Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux/fpc-iii.git] / drivers / scsi / esp_scsi.c
blob71cb05b1c3ebdd9d3d3631ee2da4a44a72b40731
1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
30 #include "esp_scsi.h"
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
52 #define ESP_DEBUG_EVENT 0x00000800
53 #define ESP_DEBUG_COMMAND 0x00001000
55 #define esp_log_intr(f, a...) \
56 do { if (esp_debug & ESP_DEBUG_INTR) \
57 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
58 } while (0)
60 #define esp_log_reset(f, a...) \
61 do { if (esp_debug & ESP_DEBUG_RESET) \
62 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
63 } while (0)
65 #define esp_log_msgin(f, a...) \
66 do { if (esp_debug & ESP_DEBUG_MSGIN) \
67 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
68 } while (0)
70 #define esp_log_msgout(f, a...) \
71 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
72 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
73 } while (0)
75 #define esp_log_cmddone(f, a...) \
76 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
77 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
78 } while (0)
80 #define esp_log_disconnect(f, a...) \
81 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
82 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
83 } while (0)
85 #define esp_log_datastart(f, a...) \
86 do { if (esp_debug & ESP_DEBUG_DATASTART) \
87 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
88 } while (0)
90 #define esp_log_datadone(f, a...) \
91 do { if (esp_debug & ESP_DEBUG_DATADONE) \
92 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
93 } while (0)
95 #define esp_log_reconnect(f, a...) \
96 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
97 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
98 } while (0)
100 #define esp_log_autosense(f, a...) \
101 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
102 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
103 } while (0)
105 #define esp_log_event(f, a...) \
106 do { if (esp_debug & ESP_DEBUG_EVENT) \
107 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
108 } while (0)
110 #define esp_log_command(f, a...) \
111 do { if (esp_debug & ESP_DEBUG_COMMAND) \
112 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
113 } while (0)
115 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
116 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
118 static void esp_log_fill_regs(struct esp *esp,
119 struct esp_event_ent *p)
121 p->sreg = esp->sreg;
122 p->seqreg = esp->seqreg;
123 p->sreg2 = esp->sreg2;
124 p->ireg = esp->ireg;
125 p->select_state = esp->select_state;
126 p->event = esp->event;
129 void scsi_esp_cmd(struct esp *esp, u8 val)
131 struct esp_event_ent *p;
132 int idx = esp->esp_event_cur;
134 p = &esp->esp_event_log[idx];
135 p->type = ESP_EVENT_TYPE_CMD;
136 p->val = val;
137 esp_log_fill_regs(esp, p);
139 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
141 esp_log_command("cmd[%02x]\n", val);
142 esp_write8(val, ESP_CMD);
144 EXPORT_SYMBOL(scsi_esp_cmd);
146 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
148 if (esp->flags & ESP_FLAG_USE_FIFO) {
149 int i;
151 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
152 for (i = 0; i < len; i++)
153 esp_write8(esp->command_block[i], ESP_FDATA);
154 scsi_esp_cmd(esp, cmd);
155 } else {
156 if (esp->rev == FASHME)
157 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
158 cmd |= ESP_CMD_DMA;
159 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
160 len, max_len, 0, cmd);
164 static void esp_event(struct esp *esp, u8 val)
166 struct esp_event_ent *p;
167 int idx = esp->esp_event_cur;
169 p = &esp->esp_event_log[idx];
170 p->type = ESP_EVENT_TYPE_EVENT;
171 p->val = val;
172 esp_log_fill_regs(esp, p);
174 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
176 esp->event = val;
179 static void esp_dump_cmd_log(struct esp *esp)
181 int idx = esp->esp_event_cur;
182 int stop = idx;
184 shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
185 do {
186 struct esp_event_ent *p = &esp->esp_event_log[idx];
188 shost_printk(KERN_INFO, esp->host,
189 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
190 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
191 idx,
192 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
193 p->val, p->sreg, p->seqreg,
194 p->sreg2, p->ireg, p->select_state, p->event);
196 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
197 } while (idx != stop);
200 static void esp_flush_fifo(struct esp *esp)
202 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 if (esp->rev == ESP236) {
204 int lim = 1000;
206 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
207 if (--lim == 0) {
208 shost_printk(KERN_ALERT, esp->host,
209 "ESP_FF_BYTES will not clear!\n");
210 break;
212 udelay(1);
217 static void hme_read_fifo(struct esp *esp)
219 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
220 int idx = 0;
222 while (fcnt--) {
223 esp->fifo[idx++] = esp_read8(ESP_FDATA);
224 esp->fifo[idx++] = esp_read8(ESP_FDATA);
226 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
227 esp_write8(0, ESP_FDATA);
228 esp->fifo[idx++] = esp_read8(ESP_FDATA);
229 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
231 esp->fifo_cnt = idx;
234 static void esp_set_all_config3(struct esp *esp, u8 val)
236 int i;
238 for (i = 0; i < ESP_MAX_TARGET; i++)
239 esp->target[i].esp_config3 = val;
242 /* Reset the ESP chip, _not_ the SCSI bus. */
243 static void esp_reset_esp(struct esp *esp)
245 u8 family_code, version;
247 /* Now reset the ESP chip */
248 scsi_esp_cmd(esp, ESP_CMD_RC);
249 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
250 if (esp->rev == FAST)
251 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
252 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
254 /* This is the only point at which it is reliable to read
255 * the ID-code for a fast ESP chip variants.
