drm/msm/hdmi: Enable HPD after HDMI IRQ is set up
[linux/fpc-iii.git] / drivers / gpu / drm / drm_rect.c
blob8c057829b80423c93984f8ec78e9ed5a18ba0e5c
1 /*
2 * Copyright (C) 2011-2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
24 #include <linux/errno.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <drm/drmP.h>
28 #include <drm/drm_rect.h>
30 /**
31 * drm_rect_intersect - intersect two rectangles
32 * @r1: first rectangle
33 * @r2: second rectangle
35 * Calculate the intersection of rectangles @r1 and @r2.
36 * @r1 will be overwritten with the intersection.
38 * RETURNS:
39 * %true if rectangle @r1 is still visible after the operation,
40 * %false otherwise.
42 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
44 r1->x1 = max(r1->x1, r2->x1);
45 r1->y1 = max(r1->y1, r2->y1);
46 r1->x2 = min(r1->x2, r2->x2);
47 r1->y2 = min(r1->y2, r2->y2);
49 return drm_rect_visible(r1);
51 EXPORT_SYMBOL(drm_rect_intersect);
53 static u32 clip_scaled(u32 src, u32 dst, u32 clip)
55 u64 tmp = mul_u32_u32(src, dst - clip);
58 * Round toward 1.0 when clipping so that we don't accidentally
59 * change upscaling to downscaling or vice versa.
61 if (src < (dst << 16))
62 return DIV_ROUND_UP_ULL(tmp, dst);
63 else
64 return DIV_ROUND_DOWN_ULL(tmp, dst);
67 /**
68 * drm_rect_clip_scaled - perform a scaled clip operation
69 * @src: source window rectangle
70 * @dst: destination window rectangle
71 * @clip: clip rectangle
73 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
74 * same amounts multiplied by @hscale and @vscale.
76 * RETURNS:
77 * %true if rectangle @dst is still visible after being clipped,
78 * %false otherwise
80 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
81 const struct drm_rect *clip)
83 int diff;
85 diff = clip->x1 - dst->x1;
86 if (diff > 0) {
87 u32 new_src_w = clip_scaled(drm_rect_width(src),
88 drm_rect_width(dst), diff);
90 src->x1 = clamp_t(int64_t, src->x2 - new_src_w, INT_MIN, INT_MAX);
91 dst->x1 = clip->x1;
93 diff = clip->y1 - dst->y1;
94 if (diff > 0) {
95 u32 new_src_h = clip_scaled(drm_rect_height(src),
96 drm_rect_height(dst), diff);
98 src->y1 = clamp_t(int64_t, src->y2 - new_src_h, INT_MIN, INT_MAX);
99 dst->y1 = clip->y1;
101 diff = dst->x2 - clip->x2;
102 if (diff > 0) {
103 u32 new_src_w = clip_scaled(drm_rect_width(src),
104 drm_rect_width(dst), diff);
106 src->x2 = clamp_t(int64_t, src->x1 + new_src_w, INT_MIN, INT_MAX);
107 dst->x2 = clip->x2;
109 diff = dst->y2 - clip->y2;
110 if (diff > 0) {
111 u32 new_src_h = clip_scaled(drm_rect_height(src),
112 drm_rect_height(dst), diff);
114 src->y2 = clamp_t(int64_t, src->y1 + new_src_h, INT_MIN, INT_MAX);
115 dst->y2 = clip->y2;
118 return drm_rect_visible(dst);
120 EXPORT_SYMBOL(drm_rect_clip_scaled);
122 static int drm_calc_scale(int src, int dst)
124 int scale = 0;
126 if (WARN_ON(src < 0 || dst < 0))
127 return -EINVAL;
129 if (dst == 0)
130 return 0;
132 if (src > (dst << 16))
133 return DIV_ROUND_UP(src, dst);
134 else
135 scale = src / dst;
137 return scale;
141 * drm_rect_calc_hscale - calculate the horizontal scaling factor
142 * @src: source window rectangle
143 * @dst: destination window rectangle
144 * @min_hscale: minimum allowed horizontal scaling factor
145 * @max_hscale: maximum allowed horizontal scaling factor
147 * Calculate the horizontal scaling factor as
148 * (@src width) / (@dst width).
150 * If the scale is below 1 << 16, round down. If the scale is above
151 * 1 << 16, round up. This will calculate the scale with the most
152 * pessimistic limit calculation.
154 * RETURNS:
155 * The horizontal scaling factor, or errno of out of limits.
