1 // SPDX-License-Identifier: GPL-2.0
3 * Implement CPU time clocks for the POSIX clock interface.
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
19 #include "posix-timers.h"
21 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
23 void posix_cputimers_group_init(struct posix_cputimers
*pct
, u64 cpu_limit
)
25 posix_cputimers_init(pct
);
26 if (cpu_limit
!= RLIM_INFINITY
) {
27 pct
->bases
[CPUCLOCK_PROF
].nextevt
= cpu_limit
* NSEC_PER_SEC
;
28 pct
->timers_active
= true;
33 * Called after updating RLIMIT_CPU to run cpu timer and update
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
36 * expiration cache as well.
38 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
40 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
42 spin_lock_irq(&task
->sighand
->siglock
);
43 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
44 spin_unlock_irq(&task
->sighand
->siglock
);
48 * Functions for validating access to tasks.
50 static struct pid
*pid_for_clock(const clockid_t clock
, bool gettime
)
52 const bool thread
= !!CPUCLOCK_PERTHREAD(clock
);
53 const pid_t upid
= CPUCLOCK_PID(clock
);
56 if (CPUCLOCK_WHICH(clock
) >= CPUCLOCK_MAX
)
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
64 return thread
? task_pid(current
) : task_tgid(current
);
66 pid
= find_vpid(upid
);
71 struct task_struct
*tsk
= pid_task(pid
, PIDTYPE_PID
);
72 return (tsk
&& same_thread_group(tsk
, current
)) ? pid
: NULL
;
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
81 if (gettime
&& (pid
== task_pid(current
)))
82 return task_tgid(current
);
85 * For processes require that pid identifies a process.
87 return pid_has_task(pid
, PIDTYPE_TGID
) ? pid
: NULL
;
90 static inline int validate_clock_permissions(const clockid_t clock
)
95 ret
= pid_for_clock(clock
, false) ? 0 : -EINVAL
;
101 static inline enum pid_type
clock_pid_type(const clockid_t clock
)
103 return CPUCLOCK_PERTHREAD(clock
) ? PIDTYPE_PID
: PIDTYPE_TGID
;
106 static inline struct task_struct
*cpu_timer_task_rcu(struct k_itimer
*timer
)
108 return pid_task(timer
->it
.cpu
.pid
, clock_pid_type(timer
->it_clock
));
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
115 static u64
bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
117 u64 delta
, incr
, expires
= timer
->it
.cpu
.node
.expires
;
120 if (!timer
->it_interval
)
126 incr
= timer
->it_interval
;
127 delta
= now
+ incr
- expires
;
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i
= 0; incr
< delta
- incr
; i
++)
133 for (; i
>= 0; incr
>>= 1, i
--) {
137 timer
->it
.cpu
.node
.expires
+= incr
;
138 timer
->it_overrun
+= 1LL << i
;
141 return timer
->it
.cpu
.node
.expires
;
144 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145 static inline bool expiry_cache_is_inactive(const struct posix_cputimers
*pct
)
147 return !(~pct
->bases
[CPUCLOCK_PROF
].nextevt
|
148 ~pct
->bases
[CPUCLOCK_VIRT
].nextevt
|
149 ~pct
->bases
[CPUCLOCK_SCHED
].nextevt
);
153 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
155 int error
= validate_clock_permissions(which_clock
);
159 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
160 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
173 posix_cpu_clock_set(const clockid_t clock
, const struct timespec64
*tp
)
175 int error
= validate_clock_permissions(clock
);
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
181 return error
? : -EPERM
;
185 * Sample a per-thread clock for the given task. clkid is validated.
