2 * Copyright (C) 2011-2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 #include <linux/errno.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
28 #include <drm/drm_rect.h>
31 * drm_rect_intersect - intersect two rectangles
32 * @r1: first rectangle
33 * @r2: second rectangle
35 * Calculate the intersection of rectangles @r1 and @r2.
36 * @r1 will be overwritten with the intersection.
39 * %true if rectangle @r1 is still visible after the operation,
42 bool drm_rect_intersect(struct drm_rect
*r1
, const struct drm_rect
*r2
)
44 r1
->x1
= max(r1
->x1
, r2
->x1
);
45 r1
->y1
= max(r1
->y1
, r2
->y1
);
46 r1
->x2
= min(r1
->x2
, r2
->x2
);
47 r1
->y2
= min(r1
->y2
, r2
->y2
);
49 return drm_rect_visible(r1
);
51 EXPORT_SYMBOL(drm_rect_intersect
);
53 static u32
clip_scaled(u32 src
, u32 dst
, u32 clip
)
55 u64 tmp
= mul_u32_u32(src
, dst
- clip
);
58 * Round toward 1.0 when clipping so that we don't accidentally
59 * change upscaling to downscaling or vice versa.
61 if (src
< (dst
<< 16))
62 return DIV_ROUND_UP_ULL(tmp
, dst
);
64 return DIV_ROUND_DOWN_ULL(tmp
, dst
);
68 * drm_rect_clip_scaled - perform a scaled clip operation
69 * @src: source window rectangle
70 * @dst: destination window rectangle
71 * @clip: clip rectangle
73 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
74 * same amounts multiplied by @hscale and @vscale.
77 * %true if rectangle @dst is still visible after being clipped,
80 bool drm_rect_clip_scaled(struct drm_rect
*src
, struct drm_rect
*dst
,
81 const struct drm_rect
*clip
)
85 diff
= clip
->x1
- dst
->x1
;
87 u32 new_src_w
= clip_scaled(drm_rect_width(src
),
88 drm_rect_width(dst
), diff
);
90 src
->x1
= clamp_t(int64_t, src
->x2
- new_src_w
, INT_MIN
, INT_MAX
);
93 diff
= clip
->y1
- dst
->y1
;
95 u32 new_src_h
= clip_scaled(drm_rect_height(src
),
96 drm_rect_height(dst
), diff
);
98 src
->y1
= clamp_t(int64_t, src
->y2
- new_src_h
, INT_MIN
, INT_MAX
);
101 diff
= dst
->x2
- clip
->x2
;
103 u32 new_src_w
= clip_scaled(drm_rect_width(src
),
104 drm_rect_width(dst
), diff
);
106 src
->x2
= clamp_t(int64_t, src
->x1
+ new_src_w
, INT_MIN
, INT_MAX
);
109 diff
= dst
->y2
- clip
->y2
;
111 u32 new_src_h
= clip_scaled(drm_rect_height(src
),
112 drm_rect_height(dst
), diff
);
114 src
->y2
= clamp_t(int64_t, src
->y1
+ new_src_h
, INT_MIN
, INT_MAX
);
118 return drm_rect_visible(dst
);
120 EXPORT_SYMBOL(drm_rect_clip_scaled
);
122 static int drm_calc_scale(int src
, int dst
)
126 if (WARN_ON(src
< 0 || dst
< 0))
132 if (src
> (dst
<< 16))
133 return DIV_ROUND_UP(src
, dst
);
141 * drm_rect_calc_hscale - calculate the horizontal scaling factor
142 * @src: source window rectangle
143 * @dst: destination window rectangle
144 * @min_hscale: minimum allowed horizontal scaling factor
145 * @max_hscale: maximum allowed horizontal scaling factor
147 * Calculate the horizontal scaling factor as
148 * (@src width) / (@dst width).
150 * If the scale is below 1 << 16, round down. If the scale is above
151 * 1 << 16, round up. This will calculate the scale with the most
152 * pessimistic limit calculation.
155 * The horizontal scaling factor, or errno of out of limits.
157 int drm_rect_calc_hscale(const struct drm_rect
*src
,
158 const struct drm_rect
*dst
,
159 int min_hscale
, int max_hscale
)
161 int src_w
= drm_rect_width(src
);
162 int dst_w
= drm_rect_width(dst
);
163 int hscale
= drm_calc_scale(src_w
, dst_w
);
165 if (hscale
< 0 || dst_w
== 0)
168 if (hscale
< min_hscale
|| hscale
> max_hscale
)
173 EXPORT_SYMBOL(drm_rect_calc_hscale
);
176 * drm_rect_calc_vscale - calculate the vertical scaling factor
177 * @src: source window rectangle
178 * @dst: destination window rectangle
179 * @min_vscale: minimum allowed vertical scaling factor
180 * @max_vscale: maximum allowed vertical scaling factor
182 * Calculate the vertical scaling factor as
183 * (@src height) / (@dst height).
