2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_quota.h"
33 #include "xfs_trace.h"
34 #include "xfs_icache.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_quota.h"
37 #include "xfs_dquot_item.h"
38 #include "xfs_dquot.h"
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
43 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
44 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
47 * Allocate and initialise an xfs_inode.
57 * if this didn't occur in transactions, we could use
58 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
59 * code up to do this anyway.
61 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
64 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
65 kmem_zone_free(xfs_inode_zone
, ip
);
69 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
70 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
71 ASSERT(!xfs_isiflocked(ip
));
72 ASSERT(ip
->i_ino
== 0);
74 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
76 /* initialise the xfs inode */
79 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
81 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
83 ip
->i_delayed_blks
= 0;
84 memset(&ip
->i_d
, 0, sizeof(xfs_icdinode_t
));
90 xfs_inode_free_callback(
91 struct rcu_head
*head
)
93 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
94 struct xfs_inode
*ip
= XFS_I(inode
);
96 kmem_zone_free(xfs_inode_zone
, ip
);
101 struct xfs_inode
*ip
)
103 switch (ip
->i_d
.di_mode
& S_IFMT
) {
107 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
112 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
115 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
116 xfs_inode_item_destroy(ip
);
121 * Because we use RCU freeing we need to ensure the inode always
122 * appears to be reclaimed with an invalid inode number when in the
123 * free state. The ip->i_flags_lock provides the barrier against lookup
126 spin_lock(&ip
->i_flags_lock
);
127 ip
->i_flags
= XFS_IRECLAIM
;
129 spin_unlock(&ip
->i_flags_lock
);
131 /* asserts to verify all state is correct here */
132 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
133 ASSERT(!xfs_isiflocked(ip
));
135 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
139 * Check the validity of the inode we just found it the cache
143 struct xfs_perag
*pag
,
144 struct xfs_inode
*ip
,
147 int lock_flags
) __releases(RCU
)
149 struct inode
*inode
= VFS_I(ip
);
150 struct xfs_mount
*mp
= ip
->i_mount
;
154 * check for re-use of an inode within an RCU grace period due to the
155 * radix tree nodes not being updated yet. We monitor for this by
156 * setting the inode number to zero before freeing the inode structure.
157 * If the inode has been reallocated and set up, then the inode number
158 * will not match, so check for that, too.
160 spin_lock(&ip
->i_flags_lock
);
161 if (ip
->i_ino
!= ino
) {
162 trace_xfs_iget_skip(ip
);
163 XFS_STATS_INC(xs_ig_frecycle
);
170 * If we are racing with another cache hit that is currently
171 * instantiating this inode or currently recycling it out of
172 * reclaimabe state, wait for the initialisation to complete
175 * XXX(hch): eventually we should do something equivalent to
176 * wait_on_inode to wait for these flags to be cleared
177 * instead of polling for it.
179 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
180 trace_xfs_iget_skip(ip
);
181 XFS_STATS_INC(xs_ig_frecycle
);
187 * If lookup is racing with unlink return an error immediately.
189 if (ip
->i_d
.di_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
195 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
196 * Need to carefully get it back into useable state.
198 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
199 trace_xfs_iget_reclaim(ip
);
202 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
203 * from stomping over us while we recycle the inode. We can't
204 * clear the radix tree reclaimable tag yet as it requires
205 * pag_ici_lock to be held exclusive.
207 ip
->i_flags
|= XFS_IRECLAIM
;
209 spin_unlock(&ip
->i_flags_lock
);
212 error
= inode_init_always(mp
->m_super
, inode
);
215 * Re-initializing the inode failed, and we are in deep
216 * trouble. Try to re-add it to the reclaim list.
219 spin_lock(&ip
->i_flags_lock
);
221 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
222 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
223 trace_xfs_iget_reclaim_fail(ip
);
227 spin_lock(&pag
->pag_ici_lock
);
228 spin_lock(&ip
->i_flags_lock
);
231 * Clear the per-lifetime state in the inode as we are now
232 * effectively a new inode and need to return to the initial
233 * state before reuse occurs.