187 static u64
cpu_clock_sample(const clockid_t clkid
, struct task_struct
*p
)
191 if (clkid
== CPUCLOCK_SCHED
)
192 return task_sched_runtime(p
);
194 task_cputime(p
, &utime
, &stime
);
198 return utime
+ stime
;
207 static inline void store_samples(u64
*samples
, u64 stime
, u64 utime
, u64 rtime
)
209 samples
[CPUCLOCK_PROF
] = stime
+ utime
;
210 samples
[CPUCLOCK_VIRT
] = utime
;
211 samples
[CPUCLOCK_SCHED
] = rtime
;
214 static void task_sample_cputime(struct task_struct
*p
, u64
*samples
)
218 task_cputime(p
, &utime
, &stime
);
219 store_samples(samples
, stime
, utime
, p
->se
.sum_exec_runtime
);
222 static void proc_sample_cputime_atomic(struct task_cputime_atomic
*at
,
225 u64 stime
, utime
, rtime
;
227 utime
= atomic64_read(&at
->utime
);
228 stime
= atomic64_read(&at
->stime
);
229 rtime
= atomic64_read(&at
->sum_exec_runtime
);
230 store_samples(samples
, stime
, utime
, rtime
);
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
237 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
241 curr_cputime
= atomic64_read(cputime
);
242 if (sum_cputime
> curr_cputime
) {
243 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
248 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
,
249 struct task_cputime
*sum
)
251 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
252 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
253 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
259 * @samples: Storage for time samples
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
265 * Updates @times with an uptodate sample of the thread group cputimes.
267 void thread_group_sample_cputime(struct task_struct
*tsk
, u64
*samples
)
269 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
270 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
272 WARN_ON_ONCE(!pct
->timers_active
);
274 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
280 * @samples: Storage for time samples
282 * The thread group cputime accouting is avoided when there are no posix
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
287 * Updates @times with an uptodate sample of the thread group cputimes.
289 static void thread_group_start_cputime(struct task_struct
*tsk
, u64
*samples
)
291 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
292 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
294 /* Check if cputimer isn't running. This is accessed without locking. */
295 if (!READ_ONCE(pct
->timers_active
)) {
296 struct task_cputime sum
;
299 * The POSIX timer interface allows for absolute time expiry
300 * values through the TIMER_ABSTIME flag, therefore we have
301 * to synchronize the timer to the clock every time we start it.
303 thread_group_cputime(tsk
, &sum
);
304 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
307 * We're setting timers_active without a lock. Ensure this
308 * only gets written to in one operation. We set it after
309 * update_gt_cputime() as a small optimization, but
310 * barriers are not required because update_gt_cputime()
311 * can handle concurrent updates.
313 WRITE_ONCE(pct
->timers_active
, true);
315 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
318 static void __thread_group_cputime(struct task_struct
*tsk
, u64
*samples
)
320 struct task_cputime ct
;
322 thread_group_cputime(tsk
, &ct
);
323 store_samples(samples
, ct
.stime
, ct
.utime
, ct
.sum_exec_runtime
);
327 * Sample a process (thread group) clock for the given task clkid. If the
328 * group's cputime accounting is already enabled, read the atomic
329 * store. Otherwise a full update is required. clkid is already validated.
331 static u64
cpu_clock_sample_group(const clockid_t clkid
, struct task_struct
*p
,
334 struct thread_group_cputimer
*cputimer
= &p
->signal
->cputimer
;
335 struct posix_cputimers
*pct
= &p
->signal
->posix_cputimers
;
336 u64 samples
[CPUCLOCK_MAX
];
338 if (!READ_ONCE(pct
->timers_active
)) {
340 thread_group_start_cputime(p
, samples
);
342 __thread_group_cputime(p
, samples
);
344 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
347 return samples
[clkid
];
350 static int posix_cpu_clock_get(const clockid_t clock
, struct timespec64
*tp
)
352 const clockid_t clkid
= CPUCLOCK_WHICH(clock
);
353 struct task_struct
*tsk
;
357 tsk
= pid_task(pid_for_clock(clock
, true), clock_pid_type(clock
));
363 if (CPUCLOCK_PERTHREAD(clock
))
364 t
= cpu_clock_sample(clkid
, tsk
);
366 t
= cpu_clock_sample_group(clkid
, tsk
, false);
369 *tp
= ns_to_timespec64(t
);
374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
376 * new timer already all-zeros initialized.
378 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
383 pid
= pid_for_clock(new_timer
->it_clock
, false);
389 new_timer
->kclock
= &clock_posix_cpu
;
390 timerqueue_init(&new_timer
->it
.cpu
.node
);
391 new_timer
->it
.cpu
.pid
= get_pid(pid
);
397 * Clean up a CPU-clock timer that is about to be destroyed.
398 * This is called from timer deletion with the timer already locked.
399 * If we return TIMER_RETRY, it's necessary to release the timer's lock
400 * and try again. (This happens when the timer is in the middle of firing.)
