2 * Copyright 2007 Dave Airlied
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
48 * NV10-NV40 tiling helpers
52 nv10_bo_update_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*reg
,
53 u32 addr
, u32 size
, u32 pitch
, u32 flags
)
55 struct nouveau_drm
*drm
= nouveau_drm(dev
);
56 int i
= reg
- drm
->tile
.reg
;
57 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
58 struct nvkm_fb_tile
*tile
= &fb
->tile
.region
[i
];
60 nouveau_fence_unref(®
->fence
);
63 nvkm_fb_tile_fini(fb
, i
, tile
);
66 nvkm_fb_tile_init(fb
, i
, addr
, size
, pitch
, flags
, tile
);
68 nvkm_fb_tile_prog(fb
, i
, tile
);
71 static struct nouveau_drm_tile
*
72 nv10_bo_get_tile_region(struct drm_device
*dev
, int i
)
74 struct nouveau_drm
*drm
= nouveau_drm(dev
);
75 struct nouveau_drm_tile
*tile
= &drm
->tile
.reg
[i
];
77 spin_lock(&drm
->tile
.lock
);
80 (!tile
->fence
|| nouveau_fence_done(tile
->fence
)))
85 spin_unlock(&drm
->tile
.lock
);
90 nv10_bo_put_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*tile
,
91 struct dma_fence
*fence
)
93 struct nouveau_drm
*drm
= nouveau_drm(dev
);
96 spin_lock(&drm
->tile
.lock
);
97 tile
->fence
= (struct nouveau_fence
*)dma_fence_get(fence
);
99 spin_unlock(&drm
->tile
.lock
);
103 static struct nouveau_drm_tile
*
104 nv10_bo_set_tiling(struct drm_device
*dev
, u32 addr
,
105 u32 size
, u32 pitch
, u32 zeta
)
107 struct nouveau_drm
*drm
= nouveau_drm(dev
);
108 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
109 struct nouveau_drm_tile
*tile
, *found
= NULL
;
112 for (i
= 0; i
< fb
->tile
.regions
; i
++) {
113 tile
= nv10_bo_get_tile_region(dev
, i
);
115 if (pitch
&& !found
) {
119 } else if (tile
&& fb
->tile
.region
[i
].pitch
) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev
, tile
, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev
, tile
, NULL
);
128 nv10_bo_update_tile_region(dev
, found
, addr
, size
, pitch
, zeta
);
133 nouveau_bo_del_ttm(struct ttm_buffer_object
*bo
)
135 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
136 struct drm_device
*dev
= drm
->dev
;
137 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
139 if (unlikely(nvbo
->gem
.filp
))
140 DRM_ERROR("bo %p still attached to GEM object\n", bo
);
141 WARN_ON(nvbo
->pin_refcnt
> 0);
142 nv10_bo_put_tile_region(dev
, nvbo
->tile
, NULL
);
147 roundup_64(u64 x
, u32 y
)
155 nouveau_bo_fixup_align(struct nouveau_bo
*nvbo
, u32 flags
,
156 int *align
, u64
*size
)
158 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
159 struct nvif_device
*device
= &drm
->client
.device
;
161 if (device
->info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
163 if (device
->info
.chipset
>= 0x40) {
165 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
167 } else if (device
->info
.chipset
>= 0x30) {
169 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
171 } else if (device
->info
.chipset
>= 0x20) {
173 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
175 } else if (device
->info
.chipset
>= 0x10) {
177 *size
= roundup_64(*size
, 32 * nvbo
->mode
);
181 *size
= roundup_64(*size
, (1 << nvbo
->page
));
182 *align
= max((1 << nvbo
->page
), *align
);
185 *size
= roundup_64(*size
, PAGE_SIZE
);
189 nouveau_bo_new(struct nouveau_cli
*cli
, u64 size
, int align
,
190 uint32_t flags
, uint32_t tile_mode
, uint32_t tile_flags
,
191 struct sg_table
*sg
, struct reservation_object
*robj
,
192 struct nouveau_bo
**pnvbo
)
194 struct nouveau_drm
*drm
= cli
->drm
;
195 struct nouveau_bo
*nvbo
;
196 struct nvif_mmu
*mmu
= &cli
->mmu
;
197 struct nvif_vmm
*vmm
= &cli
->vmm
.vmm
;
199 int type
= ttm_bo_type_device
;
203 NV_WARN(drm
, "skipped size %016llx\n", size
);
208 type
= ttm_bo_type_sg
;
210 nvbo
= kzalloc(sizeof(struct nouveau_bo
), GFP_KERNEL
);
213 INIT_LIST_HEAD(&nvbo
->head
);
214 INIT_LIST_HEAD(&nvbo
->entry
);
215 INIT_LIST_HEAD(&nvbo
->vma_list
);
216 nvbo
->bo
.bdev
= &drm
->ttm
.bdev
;
218 /* This is confusing, and doesn't actually mean we want an uncached
219 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
220 * into in nouveau_gem_new().
222 if (flags
& TTM_PL_FLAG_UNCACHED
) {
223 /* Determine if we can get a cache-coherent map, forcing
224 * uncached mapping if we can't.