235 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
236 ip
->i_flags
|= XFS_INEW
;
237 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
238 inode
->i_state
= I_NEW
;
240 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
241 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
243 spin_unlock(&ip
->i_flags_lock
);
244 spin_unlock(&pag
->pag_ici_lock
);
246 /* If the VFS inode is being torn down, pause and try again. */
248 trace_xfs_iget_skip(ip
);
253 /* We've got a live one. */
254 spin_unlock(&ip
->i_flags_lock
);
256 trace_xfs_iget_hit(ip
);
260 xfs_ilock(ip
, lock_flags
);
262 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
263 XFS_STATS_INC(xs_ig_found
);
268 spin_unlock(&ip
->i_flags_lock
);
276 struct xfs_mount
*mp
,
277 struct xfs_perag
*pag
,
280 struct xfs_inode
**ipp
,
284 struct xfs_inode
*ip
;
286 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
289 ip
= xfs_inode_alloc(mp
, ino
);
293 error
= xfs_iread(mp
, tp
, ip
, flags
);
297 trace_xfs_iget_miss(ip
);
299 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
305 * Preload the radix tree so we can insert safely under the
306 * write spinlock. Note that we cannot sleep inside the preload
307 * region. Since we can be called from transaction context, don't
308 * recurse into the file system.
310 if (radix_tree_preload(GFP_NOFS
)) {
316 * Because the inode hasn't been added to the radix-tree yet it can't
317 * be found by another thread, so we can do the non-sleeping lock here.
320 if (!xfs_ilock_nowait(ip
, lock_flags
))
325 * These values must be set before inserting the inode into the radix
326 * tree as the moment it is inserted a concurrent lookup (allowed by the
327 * RCU locking mechanism) can find it and that lookup must see that this
328 * is an inode currently under construction (i.e. that XFS_INEW is set).
329 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
330 * memory barrier that ensures this detection works correctly at lookup
334 if (flags
& XFS_IGET_DONTCACHE
)
335 iflags
|= XFS_IDONTCACHE
;
339 xfs_iflags_set(ip
, iflags
);
341 /* insert the new inode */
342 spin_lock(&pag
->pag_ici_lock
);
343 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
344 if (unlikely(error
)) {
345 WARN_ON(error
!= -EEXIST
);
346 XFS_STATS_INC(xs_ig_dup
);
348 goto out_preload_end
;
350 spin_unlock(&pag
->pag_ici_lock
);
351 radix_tree_preload_end();
357 spin_unlock(&pag
->pag_ici_lock
);
358 radix_tree_preload_end();
360 xfs_iunlock(ip
, lock_flags
);
362 __destroy_inode(VFS_I(ip
));
368 * Look up an inode by number in the given file system.
369 * The inode is looked up in the cache held in each AG.
370 * If the inode is found in the cache, initialise the vfs inode
373 * If it is not in core, read it in from the file system's device,
374 * add it to the cache and initialise the vfs inode.
376 * The inode is locked according to the value of the lock_flags parameter.
377 * This flag parameter indicates how and if the inode's IO lock and inode lock
380 * mp -- the mount point structure for the current file system. It points
381 * to the inode hash table.
382 * tp -- a pointer to the current transaction if there is one. This is
383 * simply passed through to the xfs_iread() call.
384 * ino -- the number of the inode desired. This is the unique identifier
385 * within the file system for the inode being requested.
386 * lock_flags -- flags indicating how to lock the inode. See the comment
387 * for xfs_ilock() for a list of valid values.
404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
405 * doesn't get freed while it's being referenced during a
406 * radix tree traversal here. It assumes this function
407 * aqcuires only the ILOCK (and therefore it has no need to
408 * involve the IOLOCK in this synchronization).
410 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
412 /* reject inode numbers outside existing AGs */
413 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
416 /* get the perag structure and ensure that it's inode capable */
417 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
418 agino
= XFS_INO_TO_AGINO(mp
, ino
);
423 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
426 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
428 goto out_error_or_again
;
431 XFS_STATS_INC(xs_ig_missed
);
433 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
436 goto out_error_or_again
;
443 * If we have a real type for an on-disk inode, we can set ops(&unlock)
444 * now. If it's a new inode being created, xfs_ialloc will handle it.