402 static int posix_cpu_timer_del(struct k_itimer
*timer
)
404 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
405 struct sighand_struct
*sighand
;
406 struct task_struct
*p
;
411 p
= cpu_timer_task_rcu(timer
);
416 * Protect against sighand release/switch in exit/exec and process/
417 * thread timer list entry concurrent read/writes.
419 sighand
= lock_task_sighand(p
, &flags
);
420 if (unlikely(sighand
== NULL
)) {
422 * This raced with the reaping of the task. The exit cleanup
423 * should have removed this timer from the timer queue.
425 WARN_ON_ONCE(ctmr
->head
|| timerqueue_node_queued(&ctmr
->node
));
427 if (timer
->it
.cpu
.firing
)
430 cpu_timer_dequeue(ctmr
);
432 unlock_task_sighand(p
, &flags
);
443 static void cleanup_timerqueue(struct timerqueue_head
*head
)
445 struct timerqueue_node
*node
;
446 struct cpu_timer
*ctmr
;
448 while ((node
= timerqueue_getnext(head
))) {
449 timerqueue_del(head
, node
);
450 ctmr
= container_of(node
, struct cpu_timer
, node
);
456 * Clean out CPU timers which are still armed when a thread exits. The
457 * timers are only removed from the list. No other updates are done. The
458 * corresponding posix timers are still accessible, but cannot be rearmed.
460 * This must be called with the siglock held.
462 static void cleanup_timers(struct posix_cputimers
*pct
)
464 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_PROF
].tqhead
);
465 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_VIRT
].tqhead
);
466 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_SCHED
].tqhead
);
470 * These are both called with the siglock held, when the current thread
471 * is being reaped. When the final (leader) thread in the group is reaped,
472 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
474 void posix_cpu_timers_exit(struct task_struct
*tsk
)
476 cleanup_timers(&tsk
->posix_cputimers
);
478 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
480 cleanup_timers(&tsk
->signal
->posix_cputimers
);
484 * Insert the timer on the appropriate list before any timers that
485 * expire later. This must be called with the sighand lock held.
487 static void arm_timer(struct k_itimer
*timer
, struct task_struct
*p
)
489 int clkidx
= CPUCLOCK_WHICH(timer
->it_clock
);
490 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
491 u64 newexp
= cpu_timer_getexpires(ctmr
);
492 struct posix_cputimer_base
*base
;
494 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
495 base
= p
->posix_cputimers
.bases
+ clkidx
;
497 base
= p
->signal
->posix_cputimers
.bases
+ clkidx
;
499 if (!cpu_timer_enqueue(&base
->tqhead
, ctmr
))
503 * We are the new earliest-expiring POSIX 1.b timer, hence
504 * need to update expiration cache. Take into account that
505 * for process timers we share expiration cache with itimers
506 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
508 if (newexp
< base
->nextevt
)
509 base
->nextevt
= newexp
;
511 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
512 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
514 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
518 * The timer is locked, fire it and arrange for its reload.
520 static void cpu_timer_fire(struct k_itimer
*timer
)
522 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
524 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
526 * User don't want any signal.
528 cpu_timer_setexpires(ctmr
, 0);
529 } else if (unlikely(timer
->sigq
== NULL
)) {
531 * This a special case for clock_nanosleep,
532 * not a normal timer from sys_timer_create.
534 wake_up_process(timer
->it_process
);
535 cpu_timer_setexpires(ctmr
, 0);
536 } else if (!timer
->it_interval
) {
538 * One-shot timer. Clear it as soon as it's fired.
540 posix_timer_event(timer
, 0);
541 cpu_timer_setexpires(ctmr
, 0);
542 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
544 * The signal did not get queued because the signal
545 * was ignored, so we won't get any callback to
546 * reload the timer. But we need to keep it
547 * ticking in case the signal is deliverable next time.
549 posix_cpu_timer_rearm(timer
);
550 ++timer
->it_requeue_pending
;
555 * Guts of sys_timer_settime for CPU timers.
556 * This is called with the timer locked and interrupts disabled.
557 * If we return TIMER_RETRY, it's necessary to release the timer's lock
558 * and try again. (This happens when the timer is in the middle of firing.)
560 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
561 struct itimerspec64
*new, struct itimerspec64
*old
)
563 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
564 u64 old_expires
, new_expires
, old_incr
, val
;
565 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
566 struct sighand_struct
*sighand
;
567 struct task_struct
*p
;
572 p
= cpu_timer_task_rcu(timer
);
575 * If p has just been reaped, we can no
576 * longer get any information about it at all.
