1 // SPDX-License-Identifier: GPL-2.0
3 * NTP state machine interfaces and logic.
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
27 * NTP timekeeping variables:
29 * Note: All of the NTP state is protected by the timekeeping locks.
33 /* USER_HZ period (usecs): */
34 unsigned long tick_usec
= USER_TICK_USEC
;
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long tick_nsec
;
39 static u64 tick_length
;
40 static u64 tick_length_base
;
42 #define SECS_PER_DAY 86400
43 #define MAX_TICKADJ 500LL /* usecs */
44 #define MAX_TICKADJ_SCALED \
45 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET 100000
49 * phase-lock loop variables
53 * clock synchronization status
55 * (TIME_ERROR prevents overwriting the CMOS clock)
57 static int time_state
= TIME_OK
;
59 /* clock status bits: */
60 static int time_status
= STA_UNSYNC
;
62 /* time adjustment (nsecs): */
63 static s64 time_offset
;
65 /* pll time constant: */
66 static long time_constant
= 2;
68 /* maximum error (usecs): */
69 static long time_maxerror
= NTP_PHASE_LIMIT
;
71 /* estimated error (usecs): */
72 static long time_esterror
= NTP_PHASE_LIMIT
;
74 /* frequency offset (scaled nsecs/secs): */
77 /* time at last adjustment (secs): */
78 static time64_t time_reftime
;
80 static long time_adjust
;
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
83 static s64 ntp_tick_adj
;
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t ntp_next_leap_sec
= TIME64_MAX
;
91 * The following variables are used when a pulse-per-second (PPS) signal
92 * is available. They establish the engineering parameters of the clock
93 * discipline loop when controlled by the PPS signal.
95 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
96 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
97 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
98 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
100 increase pps_shift or consecutive bad
101 intervals to decrease it */
102 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
104 static int pps_valid
; /* signal watchdog counter */
105 static long pps_tf
[3]; /* phase median filter */
106 static long pps_jitter
; /* current jitter (ns) */
107 static struct timespec64 pps_fbase
; /* beginning of the last freq interval */
108 static int pps_shift
; /* current interval duration (s) (shift) */
109 static int pps_intcnt
; /* interval counter */
110 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
111 static long pps_stabil
; /* current stability (scaled ns/s) */
114 * PPS signal quality monitors
116 static long pps_calcnt
; /* calibration intervals */
117 static long pps_jitcnt
; /* jitter limit exceeded */
118 static long pps_stbcnt
; /* stability limit exceeded */
119 static long pps_errcnt
; /* calibration errors */
122 /* PPS kernel consumer compensates the whole phase error immediately.
123 * Otherwise, reduce the offset by a fixed factor times the time constant.
125 static inline s64
ntp_offset_chunk(s64 offset
)
127 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
130 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
133 static inline void pps_reset_freq_interval(void)
135 /* the PPS calibration interval may end
136 surprisingly early */
137 pps_shift
= PPS_INTMIN
;
142 * pps_clear - Clears the PPS state variables
144 static inline void pps_clear(void)
146 pps_reset_freq_interval();
150 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
154 /* Decrease pps_valid to indicate that another second has passed since
155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
158 static inline void pps_dec_valid(void)
163 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
164 STA_PPSWANDER
| STA_PPSERROR
);
169 static inline void pps_set_freq(s64 freq
)
174 static inline int is_error_status(int status
)
176 return (status
& (STA_UNSYNC
|STA_CLOCKERR
))
177 /* PPS signal lost when either PPS time or
178 * PPS frequency synchronization requested
180 || ((status
& (STA_PPSFREQ
|STA_PPSTIME
))
181 && !(status
& STA_PPSSIGNAL
))
182 /* PPS jitter exceeded when
183 * PPS time synchronization requested */
184 || ((status
& (STA_PPSTIME
|STA_PPSJITTER
))
185 == (STA_PPSTIME
|STA_PPSJITTER
))
186 /* PPS wander exceeded or calibration error when
187 * PPS frequency synchronization requested
189 || ((status
& STA_PPSFREQ
)
190 && (status
& (STA_PPSWANDER
|STA_PPSERROR
)));
193 static inline void pps_fill_timex(struct __kernel_timex