446 if (xfs_iflags_test(ip
, XFS_INEW
) && ip
->i_d
.di_mode
!= 0)
451 if (error
== -EAGAIN
) {
460 * The inode lookup is done in batches to keep the amount of lock traffic and
461 * radix tree lookups to a minimum. The batch size is a trade off between
462 * lookup reduction and stack usage. This is in the reclaim path, so we can't
465 #define XFS_LOOKUP_BATCH 32
468 xfs_inode_ag_walk_grab(
469 struct xfs_inode
*ip
)
471 struct inode
*inode
= VFS_I(ip
);
473 ASSERT(rcu_read_lock_held());
476 * check for stale RCU freed inode
478 * If the inode has been reallocated, it doesn't matter if it's not in
479 * the AG we are walking - we are walking for writeback, so if it
480 * passes all the "valid inode" checks and is dirty, then we'll write
481 * it back anyway. If it has been reallocated and still being
482 * initialised, the XFS_INEW check below will catch it.
484 spin_lock(&ip
->i_flags_lock
);
486 goto out_unlock_noent
;
488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
489 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
490 goto out_unlock_noent
;
491 spin_unlock(&ip
->i_flags_lock
);
493 /* nothing to sync during shutdown */
494 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
495 return -EFSCORRUPTED
;
497 /* If we can't grab the inode, it must on it's way to reclaim. */
505 spin_unlock(&ip
->i_flags_lock
);
511 struct xfs_mount
*mp
,
512 struct xfs_perag
*pag
,
513 int (*execute
)(struct xfs_inode
*ip
, int flags
,
519 uint32_t first_index
;
531 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
538 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
539 (void **)batch
, first_index
,
542 nr_found
= radix_tree_gang_lookup_tag(
544 (void **) batch
, first_index
,
545 XFS_LOOKUP_BATCH
, tag
);
553 * Grab the inodes before we drop the lock. if we found
554 * nothing, nr == 0 and the loop will be skipped.
556 for (i
= 0; i
< nr_found
; i
++) {
557 struct xfs_inode
*ip
= batch
[i
];
559 if (done
|| xfs_inode_ag_walk_grab(ip
))
563 * Update the index for the next lookup. Catch
564 * overflows into the next AG range which can occur if
565 * we have inodes in the last block of the AG and we
566 * are currently pointing to the last inode.
568 * Because we may see inodes that are from the wrong AG
569 * due to RCU freeing and reallocation, only update the
570 * index if it lies in this AG. It was a race that lead
571 * us to see this inode, so another lookup from the
572 * same index will not find it again.
574 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
576 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
577 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
581 /* unlock now we've grabbed the inodes. */
584 for (i
= 0; i
< nr_found
; i
++) {
587 error
= execute(batch
[i
], flags
, args
);
589 if (error
== -EAGAIN
) {
593 if (error
&& last_error
!= -EFSCORRUPTED
)
597 /* bail out if the filesystem is corrupted. */
598 if (error
== -EFSCORRUPTED
)
603 } while (nr_found
&& !done
);
613 * Background scanning to trim post-EOF preallocated space. This is queued
614 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
618 struct xfs_mount
*mp
)
621 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
622 queue_delayed_work(mp
->m_eofblocks_workqueue
,
623 &mp
->m_eofblocks_work
,
624 msecs_to_jiffies(xfs_eofb_secs
* 1000));
629 xfs_eofblocks_worker(
630 struct work_struct
*work
)
632 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
633 struct xfs_mount
, m_eofblocks_work
);
634 xfs_icache_free_eofblocks(mp
, NULL
);
635 xfs_queue_eofblocks(mp
);
639 xfs_inode_ag_iterator(
640 struct xfs_mount
*mp
,
641 int (*execute
)(struct xfs_inode
*ip
, int flags
,
646 struct xfs_perag
*pag
;
652 while ((pag
= xfs_perag_get(mp
, ag
))) {
653 ag
= pag
->pag_agno
+ 1;
654 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
658 if (error
== -EFSCORRUPTED
)
666 xfs_inode_ag_iterator_tag(
667 struct xfs_mount
*mp
,
668 int (*execute
)(struct xfs_inode
*ip
, int flags
,
674 struct xfs_perag
*pag
;
680 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
681 ag
= pag
->pag_agno
+ 1;
682 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
686 if (error
== -EFSCORRUPTED
)
694 * Queue a new inode reclaim pass if there are reclaimable inodes and there
695 * isn't a reclaim pass already in progress. By default it runs every 5s based
696 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
697 * tunable, but that can be done if this method proves to be ineffective or too
701 xfs_reclaim_work_queue(
702 struct xfs_mount
*mp
)
706 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
707 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
708 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
714 * This is a fast pass over the inode cache to try to get reclaim moving on as
715 * many inodes as possible in a short period of time. It kicks itself every few
716 * seconds, as well as being kicked by the inode cache shrinker when memory
717 * goes low. It scans as quickly as possible avoiding locked inodes or those
718 * already being flushed, and once done schedules a future pass.
