dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / kernel / time / posix-cpu-timers.c
blob165117996ea0ca8fb0b1bf6644467373c70a55d9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
19 #include "posix-timers.h"
21 static void posix_cpu_timer_rearm(struct k_itimer *timer);
23 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
25 posix_cputimers_init(pct);
26 if (cpu_limit != RLIM_INFINITY) {
27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 pct->timers_active = true;
33 * Called after updating RLIMIT_CPU to run cpu timer and update
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
36 * expiration cache as well.
38 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
40 u64 nsecs = rlim_new * NSEC_PER_SEC;
42 spin_lock_irq(&task->sighand->siglock);
43 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
44 spin_unlock_irq(&task->sighand->siglock);
48 * Functions for validating access to tasks.
50 static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
52 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
53 const pid_t upid = CPUCLOCK_PID(clock);
54 struct pid *pid;
56 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
57 return NULL;
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
63 if (upid == 0)
64 return thread ? task_pid(current) : task_tgid(current);
66 pid = find_vpid(upid);
67 if (!pid)
68 return NULL;
70 if (thread) {
71 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
72 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
81 if (gettime && (pid == task_pid(current)))
82 return task_tgid(current);
85 * For processes require that pid identifies a process.
87 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
90 static inline int validate_clock_permissions(const clockid_t clock)
92 int ret;
94 rcu_read_lock();
95 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
96 rcu_read_unlock();
98 return ret;
101 static inline enum pid_type clock_pid_type(const clockid_t clock)
103 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
106 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
108 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
115 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
117 u64 delta, incr, expires = timer->it.cpu.node.expires;
118 int i;
120 if (!timer->it_interval)
121 return expires;
123 if (now < expires)
124 return expires;
126 incr = timer->it_interval;
127 delta = now + incr - expires;
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i = 0; incr < delta - incr; i++)
131 incr = incr << 1;
133 for (; i >= 0; incr >>= 1, i--) {
134 if (delta < incr)
135 continue;
137 timer->it.cpu.node.expires += incr;
138 timer->it_overrun += 1LL << i;
139 delta -= incr;
141 return timer->it.cpu.node.expires;
144 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
147 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
148 ~pct->bases[CPUCLOCK_VIRT].nextevt |
149 ~pct->bases[CPUCLOCK_SCHED].nextevt);
152 static int
153 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
155 int error = validate_clock_permissions(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
166 tp->tv_nsec = 1;
169 return error;
172 static int
173 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
175 int error = validate_clock_permissions(clock);
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
181 return error ? : -EPERM;
185 * Sample a per-thread clock for the given task. clkid is validated.
187 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
189 u64 utime, stime;
191 if (clkid == CPUCLOCK_SCHED)
192 return task_sched_runtime(p);
194 task_cputime(p, &utime, &stime);
196 switch (clkid) {
197 case CPUCLOCK_PROF:
198 return utime + stime;
199 case CPUCLOCK_VIRT:
200 return utime;
201 default:
202 WARN_ON_ONCE(1);
204 return 0;
207 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
209 samples[CPUCLOCK_PROF] = stime + utime;
210 samples[CPUCLOCK_VIRT] = utime;
211 samples[CPUCLOCK_SCHED] = rtime;
214 static void task_sample_cputime(struct task_struct *p, u64 *samples)
216 u64 stime, utime;
218 task_cputime(p, &utime, &stime);
219 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
222 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
223 u64 *samples)
225 u64 stime, utime, rtime;
227 utime = atomic64_read(&at->utime);
228 stime = atomic64_read(&at->stime);
229 rtime = atomic64_read(&at->sum_exec_runtime);
230 store_samples(samples, stime, utime, rtime);
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
237 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
239 u64 curr_cputime;
240 retry:
241 curr_cputime = atomic64_read(cputime);
242 if (sum_cputime > curr_cputime) {
243 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
244 goto retry;
248 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
249 struct task_cputime *sum)
251 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
252 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
253 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
259 * @samples: Storage for time samples
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
265 * Updates @times with an uptodate sample of the thread group cputimes.
267 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
269 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
270 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
272 WARN_ON_ONCE(!pct->timers_active);
274 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
280 * @samples: Storage for time samples
282 * The thread group cputime accouting is avoided when there are no posix
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
287 * Updates @times with an uptodate sample of the thread group cputimes.