157 int drm_rect_calc_hscale(const struct drm_rect *src,
158 const struct drm_rect *dst,
159 int min_hscale, int max_hscale)
161 int src_w = drm_rect_width(src);
162 int dst_w = drm_rect_width(dst);
163 int hscale = drm_calc_scale(src_w, dst_w);
165 if (hscale < 0 || dst_w == 0)
166 return hscale;
168 if (hscale < min_hscale || hscale > max_hscale)
169 return -ERANGE;
171 return hscale;
173 EXPORT_SYMBOL(drm_rect_calc_hscale);
176 * drm_rect_calc_vscale - calculate the vertical scaling factor
177 * @src: source window rectangle
178 * @dst: destination window rectangle
179 * @min_vscale: minimum allowed vertical scaling factor
180 * @max_vscale: maximum allowed vertical scaling factor
182 * Calculate the vertical scaling factor as
183 * (@src height) / (@dst height).
185 * If the scale is below 1 << 16, round down. If the scale is above
186 * 1 << 16, round up. This will calculate the scale with the most
187 * pessimistic limit calculation.
189 * RETURNS:
190 * The vertical scaling factor, or errno of out of limits.
192 int drm_rect_calc_vscale(const struct drm_rect *src,
193 const struct drm_rect *dst,
194 int min_vscale, int max_vscale)
196 int src_h = drm_rect_height(src);
197 int dst_h = drm_rect_height(dst);
198 int vscale = drm_calc_scale(src_h, dst_h);
200 if (vscale < 0 || dst_h == 0)
201 return vscale;
203 if (vscale < min_vscale || vscale > max_vscale)
204 return -ERANGE;
206 return vscale;
208 EXPORT_SYMBOL(drm_rect_calc_vscale);
211 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
212 * @src: source window rectangle
213 * @dst: destination window rectangle
214 * @min_hscale: minimum allowed horizontal scaling factor
215 * @max_hscale: maximum allowed horizontal scaling factor
217 * Calculate the horizontal scaling factor as
218 * (@src width) / (@dst width).
220 * If the calculated scaling factor is below @min_vscale,
221 * decrease the height of rectangle @dst to compensate.
223 * If the calculated scaling factor is above @max_vscale,
224 * decrease the height of rectangle @src to compensate.
226 * If the scale is below 1 << 16, round down. If the scale is above
227 * 1 << 16, round up. This will calculate the scale with the most
228 * pessimistic limit calculation.
230 * RETURNS:
231 * The horizontal scaling factor.
233 int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
234 struct drm_rect *dst,
235 int min_hscale, int max_hscale)
237 int src_w = drm_rect_width(src);
238 int dst_w = drm_rect_width(dst);
239 int hscale = drm_calc_scale(src_w, dst_w);
241 if (hscale < 0 || dst_w == 0)
242 return hscale;
244 if (hscale < min_hscale) {
245 int max_dst_w = src_w / min_hscale;
247 drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
249 return min_hscale;
252 if (hscale > max_hscale) {
253 int max_src_w = dst_w * max_hscale;
255 drm_rect_adjust_size(src, max_src_w - src_w, 0);
257 return max_hscale;
260 return hscale;
262 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
265 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
266 * @src: source window rectangle
267 * @dst: destination window rectangle
268 * @min_vscale: minimum allowed vertical scaling factor
269 * @max_vscale: maximum allowed vertical scaling factor
271 * Calculate the vertical scaling factor as
272 * (@src height) / (@dst height).
274 * If the calculated scaling factor is below @min_vscale,
275 * decrease the height of rectangle @dst to compensate.
277 * If the calculated scaling factor is above @max_vscale,
278 * decrease the height of rectangle @src to compensate.
280 * If the scale is below 1 << 16, round down. If the scale is above
281 * 1 << 16, round up. This will calculate the scale with the most
282 * pessimistic limit calculation.
284 * RETURNS:
285 * The vertical scaling factor.
287 int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
288 struct drm_rect *dst,
289 int min_vscale, int max_vscale)
291 int src_h = drm_rect_height(src);
292 int dst_h = drm_rect_height(dst);
293 int vscale = drm_calc_scale(src_h, dst_h);
295 if (vscale < 0 || dst_h == 0)
296 return vscale;
298 if (vscale < min_vscale) {
299 int max_dst_h = src_h / min_vscale;
301 drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
303 return min_vscale;
306 if (vscale > max_vscale) {
307 int max_src_h = dst_h * max_vscale;
309 drm_rect_adjust_size(src, 0, max_src_h - src_h);
311 return max_vscale;
314 return vscale;
316 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
319 * drm_rect_debug_print - print the rectangle information
320 * @prefix: prefix string
321 * @r: rectangle to print
322 * @fixed_point: rectangle is in 16.16 fixed point format
324 void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
326 if (fixed_point)
327 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r));
328 else
329 DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r));
331 EXPORT_SYMBOL(drm_rect_debug_print);
334 * drm_rect_rotate - Rotate the rectangle
335 * @r: rectangle to be rotated
336 * @width: Width of the coordinate space
337 * @height: Height of the coordinate space
338 * @rotation: Transformation to be applied
340 * Apply @rotation to the coordinates of rectangle @r.