257 esp->max_period = ((35 * esp->ccycle) / 1000);
258 if (esp->rev == FAST) {
259 version = esp_read8(ESP_UID);
260 family_code = (version & 0xf8) >> 3;
261 if (family_code == 0x02)
262 esp->rev = FAS236;
263 else if (family_code == 0x0a)
264 esp->rev = FASHME; /* Version is usually '5'. */
265 else
266 esp->rev = FAS100A;
267 esp->min_period = ((4 * esp->ccycle) / 1000);
268 } else {
269 esp->min_period = ((5 * esp->ccycle) / 1000);
271 if (esp->rev == FAS236) {
273 * The AM53c974 chip returns the same ID as FAS236;
274 * try to configure glitch eater.
276 u8 config4 = ESP_CONFIG4_GE1;
277 esp_write8(config4, ESP_CFG4);
278 config4 = esp_read8(ESP_CFG4);
279 if (config4 & ESP_CONFIG4_GE1) {
280 esp->rev = PCSCSI;
281 esp_write8(esp->config4, ESP_CFG4);
284 esp->max_period = (esp->max_period + 3)>>2;
285 esp->min_period = (esp->min_period + 3)>>2;
287 esp_write8(esp->config1, ESP_CFG1);
288 switch (esp->rev) {
289 case ESP100:
290 /* nothing to do */
291 break;
293 case ESP100A:
294 esp_write8(esp->config2, ESP_CFG2);
295 break;
297 case ESP236:
298 /* Slow 236 */
299 esp_write8(esp->config2, ESP_CFG2);
300 esp->prev_cfg3 = esp->target[0].esp_config3;
301 esp_write8(esp->prev_cfg3, ESP_CFG3);
302 break;
304 case FASHME:
305 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
306 /* fallthrough... */
308 case FAS236:
309 case PCSCSI:
310 /* Fast 236, AM53c974 or HME */
311 esp_write8(esp->config2, ESP_CFG2);
312 if (esp->rev == FASHME) {
313 u8 cfg3 = esp->target[0].esp_config3;
315 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
316 if (esp->scsi_id >= 8)
317 cfg3 |= ESP_CONFIG3_IDBIT3;
318 esp_set_all_config3(esp, cfg3);
319 } else {
320 u32 cfg3 = esp->target[0].esp_config3;
322 cfg3 |= ESP_CONFIG3_FCLK;
323 esp_set_all_config3(esp, cfg3);
325 esp->prev_cfg3 = esp->target[0].esp_config3;
326 esp_write8(esp->prev_cfg3, ESP_CFG3);
327 if (esp->rev == FASHME) {
328 esp->radelay = 80;
329 } else {
330 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
331 esp->radelay = 0;
332 else
333 esp->radelay = 96;
335 break;
337 case FAS100A:
338 /* Fast 100a */
339 esp_write8(esp->config2, ESP_CFG2);
340 esp_set_all_config3(esp,
341 (esp->target[0].esp_config3 |
342 ESP_CONFIG3_FCLOCK));
343 esp->prev_cfg3 = esp->target[0].esp_config3;
344 esp_write8(esp->prev_cfg3, ESP_CFG3);
345 esp->radelay = 32;
346 break;
348 default:
349 break;
352 /* Reload the configuration registers */
353 esp_write8(esp->cfact, ESP_CFACT);
355 esp->prev_stp = 0;
356 esp_write8(esp->prev_stp, ESP_STP);
358 esp->prev_soff = 0;
359 esp_write8(esp->prev_soff, ESP_SOFF);
361 esp_write8(esp->neg_defp, ESP_TIMEO);
363 /* Eat any bitrot in the chip */
364 esp_read8(ESP_INTRPT);
365 udelay(100);
368 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
370 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
371 struct scatterlist *sg = scsi_sglist(cmd);
372 int dir = cmd->sc_data_direction;
373 int total, i;
375 if (dir == DMA_NONE)
376 return;
378 spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
379 spriv->cur_residue = sg_dma_len(sg);
380 spriv->cur_sg = sg;
382 total = 0;
383 for (i = 0; i < spriv->u.num_sg; i++)
384 total += sg_dma_len(&sg[i]);
385 spriv->tot_residue = total;
388 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
389 struct scsi_cmnd *cmd)
391 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
393 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
394 return ent->sense_dma +
395 (ent->sense_ptr - cmd->sense_buffer);
398 return sg_dma_address(p->cur_sg) +
399 (sg_dma_len(p->cur_sg) -
400 p->cur_residue);
403 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
404 struct scsi_cmnd *cmd)
406 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
408 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
409 return SCSI_SENSE_BUFFERSIZE -
410 (ent->sense_ptr - cmd->sense_buffer);
412 return p->cur_residue;
415 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
416 struct scsi_cmnd *cmd, unsigned int len)
418 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
420 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
421 ent->sense_ptr += len;
422 return;
425 p->cur_residue -= len;
426 p->tot_residue -= len;
427 if (p->cur_residue < 0 || p->tot_residue < 0) {
428 shost_printk(KERN_ERR, esp->host,