226 if (!nouveau_drm_use_coherent_gpu_mapping(drm
))
227 nvbo
->force_coherent
= true;
230 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_FERMI
) {
231 nvbo
->kind
= (tile_flags
& 0x0000ff00) >> 8;
232 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
237 nvbo
->comp
= mmu
->kind
[nvbo
->kind
] != nvbo
->kind
;
239 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
240 nvbo
->kind
= (tile_flags
& 0x00007f00) >> 8;
241 nvbo
->comp
= (tile_flags
& 0x00030000) >> 16;
242 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
247 nvbo
->zeta
= (tile_flags
& 0x00000007);
249 nvbo
->mode
= tile_mode
;
250 nvbo
->contig
= !(tile_flags
& NOUVEAU_GEM_TILE_NONCONTIG
);
252 /* Determine the desirable target GPU page size for the buffer. */
253 for (i
= 0; i
< vmm
->page_nr
; i
++) {
254 /* Because we cannot currently allow VMM maps to fail
255 * during buffer migration, we need to determine page
256 * size for the buffer up-front, and pre-allocate its
259 * Skip page sizes that can't support needed domains.
261 if (cli
->device
.info
.family
> NV_DEVICE_INFO_V0_CURIE
&&
262 (flags
& TTM_PL_FLAG_VRAM
) && !vmm
->page
[i
].vram
)
264 if ((flags
& TTM_PL_FLAG_TT
) &&
265 (!vmm
->page
[i
].host
|| vmm
->page
[i
].shift
> PAGE_SHIFT
))
268 /* Select this page size if it's the first that supports
269 * the potential memory domains, or when it's compatible
270 * with the requested compression settings.
272 if (pi
< 0 || !nvbo
->comp
|| vmm
->page
[i
].comp
)
275 /* Stop once the buffer is larger than the current page size. */
276 if (size
>= 1ULL << vmm
->page
[i
].shift
)
283 /* Disable compression if suitable settings couldn't be found. */
284 if (nvbo
->comp
&& !vmm
->page
[pi
].comp
) {
285 if (mmu
->object
.oclass
>= NVIF_CLASS_MMU_GF100
)
286 nvbo
->kind
= mmu
->kind
[nvbo
->kind
];
289 nvbo
->page
= vmm
->page
[pi
].shift
;
291 nouveau_bo_fixup_align(nvbo
, flags
, &align
, &size
);
292 nvbo
->bo
.mem
.num_pages
= size
>> PAGE_SHIFT
;
293 nouveau_bo_placement_set(nvbo
, flags
, 0);
295 acc_size
= ttm_bo_dma_acc_size(&drm
->ttm
.bdev
, size
,
296 sizeof(struct nouveau_bo
));
298 ret
= ttm_bo_init(&drm
->ttm
.bdev
, &nvbo
->bo
, size
,
299 type
, &nvbo
->placement
,
300 align
>> PAGE_SHIFT
, false, acc_size
, sg
,
301 robj
, nouveau_bo_del_ttm
);
303 /* ttm will call nouveau_bo_del_ttm if it fails.. */
312 set_placement_list(struct ttm_place
*pl
, unsigned *n
, uint32_t type
, uint32_t flags
)
316 if (type
& TTM_PL_FLAG_VRAM
)
317 pl
[(*n
)++].flags
= TTM_PL_FLAG_VRAM
| flags
;
318 if (type
& TTM_PL_FLAG_TT
)
319 pl
[(*n
)++].flags
= TTM_PL_FLAG_TT
| flags
;
320 if (type
& TTM_PL_FLAG_SYSTEM
)
321 pl
[(*n
)++].flags
= TTM_PL_FLAG_SYSTEM
| flags
;
325 set_placement_range(struct nouveau_bo
*nvbo
, uint32_t type
)
327 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
328 u32 vram_pages
= drm
->client
.device
.info
.ram_size
>> PAGE_SHIFT
;
329 unsigned i
, fpfn
, lpfn
;
331 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CELSIUS
&&
332 nvbo
->mode
&& (type
& TTM_PL_FLAG_VRAM
) &&
333 nvbo
->bo
.mem
.num_pages
< vram_pages
/ 4) {
335 * Make sure that the color and depth buffers are handled
336 * by independent memory controller units. Up to a 9x
337 * speed up when alpha-blending and depth-test are enabled
341 fpfn
= vram_pages
/ 2;
345 lpfn
= vram_pages
/ 2;
347 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
348 nvbo
->placements
[i
].fpfn
= fpfn
;
349 nvbo
->placements
[i
].lpfn
= lpfn
;
351 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
352 nvbo
->busy_placements
[i
].fpfn
= fpfn
;
353 nvbo
->busy_placements
[i
].lpfn
= lpfn
;
359 nouveau_bo_placement_set(struct nouveau_bo
*nvbo
, uint32_t type
, uint32_t busy
)
361 struct ttm_placement
*pl
= &nvbo
->placement
;
362 uint32_t flags
= (nvbo
->force_coherent
? TTM_PL_FLAG_UNCACHED
:
363 TTM_PL_MASK_CACHING
) |
364 (nvbo
->pin_refcnt
? TTM_PL_FLAG_NO_EVICT
: 0);
366 pl
->placement
= nvbo
->placements
;
367 set_placement_list(nvbo
->placements
, &pl
->num_placement
,
370 pl
->busy_placement
= nvbo
->busy_placements
;
371 set_placement_list(nvbo
->busy_placements
, &pl
->num_busy_placement
,
374 set_placement_range(nvbo
, type
);
378 nouveau_bo_pin(struct nouveau_bo
*nvbo
, uint32_t memtype
, bool contig
)
380 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
381 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
382 bool force
= false, evict
= false;
385 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
389 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
&&
390 memtype
== TTM_PL_FLAG_VRAM
&& contig
) {
398 if (nvbo
->pin_refcnt
) {
399 if (!(memtype
& (1 << bo
->mem
.mem_type
)) || evict
) {
400 NV_ERROR(drm
, "bo %p pinned elsewhere: "
401 "0x%08x vs 0x%08x\n", bo
,
402 1 << bo
->mem
.mem_type
, memtype
);
410 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
, 0);
411 ret
= nouveau_bo_validate(nvbo
, false, false);
417 nouveau_bo_placement_set(nvbo
, memtype
, 0);
419 /* drop pin_refcnt temporarily, so we don't trip the assertion
420 * in nouveau_bo_move() that makes sure we're not trying to
421 * move a pinned buffer
424 ret