*txc
)
195 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
196 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
197 txc
->jitter
= pps_jitter
;
198 if (!(time_status
& STA_NANO
))
199 txc
->jitter
= pps_jitter
/ NSEC_PER_USEC
;
200 txc
->shift
= pps_shift
;
201 txc
->stabil
= pps_stabil
;
202 txc
->jitcnt
= pps_jitcnt
;
203 txc
->calcnt
= pps_calcnt
;
204 txc
->errcnt
= pps_errcnt
;
205 txc
->stbcnt
= pps_stbcnt
;
208 #else /* !CONFIG_NTP_PPS */
210 static inline s64
ntp_offset_chunk(s64 offset
)
212 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
215 static inline void pps_reset_freq_interval(void) {}
216 static inline void pps_clear(void) {}
217 static inline void pps_dec_valid(void) {}
218 static inline void pps_set_freq(s64 freq
) {}
220 static inline int is_error_status(int status
)
222 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
225 static inline void pps_fill_timex(struct __kernel_timex
*txc
)
227 /* PPS is not implemented, so these are zero */
238 #endif /* CONFIG_NTP_PPS */
242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
245 static inline int ntp_synced(void)
247 return !(time_status
& STA_UNSYNC
);
256 * Update (tick_length, tick_length_base, tick_nsec), based
257 * on (tick_usec, ntp_tick_adj, time_freq):
259 static void ntp_update_frequency(void)
264 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
267 second_length
+= ntp_tick_adj
;
268 second_length
+= time_freq
;
270 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
271 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
274 * Don't wait for the next second_overflow, apply
275 * the change to the tick length immediately:
277 tick_length
+= new_base
- tick_length_base
;
278 tick_length_base
= new_base
;
281 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
283 time_status
&= ~STA_MODE
;
288 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
291 time_status
|= STA_MODE
;
293 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
296 static void ntp_update_offset(long offset
)
302 if (!(time_status
& STA_PLL
))
305 if (!(time_status
& STA_NANO
)) {
306 /* Make sure the multiplication below won't overflow */
307 offset
= clamp(offset
, -USEC_PER_SEC
, USEC_PER_SEC
);
308 offset
*= NSEC_PER_USEC
;
312 * Scale the phase adjustment and
313 * clamp to the operating range.
315 offset
= clamp(offset
, -MAXPHASE
, MAXPHASE
);
318 * Select how the frequency is to be controlled
319 * and in which mode (PLL or FLL).
321 secs
= (long)(__ktime_get_real_seconds() - time_reftime
);
322 if (unlikely(time_status
& STA_FREQHOLD
))
325 time_reftime
= __ktime_get_real_seconds();
328 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
331 * Clamp update interval to reduce PLL gain with low
332 * sampling rate (e.g. intermittent network connection)
333 * to avoid instability.
335 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
336 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
338 freq_adj
+= (offset64
* secs
) <<
339 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
341 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
343 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
345 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
349 * ntp_clear - Clears the NTP state variables
353 time_adjust
= 0; /* stop active adjtime() */
354 time_status
|= STA_UNSYNC
;
355 time_maxerror
= NTP_PHASE_LIMIT
;
356 time_esterror
= NTP_PHASE_LIMIT
;
358 ntp_update_frequency();
360 tick_length
= tick_length_base
;
363 ntp_next_leap_sec
= TIME64_MAX
;
364 /* Clear PPS state variables */
369 u64
ntp_tick_length(void)
375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
380 ktime_t
ntp_get_next_leap(void)
384 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
))
385 return ktime_set(ntp_next_leap_sec
, 0);
391 * this routine handles the overflow of the microsecond field
393 * The tricky bits of code to handle the accurate clock support
394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395 * They were originally developed for SUN and DEC kernels.
396 * All the kudos should go to Dave for this stuff.
398 * Also handles leap second processing, and returns leap offset
400 int second_overflow(time64_t secs
)
407 * Leap second processing. If in leap-insert state at the end of the
408 * day, the system clock is set back one second; if in leap-delete
409 * state, the system clock is set ahead one second.