429 "Data transfer overflow.\n");
430 shost_printk(KERN_ERR, esp->host,
431 "cur_residue[%d] tot_residue[%d] len[%u]\n",
432 p->cur_residue, p->tot_residue, len);
433 p->cur_residue = 0;
434 p->tot_residue = 0;
436 if (!p->cur_residue && p->tot_residue) {
437 p->cur_sg++;
438 p->cur_residue = sg_dma_len(p->cur_sg);
442 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
444 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
445 int dir = cmd->sc_data_direction;
447 if (dir == DMA_NONE)
448 return;
450 esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
453 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
455 struct scsi_cmnd *cmd = ent->cmd;
456 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
458 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
459 ent->saved_sense_ptr = ent->sense_ptr;
460 return;
462 ent->saved_cur_residue = spriv->cur_residue;
463 ent->saved_cur_sg = spriv->cur_sg;
464 ent->saved_tot_residue = spriv->tot_residue;
467 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
469 struct scsi_cmnd *cmd = ent->cmd;
470 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
472 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
473 ent->sense_ptr = ent->saved_sense_ptr;
474 return;
476 spriv->cur_residue = ent->saved_cur_residue;
477 spriv->cur_sg = ent->saved_cur_sg;
478 spriv->tot_residue = ent->saved_tot_residue;
481 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
483 if (cmd->cmd_len == 6 ||
484 cmd->cmd_len == 10 ||
485 cmd->cmd_len == 12) {
486 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
487 } else {
488 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
492 static void esp_write_tgt_config3(struct esp *esp, int tgt)
494 if (esp->rev > ESP100A) {
495 u8 val = esp->target[tgt].esp_config3;
497 if (val != esp->prev_cfg3) {
498 esp->prev_cfg3 = val;
499 esp_write8(val, ESP_CFG3);
504 static void esp_write_tgt_sync(struct esp *esp, int tgt)
506 u8 off = esp->target[tgt].esp_offset;
507 u8 per = esp->target[tgt].esp_period;
509 if (off != esp->prev_soff) {
510 esp->prev_soff = off;
511 esp_write8(off, ESP_SOFF);
513 if (per != esp->prev_stp) {
514 esp->prev_stp = per;
515 esp_write8(per, ESP_STP);
519 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
521 if (esp->rev == FASHME) {
522 /* Arbitrary segment boundaries, 24-bit counts. */
523 if (dma_len > (1U << 24))
524 dma_len = (1U << 24);
525 } else {
526 u32 base, end;
528 /* ESP chip limits other variants by 16-bits of transfer
529 * count. Actually on FAS100A and FAS236 we could get
530 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
531 * in the ESP_CFG2 register but that causes other unwanted
532 * changes so we don't use it currently.
534 if (dma_len > (1U << 16))
535 dma_len = (1U << 16);
537 /* All of the DMA variants hooked up to these chips
538 * cannot handle crossing a 24-bit address boundary.
540 base = dma_addr & ((1U << 24) - 1U);
541 end = base + dma_len;
542 if (end > (1U << 24))
543 end = (1U <<24);
544 dma_len = end - base;
546 return dma_len;
549 static int esp_need_to_nego_wide(struct esp_target_data *tp)
551 struct scsi_target *target = tp->starget;
553 return spi_width(target) != tp->nego_goal_width;
556 static int esp_need_to_nego_sync(struct esp_target_data *tp)
558 struct scsi_target *target = tp->starget;
560 /* When offset is zero, period is "don't care". */
561 if (!spi_offset(target) && !tp->nego_goal_offset)
562 return 0;
564 if (spi_offset(target) == tp->nego_goal_offset &&
565 spi_period(target) == tp->nego_goal_period)
566 return 0;
568 return 1;
571 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
572 struct esp_lun_data *lp)
574 if (!ent->orig_tag[0]) {
575 /* Non-tagged, slot already taken? */
576 if (lp->non_tagged_cmd)
577 return -EBUSY;
579 if (lp->hold) {
580 /* We are being held by active tagged
581 * commands.
583 if (lp->num_tagged)
584 return -EBUSY;
586 /* Tagged commands completed, we can unplug
587 * the queue and run this untagged command.
589 lp->hold = 0;
590 } else if (lp->num_tagged) {
591 /* Plug the queue until num_tagged decreases
592 * to zero in esp_free_lun_tag.
594 lp->hold = 1;
595 return -EBUSY;
598 lp->non_tagged_cmd = ent;
599 return 0;
600 } else {
601 /* Tagged command, see if blocked by a
602 * non-tagged one.