289 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
291 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
292 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
294 /* Check if cputimer isn't running. This is accessed without locking. */
295 if (!READ_ONCE(pct->timers_active)) {
296 struct task_cputime sum;
299 * The POSIX timer interface allows for absolute time expiry
300 * values through the TIMER_ABSTIME flag, therefore we have
301 * to synchronize the timer to the clock every time we start it.
303 thread_group_cputime(tsk, &sum);
304 update_gt_cputime(&cputimer->cputime_atomic, &sum);
307 * We're setting timers_active without a lock. Ensure this
308 * only gets written to in one operation. We set it after
309 * update_gt_cputime() as a small optimization, but
310 * barriers are not required because update_gt_cputime()
311 * can handle concurrent updates.
313 WRITE_ONCE(pct->timers_active, true);
315 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
318 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
320 struct task_cputime ct;
322 thread_group_cputime(tsk, &ct);
323 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
327 * Sample a process (thread group) clock for the given task clkid. If the
328 * group's cputime accounting is already enabled, read the atomic
329 * store. Otherwise a full update is required. clkid is already validated.
331 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
332 bool start)
334 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
335 struct posix_cputimers *pct = &p->signal->posix_cputimers;
336 u64 samples[CPUCLOCK_MAX];
338 if (!READ_ONCE(pct->timers_active)) {
339 if (start)
340 thread_group_start_cputime(p, samples);
341 else
342 __thread_group_cputime(p, samples);
343 } else {
344 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
347 return samples[clkid];
350 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
352 const clockid_t clkid = CPUCLOCK_WHICH(clock);
353 struct task_struct *tsk;
354 u64 t;
356 rcu_read_lock();
357 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
358 if (!tsk) {
359 rcu_read_unlock();
360 return -EINVAL;
363 if (CPUCLOCK_PERTHREAD(clock))
364 t = cpu_clock_sample(clkid, tsk);
365 else
366 t = cpu_clock_sample_group(clkid, tsk, false);
367 rcu_read_unlock();
369 *tp = ns_to_timespec64(t);
370 return 0;
374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
376 * new timer already all-zeros initialized.
378 static int posix_cpu_timer_create(struct k_itimer *new_timer)
380 struct pid *pid;
382 rcu_read_lock();
383 pid = pid_for_clock(new_timer->it_clock, false);
384 if (!pid) {
385 rcu_read_unlock();
386 return -EINVAL;
389 new_timer->kclock = &clock_posix_cpu;
390 timerqueue_init(&new_timer->it.cpu.node);
391 new_timer->it.cpu.pid = get_pid(pid);
392 rcu_read_unlock();
393 return 0;
397 * Clean up a CPU-clock timer that is about to be destroyed.
398 * This is called from timer deletion with the timer already locked.
399 * If we return TIMER_RETRY, it's necessary to release the timer's lock
400 * and try again. (This happens when the timer is in the middle of firing.)
402 static int posix_cpu_timer_del(struct k_itimer *timer)
404 struct cpu_timer *ctmr = &timer->it.cpu;
405 struct sighand_struct *sighand;
406 struct task_struct *p;
407 unsigned long flags;
408 int ret = 0;
410 rcu_read_lock();
411 p = cpu_timer_task_rcu(timer);
412 if (!p)
413 goto out;
416 * Protect against sighand release/switch in exit/exec and process/
417 * thread timer list entry concurrent read/writes.
419 sighand = lock_task_sighand(p, &flags);
420 if (unlikely(sighand == NULL)) {
422 * This raced with the reaping of the task. The exit cleanup
423 * should have removed this timer from the timer queue.
425 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
426 } else {
427 if (timer->it.cpu.firing)
428 ret = TIMER_RETRY;
429 else
430 cpu_timer_dequeue(ctmr);
432 unlock_task_sighand(p, &flags);
435 out:
436 rcu_read_unlock();
437 if (!ret)
438 put_pid(ctmr->pid);
440 return ret;
443 static void cleanup_timerqueue(struct timerqueue_head *head)
445 struct timerqueue_node *node;
446 struct cpu_timer *ctmr;
448 while ((node = timerqueue_getnext(head))) {
449 timerqueue_del(head, node);
450 ctmr = container_of(node, struct cpu_timer, node);
451 ctmr->head = NULL;
456 * Clean out CPU timers which are still armed when a thread exits. The
457 * timers are only removed from the list. No other updates are done. The
458 * corresponding posix timers are still accessible, but cannot be rearmed.