= nouveau_bo_validate(nvbo
, false, false);
429 switch (bo
->mem
.mem_type
) {
431 drm
->gem
.vram_available
-= bo
->mem
.size
;
434 drm
->gem
.gart_available
-= bo
->mem
.size
;
442 nvbo
->contig
= false;
443 ttm_bo_unreserve(bo
);
448 nouveau_bo_unpin(struct nouveau_bo
*nvbo
)
450 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
451 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
454 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
458 ref
= --nvbo
->pin_refcnt
;
459 WARN_ON_ONCE(ref
< 0);
463 nouveau_bo_placement_set(nvbo
, bo
->mem
.placement
, 0);
465 ret
= nouveau_bo_validate(nvbo
, false, false);
467 switch (bo
->mem
.mem_type
) {
469 drm
->gem
.vram_available
+= bo
->mem
.size
;
472 drm
->gem
.gart_available
+= bo
->mem
.size
;
480 ttm_bo_unreserve(bo
);
485 nouveau_bo_map(struct nouveau_bo
*nvbo
)
489 ret
= ttm_bo_reserve(&nvbo
->bo
, false, false, NULL
);
493 ret
= ttm_bo_kmap(&nvbo
->bo
, 0, nvbo
->bo
.mem
.num_pages
, &nvbo
->kmap
);
495 ttm_bo_unreserve(&nvbo
->bo
);
500 nouveau_bo_unmap(struct nouveau_bo
*nvbo
)
505 ttm_bo_kunmap(&nvbo
->kmap
);
509 nouveau_bo_sync_for_device(struct nouveau_bo
*nvbo
)
511 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
512 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
518 /* Don't waste time looping if the object is coherent */
519 if (nvbo
->force_coherent
)
522 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
523 dma_sync_single_for_device(drm
->dev
->dev
,
524 ttm_dma
->dma_address
[i
],
525 PAGE_SIZE
, DMA_TO_DEVICE
);
529 nouveau_bo_sync_for_cpu(struct nouveau_bo
*nvbo
)
531 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
532 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
538 /* Don't waste time looping if the object is coherent */
539 if (nvbo
->force_coherent
)
542 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
543 dma_sync_single_for_cpu(drm
->dev
->dev
, ttm_dma
->dma_address
[i
],
544 PAGE_SIZE
, DMA_FROM_DEVICE
);
548 nouveau_bo_validate(struct nouveau_bo
*nvbo
, bool interruptible
,
551 struct ttm_operation_ctx ctx
= { interruptible
, no_wait_gpu
};
554 ret
= ttm_bo_validate(&nvbo
->bo
, &nvbo
->placement
, &ctx
);
558 nouveau_bo_sync_for_device(nvbo
);
564 nouveau_bo_wr16(struct nouveau_bo
*nvbo
, unsigned index
, u16 val
)
567 u16
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
572 iowrite16_native(val
, (void __force __iomem
*)mem
);
578 nouveau_bo_rd32(struct nouveau_bo
*nvbo
, unsigned index
)
581 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
586 return ioread32_native((void __force __iomem
*)mem
);
592 nouveau_bo_wr32(struct nouveau_bo
*nvbo
, unsigned index
, u32 val
)
595 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
600 iowrite32_native(val
, (void __force __iomem
*)mem
);
605 static struct ttm_tt
*
606 nouveau_ttm_tt_create(struct ttm_buffer_object
*bo
, uint32_t page_flags
)
608 #if IS_ENABLED(CONFIG_AGP)
609 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
611 if (drm
->agp
.bridge
) {
612 return ttm_agp_tt_create(bo
, drm
->agp
.bridge
, page_flags
);
616 return nouveau_sgdma_create_ttm(bo
, page_flags
);
620 nouveau_bo_invalidate_caches(struct ttm_bo_device
*bdev
, uint32_t flags
)
622 /* We'll do this from user space. */
627 nouveau_bo_init_mem_type(struct ttm_bo_device
*bdev
, uint32_t type
,
628 struct ttm_mem_type_manager
*man
)
630 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
631 struct nvif_mmu
*mmu
= &drm
->client
.mmu
;
635 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
636 man
->available_caching
= TTM_PL_MASK_CACHING
;
637 man
->default_caching
= TTM_PL_FLAG_CACHED
;
640 man
->flags
= TTM_MEMTYPE_FLAG_FIXED
|
641 TTM_MEMTYPE_FLAG_MAPPABLE
;
642 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
644 man
->default_caching
= TTM_PL_FLAG_WC
;
646 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
647 /* Some BARs do not support being ioremapped WC */
648 const u8 type
= mmu
->type
[drm
->ttm
.type_vram
].type
;
649 if (type
& NVIF_MEM_UNCACHED
) {
650 man
->available_caching
= TTM_PL_FLAG_UNCACHED
;
651 man
->default_caching
= TTM_PL_FLAG_UNCACHED
;
654 man
->func
= &nouveau_vram_manager
;
655 man
->io_reserve_fastpath
= false;
656 man
->use_io_reserve_lru
= true;
658 man
->func
= &ttm_bo_manager_func
;
662 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
)
663 man
->func
= &nouveau_gart_manager
;
665 if (!drm
->agp
.bridge
)
666 man
->func
= &nv04_gart_manager
;
668 man
->func
= &ttm_bo_manager_func
;
670 if (drm
->agp
.bridge
) {
671 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
672 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
674 man
->default_caching
= TTM_PL_FLAG_WC
;
676 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
|
677 TTM_MEMTYPE_FLAG_CMA
;
678 man
->available_caching
= TTM_PL_MASK_CACHING
;
679 man
->default_caching
= TTM_PL_FLAG_CACHED
;
690 nouveau_bo_evict_flags(struct ttm_buffer_object
*bo
, struct ttm_placement
*pl
)
692 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
694 switch (bo
->mem
.mem_type
) {
696 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
,
700 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_SYSTEM