604 if (lp->non_tagged_cmd || lp->hold)
605 return -EBUSY;
608 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
610 lp->tagged_cmds[ent->orig_tag[1]] = ent;
611 lp->num_tagged++;
613 return 0;
616 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
617 struct esp_lun_data *lp)
619 if (ent->orig_tag[0]) {
620 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
621 lp->tagged_cmds[ent->orig_tag[1]] = NULL;
622 lp->num_tagged--;
623 } else {
624 BUG_ON(lp->non_tagged_cmd != ent);
625 lp->non_tagged_cmd = NULL;
629 /* When a contingent allegiance conditon is created, we force feed a
630 * REQUEST_SENSE command to the device to fetch the sense data. I
631 * tried many other schemes, relying on the scsi error handling layer
632 * to send out the REQUEST_SENSE automatically, but this was difficult
633 * to get right especially in the presence of applications like smartd
634 * which use SG_IO to send out their own REQUEST_SENSE commands.
636 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
638 struct scsi_cmnd *cmd = ent->cmd;
639 struct scsi_device *dev = cmd->device;
640 int tgt, lun;
641 u8 *p, val;
643 tgt = dev->id;
644 lun = dev->lun;
647 if (!ent->sense_ptr) {
648 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
649 tgt, lun);
651 ent->sense_ptr = cmd->sense_buffer;
652 ent->sense_dma = esp->ops->map_single(esp,
653 ent->sense_ptr,
654 SCSI_SENSE_BUFFERSIZE,
655 DMA_FROM_DEVICE);
657 ent->saved_sense_ptr = ent->sense_ptr;
659 esp->active_cmd = ent;
661 p = esp->command_block;
662 esp->msg_out_len = 0;
664 *p++ = IDENTIFY(0, lun);
665 *p++ = REQUEST_SENSE;
666 *p++ = ((dev->scsi_level <= SCSI_2) ?
667 (lun << 5) : 0);
668 *p++ = 0;
669 *p++ = 0;
670 *p++ = SCSI_SENSE_BUFFERSIZE;
671 *p++ = 0;
673 esp->select_state = ESP_SELECT_BASIC;
675 val = tgt;
676 if (esp->rev == FASHME)
677 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
678 esp_write8(val, ESP_BUSID);
680 esp_write_tgt_sync(esp, tgt);
681 esp_write_tgt_config3(esp, tgt);
683 val = (p - esp->command_block);
685 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
688 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
690 struct esp_cmd_entry *ent;
692 list_for_each_entry(ent, &esp->queued_cmds, list) {
693 struct scsi_cmnd *cmd = ent->cmd;
694 struct scsi_device *dev = cmd->device;
695 struct esp_lun_data *lp = dev->hostdata;
697 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
698 ent->tag[0] = 0;
699 ent->tag[1] = 0;
700 return ent;
703 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
704 ent->tag[0] = 0;
705 ent->tag[1] = 0;
707 ent->orig_tag[0] = ent->tag[0];
708 ent->orig_tag[1] = ent->tag[1];
710 if (esp_alloc_lun_tag(ent, lp) < 0)
711 continue;
713 return ent;
716 return NULL;
719 static void esp_maybe_execute_command(struct esp *esp)
721 struct esp_target_data *tp;
722 struct esp_lun_data *lp;
723 struct scsi_device *dev;
724 struct scsi_cmnd *cmd;
725 struct esp_cmd_entry *ent;
726 int tgt, lun, i;
727 u32 val, start_cmd;
728 u8 *p;
730 if (esp->active_cmd ||
731 (esp->flags & ESP_FLAG_RESETTING))
732 return;
734 ent = find_and_prep_issuable_command(esp);
735 if (!ent)
736 return;
738 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
739 esp_autosense(esp, ent);
740 return;
743 cmd = ent->cmd;
744 dev = cmd->device;
745 tgt = dev->id;
746 lun = dev->lun;
747 tp = &esp->target[tgt];
748 lp = dev->hostdata;
750 list_move(&ent->list, &esp->active_cmds);
752 esp->active_cmd = ent;
754 esp_map_dma(esp, cmd);
755 esp_save_pointers(esp, ent);
757 esp_check_command_len(esp, cmd);
759 p = esp->command_block;
761 esp->msg_out_len = 0;
762 if (tp->flags & ESP_TGT_CHECK_NEGO) {
763 /* Need to negotiate. If the target is broken
764 * go for synchronous transfers and non-wide.
766 if (tp->flags & ESP_TGT_BROKEN) {
767 tp->flags &= ~ESP_TGT_DISCONNECT;
768 tp->nego_goal_period = 0;
769 tp->nego_goal_offset = 0;
770 tp->nego_goal_width = 0;
771 tp->nego_goal_tags = 0;
774 /* If the settings are not changing, skip this. */
775 if (spi_width(tp->starget) == tp->nego_goal_width &&
776 spi_period(tp->starget) == tp->nego_goal_period &&
777 spi_offset(tp->starget) == tp->nego_goal_offset) {
778 tp->flags &= ~ESP_TGT_CHECK_NEGO;
779 goto build_identify;
782 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
783 esp->msg_out_len =
784 spi_populate_width_msg(&esp->msg_out[0],
785 (tp->nego_goal_width ?