460 * This must be called with the siglock held.
462 static void cleanup_timers(struct posix_cputimers *pct)
464 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
465 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
466 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
470 * These are both called with the siglock held, when the current thread
471 * is being reaped. When the final (leader) thread in the group is reaped,
472 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
474 void posix_cpu_timers_exit(struct task_struct *tsk)
476 cleanup_timers(&tsk->posix_cputimers);
478 void posix_cpu_timers_exit_group(struct task_struct *tsk)
480 cleanup_timers(&tsk->signal->posix_cputimers);
484 * Insert the timer on the appropriate list before any timers that
485 * expire later. This must be called with the sighand lock held.
487 static void arm_timer(struct k_itimer *timer, struct task_struct *p)
489 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
490 struct cpu_timer *ctmr = &timer->it.cpu;
491 u64 newexp = cpu_timer_getexpires(ctmr);
492 struct posix_cputimer_base *base;
494 if (CPUCLOCK_PERTHREAD(timer->it_clock))
495 base = p->posix_cputimers.bases + clkidx;
496 else
497 base = p->signal->posix_cputimers.bases + clkidx;
499 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
500 return;
503 * We are the new earliest-expiring POSIX 1.b timer, hence
504 * need to update expiration cache. Take into account that
505 * for process timers we share expiration cache with itimers
506 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
508 if (newexp < base->nextevt)
509 base->nextevt = newexp;
511 if (CPUCLOCK_PERTHREAD(timer->it_clock))
512 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
513 else
514 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
518 * The timer is locked, fire it and arrange for its reload.
520 static void cpu_timer_fire(struct k_itimer *timer)
522 struct cpu_timer *ctmr = &timer->it.cpu;
524 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
526 * User don't want any signal.
528 cpu_timer_setexpires(ctmr, 0);
529 } else if (unlikely(timer->sigq == NULL)) {
531 * This a special case for clock_nanosleep,
532 * not a normal timer from sys_timer_create.
534 wake_up_process(timer->it_process);
535 cpu_timer_setexpires(ctmr, 0);
536 } else if (!timer->it_interval) {
538 * One-shot timer. Clear it as soon as it's fired.
540 posix_timer_event(timer, 0);
541 cpu_timer_setexpires(ctmr, 0);
542 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
544 * The signal did not get queued because the signal
545 * was ignored, so we won't get any callback to
546 * reload the timer. But we need to keep it
547 * ticking in case the signal is deliverable next time.
549 posix_cpu_timer_rearm(timer);
550 ++timer->it_requeue_pending;
555 * Guts of sys_timer_settime for CPU timers.
556 * This is called with the timer locked and interrupts disabled.
557 * If we return TIMER_RETRY, it's necessary to release the timer's lock
558 * and try again. (This happens when the timer is in the middle of firing.)
560 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
561 struct itimerspec64 *new, struct itimerspec64 *old)
563 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
564 u64 old_expires, new_expires, old_incr, val;
565 struct cpu_timer *ctmr = &timer->it.cpu;
566 struct sighand_struct *sighand;
567 struct task_struct *p;
568 unsigned long flags;
569 int ret = 0;
571 rcu_read_lock();
572 p = cpu_timer_task_rcu(timer);
573 if (!p) {
575 * If p has just been reaped, we can no
576 * longer get any information about it at all.
578 rcu_read_unlock();
579 return -ESRCH;
583 * Use the to_ktime conversion because that clamps the maximum
584 * value to KTIME_MAX and avoid multiplication overflows.
586 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
589 * Protect against sighand release/switch in exit/exec and p->cpu_timers
590 * and p->signal->cpu_timers read/write in arm_timer()
592 sighand = lock_task_sighand(p, &flags);
594 * If p has just been reaped, we can no
595 * longer get any information about it at all.
597 if (unlikely(sighand == NULL)) {
598 rcu_read_unlock();
599 return -ESRCH;
603 * Disarm any old timer after extracting its expiry time.