, 0);
704 *pl
= nvbo
->placement
;
709 nve0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
711 int ret
= RING_SPACE(chan
, 2);
713 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
714 OUT_RING (chan
, handle
& 0x0000ffff);
721 nve0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
722 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
724 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
725 int ret
= RING_SPACE(chan
, 10);
727 BEGIN_NVC0(chan
, NvSubCopy
, 0x0400, 8);
728 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
729 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
730 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
731 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
732 OUT_RING (chan
, PAGE_SIZE
);
733 OUT_RING (chan
, PAGE_SIZE
);
734 OUT_RING (chan
, PAGE_SIZE
);
735 OUT_RING (chan
, new_reg
->num_pages
);
736 BEGIN_IMC0(chan
, NvSubCopy
, 0x0300, 0x0386);
742 nvc0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
744 int ret
= RING_SPACE(chan
, 2);
746 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
747 OUT_RING (chan
, handle
);
753 nvc0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
754 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
756 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
757 u64 src_offset
= mem
->vma
[0].addr
;
758 u64 dst_offset
= mem
->vma
[1].addr
;
759 u32 page_count
= new_reg
->num_pages
;
762 page_count
= new_reg
->num_pages
;
764 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
766 ret
= RING_SPACE(chan
, 11);
770 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 8);
771 OUT_RING (chan
, upper_32_bits(src_offset
));
772 OUT_RING (chan
, lower_32_bits(src_offset
));
773 OUT_RING (chan
, upper_32_bits(dst_offset
));
774 OUT_RING (chan
, lower_32_bits(dst_offset
));
775 OUT_RING (chan
, PAGE_SIZE
);
776 OUT_RING (chan
, PAGE_SIZE
);
777 OUT_RING (chan
, PAGE_SIZE
);
778 OUT_RING (chan
, line_count
);
779 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
780 OUT_RING (chan
, 0x00000110);
782 page_count
-= line_count
;
783 src_offset
+= (PAGE_SIZE
* line_count
);
784 dst_offset
+= (PAGE_SIZE
* line_count
);
791 nvc0_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
792 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
794 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
795 u64 src_offset
= mem
->vma
[0].addr
;
796 u64 dst_offset
= mem
->vma
[1].addr
;
797 u32 page_count
= new_reg
->num_pages
;
800 page_count
= new_reg
->num_pages
;
802 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
804 ret
= RING_SPACE(chan
, 12);
808 BEGIN_NVC0(chan
, NvSubCopy
, 0x0238, 2);
809 OUT_RING (chan
, upper_32_bits(dst_offset
));
810 OUT_RING (chan
, lower_32_bits(dst_offset
));
811 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 6);
812 OUT_RING (chan
, upper_32_bits(src_offset
));
813 OUT_RING (chan
, lower_32_bits(src_offset
));
814 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
815 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
816 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
817 OUT_RING (chan
, line_count
);
818 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
819 OUT_RING (chan
, 0x00100110);
821 page_count
-= line_count
;
822 src_offset
+= (PAGE_SIZE
* line_count
);
823 dst_offset
+= (PAGE_SIZE
* line_count
);
830 nva3_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
831 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
833 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
834 u64 src_offset
= mem
->vma
[0].addr
;
835 u64 dst_offset
= mem
->vma
[1].addr
;
836 u32 page_count
= new_reg
->num_pages
;
839 page_count
= new_reg
->num_pages
;
841 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
843 ret
= RING_SPACE(chan
, 11);
847 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
848 OUT_RING (chan
, upper_32_bits(src_offset
));
849 OUT_RING (chan
, lower_32_bits(src_offset
));
850 OUT_RING (chan
, upper_32_bits(dst_offset
));
851 OUT_RING (chan
, lower_32_bits(dst_offset
));
852 OUT_RING (chan
, PAGE_SIZE
);
853 OUT_RING (chan
, PAGE_SIZE
);
854 OUT_RING (chan
, PAGE_SIZE
);
855 OUT_RING (chan
, line_count
);
856 BEGIN_NV04(chan
, NvSubCopy
, 0x0300, 1);
857 OUT_RING (chan
, 0x00000110);
859 page_count
-= line_count
;
860 src_offset
+= (PAGE_SIZE
* line_count
);
861 dst_offset
+= (PAGE_SIZE
* line_count
);
868 nv98_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
869 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
871 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
872 int ret
= RING_SPACE(chan
, 7);
874 BEGIN_NV04(chan
, NvSubCopy
, 0x0320, 6);
875 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
876 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
877 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
878 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
879 OUT_RING (chan
, 0x00000000 /* COPY */);
880 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
886 nv84_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
887 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