185 * If the scale is below 1 << 16, round down. If the scale is above
186 * 1 << 16, round up. This will calculate the scale with the most
187 * pessimistic limit calculation.
190 * The vertical scaling factor, or errno of out of limits.
192 int drm_rect_calc_vscale(const struct drm_rect
*src
,
193 const struct drm_rect
*dst
,
194 int min_vscale
, int max_vscale
)
196 int src_h
= drm_rect_height(src
);
197 int dst_h
= drm_rect_height(dst
);
198 int vscale
= drm_calc_scale(src_h
, dst_h
);
200 if (vscale
< 0 || dst_h
== 0)
203 if (vscale
< min_vscale
|| vscale
> max_vscale
)
208 EXPORT_SYMBOL(drm_rect_calc_vscale
);
211 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
212 * @src: source window rectangle
213 * @dst: destination window rectangle
214 * @min_hscale: minimum allowed horizontal scaling factor
215 * @max_hscale: maximum allowed horizontal scaling factor
217 * Calculate the horizontal scaling factor as
218 * (@src width) / (@dst width).
220 * If the calculated scaling factor is below @min_vscale,
221 * decrease the height of rectangle @dst to compensate.
223 * If the calculated scaling factor is above @max_vscale,
224 * decrease the height of rectangle @src to compensate.
226 * If the scale is below 1 << 16, round down. If the scale is above
227 * 1 << 16, round up. This will calculate the scale with the most
228 * pessimistic limit calculation.
231 * The horizontal scaling factor.
233 int drm_rect_calc_hscale_relaxed(struct drm_rect
*src
,
234 struct drm_rect
*dst
,
235 int min_hscale
, int max_hscale
)
237 int src_w
= drm_rect_width(src
);
238 int dst_w
= drm_rect_width(dst
);
239 int hscale
= drm_calc_scale(src_w
, dst_w
);
241 if (hscale
< 0 || dst_w
== 0)
244 if (hscale
< min_hscale
) {
245 int max_dst_w
= src_w
/ min_hscale
;
247 drm_rect_adjust_size(dst
, max_dst_w
- dst_w
, 0);
252 if (hscale
> max_hscale
) {
253 int max_src_w
= dst_w
* max_hscale
;
255 drm_rect_adjust_size(src
, max_src_w
- src_w
, 0);
262 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed
);
265 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
266 * @src: source window rectangle
267 * @dst: destination window rectangle
268 * @min_vscale: minimum allowed vertical scaling factor
269 * @max_vscale: maximum allowed vertical scaling factor
271 * Calculate the vertical scaling factor as
272 * (@src height) / (@dst height).
274 * If the calculated scaling factor is below @min_vscale,
275 * decrease the height of rectangle @dst to compensate.
277 * If the calculated scaling factor is above @max_vscale,
278 * decrease the height of rectangle @src to compensate.
280 * If the scale is below 1 << 16, round down. If the scale is above
281 * 1 << 16, round up. This will calculate the scale with the most
282 * pessimistic limit calculation.
285 * The vertical scaling factor.
287 int drm_rect_calc_vscale_relaxed(struct drm_rect
*src
,
288 struct drm_rect
*dst
,
289 int min_vscale
, int max_vscale
)
291 int src_h
= drm_rect_height(src
);
292 int dst_h
= drm_rect_height(dst
);
293 int vscale
= drm_calc_scale(src_h
, dst_h
);
295 if (vscale
< 0 || dst_h
== 0)
298 if (vscale
< min_vscale
) {
299 int max_dst_h
= src_h
/ min_vscale
;
301 drm_rect_adjust_size(dst
, 0, max_dst_h
- dst_h
);
306 if (vscale
> max_vscale
) {
307 int max_src_h
= dst_h
* max_vscale
;
309 drm_rect_adjust_size(src
, 0, max_src_h
- src_h
);
316 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed
);
319 * drm_rect_debug_print - print the rectangle information
320 * @prefix: prefix string
321 * @r: rectangle to print
322 * @fixed_point: rectangle is in 16.16 fixed point format
324 void drm_rect_debug_print(const char *prefix
, const struct drm_rect
*r
, bool fixed_point
)
327 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT
"\n", prefix
, DRM_RECT_FP_ARG(r
));
329 DRM_DEBUG_KMS("%s" DRM_RECT_FMT
"\n", prefix
, DRM_RECT_ARG(r
));
331 EXPORT_SYMBOL(drm_rect_debug_print
);
334 * drm_rect_rotate - Rotate the rectangle
335 * @r: rectangle to be rotated
336 * @width: Width of the coordinate space
337 * @height: Height of the coordinate space
338 * @rotation: Transformation to be applied
340 * Apply @rotation to the coordinates of rectangle @r.