605 old_incr = timer->it_interval;
606 old_expires = cpu_timer_getexpires(ctmr);
608 if (unlikely(timer->it.cpu.firing)) {
609 timer->it.cpu.firing = -1;
610 ret = TIMER_RETRY;
611 } else {
612 cpu_timer_dequeue(ctmr);
616 * We need to sample the current value to convert the new
617 * value from to relative and absolute, and to convert the
618 * old value from absolute to relative. To set a process
619 * timer, we need a sample to balance the thread expiry
620 * times (in arm_timer). With an absolute time, we must
621 * check if it's already passed. In short, we need a sample.
623 if (CPUCLOCK_PERTHREAD(timer->it_clock))
624 val = cpu_clock_sample(clkid, p);
625 else
626 val = cpu_clock_sample_group(clkid, p, true);
628 if (old) {
629 if (old_expires == 0) {
630 old->it_value.tv_sec = 0;
631 old->it_value.tv_nsec = 0;
632 } else {
634 * Update the timer in case it has overrun already.
635 * If it has, we'll report it as having overrun and
636 * with the next reloaded timer already ticking,
637 * though we are swallowing that pending
638 * notification here to install the new setting.
640 u64 exp = bump_cpu_timer(timer, val);
642 if (val < exp) {
643 old_expires = exp - val;
644 old->it_value = ns_to_timespec64(old_expires);
645 } else {
646 old->it_value.tv_nsec = 1;
647 old->it_value.tv_sec = 0;
652 if (unlikely(ret)) {
654 * We are colliding with the timer actually firing.
655 * Punt after filling in the timer's old value, and
656 * disable this firing since we are already reporting
657 * it as an overrun (thanks to bump_cpu_timer above).
659 unlock_task_sighand(p, &flags);
660 goto out;
663 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
664 new_expires += val;
668 * Install the new expiry time (or zero).
669 * For a timer with no notification action, we don't actually
670 * arm the timer (we'll just fake it for timer_gettime).
672 cpu_timer_setexpires(ctmr, new_expires);
673 if (new_expires != 0 && val < new_expires) {
674 arm_timer(timer, p);
677 unlock_task_sighand(p, &flags);
679 * Install the new reload setting, and
680 * set up the signal and overrun bookkeeping.
682 timer->it_interval = timespec64_to_ktime(new->it_interval);
685 * This acts as a modification timestamp for the timer,
686 * so any automatic reload attempt will punt on seeing
687 * that we have reset the timer manually.
689 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
690 ~REQUEUE_PENDING;
691 timer->it_overrun_last = 0;
692 timer->it_overrun = -1;
694 if (new_expires != 0 && !(val < new_expires)) {
696 * The designated time already passed, so we notify
697 * immediately, even if the thread never runs to
698 * accumulate more time on this clock.
700 cpu_timer_fire(timer);
703 ret = 0;
704 out:
705 rcu_read_unlock();
706 if (old)
707 old->it_interval = ns_to_timespec64(old_incr);
709 return ret;
712 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
714 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
715 struct cpu_timer *ctmr = &timer->it.cpu;
716 u64 now, expires = cpu_timer_getexpires(ctmr);
717 struct task_struct *p;
719 rcu_read_lock();
720 p = cpu_timer_task_rcu(timer);
721 if (!p)
722 goto out;
725 * Easy part: convert the reload time.
727 itp->it_interval = ktime_to_timespec64(timer->it_interval);
729 if (!expires)
730 goto out;
733 * Sample the clock to take the difference with the expiry time.
735 if (CPUCLOCK_PERTHREAD(timer->it_clock))
736 now = cpu_clock_sample(clkid, p);
737 else
738 now = cpu_clock_sample_group(clkid, p, false);
740 if (now < expires) {
741 itp->it_value = ns_to_timespec64(expires - now);
742 } else {
744 * The timer should have expired already, but the firing
745 * hasn't taken place yet. Say it's just about to expire.