889 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
890 int ret
= RING_SPACE(chan
, 7);
892 BEGIN_NV04(chan
, NvSubCopy
, 0x0304, 6);
893 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
894 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
895 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
896 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
897 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
898 OUT_RING (chan
, 0x00000000 /* MODE_COPY, QUERY_NONE */);
904 nv50_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
906 int ret
= RING_SPACE(chan
, 6);
908 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
909 OUT_RING (chan
, handle
);
910 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 3);
911 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
912 OUT_RING (chan
, chan
->vram
.handle
);
913 OUT_RING (chan
, chan
->vram
.handle
);
920 nv50_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
921 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
923 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
924 u64 length
= (new_reg
->num_pages
<< PAGE_SHIFT
);
925 u64 src_offset
= mem
->vma
[0].addr
;
926 u64 dst_offset
= mem
->vma
[1].addr
;
927 int src_tiled
= !!mem
->kind
;
928 int dst_tiled
= !!nouveau_mem(new_reg
)->kind
;
932 u32 amount
, stride
, height
;
934 ret
= RING_SPACE(chan
, 18 + 6 * (src_tiled
+ dst_tiled
));
938 amount
= min(length
, (u64
)(4 * 1024 * 1024));
940 height
= amount
/ stride
;
943 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 7);
946 OUT_RING (chan
, stride
);
947 OUT_RING (chan
, height
);
952 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 1);
956 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 7);
959 OUT_RING (chan
, stride
);
960 OUT_RING (chan
, height
);
965 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 1);
969 BEGIN_NV04(chan
, NvSubCopy
, 0x0238, 2);
970 OUT_RING (chan
, upper_32_bits(src_offset
));
971 OUT_RING (chan
, upper_32_bits(dst_offset
));
972 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
973 OUT_RING (chan
, lower_32_bits(src_offset
));
974 OUT_RING (chan
, lower_32_bits(dst_offset
));
975 OUT_RING (chan
, stride
);
976 OUT_RING (chan
, stride
);
977 OUT_RING (chan
, stride
);
978 OUT_RING (chan
, height
);
979 OUT_RING (chan
, 0x00000101);
980 OUT_RING (chan
, 0x00000000);
981 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
985 src_offset
+= amount
;
986 dst_offset
+= amount
;
993 nv04_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
995 int ret
= RING_SPACE(chan
, 4);
997 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
998 OUT_RING (chan
, handle
);
999 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 1);
1000 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
1006 static inline uint32_t
1007 nouveau_bo_mem_ctxdma(struct ttm_buffer_object
*bo
,
1008 struct nouveau_channel
*chan
, struct ttm_mem_reg
*reg
)
1010 if (reg
->mem_type
== TTM_PL_TT
)
1012 return chan
->vram
.handle
;
1016 nv04_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
1017 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
1019 u32 src_offset
= old_reg
->start
<< PAGE_SHIFT
;
1020 u32 dst_offset
= new_reg
->start
<< PAGE_SHIFT
;
1021 u32 page_count
= new_reg
->num_pages
;
1024 ret
= RING_SPACE(chan
, 3);
1028 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE
, 2);
1029 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, old_reg
));
1030 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, new_reg
));
1032 page_count
= new_reg
->num_pages
;
1033 while (page_count
) {
1034 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
1036 ret
= RING_SPACE(chan
, 11);
1040 BEGIN_NV04(chan
, NvSubCopy
,
1041 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN
, 8);
1042 OUT_RING (chan
, src_offset
);
1043 OUT_RING (chan
, dst_offset
);
1044 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
1045 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
1046 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
1047 OUT_RING (chan
, line_count
);
1048 OUT_RING (chan
, 0x00000101);
1049 OUT_RING (chan
, 0x00000000);
1050 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1053 page_count
-= line_count
;
1054 src_offset
+= (PAGE_SIZE
* line_count
);
1055 dst_offset
+= (PAGE_SIZE
* line_count
);
1062 nouveau_bo_move_prep(struct nouveau_drm
*drm
, struct ttm_buffer_object
*bo
,
1063 struct ttm_mem_reg
*reg
)
1065 struct nouveau_mem
*old_mem
= nouveau_mem(&bo
->mem
);
1066 struct nouveau_mem
*new_mem
= nouveau_mem(reg
);
1067 struct nvif_vmm
*vmm
= &drm
->client
.vmm
.vmm
;
1070 ret
= nvif_vmm_get(vmm
, LAZY
, false, old_mem
->mem
.page
, 0,
1071 old_mem
->mem
.size
, &old_mem
->vma
[0]);
1075 ret
= nvif_vmm_get(vmm
, LAZY
, false, new_mem
->mem
.page
, 0,
1076 new_mem
->mem
.size
, &old_mem
->vma
[1]);
1080 ret
= nouveau_mem_map(old_mem
, vmm
, &old_mem
->vma
[0]);
1084 ret
= nouveau_mem_map(new_mem
, vmm
, &old_mem
->vma
[1]);
1087 nvif_vmm_put(vmm
, &old_mem
->vma
[1]);
1088 nvif_vmm_put(vmm
, &old_mem
->vma
[0]);
1094 nouveau_bo_move_m2mf(struct ttm_buffer_object
*bo
, int evict
, bool intr
,