342 * @width and @height combined with @rotation define
343 * the location of the new origin.
345 * @width correcsponds to the horizontal and @height
346 * to the vertical axis of the untransformed coordinate
349 void drm_rect_rotate(struct drm_rect
*r
,
350 int width
, int height
,
351 unsigned int rotation
)
355 if (rotation
& (DRM_MODE_REFLECT_X
| DRM_MODE_REFLECT_Y
)) {
358 if (rotation
& DRM_MODE_REFLECT_X
) {
359 r
->x1
= width
- tmp
.x2
;
360 r
->x2
= width
- tmp
.x1
;
363 if (rotation
& DRM_MODE_REFLECT_Y
) {
364 r
->y1
= height
- tmp
.y2
;
365 r
->y2
= height
- tmp
.y1
;
369 switch (rotation
& DRM_MODE_ROTATE_MASK
) {
370 case DRM_MODE_ROTATE_0
:
372 case DRM_MODE_ROTATE_90
:
376 r
->y1
= width
- tmp
.x2
;
377 r
->y2
= width
- tmp
.x1
;
379 case DRM_MODE_ROTATE_180
:
381 r
->x1
= width
- tmp
.x2
;
382 r
->x2
= width
- tmp
.x1
;
383 r
->y1
= height
- tmp
.y2
;
384 r
->y2
= height
- tmp
.y1
;
386 case DRM_MODE_ROTATE_270
:
388 r
->x1
= height
- tmp
.y2
;
389 r
->x2
= height
- tmp
.y1
;
397 EXPORT_SYMBOL(drm_rect_rotate
);
400 * drm_rect_rotate_inv - Inverse rotate the rectangle
401 * @r: rectangle to be rotated
402 * @width: Width of the coordinate space
403 * @height: Height of the coordinate space
404 * @rotation: Transformation whose inverse is to be applied
406 * Apply the inverse of @rotation to the coordinates
409 * @width and @height combined with @rotation define
410 * the location of the new origin.
412 * @width correcsponds to the horizontal and @height
413 * to the vertical axis of the original untransformed
414 * coordinate space, so that you never have to flip
415 * them when doing a rotatation and its inverse.
416 * That is, if you do ::
418 * drm_rect_rotate(&r, width, height, rotation);
419 * drm_rect_rotate_inv(&r, width, height, rotation);
421 * you will always get back the original rectangle.
423 void drm_rect_rotate_inv(struct drm_rect
*r
,
424 int width
, int height
,
425 unsigned int rotation
)
429 switch (rotation
& DRM_MODE_ROTATE_MASK
) {
430 case DRM_MODE_ROTATE_0
:
432 case DRM_MODE_ROTATE_90
:
434 r
->x1
= width
- tmp
.y2
;
435 r
->x2
= width
- tmp
.y1
;
439 case DRM_MODE_ROTATE_180
:
441 r
->x1
= width
- tmp
.x2
;
442 r
->x2
= width
- tmp
.x1
;
443 r
->y1
= height
- tmp
.y2
;
444 r
->y2
= height
- tmp
.y1
;
446 case DRM_MODE_ROTATE_270
:
450 r
->y1
= height
- tmp
.x2
;
451 r
->y2
= height
- tmp
.x1
;
457 if (rotation
& (DRM_MODE_REFLECT_X
| DRM_MODE_REFLECT_Y
)) {
460 if (rotation
& DRM_MODE_REFLECT_X
) {
461 r
->x1
= width
- tmp
.x2
;
462 r
->x2
= width
- tmp
.x1
;
465 if (rotation
& DRM_MODE_REFLECT_Y
) {
466 r
->y1
= height
- tmp
.y2
;
467 r
->y2
= height
- tmp
.y1
;
471 EXPORT_SYMBOL(drm_rect_rotate_inv
);