411 switch (time_state
) {
413 if (time_status
& STA_INS
) {
414 time_state
= TIME_INS
;
415 div_s64_rem(secs
, SECS_PER_DAY
, &rem
);
416 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
417 } else if (time_status
& STA_DEL
) {
418 time_state
= TIME_DEL
;
419 div_s64_rem(secs
+ 1, SECS_PER_DAY
, &rem
);
420 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
424 if (!(time_status
& STA_INS
)) {
425 ntp_next_leap_sec
= TIME64_MAX
;
426 time_state
= TIME_OK
;
427 } else if (secs
== ntp_next_leap_sec
) {
429 time_state
= TIME_OOP
;
431 "Clock: inserting leap second 23:59:60 UTC\n");
435 if (!(time_status
& STA_DEL
)) {
436 ntp_next_leap_sec
= TIME64_MAX
;
437 time_state
= TIME_OK
;
438 } else if (secs
== ntp_next_leap_sec
) {
440 ntp_next_leap_sec
= TIME64_MAX
;
441 time_state
= TIME_WAIT
;
443 "Clock: deleting leap second 23:59:59 UTC\n");
447 ntp_next_leap_sec
= TIME64_MAX
;
448 time_state
= TIME_WAIT
;
451 if (!(time_status
& (STA_INS
| STA_DEL
)))
452 time_state
= TIME_OK
;
457 /* Bump the maxerror field */
458 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
459 if (time_maxerror
> NTP_PHASE_LIMIT
) {
460 time_maxerror
= NTP_PHASE_LIMIT
;
461 time_status
|= STA_UNSYNC
;
464 /* Compute the phase adjustment for the next second */
465 tick_length
= tick_length_base
;
467 delta
= ntp_offset_chunk(time_offset
);
468 time_offset
-= delta
;
469 tick_length
+= delta
;
471 /* Check PPS signal */
477 if (time_adjust
> MAX_TICKADJ
) {
478 time_adjust
-= MAX_TICKADJ
;
479 tick_length
+= MAX_TICKADJ_SCALED
;
483 if (time_adjust
< -MAX_TICKADJ
) {
484 time_adjust
+= MAX_TICKADJ
;
485 tick_length
-= MAX_TICKADJ_SCALED
;
489 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
497 static void sync_hw_clock(struct work_struct
*work
);
498 static DECLARE_DELAYED_WORK(sync_work
, sync_hw_clock
);
500 static void sched_sync_hw_clock(struct timespec64 now
,
501 unsigned long target_nsec
, bool fail
)
504 struct timespec64 next
;
506 ktime_get_real_ts64(&next
);
511 * Try again as soon as possible. Delaying long periods
512 * decreases the accuracy of the work queue timer. Due to this
513 * the algorithm is very likely to require a short-sleep retry
514 * after the above long sleep to synchronize ts_nsec.
519 /* Compute the needed delay that will get to tv_nsec == target_nsec */
520 next
.tv_nsec
= target_nsec
- next
.tv_nsec
;
521 if (next
.tv_nsec
<= 0)
522 next
.tv_nsec
+= NSEC_PER_SEC
;
523 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
525 next
.tv_nsec
-= NSEC_PER_SEC
;
528 queue_delayed_work(system_power_efficient_wq
, &sync_work
,
529 timespec64_to_jiffies(&next
));
532 static void sync_rtc_clock(void)
534 unsigned long target_nsec
;
535 struct timespec64 adjust
, now
;
538 if (!IS_ENABLED(CONFIG_RTC_SYSTOHC
))
541 ktime_get_real_ts64(&now
);
544 if (persistent_clock_is_local
)
545 adjust
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
548 * The current RTC in use will provide the target_nsec it wants to be
549 * called at, and does rtc_tv_nsec_ok internally.
551 rc
= rtc_set_ntp_time(adjust
, &target_nsec
);
555 sched_sync_hw_clock(now
, target_nsec
, rc
);
558 #ifdef CONFIG_GENERIC_CMOS_UPDATE
559 int __weak
update_persistent_clock64(struct timespec64 now64
)
565 static bool sync_cmos_clock(void)
568 struct timespec64 now
;
569 struct timespec64 adjust
;
571 long target_nsec
= NSEC_PER_SEC
/ 2;
573 if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE
))
580 * Historically update_persistent_clock64() has followed x86
581 * semantics, which match the MC146818A/etc RTC. This RTC will store
582 * 'adjust' and then in .5s it will advance once second.
584 * Architectures are strongly encouraged to use rtclib and not
585 * implement this legacy API.