786 1 : 0));
787 tp->flags |= ESP_TGT_NEGO_WIDE;
788 } else if (esp_need_to_nego_sync(tp)) {
789 esp->msg_out_len =
790 spi_populate_sync_msg(&esp->msg_out[0],
791 tp->nego_goal_period,
792 tp->nego_goal_offset);
793 tp->flags |= ESP_TGT_NEGO_SYNC;
794 } else {
795 tp->flags &= ~ESP_TGT_CHECK_NEGO;
798 /* Process it like a slow command. */
799 if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
800 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
803 build_identify:
804 /* If we don't have a lun-data struct yet, we're probing
805 * so do not disconnect. Also, do not disconnect unless
806 * we have a tag on this command.
808 if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
809 *p++ = IDENTIFY(1, lun);
810 else
811 *p++ = IDENTIFY(0, lun);
813 if (ent->tag[0] && esp->rev == ESP100) {
814 /* ESP100 lacks select w/atn3 command, use select
815 * and stop instead.
817 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
820 if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
821 start_cmd = ESP_CMD_SELA;
822 if (ent->tag[0]) {
823 *p++ = ent->tag[0];
824 *p++ = ent->tag[1];
826 start_cmd = ESP_CMD_SA3;
829 for (i = 0; i < cmd->cmd_len; i++)
830 *p++ = cmd->cmnd[i];
832 esp->select_state = ESP_SELECT_BASIC;
833 } else {
834 esp->cmd_bytes_left = cmd->cmd_len;
835 esp->cmd_bytes_ptr = &cmd->cmnd[0];
837 if (ent->tag[0]) {
838 for (i = esp->msg_out_len - 1;
839 i >= 0; i--)
840 esp->msg_out[i + 2] = esp->msg_out[i];
841 esp->msg_out[0] = ent->tag[0];
842 esp->msg_out[1] = ent->tag[1];
843 esp->msg_out_len += 2;
846 start_cmd = ESP_CMD_SELAS;
847 esp->select_state = ESP_SELECT_MSGOUT;
849 val = tgt;
850 if (esp->rev == FASHME)
851 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
852 esp_write8(val, ESP_BUSID);
854 esp_write_tgt_sync(esp, tgt);
855 esp_write_tgt_config3(esp, tgt);
857 val = (p - esp->command_block);
859 if (esp_debug & ESP_DEBUG_SCSICMD) {
860 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
861 for (i = 0; i < cmd->cmd_len; i++)
862 printk("%02x ", cmd->cmnd[i]);
863 printk("]\n");
866 esp_send_dma_cmd(esp, val, 16, start_cmd);
869 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
871 struct list_head *head = &esp->esp_cmd_pool;
872 struct esp_cmd_entry *ret;
874 if (list_empty(head)) {
875 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
876 } else {
877 ret = list_entry(head->next, struct esp_cmd_entry, list);
878 list_del(&ret->list);
879 memset(ret, 0, sizeof(*ret));
881 return ret;
884 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
886 list_add(&ent->list, &esp->esp_cmd_pool);
889 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
890 struct scsi_cmnd *cmd, unsigned int result)
892 struct scsi_device *dev = cmd->device;
893 int tgt = dev->id;
894 int lun = dev->lun;
896 esp->active_cmd = NULL;
897 esp_unmap_dma(esp, cmd);
898 esp_free_lun_tag(ent, dev->hostdata);
899 cmd->result = result;
901 if (ent->eh_done) {
902 complete(ent->eh_done);
903 ent->eh_done = NULL;
906 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
907 esp->ops->unmap_single(esp, ent->sense_dma,
908 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
909 ent->sense_ptr = NULL;
911 /* Restore the message/status bytes to what we actually
912 * saw originally. Also, report that we are providing
913 * the sense data.