722 struct work_struct
*work
)
724 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
725 struct xfs_mount
, m_reclaim_work
);
727 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
728 xfs_reclaim_work_queue(mp
);
732 __xfs_inode_set_reclaim_tag(
733 struct xfs_perag
*pag
,
734 struct xfs_inode
*ip
)
736 radix_tree_tag_set(&pag
->pag_ici_root
,
737 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
738 XFS_ICI_RECLAIM_TAG
);
740 if (!pag
->pag_ici_reclaimable
) {
741 /* propagate the reclaim tag up into the perag radix tree */
742 spin_lock(&ip
->i_mount
->m_perag_lock
);
743 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
744 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
745 XFS_ICI_RECLAIM_TAG
);
746 spin_unlock(&ip
->i_mount
->m_perag_lock
);
748 /* schedule periodic background inode reclaim */
749 xfs_reclaim_work_queue(ip
->i_mount
);
751 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
754 pag
->pag_ici_reclaimable
++;
758 * We set the inode flag atomically with the radix tree tag.
759 * Once we get tag lookups on the radix tree, this inode flag
763 xfs_inode_set_reclaim_tag(
766 struct xfs_mount
*mp
= ip
->i_mount
;
767 struct xfs_perag
*pag
;
769 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
770 spin_lock(&pag
->pag_ici_lock
);
771 spin_lock(&ip
->i_flags_lock
);
772 __xfs_inode_set_reclaim_tag(pag
, ip
);
773 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
774 spin_unlock(&ip
->i_flags_lock
);
775 spin_unlock(&pag
->pag_ici_lock
);
780 __xfs_inode_clear_reclaim(
784 pag
->pag_ici_reclaimable
--;
785 if (!pag
->pag_ici_reclaimable
) {
786 /* clear the reclaim tag from the perag radix tree */
787 spin_lock(&ip
->i_mount
->m_perag_lock
);
788 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
789 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
790 XFS_ICI_RECLAIM_TAG
);
791 spin_unlock(&ip
->i_mount
->m_perag_lock
);
792 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
798 __xfs_inode_clear_reclaim_tag(
803 radix_tree_tag_clear(&pag
->pag_ici_root
,
804 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
805 __xfs_inode_clear_reclaim(pag
, ip
);
809 * Grab the inode for reclaim exclusively.
810 * Return 0 if we grabbed it, non-zero otherwise.
813 xfs_reclaim_inode_grab(
814 struct xfs_inode
*ip
,
817 ASSERT(rcu_read_lock_held());
819 /* quick check for stale RCU freed inode */
824 * If we are asked for non-blocking operation, do unlocked checks to
825 * see if the inode already is being flushed or in reclaim to avoid
828 if ((flags
& SYNC_TRYLOCK
) &&
829 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
833 * The radix tree lock here protects a thread in xfs_iget from racing
834 * with us starting reclaim on the inode. Once we have the
835 * XFS_IRECLAIM flag set it will not touch us.