1095 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1097 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1098 struct nouveau_channel
*chan
= drm
->ttm
.chan
;
1099 struct nouveau_cli
*cli
= (void *)chan
->user
.client
;
1100 struct nouveau_fence
*fence
;
1103 /* create temporary vmas for the transfer and attach them to the
1104 * old nvkm_mem node, these will get cleaned up after ttm has
1105 * destroyed the ttm_mem_reg
1107 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1108 ret
= nouveau_bo_move_prep(drm
, bo
, new_reg
);
1113 mutex_lock_nested(&cli
->mutex
, SINGLE_DEPTH_NESTING
);
1114 ret
= nouveau_fence_sync(nouveau_bo(bo
), chan
, true, intr
);
1116 ret
= drm
->ttm
.move(chan
, bo
, &bo
->mem
, new_reg
);
1118 ret
= nouveau_fence_new(chan
, false, &fence
);
1120 ret
= ttm_bo_move_accel_cleanup(bo
,
1124 nouveau_fence_unref(&fence
);
1128 mutex_unlock(&cli
->mutex
);
1133 nouveau_bo_move_init(struct nouveau_drm
*drm
)
1135 static const struct {
1139 int (*exec
)(struct nouveau_channel
*,
1140 struct ttm_buffer_object
*,
1141 struct ttm_mem_reg
*, struct ttm_mem_reg
*);
1142 int (*init
)(struct nouveau_channel
*, u32 handle
);
1144 { "COPY", 4, 0xc3b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1145 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1146 { "COPY", 4, 0xc1b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1147 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1148 { "COPY", 4, 0xc0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1149 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1150 { "COPY", 4, 0xb0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1151 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1152 { "COPY", 4, 0xa0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1153 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1154 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1155 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1156 { "COPY", 0, 0x85b5, nva3_bo_move_copy
, nv50_bo_move_init
},
1157 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec
, nv50_bo_move_init
},
1158 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf
, nvc0_bo_move_init
},
1159 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf
, nv50_bo_move_init
},
1160 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf
, nv04_bo_move_init
},
1162 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec
, nv50_bo_move_init
},
1163 }, *mthd
= _methods
;
1164 const char *name
= "CPU";
1168 struct nouveau_channel
*chan
;
1173 chan
= drm
->channel
;
1177 ret
= nvif_object_init(&chan
->user
,
1178 mthd
->oclass
| (mthd
->engine
<< 16),
1179 mthd
->oclass
, NULL
, 0,
1182 ret
= mthd
->init(chan
, drm
->ttm
.copy
.handle
);
1184 nvif_object_fini(&drm
->ttm
.copy
);
1188 drm
->ttm
.move
= mthd
->exec
;
1189 drm
->ttm
.chan
= chan
;
1193 } while ((++mthd
)->exec
);
1195 NV_INFO(drm
, "MM: using %s for buffer copies\n", name
);
1199 nouveau_bo_move_flipd(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1200 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1202 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1203 struct ttm_place placement_memtype
= {
1206 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1208 struct ttm_placement placement
;
1209 struct ttm_mem_reg tmp_reg
;
1212 placement
.num_placement
= placement
.num_busy_placement
= 1;
1213 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1216 tmp_reg
.mm_node
= NULL
;
1217 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1221 ret
= ttm_tt_bind(bo
->ttm
, &tmp_reg
, &ctx
);
1225 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, &tmp_reg
);
1229 ret
= ttm_bo_move_ttm(bo
, &ctx
, new_reg
);
1231 ttm_bo_mem_put(bo
, &tmp_reg
);
1236 nouveau_bo_move_flips(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1237 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1239 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1240 struct ttm_place placement_memtype
= {
1243 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1245 struct ttm_placement placement
;
1246 struct ttm_mem_reg tmp_reg
;
1249 placement
.num_placement
= placement
.num_busy_placement
= 1;
1250 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1253 tmp_reg
.mm_node
= NULL
;
1254 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1258 ret
= ttm_bo_move_ttm(bo
, &ctx
, &tmp_reg
);
1262 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, new_reg
);
1267 ttm_bo_mem_put(bo
, &tmp_reg
);
1272 nouveau_bo_move_ntfy(struct ttm_buffer_object
*bo
, bool evict
,
1273 struct ttm_mem_reg
*new_reg
)
1275 struct nouveau_mem
*mem
= new_reg
? nouveau_mem(new_reg
) : NULL
;
1276 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1277 struct nouveau_vma
*vma
;
1279 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1280 if (bo
->destroy
!= nouveau_bo_del_ttm
)
1283 if (mem
&& new_reg
->mem_type
!= TTM_PL_SYSTEM
&&
1284 mem
->mem
.page
== nvbo
->page
) {
1285 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1286 nouveau_vma_map(vma
, mem
);
1289 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1290 WARN_ON(ttm_bo_wait(bo
, false, false));