747 itp->it_value.tv_nsec = 1;
748 itp->it_value.tv_sec = 0;
750 out:
751 rcu_read_unlock();
754 #define MAX_COLLECTED 20
756 static u64 collect_timerqueue(struct timerqueue_head *head,
757 struct list_head *firing, u64 now)
759 struct timerqueue_node *next;
760 int i = 0;
762 while ((next = timerqueue_getnext(head))) {
763 struct cpu_timer *ctmr;
764 u64 expires;
766 ctmr = container_of(next, struct cpu_timer, node);
767 expires = cpu_timer_getexpires(ctmr);
768 /* Limit the number of timers to expire at once */
769 if (++i == MAX_COLLECTED || now < expires)
770 return expires;
772 ctmr->firing = 1;
773 cpu_timer_dequeue(ctmr);
774 list_add_tail(&ctmr->elist, firing);
777 return U64_MAX;
780 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
781 struct list_head *firing)
783 struct posix_cputimer_base *base = pct->bases;
784 int i;
786 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
787 base->nextevt = collect_timerqueue(&base->tqhead, firing,
788 samples[i]);
792 static inline void check_dl_overrun(struct task_struct *tsk)
794 if (tsk->dl.dl_overrun) {
795 tsk->dl.dl_overrun = 0;
796 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
800 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
802 if (time < limit)
803 return false;
805 if (print_fatal_signals) {
806 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
807 rt ? "RT" : "CPU", hard ? "hard" : "soft",
808 current->comm, task_pid_nr(current));
810 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
811 return true;
815 * Check for any per-thread CPU timers that have fired and move them off
816 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
817 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
819 static void check_thread_timers(struct task_struct *tsk,
820 struct list_head *firing)
822 struct posix_cputimers *pct = &tsk->posix_cputimers;
823 u64 samples[CPUCLOCK_MAX];
824 unsigned long soft;
826 if (dl_task(tsk))
827 check_dl_overrun(tsk);
829 if (expiry_cache_is_inactive(pct))
830 return;
832 task_sample_cputime(tsk, samples);
833 collect_posix_cputimers(pct, samples, firing);
836 * Check for the special case thread timers.
838 soft = task_rlimit(tsk, RLIMIT_RTTIME);
839 if (soft != RLIM_INFINITY) {
840 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
841 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
842 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
844 /* At the hard limit, send SIGKILL. No further action. */
845 if (hard != RLIM_INFINITY &&
846 check_rlimit(rttime, hard, SIGKILL, true, true))
847 return;
849 /* At the soft limit, send a SIGXCPU every second */
850 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
851 soft += USEC_PER_SEC;
852 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
856 if (expiry_cache_is_inactive(pct))
857 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
860 static inline void stop_process_timers(struct signal_struct *sig)
862 struct posix_cputimers *pct = &sig->posix_cputimers;
864 /* Turn off the active flag. This is done without locking. */
865 WRITE_ONCE(pct->timers_active, false);
866 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
869 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
870 u64 *expires, u64 cur_time, int signo)
872 if (!it->expires)
873 return;
875 if (cur_time >= it->expires) {
876 if (it->incr)
877 it->expires += it->incr;
878 else
879 it->expires = 0;
881 trace_itimer_expire(signo == SIGPROF ?
882 ITIMER_PROF : ITIMER_VIRTUAL,
883 task_tgid(tsk), cur_time);
884 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
887 if (it->expires && it->expires < *expires)
888 *expires = it->expires;
892 * Check for any per-thread CPU timers that have fired and move them
893 * off the tsk->*_timers list onto the firing list. Per-thread timers
894 * have already been taken off.
896 static void check_process_timers(struct task_struct *tsk,
897 struct list_head *firing)
899 struct signal_struct *const sig = tsk->signal;
900 struct posix_cputimers *pct = &sig->posix_cputimers;
901 u64 samples[CPUCLOCK_MAX];
902 unsigned long soft;
905 * If there are no active process wide timers (POSIX 1.b, itimers,
906 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
907 * processing when there is already another task handling them.
909 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
910 return;
913 * Signify that a thread is checking for process timers.
914 * Write access to this field is protected by the sighand lock.
916 pct->expiry_active = true;
919 * Collect the current process totals. Group accounting is active
920 * so the sample can be taken directly.
922 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
923 collect_posix_cputimers(pct, samples, firing);
926 * Check for the special case process timers.