915 cmd->result = ((DRIVER_SENSE << 24) |
916 (DID_OK << 16) |
917 (COMMAND_COMPLETE << 8) |
918 (SAM_STAT_CHECK_CONDITION << 0));
920 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
921 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
922 int i;
924 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
925 esp->host->unique_id, tgt, lun);
926 for (i = 0; i < 18; i++)
927 printk("%02x ", cmd->sense_buffer[i]);
928 printk("]\n");
932 cmd->scsi_done(cmd);
934 list_del(&ent->list);
935 esp_put_ent(esp, ent);
937 esp_maybe_execute_command(esp);
940 static unsigned int compose_result(unsigned int status, unsigned int message,
941 unsigned int driver_code)
943 return (status | (message << 8) | (driver_code << 16));
946 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
948 struct scsi_device *dev = ent->cmd->device;
949 struct esp_lun_data *lp = dev->hostdata;
951 scsi_track_queue_full(dev, lp->num_tagged - 1);
954 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
956 struct scsi_device *dev = cmd->device;
957 struct esp *esp = shost_priv(dev->host);
958 struct esp_cmd_priv *spriv;
959 struct esp_cmd_entry *ent;
961 ent = esp_get_ent(esp);
962 if (!ent)
963 return SCSI_MLQUEUE_HOST_BUSY;
965 ent->cmd = cmd;
967 cmd->scsi_done = done;
969 spriv = ESP_CMD_PRIV(cmd);
970 spriv->u.dma_addr = ~(dma_addr_t)0x0;
972 list_add_tail(&ent->list, &esp->queued_cmds);
974 esp_maybe_execute_command(esp);
976 return 0;
979 static DEF_SCSI_QCMD(esp_queuecommand)
981 static int esp_check_gross_error(struct esp *esp)
983 if (esp->sreg & ESP_STAT_SPAM) {
984 /* Gross Error, could be one of:
985 * - top of fifo overwritten
986 * - top of command register overwritten
987 * - DMA programmed with wrong direction
988 * - improper phase change
990 shost_printk(KERN_ERR, esp->host,
991 "Gross error sreg[%02x]\n", esp->sreg);
992 /* XXX Reset the chip. XXX */
993 return 1;
995 return 0;
998 static int esp_check_spur_intr(struct esp *esp)
1000 switch (esp->rev) {
1001 case ESP100:
1002 case ESP100A:
1003 /* The interrupt pending bit of the status register cannot
1004 * be trusted on these revisions.
1006 esp->sreg &= ~ESP_STAT_INTR;
1007 break;
1009 default:
1010 if (!(esp->sreg & ESP_STAT_INTR)) {
1011 if (esp->ireg & ESP_INTR_SR)
1012 return 1;
1014 /* If the DMA is indicating interrupt pending and the
1015 * ESP is not, the only possibility is a DMA error.
1017 if (!esp->ops->dma_error(esp)) {
1018 shost_printk(KERN_ERR, esp->host,
1019 "Spurious irq, sreg=%02x.\n",
1020 esp->sreg);
1021 return -1;
1024 shost_printk(KERN_ERR, esp->host, "DMA error\n");
1026 /* XXX Reset the chip. XXX */
1027 return -1;
1029 break;
1032 return 0;
1035 static void esp_schedule_reset(struct esp *esp)
1037 esp_log_reset("esp_schedule_reset() from %pf\n",
1038 __builtin_return_address(0));
1039 esp->flags |= ESP_FLAG_RESETTING;
1040 esp_event(esp, ESP_EVENT_RESET);
1043 /* In order to avoid having to add a special half-reconnected state
1044 * into the driver we just sit here and poll through the rest of
1045 * the reselection process to get the tag message bytes.
1047 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1048 struct esp_lun_data *lp)
1050 struct esp_cmd_entry *ent;
1051 int i;
1053 if (!lp->num_tagged) {
1054 shost_printk(KERN_ERR, esp->host,
1055 "Reconnect w/num_tagged==0\n");
1056 return NULL;
1059 esp_log_reconnect("reconnect tag, ");
1061 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1062 if (esp->ops->irq_pending(esp))
1063 break;
1065 if (i == ESP_QUICKIRQ_LIMIT) {
1066 shost_printk(KERN_ERR, esp->host,
1067 "Reconnect IRQ1 timeout\n");
1068 return NULL;
1071 esp->sreg = esp_read8(ESP_STATUS);
1072 esp->ireg = esp_read8(ESP_INTRPT);
1074 esp_log_reconnect("IRQ(%d:%x:%x), ",
1075 i, esp->ireg, esp->sreg);
1077 if (esp->ireg & ESP_INTR_DC) {
1078 shost_printk(KERN_ERR, esp->host,
1079 "Reconnect, got disconnect.\n");
1080 return NULL;
1083 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1084 shost_printk(KERN_ERR, esp->host,
1085 "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1086 return NULL;
1089 /* DMA in the tag bytes... */
1090 esp->command_block[0] = 0xff;
1091 esp->command_block[1] = 0xff;
1092 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1093 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1095 /* ACK the message. */
1096 scsi_esp_cmd(esp, ESP_CMD_MOK);
1098 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1099 if (esp->ops->irq_pending(esp)) {
1100 esp->sreg = esp_read8(ESP_STATUS);
1101 esp->ireg = esp_read8(ESP_INTRPT);
1102 if (esp->ireg & ESP_INTR_FDONE)
1103 break;
1105 udelay(1);
1107 if (i == ESP_RESELECT_TAG_LIMIT) {
1108 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1109 return NULL;
1111 esp->ops->dma_drain(esp);
1112 esp->ops->dma_invalidate(esp);
1114 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1115 i, esp->ireg, esp->sreg,
1116 esp->command_block[0],
1117 esp->command_block[1]);
1119 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1120 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1121 shost_printk(KERN_ERR, esp->host,
1122 "Reconnect, bad tag type %02x.\n",
1123 esp->command_block[0]);
1124 return NULL;
1127 ent = lp->tagged_cmds[esp->command_block[1]];
1128 if (!ent) {
1129 shost_printk(KERN_ERR, esp->host,
1130 "Reconnect, no entry for tag %02x.\n",
1131 esp->command_block[1]);
1132 return NULL;
1135 return ent;
1138 static int esp_reconnect(struct esp *esp)
1140 struct esp_cmd_entry *ent;
1141 struct esp_target_data *tp;
1142 struct esp_lun_data *lp;
1143 struct scsi_device *dev;
1144 int target, lun;
1146 BUG_ON(esp->active_cmd);
1147 if (esp->rev == FASHME) {
1148 /* FASHME puts the target and lun numbers directly
1149 * into the fifo.