1291 nouveau_vma_unmap(vma
);
1297 nouveau_bo_vm_bind(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_reg
,
1298 struct nouveau_drm_tile
**new_tile
)
1300 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1301 struct drm_device
*dev
= drm
->dev
;
1302 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1303 u64 offset
= new_reg
->start
<< PAGE_SHIFT
;
1306 if (new_reg
->mem_type
!= TTM_PL_VRAM
)
1309 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
) {
1310 *new_tile
= nv10_bo_set_tiling(dev
, offset
, new_reg
->size
,
1311 nvbo
->mode
, nvbo
->zeta
);
1318 nouveau_bo_vm_cleanup(struct ttm_buffer_object
*bo
,
1319 struct nouveau_drm_tile
*new_tile
,
1320 struct nouveau_drm_tile
**old_tile
)
1322 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1323 struct drm_device
*dev
= drm
->dev
;
1324 struct dma_fence
*fence
= reservation_object_get_excl(bo
->resv
);
1326 nv10_bo_put_tile_region(dev
, *old_tile
, fence
);
1327 *old_tile
= new_tile
;
1331 nouveau_bo_move(struct ttm_buffer_object
*bo
, bool evict
,
1332 struct ttm_operation_ctx
*ctx
,
1333 struct ttm_mem_reg
*new_reg
)
1335 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1336 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1337 struct ttm_mem_reg
*old_reg
= &bo
->mem
;
1338 struct nouveau_drm_tile
*new_tile
= NULL
;
1341 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1345 if (nvbo
->pin_refcnt
)
1346 NV_WARN(drm
, "Moving pinned object %p!\n", nvbo
);
1348 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1349 ret
= nouveau_bo_vm_bind(bo
, new_reg
, &new_tile
);
1355 if (old_reg
->mem_type
== TTM_PL_SYSTEM
&& !bo
->ttm
) {
1356 BUG_ON(bo
->mem
.mm_node
!= NULL
);
1358 new_reg
->mm_node
= NULL
;
1362 /* Hardware assisted copy. */
1363 if (drm
->ttm
.move
) {
1364 if (new_reg
->mem_type
== TTM_PL_SYSTEM
)
1365 ret
= nouveau_bo_move_flipd(bo
, evict
,
1367 ctx
->no_wait_gpu
, new_reg
);
1368 else if (old_reg
->mem_type
== TTM_PL_SYSTEM
)
1369 ret
= nouveau_bo_move_flips(bo
, evict
,
1371 ctx
->no_wait_gpu
, new_reg
);
1373 ret
= nouveau_bo_move_m2mf(bo
, evict
,
1375 ctx
->no_wait_gpu
, new_reg
);
1380 /* Fallback to software copy. */
1381 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1383 ret
= ttm_bo_move_memcpy(bo
, ctx
, new_reg
);
1386 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1388 nouveau_bo_vm_cleanup(bo
, NULL
, &new_tile
);
1390 nouveau_bo_vm_cleanup(bo
, new_tile
, &nvbo
->tile
);
1397 nouveau_bo_verify_access(struct ttm_buffer_object
*bo
, struct file
*filp
)
1399 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1401 return drm_vma_node_verify_access(&nvbo
->gem
.vma_node
,
1402 filp
->private_data
);
1406 nouveau_ttm_io_mem_reserve(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1408 struct ttm_mem_type_manager
*man
= &bdev
->man
[reg
->mem_type
];
1409 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1410 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1411 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1413 reg
->bus
.addr
= NULL
;
1414 reg
->bus
.offset
= 0;
1415 reg
->bus
.size
= reg
->num_pages
<< PAGE_SHIFT
;
1417 reg
->bus
.is_iomem
= false;
1418 if (!(man
->flags
& TTM_MEMTYPE_FLAG_MAPPABLE
))
1420 switch (reg
->mem_type
) {
1425 #if IS_ENABLED(CONFIG_AGP)
1426 if (drm
->agp
.bridge
) {
1427 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1428 reg
->bus
.base
= drm
->agp
.base
;
1429 reg
->bus
.is_iomem
= !drm
->agp
.cma
;
1432 if (drm
->client
.mem
->oclass
< NVIF_CLASS_MEM_NV50
|| !mem
->kind
)
1435 /* fallthrough, tiled memory */
1437 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1438 reg
->bus
.base
= device
->func
->resource_addr(device
, 1);
1439 reg
->bus
.is_iomem
= true;
1440 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1442 struct nv50_mem_map_v0 nv50
;
1443 struct gf100_mem_map_v0 gf100
;
1449 switch (mem
->mem
.object
.oclass
) {
1450 case NVIF_CLASS_MEM_NV50
:
1451 args
.nv50
.version
= 0;
1453 args
.nv50
.kind
= mem
->kind
;
1454 args
.nv50
.comp
= mem
->comp
;
1455 argc
= sizeof(args
.nv50
);
1457 case NVIF_CLASS_MEM_GF100
:
1458 args
.gf100
.version
= 0;
1460 args
.gf100
.kind
= mem
->kind
;
1461 argc
= sizeof(args
.gf100
);
1468 ret
= nvif_object_map_handle(&mem
->mem
.object
,
1472 return ret
? ret
: -EINVAL
;
1475 reg
->bus
.offset
= handle
;
1485 nouveau_ttm_io_mem_free(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1487 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1488 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1490 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1491 switch (reg
->mem_type
) {
1494 nvif_object_unmap_handle(&mem
->mem
.object
);
1497 nvif_object_unmap_handle(&mem
->mem
.object
);
1506 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object
*bo
)
1508 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1509 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1510 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1511 u32 mappable
= device
->func
->resource_size(device
, 1) >> PAGE_SHIFT
;
1514 /* as long as the bo isn't in vram, and isn't tiled, we've got
1515 * nothing to do here.