928 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
929 &pct->bases[CPUCLOCK_PROF].nextevt,
930 samples[CPUCLOCK_PROF], SIGPROF);
931 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
932 &pct->bases[CPUCLOCK_VIRT].nextevt,
933 samples[CPUCLOCK_VIRT], SIGVTALRM);
935 soft = task_rlimit(tsk, RLIMIT_CPU);
936 if (soft != RLIM_INFINITY) {
937 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
938 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
939 u64 ptime = samples[CPUCLOCK_PROF];
940 u64 softns = (u64)soft * NSEC_PER_SEC;
941 u64 hardns = (u64)hard * NSEC_PER_SEC;
943 /* At the hard limit, send SIGKILL. No further action. */
944 if (hard != RLIM_INFINITY &&
945 check_rlimit(ptime, hardns, SIGKILL, false, true))
946 return;
948 /* At the soft limit, send a SIGXCPU every second */
949 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
950 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
951 softns += NSEC_PER_SEC;
954 /* Update the expiry cache */
955 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
956 pct->bases[CPUCLOCK_PROF].nextevt = softns;
959 if (expiry_cache_is_inactive(pct))
960 stop_process_timers(sig);
962 pct->expiry_active = false;
966 * This is called from the signal code (via posixtimer_rearm)
967 * when the last timer signal was delivered and we have to reload the timer.
969 static void posix_cpu_timer_rearm(struct k_itimer *timer)
971 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
972 struct task_struct *p;
973 struct sighand_struct *sighand;
974 unsigned long flags;
975 u64 now;
977 rcu_read_lock();
978 p = cpu_timer_task_rcu(timer);
979 if (!p)
980 goto out;
983 * Fetch the current sample and update the timer's expiry time.
985 if (CPUCLOCK_PERTHREAD(timer->it_clock))
986 now = cpu_clock_sample(clkid, p);
987 else
988 now = cpu_clock_sample_group(clkid, p, true);
990 bump_cpu_timer(timer, now);
992 /* Protect timer list r/w in arm_timer() */
993 sighand = lock_task_sighand(p, &flags);
994 if (unlikely(sighand == NULL))
995 goto out;
998 * Now re-arm for the new expiry time.
1000 arm_timer(timer, p);
1001 unlock_task_sighand(p, &flags);
1002 out:
1003 rcu_read_unlock();
1007 * task_cputimers_expired - Check whether posix CPU timers are expired
1009 * @samples: Array of current samples for the CPUCLOCK clocks
1010 * @pct: Pointer to a posix_cputimers container
1012 * Returns true if any member of @samples is greater than the corresponding
1013 * member of @pct->bases[CLK].nextevt. False otherwise
1015 static inline bool
1016 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1018 int i;
1020 for (i = 0; i < CPUCLOCK_MAX; i++) {
1021 if (samples[i] >= pct->bases[i].nextevt)
1022 return true;
1024 return false;
1028 * fastpath_timer_check - POSIX CPU timers fast path.
1030 * @tsk: The task (thread) being checked.
1032 * Check the task and thread group timers. If both are zero (there are no
1033 * timers set) return false. Otherwise snapshot the task and thread group
1034 * timers and compare them with the corresponding expiration times. Return
1035 * true if a timer has expired, else return false.
1037 static inline bool fastpath_timer_check(struct task_struct *tsk)
1039 struct posix_cputimers *pct = &tsk->posix_cputimers;
1040 struct signal_struct *sig;
1042 if (!expiry_cache_is_inactive(pct)) {
1043 u64 samples[CPUCLOCK_MAX];
1045 task_sample_cputime(tsk, samples);
1046 if (task_cputimers_expired(samples, pct))
1047 return true;
1050 sig = tsk->signal;
1051 pct = &sig->posix_cputimers;
1053 * Check if thread group timers expired when timers are active and
1054 * no other thread in the group is already handling expiry for
1055 * thread group cputimers. These fields are read without the
1056 * sighand lock. However, this is fine because this is meant to be
1057 * a fastpath heuristic to determine whether we should try to
1058 * acquire the sighand lock to handle timer expiry.
1060 * In the worst case scenario, if concurrently timers_active is set
1061 * or expiry_active is cleared, but the current thread doesn't see
1062 * the change yet, the timer checks are delayed until the next
1063 * thread in the group gets a scheduler interrupt to handle the
1064 * timer. This isn't an issue in practice because these types of
1065 * delays with signals actually getting sent are expected.