1151 target = esp->fifo[0];
1152 lun = esp->fifo[1] & 0x7;
1153 } else {
1154 u8 bits = esp_read8(ESP_FDATA);
1156 /* Older chips put the lun directly into the fifo, but
1157 * the target is given as a sample of the arbitration
1158 * lines on the bus at reselection time. So we should
1159 * see the ID of the ESP and the one reconnecting target
1160 * set in the bitmap.
1162 if (!(bits & esp->scsi_id_mask))
1163 goto do_reset;
1164 bits &= ~esp->scsi_id_mask;
1165 if (!bits || (bits & (bits - 1)))
1166 goto do_reset;
1168 target = ffs(bits) - 1;
1169 lun = (esp_read8(ESP_FDATA) & 0x7);
1171 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1172 if (esp->rev == ESP100) {
1173 u8 ireg = esp_read8(ESP_INTRPT);
1174 /* This chip has a bug during reselection that can
1175 * cause a spurious illegal-command interrupt, which
1176 * we simply ACK here. Another possibility is a bus
1177 * reset so we must check for that.
1179 if (ireg & ESP_INTR_SR)
1180 goto do_reset;
1182 scsi_esp_cmd(esp, ESP_CMD_NULL);
1185 esp_write_tgt_sync(esp, target);
1186 esp_write_tgt_config3(esp, target);
1188 scsi_esp_cmd(esp, ESP_CMD_MOK);
1190 if (esp->rev == FASHME)
1191 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1192 ESP_BUSID);
1194 tp = &esp->target[target];
1195 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1196 if (!dev) {
1197 shost_printk(KERN_ERR, esp->host,
1198 "Reconnect, no lp tgt[%u] lun[%u]\n",
1199 target, lun);
1200 goto do_reset;
1202 lp = dev->hostdata;
1204 ent = lp->non_tagged_cmd;
1205 if (!ent) {
1206 ent = esp_reconnect_with_tag(esp, lp);
1207 if (!ent)
1208 goto do_reset;
1211 esp->active_cmd = ent;
1213 if (ent->flags & ESP_CMD_FLAG_ABORT) {
1214 esp->msg_out[0] = ABORT_TASK_SET;
1215 esp->msg_out_len = 1;
1216 scsi_esp_cmd(esp, ESP_CMD_SATN);
1219 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1220 esp_restore_pointers(esp, ent);
1221 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1222 return 1;
1224 do_reset:
1225 esp_schedule_reset(esp);
1226 return 0;
1229 static int esp_finish_select(struct esp *esp)
1231 struct esp_cmd_entry *ent;
1232 struct scsi_cmnd *cmd;
1233 u8 orig_select_state;
1235 orig_select_state = esp->select_state;
1237 /* No longer selecting. */
1238 esp->select_state = ESP_SELECT_NONE;
1240 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1241 ent = esp->active_cmd;
1242 cmd = ent->cmd;
1244 if (esp->ops->dma_error(esp)) {
1245 /* If we see a DMA error during or as a result of selection,
1246 * all bets are off.
1248 esp_schedule_reset(esp);
1249 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1250 return 0;
1253 esp->ops->dma_invalidate(esp);
1255 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1256 struct esp_target_data *tp = &esp->target[cmd->device->id];
1258 /* Carefully back out of the selection attempt. Release
1259 * resources (such as DMA mapping & TAG) and reset state (such
1260 * as message out and command delivery variables).
1262 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1263 esp_unmap_dma(esp, cmd);
1264 esp_free_lun_tag(ent, cmd->device->hostdata);
1265 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1266 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1267 esp->cmd_bytes_ptr = NULL;
1268 esp->cmd_bytes_left = 0;
1269 } else {
1270 esp->ops->unmap_single(esp, ent->sense_dma,
1271 SCSI_SENSE_BUFFERSIZE,
1272 DMA_FROM_DEVICE);
1273 ent->sense_ptr = NULL;
1276 /* Now that the state is unwound properly, put back onto
1277 * the issue queue. This command is no longer active.
1279 list_move(&ent->list, &esp->queued_cmds);
1280 esp->active_cmd = NULL;
1282 /* Return value ignored by caller, it directly invokes
1283 * esp_reconnect().
