computation done during the running delta time but then sync back to
69 * clock_task when rq is idle.
72 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
73 * @ max capacity ------******---------------******---------------
74 * @ half capacity ------************---------************---------
75 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
78 static inline void update_rq_clock_pelt(struct rq
*rq
, s64 delta
)
80 if (unlikely(is_idle_task(rq
->curr
))) {
81 /* The rq is idle, we can sync to clock_task */
82 rq
->clock_pelt
= rq_clock_task(rq
);
87 * When a rq runs at a lower compute capacity, it will need
88 * more time to do the same amount of work than at max
89 * capacity. In order to be invariant, we scale the delta to
90 * reflect how much work has been really done.
91 * Running longer results in stealing idle time that will
92 * disturb the load signal compared to max capacity. This
93 * stolen idle time will be automatically reflected when the
94 * rq will be idle and the clock will be synced with
99 * Scale the elapsed time to reflect the real amount of
102 delta
= cap_scale(delta
, arch_scale_cpu_capacity(cpu_of(rq
)));
103 delta
= cap_scale(delta
, arch_scale_freq_capacity(cpu_of(rq
)));
105 rq
->clock_pelt
+= delta
;
109 * When rq becomes idle, we have to check if it has lost idle time
110 * because it was fully busy. A rq is fully used when the /Sum util_sum
111 * is greater or equal to:
112 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
113 * For optimization and computing rounding purpose, we don't take into account
114 * the position in the current window (period_contrib) and we use the higher
115 * bound of util_sum to decide.
117 static inline void update_idle_rq_clock_pelt(struct rq
*rq
)
119 u32 divider
= ((LOAD_AVG_MAX
- 1024) << SCHED_CAPACITY_SHIFT
) - LOAD_AVG_MAX
;
120 u32 util_sum
= rq
->cfs
.avg
.util_sum
;
121 util_sum
+= rq
->avg_rt
.util_sum
;
122 util_sum
+= rq
->avg_dl
.util_sum
;
125 * Reflecting stolen time makes sense only if the idle
126 * phase would be present at max capacity. As soon as the
127 * utilization of a rq has reached the maximum value, it is
128 * considered as an always runnig rq without idle time to
129 * steal. This potential idle time is considered as lost in
130 * this case. We keep track of this lost idle time compare to
133 if (util_sum
>= divider
)
134 rq
->lost_idle_time
+= rq_clock_task(rq
) - rq
->clock_pelt
;
137 static inline u64
rq_clock_pelt(struct rq
*rq
)
139 lockdep_assert_held(&rq
->lock
);
140 assert_clock_updated(rq
);
142 return rq
->clock_pelt
- rq
->lost_idle_time
;
145 #ifdef CONFIG_CFS_BANDWIDTH
146 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
147 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
149 if (unlikely(cfs_rq
->throttle_count
))
150 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
152 return rq_clock_pelt(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
155 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
157 return rq_clock_pelt(rq_of(cfs_rq
));
164 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
170 update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
176 update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
182 update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
187 static inline u64
thermal_load_avg(struct rq
*rq
)
193 update_irq_load_avg(struct rq
*rq
, u64 running
)
198 static inline u64
rq_clock_pelt(struct rq
*rq
)
200 return rq_clock_task(rq
);
204 update_rq_clock_pelt(struct rq
*rq
, s64 delta
) { }
207 update_idle_rq_clock_pelt(struct rq
*rq
) { }