1067 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1068 u64 samples[CPUCLOCK_MAX];
1070 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1071 samples);
1073 if (task_cputimers_expired(samples, pct))
1074 return true;
1077 if (dl_task(tsk) && tsk->dl.dl_overrun)
1078 return true;
1080 return false;
1084 * This is called from the timer interrupt handler. The irq handler has
1085 * already updated our counts. We need to check if any timers fire now.
1086 * Interrupts are disabled.
1088 void run_posix_cpu_timers(void)
1090 struct task_struct *tsk = current;
1091 struct k_itimer *timer, *next;
1092 unsigned long flags;
1093 LIST_HEAD(firing);
1095 lockdep_assert_irqs_disabled();
1098 * The fast path checks that there are no expired thread or thread
1099 * group timers. If that's so, just return.
1101 if (!fastpath_timer_check(tsk))
1102 return;
1104 lockdep_posixtimer_enter();
1105 if (!lock_task_sighand(tsk, &flags)) {
1106 lockdep_posixtimer_exit();
1107 return;
1110 * Here we take off tsk->signal->cpu_timers[N] and
1111 * tsk->cpu_timers[N] all the timers that are firing, and
1112 * put them on the firing list.
1114 check_thread_timers(tsk, &firing);
1116 check_process_timers(tsk, &firing);
1119 * We must release these locks before taking any timer's lock.
1120 * There is a potential race with timer deletion here, as the
1121 * siglock now protects our private firing list. We have set
1122 * the firing flag in each timer, so that a deletion attempt
1123 * that gets the timer lock before we do will give it up and
1124 * spin until we've taken care of that timer below.
1126 unlock_task_sighand(tsk, &flags);
1129 * Now that all the timers on our list have the firing flag,
1130 * no one will touch their list entries but us. We'll take
1131 * each timer's lock before clearing its firing flag, so no
1132 * timer call will interfere.
1134 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1135 int cpu_firing;
1137 spin_lock(&timer->it_lock);
1138 list_del_init(&timer->it.cpu.elist);
1139 cpu_firing = timer->it.cpu.firing;
1140 timer->it.cpu.firing = 0;
1142 * The firing flag is -1 if we collided with a reset
1143 * of the timer, which already reported this
1144 * almost-firing as an overrun. So don't generate an event.
1146 if (likely(cpu_firing >= 0))
1147 cpu_timer_fire(timer);
1148 spin_unlock(&timer->it_lock);
1150 lockdep_posixtimer_exit();
1154 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1155 * The tsk->sighand->siglock must be held by the caller.
1157 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1158 u64 *newval, u64 *oldval)
1160 u64 now, *nextevt;
1162 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1163 return;
1165 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1166 now = cpu_clock_sample_group(clkid, tsk, true);
1168 if (oldval) {
1170 * We are setting itimer. The *oldval is absolute and we update
1171 * it to be relative, *newval argument is relative and we update
1172 * it to be absolute.
1174 if (*oldval) {
1175 if (*oldval <= now) {
1176 /* Just about to fire. */
1177 *oldval = TICK_NSEC;
1178 } else {
1179 *oldval -= now;
1183 if (!*newval)
1184 return;
1185 *newval += now;
1189 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1190 * expiry cache is also used by RLIMIT_CPU!.
1192 if (*newval < *nextevt)
1193 *nextevt = *newval;
1195 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1198 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1199 const struct timespec64 *rqtp)
1201 struct itimerspec64 it;
1202 struct k_itimer timer;
1203 u64 expires;
1204 int error;
1207 * Set up a temporary timer and then wait for it to go off.
1209 memset(&timer, 0, sizeof timer);
1210 spin_lock_init(&timer.it_lock);
1211 timer.it_clock = which_clock;
1212 timer.it_overrun = -1;
1213 error = posix_cpu_timer_create(&timer);
1214 timer.it_process = current;
1216 if (!error) {
1217 static struct itimerspec64 zero_it;
1218 struct restart_block *restart;
1220 memset(&it, 0, sizeof(it));
1221 it.it_value = *rqtp;
1223 spin_lock_irq(&timer.it_lock);
1224 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1225 if (error) {
1226 spin_unlock_irq(&timer.it_lock);
1227 return error;
1230 while (!signal_pending(current)) {
1231 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1233 * Our timer fired and was reset, below
1234 * deletion can not fail.