342 * @width and @height combined with @rotation define
343 * the location of the new origin.
345 * @width correcsponds to the horizontal and @height
346 * to the vertical axis of the untransformed coordinate
347 * space.
349 void drm_rect_rotate(struct drm_rect *r,
350 int width, int height,
351 unsigned int rotation)
353 struct drm_rect tmp;
355 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
356 tmp = *r;
358 if (rotation & DRM_MODE_REFLECT_X) {
359 r->x1 = width - tmp.x2;
360 r->x2 = width - tmp.x1;
363 if (rotation & DRM_MODE_REFLECT_Y) {
364 r->y1 = height - tmp.y2;
365 r->y2 = height - tmp.y1;
369 switch (rotation & DRM_MODE_ROTATE_MASK) {
370 case DRM_MODE_ROTATE_0:
371 break;
372 case DRM_MODE_ROTATE_90:
373 tmp = *r;
374 r->x1 = tmp.y1;
375 r->x2 = tmp.y2;
376 r->y1 = width - tmp.x2;
377 r->y2 = width - tmp.x1;
378 break;
379 case DRM_MODE_ROTATE_180:
380 tmp = *r;
381 r->x1 = width - tmp.x2;
382 r->x2 = width - tmp.x1;
383 r->y1 = height - tmp.y2;
384 r->y2 = height - tmp.y1;
385 break;
386 case DRM_MODE_ROTATE_270:
387 tmp = *r;
388 r->x1 = height - tmp.y2;
389 r->x2 = height - tmp.y1;
390 r->y1 = tmp.x1;
391 r->y2 = tmp.x2;
392 break;
393 default:
394 break;
397 EXPORT_SYMBOL(drm_rect_rotate);
400 * drm_rect_rotate_inv - Inverse rotate the rectangle
401 * @r: rectangle to be rotated
402 * @width: Width of the coordinate space
403 * @height: Height of the coordinate space
404 * @rotation: Transformation whose inverse is to be applied
406 * Apply the inverse of @rotation to the coordinates
407 * of rectangle @r.
409 * @width and @height combined with @rotation define
410 * the location of the new origin.
412 * @width correcsponds to the horizontal and @height
413 * to the vertical axis of the original untransformed
414 * coordinate space, so that you never have to flip
415 * them when doing a rotatation and its inverse.
416 * That is, if you do ::
418 * drm_rect_rotate(&r, width, height, rotation);
419 * drm_rect_rotate_inv(&r, width, height, rotation);
421 * you will always get back the original rectangle.
423 void drm_rect_rotate_inv(struct drm_rect *r,
424 int width, int height,
425 unsigned int rotation)
427 struct drm_rect tmp;
429 switch (rotation & DRM_MODE_ROTATE_MASK) {
430 case DRM_MODE_ROTATE_0:
431 break;
432 case DRM_MODE_ROTATE_90:
433 tmp = *r;
434 r->x1 = width - tmp.y2;
435 r->x2 = width - tmp.y1;
436 r->y1 = tmp.x1;
437 r->y2 = tmp.x2;
438 break;
439 case DRM_MODE_ROTATE_180:
440 tmp = *r;
441 r->x1 = width - tmp.x2;
442 r->x2 = width - tmp.x1;
443 r->y1 = height - tmp.y2;
444 r->y2 = height - tmp.y1;
445 break;
446 case DRM_MODE_ROTATE_270:
447 tmp = *r;
448 r->x1 = tmp.y1;
449 r->x2 = tmp.y2;
450 r->y1 = height - tmp.x2;
451 r->y2 = height - tmp.x1;
452 break;
453 default:
454 break;
457 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
458 tmp = *r;
460 if (rotation & DRM_MODE_REFLECT_X) {
461 r->x1 = width - tmp.x2;
462 r->x2 = width - tmp.x1;
465 if (rotation & DRM_MODE_REFLECT_Y) {
466 r->y1 = height - tmp.y2;
467 r->y2 = height - tmp.y1;
471 EXPORT_SYMBOL(drm_rect_rotate_inv);