587 ktime_get_real_ts64(&now
);
588 if (rtc_tv_nsec_ok(-1 * target_nsec
, &adjust
, &now
)) {
589 if (persistent_clock_is_local
)
590 adjust
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
591 rc
= update_persistent_clock64(adjust
);
593 * The machine does not support update_persistent_clock64 even
594 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
602 sched_sync_hw_clock(now
, target_nsec
, rc
);
607 * If we have an externally synchronized Linux clock, then update RTC clock
608 * accordingly every ~11 minutes. Generally RTCs can only store second
609 * precision, but many RTCs will adjust the phase of their second tick to
610 * match the moment of update. This infrastructure arranges to call to the RTC
611 * set at the correct moment to phase synchronize the RTC second tick over
612 * with the kernel clock.
614 static void sync_hw_clock(struct work_struct
*work
)
619 if (sync_cmos_clock())
625 void ntp_notify_cmos_timer(void)
630 if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE
) ||
631 IS_ENABLED(CONFIG_RTC_SYSTOHC
))
632 queue_delayed_work(system_power_efficient_wq
, &sync_work
, 0);
636 * Propagate a new txc->status value into the NTP state:
638 static inline void process_adj_status(const struct __kernel_timex
*txc
)
640 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
641 time_state
= TIME_OK
;
642 time_status
= STA_UNSYNC
;
643 ntp_next_leap_sec
= TIME64_MAX
;
644 /* restart PPS frequency calibration */
645 pps_reset_freq_interval();
649 * If we turn on PLL adjustments then reset the
650 * reference time to current time.
652 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
653 time_reftime
= __ktime_get_real_seconds();
655 /* only set allowed bits */
656 time_status
&= STA_RONLY
;
657 time_status
|= txc
->status
& ~STA_RONLY
;
661 static inline void process_adjtimex_modes(const struct __kernel_timex
*txc
,
664 if (txc
->modes
& ADJ_STATUS
)
665 process_adj_status(txc
);
667 if (txc
->modes
& ADJ_NANO
)
668 time_status
|= STA_NANO
;
670 if (txc
->modes
& ADJ_MICRO
)
671 time_status
&= ~STA_NANO
;
673 if (txc
->modes
& ADJ_FREQUENCY
) {
674 time_freq
= txc
->freq
* PPM_SCALE
;
675 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
676 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
677 /* update pps_freq */
678 pps_set_freq(time_freq
);
681 if (txc
->modes
& ADJ_MAXERROR
)
682 time_maxerror
= txc
->maxerror
;
684 if (txc
->modes
& ADJ_ESTERROR
)
685 time_esterror
= txc
->esterror
;
687 if (txc
->modes
& ADJ_TIMECONST
) {
688 time_constant
= txc
->constant
;
689 if (!(time_status
& STA_NANO
))
691 time_constant
= min(time_constant
, (long)MAXTC
);
692 time_constant
= max(time_constant
, 0l);
695 if (txc
->modes
& ADJ_TAI
&&
696 txc
->constant
>= 0 && txc
->constant
<= MAX_TAI_OFFSET
)
697 *time_tai
= txc
->constant
;
699 if (txc
->modes
& ADJ_OFFSET
)
700 ntp_update_offset(txc
->offset
);
702 if (txc
->modes
& ADJ_TICK
)
703 tick_usec
= txc
->tick
;
705 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
706 ntp_update_frequency();
711 * adjtimex mainly allows reading (and writing, if superuser) of
712 * kernel time-keeping variables. used by xntpd.