583 * Use the to_ktime conversion because that clamps the maximum
584 * value to KTIME_MAX and avoid multiplication overflows.
586 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
589 * Protect against sighand release/switch in exit/exec and p->cpu_timers
590 * and p->signal->cpu_timers read/write in arm_timer()
592 sighand
= lock_task_sighand(p
, &flags
);
594 * If p has just been reaped, we can no
595 * longer get any information about it at all.
597 if (unlikely(sighand
== NULL
)) {
603 * Disarm any old timer after extracting its expiry time.
605 old_incr
= timer
->it_interval
;
606 old_expires
= cpu_timer_getexpires(ctmr
);
608 if (unlikely(timer
->it
.cpu
.firing
)) {
609 timer
->it
.cpu
.firing
= -1;
612 cpu_timer_dequeue(ctmr
);
616 * We need to sample the current value to convert the new
617 * value from to relative and absolute, and to convert the
618 * old value from absolute to relative. To set a process
619 * timer, we need a sample to balance the thread expiry
620 * times (in arm_timer). With an absolute time, we must
621 * check if it's already passed. In short, we need a sample.
623 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
624 val
= cpu_clock_sample(clkid
, p
);
626 val
= cpu_clock_sample_group(clkid
, p
, true);
629 if (old_expires
== 0) {
630 old
->it_value
.tv_sec
= 0;
631 old
->it_value
.tv_nsec
= 0;
634 * Update the timer in case it has overrun already.
635 * If it has, we'll report it as having overrun and
636 * with the next reloaded timer already ticking,
637 * though we are swallowing that pending
638 * notification here to install the new setting.
640 u64 exp
= bump_cpu_timer(timer
, val
);
643 old_expires
= exp
- val
;
644 old
->it_value
= ns_to_timespec64(old_expires
);
646 old
->it_value
.tv_nsec
= 1;
647 old
->it_value
.tv_sec
= 0;
654 * We are colliding with the timer actually firing.
655 * Punt after filling in the timer's old value, and
656 * disable this firing since we are already reporting
657 * it as an overrun (thanks to bump_cpu_timer above).
659 unlock_task_sighand(p
, &flags
);
663 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
668 * Install the new expiry time (or zero).
669 * For a timer with no notification action, we don't actually
670 * arm the timer (we'll just fake it for timer_gettime).
672 cpu_timer_setexpires(ctmr
, new_expires
);
673 if (new_expires
!= 0 && val
< new_expires
) {
677 unlock_task_sighand(p
, &flags
);
679 * Install the new reload setting, and
680 * set up the signal and overrun bookkeeping.
682 timer
->it_interval
= timespec64_to_ktime(new->it_interval
);
685 * This acts as a modification timestamp for the timer,
686 * so any automatic reload attempt will punt on seeing
687 * that we have reset the timer manually.
689 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
691 timer
->it_overrun_last
= 0;
692 timer
->it_overrun
= -1;
694 if (new_expires
!= 0 && !(val
< new_expires
)) {
696 * The designated time already passed, so we notify
697 * immediately, even if the thread never runs to
698 * accumulate more time on this clock.
700 cpu_timer_fire(timer
);
707 old
->it_interval
= ns_to_timespec64(old_incr
);
712 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
714 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
715 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
716 u64 now
, expires
= cpu_timer_getexpires(ctmr
);
717 struct task_struct
*p
;
720 p
= cpu_timer_task_rcu(timer
);
725 * Easy part: convert the reload time.
727 itp
->it_interval
= ktime_to_timespec64(timer
->it_interval
);
733 * Sample the clock to take the difference with the expiry time.
735 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
736 now
= cpu_clock_sample(clkid
, p
);
738 now
= cpu_clock_sample_group(clkid
, p
, false);
741 itp
->it_value
= ns_to_timespec64(expires
- now
);
744 * The timer should have expired already, but the firing
745 * hasn't taken place yet. Say it's just about to expire.