1236 posix_cpu_timer_del(&timer);
1237 spin_unlock_irq(&timer.it_lock);
1238 return 0;
1242 * Block until cpu_timer_fire (or a signal) wakes us.
1244 __set_current_state(TASK_INTERRUPTIBLE);
1245 spin_unlock_irq(&timer.it_lock);
1246 schedule();
1247 spin_lock_irq(&timer.it_lock);
1251 * We were interrupted by a signal.
1253 expires = cpu_timer_getexpires(&timer.it.cpu);
1254 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1255 if (!error) {
1257 * Timer is now unarmed, deletion can not fail.
1259 posix_cpu_timer_del(&timer);
1261 spin_unlock_irq(&timer.it_lock);
1263 while (error == TIMER_RETRY) {
1265 * We need to handle case when timer was or is in the
1266 * middle of firing. In other cases we already freed
1267 * resources.
1269 spin_lock_irq(&timer.it_lock);
1270 error = posix_cpu_timer_del(&timer);
1271 spin_unlock_irq(&timer.it_lock);
1274 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1276 * It actually did fire already.
1278 return 0;
1281 error = -ERESTART_RESTARTBLOCK;
1283 * Report back to the user the time still remaining.
1285 restart = &current->restart_block;
1286 restart->nanosleep.expires = expires;
1287 if (restart->nanosleep.type != TT_NONE)
1288 error = nanosleep_copyout(restart, &it.it_value);
1291 return error;
1294 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1296 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1297 const struct timespec64 *rqtp)
1299 struct restart_block *restart_block = &current->restart_block;
1300 int error;
1303 * Diagnose required errors first.
1305 if (CPUCLOCK_PERTHREAD(which_clock) &&
1306 (CPUCLOCK_PID(which_clock) == 0 ||
1307 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1308 return -EINVAL;
1310 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1312 if (error == -ERESTART_RESTARTBLOCK) {
1314 if (flags & TIMER_ABSTIME)
1315 return -ERESTARTNOHAND;
1317 restart_block->fn = posix_cpu_nsleep_restart;
1318 restart_block->nanosleep.clockid = which_clock;
1320 return error;
1323 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1325 clockid_t which_clock = restart_block->nanosleep.clockid;
1326 struct timespec64 t;
1328 t = ns_to_timespec64(restart_block->nanosleep.expires);
1330 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1333 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1334 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1336 static int process_cpu_clock_getres(const clockid_t which_clock,
1337 struct timespec64 *tp)
1339 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1341 static int process_cpu_clock_get(const clockid_t which_clock,
1342 struct timespec64 *tp)
1344 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1346 static int process_cpu_timer_create(struct k_itimer *timer)
1348 timer->it_clock = PROCESS_CLOCK;
1349 return posix_cpu_timer_create(timer);
1351 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1352 const struct timespec64 *rqtp)
1354 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1356 static int thread_cpu_clock_getres(const clockid_t which_clock,
1357 struct timespec64 *tp)
1359 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1361 static int thread_cpu_clock_get(const clockid_t which_clock,
1362 struct timespec64 *tp)
1364 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1366 static int thread_cpu_timer_create(struct k_itimer *timer)
1368 timer->it_clock = THREAD_CLOCK;
1369 return posix_cpu_timer_create(timer);
1372 const struct k_clock clock_posix_cpu = {
1373 .clock_getres = posix_cpu_clock_getres,
1374 .clock_set = posix_cpu_clock_set,
1375 .clock_get_timespec = posix_cpu_clock_get,
1376 .timer_create = posix_cpu_timer_create,
1377 .nsleep = posix_cpu_nsleep,
1378 .timer_set = posix_cpu_timer_set,
1379 .timer_del = posix_cpu_timer_del,
1380 .timer_get = posix_cpu_timer_get,
1381 .timer_rearm = posix_cpu_timer_rearm,
1384 const struct k_clock clock_process = {
1385 .clock_getres = process_cpu_clock_getres,
1386 .clock_get_timespec = process_cpu_clock_get,
1387 .timer_create = process_cpu_timer_create,
1388 .nsleep = process_cpu_nsleep,
1391 const struct k_clock clock_thread = {
1392 .clock_getres = thread_cpu_clock_getres,
1393 .clock_get_timespec = thread_cpu_clock_get,
1394 .timer_create = thread_cpu_timer_create,