837 * Due to RCU lookup, we may find inodes that have been freed and only
838 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
839 * aren't candidates for reclaim at all, so we must check the
840 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
842 spin_lock(&ip
->i_flags_lock
);
843 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
844 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
845 /* not a reclaim candidate. */
846 spin_unlock(&ip
->i_flags_lock
);
849 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
850 spin_unlock(&ip
->i_flags_lock
);
855 * Inodes in different states need to be treated differently. The following
856 * table lists the inode states and the reclaim actions necessary:
858 * inode state iflush ret required action
859 * --------------- ---------- ---------------
861 * shutdown EIO unpin and reclaim
862 * clean, unpinned 0 reclaim
863 * stale, unpinned 0 reclaim
864 * clean, pinned(*) 0 requeue
865 * stale, pinned EAGAIN requeue
866 * dirty, async - requeue
867 * dirty, sync 0 reclaim
869 * (*) dgc: I don't think the clean, pinned state is possible but it gets
870 * handled anyway given the order of checks implemented.
872 * Also, because we get the flush lock first, we know that any inode that has
873 * been flushed delwri has had the flush completed by the time we check that
874 * the inode is clean.
876 * Note that because the inode is flushed delayed write by AIL pushing, the
877 * flush lock may already be held here and waiting on it can result in very
878 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
879 * the caller should push the AIL first before trying to reclaim inodes to
880 * minimise the amount of time spent waiting. For background relaim, we only
881 * bother to reclaim clean inodes anyway.
883 * Hence the order of actions after gaining the locks should be:
885 * shutdown => unpin and reclaim
886 * pinned, async => requeue
887 * pinned, sync => unpin
890 * dirty, async => requeue
891 * dirty, sync => flush, wait and reclaim
895 struct xfs_inode
*ip
,
896 struct xfs_perag
*pag
,
899 struct xfs_buf
*bp
= NULL
;
904 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
905 if (!xfs_iflock_nowait(ip
)) {
906 if (!(sync_mode
& SYNC_WAIT
))
911 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
913 xfs_iflush_abort(ip
, false);
916 if (xfs_ipincount(ip
)) {
917 if (!(sync_mode
& SYNC_WAIT
))
921 if (xfs_iflags_test(ip
, XFS_ISTALE
))
923 if (xfs_inode_clean(ip
))
927 * Never flush out dirty data during non-blocking reclaim, as it would
928 * just contend with AIL pushing trying to do the same job.
930 if (!(sync_mode
& SYNC_WAIT
))
934 * Now we have an inode that needs flushing.
936 * Note that xfs_iflush will never block on the inode buffer lock, as
937 * xfs_ifree_cluster() can lock the inode buffer before it locks the
938 * ip->i_lock, and we are doing the exact opposite here. As a result,
939 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
940 * result in an ABBA deadlock with xfs_ifree_cluster().
942 * As xfs_ifree_cluser() must gather all inodes that are active in the
943 * cache to mark them stale, if we hit this case we don't actually want
944 * to do IO here - we want the inode marked stale so we can simply
945 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
946 * inode, back off and try again. Hopefully the next pass through will
947 * see the stale flag set on the inode.
949 error
= xfs_iflush(ip
, &bp
);
950 if (error
== -EAGAIN
) {
951 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
952 /* backoff longer than in xfs_ifree_cluster */
958 error
= xfs_bwrite(bp
);
965 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
967 XFS_STATS_INC(xs_ig_reclaims
);
969 * Remove the inode from the per-AG radix tree.
971 * Because radix_tree_delete won't complain even if the item was never
972 * added to the tree assert that it's been there before to catch
973 * problems with the inode life time early on.
975 spin_lock(&pag
->pag_ici_lock
);
976 if (!radix_tree_delete(&pag
->pag_ici_root
,
977 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
979 __xfs_inode_clear_reclaim(pag
, ip
);
980 spin_unlock(&pag
->pag_ici_lock
);
983 * Here we do an (almost) spurious inode lock in order to coordinate
984 * with inode cache radix tree lookups. This is because the lookup
985 * can reference the inodes in the cache without taking references.
987 * We make that OK here by ensuring that we wait until the inode is
988 * unlocked after the lookup before we go ahead and free it.