747 itp
->it_value
.tv_nsec
= 1;
748 itp
->it_value
.tv_sec
= 0;
754 #define MAX_COLLECTED 20
756 static u64
collect_timerqueue(struct timerqueue_head
*head
,
757 struct list_head
*firing
, u64 now
)
759 struct timerqueue_node
*next
;
762 while ((next
= timerqueue_getnext(head
))) {
763 struct cpu_timer
*ctmr
;
766 ctmr
= container_of(next
, struct cpu_timer
, node
);
767 expires
= cpu_timer_getexpires(ctmr
);
768 /* Limit the number of timers to expire at once */
769 if (++i
== MAX_COLLECTED
|| now
< expires
)
773 cpu_timer_dequeue(ctmr
);
774 list_add_tail(&ctmr
->elist
, firing
);
780 static void collect_posix_cputimers(struct posix_cputimers
*pct
, u64
*samples
,
781 struct list_head
*firing
)
783 struct posix_cputimer_base
*base
= pct
->bases
;
786 for (i
= 0; i
< CPUCLOCK_MAX
; i
++, base
++) {
787 base
->nextevt
= collect_timerqueue(&base
->tqhead
, firing
,
792 static inline void check_dl_overrun(struct task_struct
*tsk
)
794 if (tsk
->dl
.dl_overrun
) {
795 tsk
->dl
.dl_overrun
= 0;
796 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
800 static bool check_rlimit(u64 time
, u64 limit
, int signo
, bool rt
, bool hard
)
805 if (print_fatal_signals
) {
806 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
807 rt
? "RT" : "CPU", hard
? "hard" : "soft",
808 current
->comm
, task_pid_nr(current
));
810 __group_send_sig_info(signo
, SEND_SIG_PRIV
, current
);
815 * Check for any per-thread CPU timers that have fired and move them off
816 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
817 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
819 static void check_thread_timers(struct task_struct
*tsk
,
820 struct list_head
*firing
)
822 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
823 u64 samples
[CPUCLOCK_MAX
];
827 check_dl_overrun(tsk
);
829 if (expiry_cache_is_inactive(pct
))
832 task_sample_cputime(tsk
, samples
);
833 collect_posix_cputimers(pct
, samples
, firing
);
836 * Check for the special case thread timers.
838 soft
= task_rlimit(tsk
, RLIMIT_RTTIME
);
839 if (soft
!= RLIM_INFINITY
) {
840 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
841 unsigned long rttime
= tsk
->rt
.timeout
* (USEC_PER_SEC
/ HZ
);
842 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_RTTIME
);
844 /* At the hard limit, send SIGKILL. No further action. */
845 if (hard
!= RLIM_INFINITY
&&
846 check_rlimit(rttime
, hard
, SIGKILL
, true, true))
849 /* At the soft limit, send a SIGXCPU every second */
850 if (check_rlimit(rttime
, soft
, SIGXCPU
, true, false)) {
851 soft
+= USEC_PER_SEC
;
852 tsk
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
856 if (expiry_cache_is_inactive(pct
))
857 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
860 static inline void stop_process_timers(struct signal_struct
*sig
)
862 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
864 /* Turn off the active flag. This is done without locking. */
865 WRITE_ONCE(pct
->timers_active
, false);
866 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
869 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
870 u64
*expires
, u64 cur_time
, int signo
)
875 if (cur_time
>= it
->expires
) {
877 it
->expires
+= it
->incr
;
881 trace_itimer_expire(signo
== SIGPROF
?
882 ITIMER_PROF
: ITIMER_VIRTUAL
,
883 task_tgid(tsk
), cur_time
);
884 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
887 if (it
->expires
&& it
->expires
< *expires
)
888 *expires
= it
->expires
;
892 * Check for any per-thread CPU timers that have fired and move them
893 * off the tsk->*_timers list onto the firing list. Per-thread timers
894 * have already been taken off.
896 static void check_process_timers(struct task_struct
*tsk
,
897 struct list_head
*firing
)
899 struct signal_struct
*const sig
= tsk
->signal
;
900 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
901 u64 samples
[CPUCLOCK_MAX
];
905 * If there are no active process wide timers (POSIX 1.b, itimers,
906 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
907 * processing when there is already another task handling them.
909 if (!READ_ONCE(pct
->timers_active
) || pct
->expiry_active
)
913 * Signify that a thread is checking for process timers.
914 * Write access to this field is protected by the sighand lock.
916 pct
->expiry_active
= true;
919 * Collect the current process totals. Group accounting is active
920 * so the sample can be taken directly.
922 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
, samples
);
923 collect_posix_cputimers(pct
, samples
, firing
);
926 * Check for the special case process timers.