714 int __do_adjtimex(struct __kernel_timex
*txc
, const struct timespec64
*ts
,
715 s32
*time_tai
, struct audit_ntp_data
*ad
)
719 if (txc
->modes
& ADJ_ADJTIME
) {
720 long save_adjust
= time_adjust
;
722 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
723 /* adjtime() is independent from ntp_adjtime() */
724 time_adjust
= txc
->offset
;
725 ntp_update_frequency();
727 audit_ntp_set_old(ad
, AUDIT_NTP_ADJUST
, save_adjust
);
728 audit_ntp_set_new(ad
, AUDIT_NTP_ADJUST
, time_adjust
);
730 txc
->offset
= save_adjust
;
732 /* If there are input parameters, then process them: */
734 audit_ntp_set_old(ad
, AUDIT_NTP_OFFSET
, time_offset
);
735 audit_ntp_set_old(ad
, AUDIT_NTP_FREQ
, time_freq
);
736 audit_ntp_set_old(ad
, AUDIT_NTP_STATUS
, time_status
);
737 audit_ntp_set_old(ad
, AUDIT_NTP_TAI
, *time_tai
);
738 audit_ntp_set_old(ad
, AUDIT_NTP_TICK
, tick_usec
);
740 process_adjtimex_modes(txc
, time_tai
);
742 audit_ntp_set_new(ad
, AUDIT_NTP_OFFSET
, time_offset
);
743 audit_ntp_set_new(ad
, AUDIT_NTP_FREQ
, time_freq
);
744 audit_ntp_set_new(ad
, AUDIT_NTP_STATUS
, time_status
);
745 audit_ntp_set_new(ad
, AUDIT_NTP_TAI
, *time_tai
);
746 audit_ntp_set_new(ad
, AUDIT_NTP_TICK
, tick_usec
);
749 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
751 if (!(time_status
& STA_NANO
))
752 txc
->offset
= (u32
)txc
->offset
/ NSEC_PER_USEC
;
755 result
= time_state
; /* mostly `TIME_OK' */
756 /* check for errors */
757 if (is_error_status(time_status
))
760 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
761 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
762 txc
->maxerror
= time_maxerror
;
763 txc
->esterror
= time_esterror
;
764 txc
->status
= time_status
;
765 txc
->constant
= time_constant
;
767 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
768 txc
->tick
= tick_usec
;
769 txc
->tai
= *time_tai
;
771 /* fill PPS status fields */
774 txc
->time
.tv_sec
= ts
->tv_sec
;
775 txc
->time
.tv_usec
= ts
->tv_nsec
;
776 if (!(time_status
& STA_NANO
))
777 txc
->time
.tv_usec
= ts
->tv_nsec
/ NSEC_PER_USEC
;
779 /* Handle leapsec adjustments */
780 if (unlikely(ts
->tv_sec
>= ntp_next_leap_sec
)) {
781 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
)) {
786 if ((time_state
== TIME_DEL
) && (time_status
& STA_DEL
)) {
791 if ((time_state
== TIME_OOP
) &&
792 (ts
->tv_sec
== ntp_next_leap_sec
)) {
800 #ifdef CONFIG_NTP_PPS
802 /* actually struct pps_normtime is good old struct timespec, but it is
803 * semantically different (and it is the reason why it was invented):
804 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
805 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
806 struct pps_normtime
{
807 s64 sec
; /* seconds */
808 long nsec
; /* nanoseconds */
811 /* normalize the timestamp so that nsec is in the
812 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
813 static inline struct pps_normtime
pps_normalize_ts(struct timespec64 ts
)
815 struct pps_normtime norm
= {
820 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
821 norm
.nsec
-= NSEC_PER_SEC
;
828 /* get current phase correction and jitter */
829 static inline long pps_phase_filter_get(long *jitter
)
831 *jitter
= pps_tf
[0] - pps_tf
[1];
835 /* TODO: test various filters */
839 /* add the sample to the phase filter */
840 static inline void pps_phase_filter_add(long err
)
842 pps_tf
[2] = pps_tf
[1];
843 pps_tf
[1] = pps_tf
[0];
847 /* decrease frequency calibration interval length.
848 * It is halved after four consecutive unstable intervals.
850 static inline void pps_dec_freq_interval(void)
852 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
853 pps_intcnt
= -PPS_INTCOUNT
;
854 if (pps_shift
> PPS_INTMIN
) {
861 /* increase frequency calibration interval length.
862 * It is doubled after four consecutive stable intervals.
864 static inline void pps_inc_freq_interval(void)
866 if (++pps_intcnt
>= PPS_INTCOUNT
) {
867 pps_intcnt
= PPS_INTCOUNT
;
868 if (pps_shift
< PPS_INTMAX
) {
875 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
878 * At the end of the calibration interval the difference between the
879 * first and last MONOTONIC_RAW clock timestamps divided by the length
880 * of the interval becomes the frequency update. If the interval was
881 * too long, the data are discarded.