990 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
992 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1000 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1001 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1003 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1004 * a short while. However, this just burns CPU time scanning the tree
1005 * waiting for IO to complete and the reclaim work never goes back to
1006 * the idle state. Instead, return 0 to let the next scheduled
1007 * background reclaim attempt to reclaim the inode again.
1013 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1014 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1015 * then a shut down during filesystem unmount reclaim walk leak all the
1016 * unreclaimed inodes.
1019 xfs_reclaim_inodes_ag(
1020 struct xfs_mount
*mp
,
1024 struct xfs_perag
*pag
;
1028 int trylock
= flags
& SYNC_TRYLOCK
;
1034 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1035 unsigned long first_index
= 0;
1039 ag
= pag
->pag_agno
+ 1;
1042 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1047 first_index
= pag
->pag_ici_reclaim_cursor
;
1049 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1052 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1056 nr_found
= radix_tree_gang_lookup_tag(
1058 (void **)batch
, first_index
,
1060 XFS_ICI_RECLAIM_TAG
);
1068 * Grab the inodes before we drop the lock. if we found
1069 * nothing, nr == 0 and the loop will be skipped.
1071 for (i
= 0; i
< nr_found
; i
++) {
1072 struct xfs_inode
*ip
= batch
[i
];
1074 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1078 * Update the index for the next lookup. Catch
1079 * overflows into the next AG range which can
1080 * occur if we have inodes in the last block of
1081 * the AG and we are currently pointing to the
1084 * Because we may see inodes that are from the
1085 * wrong AG due to RCU freeing and
1086 * reallocation, only update the index if it
1087 * lies in this AG. It was a race that lead us
1088 * to see this inode, so another lookup from
1089 * the same index will not find it again.
1091 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1094 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1095 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1099 /* unlock now we've grabbed the inodes. */
1102 for (i
= 0; i
< nr_found
; i
++) {
1105 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1106 if (error
&& last_error
!= -EFSCORRUPTED
)
1110 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1114 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1116 if (trylock
&& !done
)
1117 pag
->pag_ici_reclaim_cursor
= first_index
;
1119 pag
->pag_ici_reclaim_cursor
= 0;
1120 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1125 * if we skipped any AG, and we still have scan count remaining, do
1126 * another pass this time using blocking reclaim semantics (i.e
1127 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1128 * ensure that when we get more reclaimers than AGs we block rather
1129 * than spin trying to execute reclaim.
1131 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1143 int nr_to_scan
= INT_MAX
;
1145 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1149 * Scan a certain number of inodes for reclaim.
1151 * When called we make sure that there is a background (fast) inode reclaim in
1152 * progress, while we will throttle the speed of reclaim via doing synchronous
1153 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1154 * them to be cleaned, which we hope will not be very long due to the
1155 * background walker having already kicked the IO off on those dirty inodes.
1158 xfs_reclaim_inodes_nr(
1159 struct xfs_mount
*mp
,
1162 /* kick background reclaimer and push the AIL */
1163 xfs_reclaim_work_queue(mp
);
1164 xfs_ail_push_all(mp
->m_ail
);
1166 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1170 * Return the number of reclaimable inodes in the filesystem for
1171 * the shrinker to determine how much to reclaim.
1174 xfs_reclaim_inodes_count(
1175 struct xfs_mount
*mp
)
1177 struct xfs_perag
*pag
;
1178 xfs_agnumber_t ag
= 0;
1179 int reclaimable
= 0;
1181 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1182 ag
= pag
->pag_agno
+ 1;
1183 reclaimable
+= pag
->pag_ici_reclaimable
;
1191 struct xfs_inode
*ip
,
1192 struct xfs_eofblocks
*eofb
)
1194 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1195 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1198 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1199 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1202 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1203 xfs_get_projid(ip
) != eofb
->eof_prid
)
1210 * A union-based inode filtering algorithm. Process the inode if any of the
1211 * criteria match. This is for global/internal scans only.