928 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
],
929 &pct
->bases
[CPUCLOCK_PROF
].nextevt
,
930 samples
[CPUCLOCK_PROF
], SIGPROF
);
931 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
],
932 &pct
->bases
[CPUCLOCK_VIRT
].nextevt
,
933 samples
[CPUCLOCK_VIRT
], SIGVTALRM
);
935 soft
= task_rlimit(tsk
, RLIMIT_CPU
);
936 if (soft
!= RLIM_INFINITY
) {
937 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
938 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_CPU
);
939 u64 ptime
= samples
[CPUCLOCK_PROF
];
940 u64 softns
= (u64
)soft
* NSEC_PER_SEC
;
941 u64 hardns
= (u64
)hard
* NSEC_PER_SEC
;
943 /* At the hard limit, send SIGKILL. No further action. */
944 if (hard
!= RLIM_INFINITY
&&
945 check_rlimit(ptime
, hardns
, SIGKILL
, false, true))
948 /* At the soft limit, send a SIGXCPU every second */
949 if (check_rlimit(ptime
, softns
, SIGXCPU
, false, false)) {
950 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
+ 1;
951 softns
+= NSEC_PER_SEC
;
954 /* Update the expiry cache */
955 if (softns
< pct
->bases
[CPUCLOCK_PROF
].nextevt
)
956 pct
->bases
[CPUCLOCK_PROF
].nextevt
= softns
;
959 if (expiry_cache_is_inactive(pct
))
960 stop_process_timers(sig
);
962 pct
->expiry_active
= false;
966 * This is called from the signal code (via posixtimer_rearm)
967 * when the last timer signal was delivered and we have to reload the timer.
969 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
971 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
972 struct task_struct
*p
;
973 struct sighand_struct
*sighand
;
978 p
= cpu_timer_task_rcu(timer
);
983 * Fetch the current sample and update the timer's expiry time.
985 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
986 now
= cpu_clock_sample(clkid
, p
);
988 now
= cpu_clock_sample_group(clkid
, p
, true);
990 bump_cpu_timer(timer
, now
);
992 /* Protect timer list r/w in arm_timer() */
993 sighand
= lock_task_sighand(p
, &flags
);
994 if (unlikely(sighand
== NULL
))
998 * Now re-arm for the new expiry time.
1000 arm_timer(timer
, p
);
1001 unlock_task_sighand(p
, &flags
);
1007 * task_cputimers_expired - Check whether posix CPU timers are expired
1009 * @samples: Array of current samples for the CPUCLOCK clocks
1010 * @pct: Pointer to a posix_cputimers container
1012 * Returns true if any member of @samples is greater than the corresponding
1013 * member of @pct->bases[CLK].nextevt. False otherwise
1016 task_cputimers_expired(const u64
*samples
, struct posix_cputimers
*pct
)
1020 for (i
= 0; i
< CPUCLOCK_MAX
; i
++) {
1021 if (samples
[i
] >= pct
->bases
[i
].nextevt
)
1028 * fastpath_timer_check - POSIX CPU timers fast path.
1030 * @tsk: The task (thread) being checked.
1032 * Check the task and thread group timers. If both are zero (there are no
1033 * timers set) return false. Otherwise snapshot the task and thread group
1034 * timers and compare them with the corresponding expiration times. Return
1035 * true if a timer has expired, else return false.
1037 static inline bool fastpath_timer_check(struct task_struct
*tsk
)
1039 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
1040 struct signal_struct
*sig
;
1042 if (!expiry_cache_is_inactive(pct
)) {
1043 u64 samples
[CPUCLOCK_MAX
];
1045 task_sample_cputime(tsk
, samples
);
1046 if (task_cputimers_expired(samples
, pct
))
1051 pct
= &sig
->posix_cputimers
;
1053 * Check if thread group timers expired when timers are active and
1054 * no other thread in the group is already handling expiry for
1055 * thread group cputimers. These fields are read without the
1056 * sighand lock. However, this is fine because this is meant to be
1057 * a fastpath heuristic to determine whether we should try to
1058 * acquire the sighand lock to handle timer expiry.
1060 * In the worst case scenario, if concurrently timers_active is set
1061 * or expiry_active is cleared, but the current thread doesn't see
1062 * the change yet, the timer checks are delayed until the next
1063 * thread in the group gets a scheduler interrupt to handle the
1064 * timer. This isn't an issue in practice because these types of
1065 * delays with signals actually getting sent are expected.