882 * Returns the difference between old and new frequency values.
884 static long hardpps_update_freq(struct pps_normtime freq_norm
)
886 long delta
, delta_mod
;
889 /* check if the frequency interval was too long */
890 if (freq_norm
.sec
> (2 << pps_shift
)) {
891 time_status
|= STA_PPSERROR
;
893 pps_dec_freq_interval();
894 printk_deferred(KERN_ERR
895 "hardpps: PPSERROR: interval too long - %lld s\n",
900 /* here the raw frequency offset and wander (stability) is
901 * calculated. If the wander is less than the wander threshold
902 * the interval is increased; otherwise it is decreased.
904 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
906 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
908 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
909 printk_deferred(KERN_WARNING
910 "hardpps: PPSWANDER: change=%ld\n", delta
);
911 time_status
|= STA_PPSWANDER
;
913 pps_dec_freq_interval();
914 } else { /* good sample */
915 pps_inc_freq_interval();
918 /* the stability metric is calculated as the average of recent
919 * frequency changes, but is used only for performance
924 delta_mod
= -delta_mod
;
925 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
926 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
927 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
929 /* if enabled, the system clock frequency is updated */
930 if ((time_status
& STA_PPSFREQ
) != 0 &&
931 (time_status
& STA_FREQHOLD
) == 0) {
932 time_freq
= pps_freq
;
933 ntp_update_frequency();
939 /* correct REALTIME clock phase error against PPS signal */
940 static void hardpps_update_phase(long error
)
942 long correction
= -error
;
945 /* add the sample to the median filter */
946 pps_phase_filter_add(correction
);
947 correction
= pps_phase_filter_get(&jitter
);
949 /* Nominal jitter is due to PPS signal noise. If it exceeds the
950 * threshold, the sample is discarded; otherwise, if so enabled,
951 * the time offset is updated.
953 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
954 printk_deferred(KERN_WARNING
955 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
956 jitter
, (pps_jitter
<< PPS_POPCORN
));
957 time_status
|= STA_PPSJITTER
;
959 } else if (time_status
& STA_PPSTIME
) {
960 /* correct the time using the phase offset */
961 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
963 /* cancel running adjtime() */
967 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
971 * __hardpps() - discipline CPU clock oscillator to external PPS signal
973 * This routine is called at each PPS signal arrival in order to
974 * discipline the CPU clock oscillator to the PPS signal. It takes two
975 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
976 * is used to correct clock phase error and the latter is used to
977 * correct the frequency.
979 * This code is based on David Mills's reference nanokernel
980 * implementation. It was mostly rewritten but keeps the same idea.
982 void __hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
984 struct pps_normtime pts_norm
, freq_norm
;
986 pts_norm
= pps_normalize_ts(*phase_ts
);
988 /* clear the error bits, they will be set again if needed */
989 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
991 /* indicate signal presence */
992 time_status
|= STA_PPSSIGNAL
;
993 pps_valid
= PPS_VALID
;
995 /* when called for the first time,
996 * just start the frequency interval */
997 if (unlikely(pps_fbase
.tv_sec
== 0)) {
1002 /* ok, now we have a base for frequency calculation */
1003 freq_norm
= pps_normalize_ts(timespec64_sub(*raw_ts
, pps_fbase
));
1005 /* check that the signal is in the range
1006 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1007 if ((freq_norm
.sec
== 0) ||
1008 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
1009 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
1010 time_status
|= STA_PPSJITTER
;
1011 /* restart the frequency calibration interval */
1012 pps_fbase
= *raw_ts
;
1013 printk_deferred(KERN_ERR
"hardpps: PPSJITTER: bad pulse\n");
1019 /* check if the current frequency interval is finished */
1020 if (freq_norm
.sec
>= (1 << pps_shift
)) {
1022 /* restart the frequency calibration interval */
1023 pps_fbase
= *raw_ts
;
1024 hardpps_update_freq(freq_norm
);
1027 hardpps_update_phase(pts_norm
.nsec
);
1030 #endif /* CONFIG_NTP_PPS */
1032 static int __init
ntp_tick_adj_setup(char *str
)
1034 int rc
= kstrtos64(str
, 0, &ntp_tick_adj
);
1038 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
1042 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
1044 void __init
ntp_init(void)