1214 xfs_inode_match_id_union(
1215 struct xfs_inode
*ip
,
1216 struct xfs_eofblocks
*eofb
)
1218 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1219 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1222 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1223 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1226 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1227 xfs_get_projid(ip
) == eofb
->eof_prid
)
1234 xfs_inode_free_eofblocks(
1235 struct xfs_inode
*ip
,
1240 struct xfs_eofblocks
*eofb
= args
;
1241 bool need_iolock
= true;
1244 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1246 if (!xfs_can_free_eofblocks(ip
, false)) {
1247 /* inode could be preallocated or append-only */
1248 trace_xfs_inode_free_eofblocks_invalid(ip
);
1249 xfs_inode_clear_eofblocks_tag(ip
);
1254 * If the mapping is dirty the operation can block and wait for some
1255 * time. Unless we are waiting, skip it.
1257 if (!(flags
& SYNC_WAIT
) &&
1258 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1262 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1263 match
= xfs_inode_match_id_union(ip
, eofb
);
1265 match
= xfs_inode_match_id(ip
, eofb
);
1269 /* skip the inode if the file size is too small */
1270 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1271 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1275 * A scan owner implies we already hold the iolock. Skip it in
1276 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1277 * the possibility of EAGAIN being returned.
1279 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1280 need_iolock
= false;
1283 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1285 /* don't revisit the inode if we're not waiting */
1286 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1293 xfs_icache_free_eofblocks(
1294 struct xfs_mount
*mp
,
1295 struct xfs_eofblocks
*eofb
)
1297 int flags
= SYNC_TRYLOCK
;
1299 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1302 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1303 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1307 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1308 * multiple quotas, we don't know exactly which quota caused an allocation
1309 * failure. We make a best effort by including each quota under low free space
1310 * conditions (less than 1% free space) in the scan.
1313 xfs_inode_free_quota_eofblocks(
1314 struct xfs_inode
*ip
)
1317 struct xfs_eofblocks eofb
= {0};
1318 struct xfs_dquot
*dq
;
1320 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1323 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1324 * can repeatedly trylock on the inode we're currently processing. We
1325 * run a sync scan to increase effectiveness and use the union filter to
1326 * cover all applicable quotas in a single scan.
1328 eofb
.eof_scan_owner
= ip
->i_ino
;
1329 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1331 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1332 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1333 if (dq
&& xfs_dquot_lowsp(dq
)) {
1334 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1335 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1340 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1341 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1342 if (dq
&& xfs_dquot_lowsp(dq
)) {
1343 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1344 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1350 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
1356 xfs_inode_set_eofblocks_tag(
1359 struct xfs_mount
*mp
= ip
->i_mount
;
1360 struct xfs_perag
*pag
;
1363 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1364 spin_lock(&pag
->pag_ici_lock
);
1365 trace_xfs_inode_set_eofblocks_tag(ip
);
1367 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1368 XFS_ICI_EOFBLOCKS_TAG
);
1369 radix_tree_tag_set(&pag
->pag_ici_root
,
1370 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1371 XFS_ICI_EOFBLOCKS_TAG
);
1373 /* propagate the eofblocks tag up into the perag radix tree */
1374 spin_lock(&ip
->i_mount
->m_perag_lock
);
1375 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1376 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1377 XFS_ICI_EOFBLOCKS_TAG
);
1378 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1380 /* kick off background trimming */
1381 xfs_queue_eofblocks(ip
->i_mount
);
1383 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1387 spin_unlock(&pag
->pag_ici_lock
);
1392 xfs_inode_clear_eofblocks_tag(
1395 struct xfs_mount
*mp
= ip
->i_mount
;
1396 struct xfs_perag
*pag
;
1398 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1399 spin_lock(&pag
->pag_ici_lock
);
1400 trace_xfs_inode_clear_eofblocks_tag(ip
);
1402 radix_tree_tag_clear(&pag
->pag_ici_root
,
1403 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1404 XFS_ICI_EOFBLOCKS_TAG
);
1405 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1406 /* clear the eofblocks tag from the perag radix tree */
1407 spin_lock(&ip
->i_mount
->m_perag_lock
);
1408 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1409 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1410 XFS_ICI_EOFBLOCKS_TAG
);
1411 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1412 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1416 spin_unlock(&pag
->pag_ici_lock
);