1067 if (READ_ONCE(pct
->timers_active
) && !READ_ONCE(pct
->expiry_active
)) {
1068 u64 samples
[CPUCLOCK_MAX
];
1070 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
,
1073 if (task_cputimers_expired(samples
, pct
))
1077 if (dl_task(tsk
) && tsk
->dl
.dl_overrun
)
1084 * This is called from the timer interrupt handler. The irq handler has
1085 * already updated our counts. We need to check if any timers fire now.
1086 * Interrupts are disabled.
1088 void run_posix_cpu_timers(void)
1090 struct task_struct
*tsk
= current
;
1091 struct k_itimer
*timer
, *next
;
1092 unsigned long flags
;
1095 lockdep_assert_irqs_disabled();
1098 * The fast path checks that there are no expired thread or thread
1099 * group timers. If that's so, just return.
1101 if (!fastpath_timer_check(tsk
))
1104 lockdep_posixtimer_enter();
1105 if (!lock_task_sighand(tsk
, &flags
)) {
1106 lockdep_posixtimer_exit();
1110 * Here we take off tsk->signal->cpu_timers[N] and
1111 * tsk->cpu_timers[N] all the timers that are firing, and
1112 * put them on the firing list.
1114 check_thread_timers(tsk
, &firing
);
1116 check_process_timers(tsk
, &firing
);
1119 * We must release these locks before taking any timer's lock.
1120 * There is a potential race with timer deletion here, as the
1121 * siglock now protects our private firing list. We have set
1122 * the firing flag in each timer, so that a deletion attempt
1123 * that gets the timer lock before we do will give it up and
1124 * spin until we've taken care of that timer below.
1126 unlock_task_sighand(tsk
, &flags
);
1129 * Now that all the timers on our list have the firing flag,
1130 * no one will touch their list entries but us. We'll take
1131 * each timer's lock before clearing its firing flag, so no
1132 * timer call will interfere.
1134 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.elist
) {
1137 spin_lock(&timer
->it_lock
);
1138 list_del_init(&timer
->it
.cpu
.elist
);
1139 cpu_firing
= timer
->it
.cpu
.firing
;
1140 timer
->it
.cpu
.firing
= 0;
1142 * The firing flag is -1 if we collided with a reset
1143 * of the timer, which already reported this
1144 * almost-firing as an overrun. So don't generate an event.
1146 if (likely(cpu_firing
>= 0))
1147 cpu_timer_fire(timer
);
1148 spin_unlock(&timer
->it_lock
);
1150 lockdep_posixtimer_exit();
1154 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1155 * The tsk->sighand->siglock must be held by the caller.
1157 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clkid
,
1158 u64
*newval
, u64
*oldval
)
1162 if (WARN_ON_ONCE(clkid
>= CPUCLOCK_SCHED
))
1165 nextevt
= &tsk
->signal
->posix_cputimers
.bases
[clkid
].nextevt
;
1166 now
= cpu_clock_sample_group(clkid
, tsk
, true);
1170 * We are setting itimer. The *oldval is absolute and we update
1171 * it to be relative, *newval argument is relative and we update
1172 * it to be absolute.
1175 if (*oldval
<= now
) {
1176 /* Just about to fire. */
1177 *oldval
= TICK_NSEC
;
1189 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1190 * expiry cache is also used by RLIMIT_CPU!.
1192 if (*newval
< *nextevt
)
1195 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1198 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1199 const struct timespec64
*rqtp
)
1201 struct itimerspec64 it
;
1202 struct k_itimer timer
;
1207 * Set up a temporary timer and then wait for it to go off.
1209 memset(&timer
, 0, sizeof timer
);
1210 spin_lock_init(&timer
.it_lock
);
1211 timer
.it_clock
= which_clock
;
1212 timer
.it_overrun
= -1;
1213 error
= posix_cpu_timer_create(&timer
);
1214 timer
.it_process
= current
;
1217 static struct itimerspec64 zero_it
;
1218 struct restart_block
*restart
;
1220 memset(&it
, 0, sizeof(it
));
1221 it
.it_value
= *rqtp
;
1223 spin_lock_irq(&timer
.it_lock
);
1224 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1226 spin_unlock_irq(&timer
.it_lock
);
1230 while (!signal_pending(current
)) {
1231 if (!cpu_timer_getexpires(&timer
.it
.cpu
)) {
1233 * Our timer fired and was reset, below
1234 * deletion can not fail.