1517 if (bo
->mem
.mem_type
!= TTM_PL_VRAM
) {
1518 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
||
1522 if (bo
->mem
.mem_type
== TTM_PL_SYSTEM
) {
1523 nouveau_bo_placement_set(nvbo
, TTM_PL_TT
, 0);
1525 ret
= nouveau_bo_validate(nvbo
, false, false);
1532 /* make sure bo is in mappable vram */
1533 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
||
1534 bo
->mem
.start
+ bo
->mem
.num_pages
< mappable
)
1537 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
1538 nvbo
->placements
[i
].fpfn
= 0;
1539 nvbo
->placements
[i
].lpfn
= mappable
;
1542 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
1543 nvbo
->busy_placements
[i
].fpfn
= 0;
1544 nvbo
->busy_placements
[i
].lpfn
= mappable
;
1547 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_VRAM
, 0);
1548 return nouveau_bo_validate(nvbo
, false, false);
1552 nouveau_ttm_tt_populate(struct ttm_tt
*ttm
, struct ttm_operation_ctx
*ctx
)
1554 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1555 struct nouveau_drm
*drm
;
1559 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1561 if (ttm
->state
!= tt_unpopulated
)
1564 if (slave
&& ttm
->sg
) {
1565 /* make userspace faulting work */
1566 drm_prime_sg_to_page_addr_arrays(ttm
->sg
, ttm
->pages
,
1567 ttm_dma
->dma_address
, ttm
->num_pages
);
1568 ttm
->state
= tt_unbound
;
1572 drm
= nouveau_bdev(ttm
->bdev
);
1573 dev
= drm
->dev
->dev
;
1575 #if IS_ENABLED(CONFIG_AGP)
1576 if (drm
->agp
.bridge
) {
1577 return ttm_agp_tt_populate(ttm
, ctx
);
1581 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1582 if (swiotlb_nr_tbl()) {
1583 return ttm_dma_populate((void *)ttm
, dev
, ctx
);
1587 r
= ttm_pool_populate(ttm
, ctx
);
1592 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1595 addr
= dma_map_page(dev
, ttm
->pages
[i
], 0, PAGE_SIZE
,
1598 if (dma_mapping_error(dev
, addr
)) {
1600 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
],
1601 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1602 ttm_dma
->dma_address
[i
] = 0;
1604 ttm_pool_unpopulate(ttm
);
1608 ttm_dma
->dma_address
[i
] = addr
;
1614 nouveau_ttm_tt_unpopulate(struct ttm_tt
*ttm
)
1616 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1617 struct nouveau_drm
*drm
;
1620 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1625 drm
= nouveau_bdev(ttm
->bdev
);
1626 dev
= drm
->dev
->dev
;
1628 #if IS_ENABLED(CONFIG_AGP)
1629 if (drm
->agp
.bridge
) {
1630 ttm_agp_tt_unpopulate(ttm
);
1635 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1636 if (swiotlb_nr_tbl()) {
1637 ttm_dma_unpopulate((void *)ttm
, dev
);
1642 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1643 if (ttm_dma
->dma_address
[i
]) {
1644 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
], PAGE_SIZE
,
1649 ttm_pool_unpopulate(ttm
);
1653 nouveau_bo_fence(struct nouveau_bo
*nvbo
, struct nouveau_fence
*fence
, bool exclusive
)
1655 struct reservation_object
*resv
= nvbo
->bo
.resv
;
1658 reservation_object_add_excl_fence(resv
, &fence
->base
);
1660 reservation_object_add_shared_fence(resv
, &fence
->base
);
1663 struct ttm_bo_driver nouveau_bo_driver
= {
1664 .ttm_tt_create
= &nouveau_ttm_tt_create
,
1665 .ttm_tt_populate
= &nouveau_ttm_tt_populate
,
1666 .ttm_tt_unpopulate
= &nouveau_ttm_tt_unpopulate
,
1667 .invalidate_caches
= nouveau_bo_invalidate_caches
,
1668 .init_mem_type
= nouveau_bo_init_mem_type
,
1669 .eviction_valuable
= ttm_bo_eviction_valuable
,
1670 .evict_flags
= nouveau_bo_evict_flags
,
1671 .move_notify
= nouveau_bo_move_ntfy
,
1672 .move
= nouveau_bo_move
,
1673 .verify_access
= nouveau_bo_verify_access
,
1674 .fault_reserve_notify
= &nouveau_ttm_fault_reserve_notify
,
1675 .io_mem_reserve
= &nouveau_ttm_io_mem_reserve
,
1676 .io_mem_free
= &nouveau_ttm_io_mem_free
,