1236 posix_cpu_timer_del(&timer
);
1237 spin_unlock_irq(&timer
.it_lock
);
1242 * Block until cpu_timer_fire (or a signal) wakes us.
1244 __set_current_state(TASK_INTERRUPTIBLE
);
1245 spin_unlock_irq(&timer
.it_lock
);
1247 spin_lock_irq(&timer
.it_lock
);
1251 * We were interrupted by a signal.
1253 expires
= cpu_timer_getexpires(&timer
.it
.cpu
);
1254 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1257 * Timer is now unarmed, deletion can not fail.
1259 posix_cpu_timer_del(&timer
);
1261 spin_unlock_irq(&timer
.it_lock
);
1263 while (error
== TIMER_RETRY
) {
1265 * We need to handle case when timer was or is in the
1266 * middle of firing. In other cases we already freed
1269 spin_lock_irq(&timer
.it_lock
);
1270 error
= posix_cpu_timer_del(&timer
);
1271 spin_unlock_irq(&timer
.it_lock
);
1274 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1276 * It actually did fire already.
1281 error
= -ERESTART_RESTARTBLOCK
;
1283 * Report back to the user the time still remaining.
1285 restart
= ¤t
->restart_block
;
1286 restart
->nanosleep
.expires
= expires
;
1287 if (restart
->nanosleep
.type
!= TT_NONE
)
1288 error
= nanosleep_copyout(restart
, &it
.it_value
);
1294 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1296 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1297 const struct timespec64
*rqtp
)
1299 struct restart_block
*restart_block
= ¤t
->restart_block
;
1303 * Diagnose required errors first.
1305 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1306 (CPUCLOCK_PID(which_clock
) == 0 ||
1307 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1310 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1312 if (error
== -ERESTART_RESTARTBLOCK
) {
1314 if (flags
& TIMER_ABSTIME
)
1315 return -ERESTARTNOHAND
;
1317 restart_block
->fn
= posix_cpu_nsleep_restart
;
1318 restart_block
->nanosleep
.clockid
= which_clock
;
1323 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1325 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1326 struct timespec64 t
;
1328 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1330 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1333 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1334 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1336 static int process_cpu_clock_getres(const clockid_t which_clock
,
1337 struct timespec64
*tp
)
1339 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1341 static int process_cpu_clock_get(const clockid_t which_clock
,
1342 struct timespec64
*tp
)
1344 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1346 static int process_cpu_timer_create(struct k_itimer
*timer
)
1348 timer
->it_clock
= PROCESS_CLOCK
;
1349 return posix_cpu_timer_create(timer
);
1351 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1352 const struct timespec64
*rqtp
)
1354 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1356 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1357 struct timespec64
*tp
)
1359 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1361 static int thread_cpu_clock_get(const clockid_t which_clock
,
1362 struct timespec64
*tp
)
1364 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1366 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1368 timer
->it_clock
= THREAD_CLOCK
;
1369 return posix_cpu_timer_create(timer
);
1372 const struct k_clock clock_posix_cpu
= {
1373 .clock_getres
= posix_cpu_clock_getres
,
1374 .clock_set
= posix_cpu_clock_set
,
1375 .clock_get_timespec
= posix_cpu_clock_get
,
1376 .timer_create
= posix_cpu_timer_create
,
1377 .nsleep
= posix_cpu_nsleep
,
1378 .timer_set
= posix_cpu_timer_set
,
1379 .timer_del
= posix_cpu_timer_del
,
1380 .timer_get
= posix_cpu_timer_get
,
1381 .timer_rearm
= posix_cpu_timer_rearm
,
1384 const struct k_clock clock_process
= {
1385 .clock_getres
= process_cpu_clock_getres
,
1386 .clock_get_timespec
= process_cpu_clock_get
,
1387 .timer_create
= process_cpu_timer_create
,
1388 .nsleep
= process_cpu_nsleep
,
1391 const struct k_clock clock_thread
= {
1392 .clock_getres
= thread_cpu_clock_getres
,
1393 .clock_get_timespec
= thread_cpu_clock_get
,
1394 .timer_create
= thread_cpu_timer_create
,