1285 return 0;
1288 if (esp->ireg == ESP_INTR_DC) {
1289 struct scsi_device *dev = cmd->device;
1291 /* Disconnect. Make sure we re-negotiate sync and
1292 * wide parameters if this target starts responding
1293 * again in the future.
1295 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1297 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1298 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1299 return 1;
1302 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1303 /* Selection successful. On pre-FAST chips we have
1304 * to do a NOP and possibly clean out the FIFO.
1306 if (esp->rev <= ESP236) {
1307 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1309 scsi_esp_cmd(esp, ESP_CMD_NULL);
1311 if (!fcnt &&
1312 (!esp->prev_soff ||
1313 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1314 esp_flush_fifo(esp);
1317 /* If we are doing a slow command, negotiation, etc.
1318 * we'll do the right thing as we transition to the
1319 * next phase.
1321 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1322 return 0;
1325 shost_printk(KERN_INFO, esp->host,
1326 "Unexpected selection completion ireg[%x]\n", esp->ireg);
1327 esp_schedule_reset(esp);
1328 return 0;
1331 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1332 struct scsi_cmnd *cmd)
1334 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1336 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1337 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1338 fifo_cnt <<= 1;
1340 ecount = 0;
1341 if (!(esp->sreg & ESP_STAT_TCNT)) {
1342 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1343 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1344 if (esp->rev == FASHME)
1345 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1346 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1347 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1350 bytes_sent = esp->data_dma_len;
1351 bytes_sent -= ecount;
1354 * The am53c974 has a DMA 'pecularity'. The doc states:
1355 * In some odd byte conditions, one residual byte will
1356 * be left in the SCSI FIFO, and the FIFO Flags will
1357 * never count to '0 '. When this happens, the residual
1358 * byte should be retrieved via PIO following completion
1359 * of the BLAST operation.
1361 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1362 size_t count = 1;
1363 size_t offset = bytes_sent;
1364 u8 bval = esp_read8(ESP_FDATA);
1366 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1367 ent->sense_ptr[bytes_sent] = bval;
1368 else {
1369 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1370 u8 *ptr;
1372 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->u.num_sg,
1373 &offset, &count);
1374 if (likely(ptr)) {
1375 *(ptr + offset) = bval;
1376 scsi_kunmap_atomic_sg(ptr);
1379 bytes_sent += fifo_cnt;
1380 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1382 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1383 bytes_sent -= fifo_cnt;
1385 flush_fifo = 0;
1386 if (!esp->prev_soff) {
1387 /* Synchronous data transfer, always flush fifo. */
1388 flush_fifo = 1;
1389 } else {
1390 if (esp->rev == ESP100) {
1391 u32 fflags, phase;
1393 /* ESP100 has a chip bug where in the synchronous data
1394 * phase it can mistake a final long REQ pulse from the
1395 * target as an extra data byte. Fun.
1397 * To detect this case we resample the status register
1398 * and fifo flags. If we're still in a data phase and
1399 * we see spurious chunks in the fifo, we return error
1400 * to the caller which should reset and set things up
1401 * such that we only try future transfers to this
1402 * target in synchronous mode.
1404 esp->sreg = esp_read8(ESP_STATUS);
1405 phase = esp->sreg & ESP_STAT_PMASK;
1406 fflags = esp_read8(ESP_FFLAGS);
1408 if ((phase == ESP_DOP &&
1409 (fflags & ESP_FF_ONOTZERO)) ||
1410 (phase == ESP_DIP &&
1411 (fflags & ESP_FF_FBYTES)))
1412 return -1;
1414 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1415 flush_fifo = 1;
1418 if (flush_fifo)
1419 esp_flush_fifo(esp);
1421 return bytes_sent;
1424 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1425 u8 scsi_period, u8 scsi_offset,
1426 u8 esp_stp, u8 esp_soff)
1428 spi_period(tp->starget) = scsi_period;
1429 spi_offset(tp->starget) = scsi_offset;
1430 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1432 if (esp_soff) {
1433 esp_stp &= 0x1f;
1434 esp_soff |= esp->radelay;
1435 if (esp->rev >= FAS236) {
1436 u8 bit = ESP_CONFIG3_FSCSI;
1437 if (esp->rev >= FAS100A)
1438 bit = ESP_CONFIG3_FAST;
1440 if (scsi_period < 50) {
1441 if (esp->rev == FASHME)
1442 esp_soff &= ~esp->radelay;
1443 tp->esp_config3 |= bit;
1444 } else {
1445 tp->esp_config3 &= ~bit;
1447 esp->prev_cfg3 = tp->esp_config3;
1448 esp_write8(esp->prev_cfg3, ESP_CFG3);
1452 tp->esp_period = esp->prev_stp = esp_stp;
1453 tp->esp_offset = esp->prev_soff = esp_soff;
1455 esp_write8(esp_soff, ESP_SOFF);
1456 esp_write8(esp_stp, ESP_STP);
1458 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1460 spi_display_xfer_agreement(tp->starget);
1463 static void esp_msgin_reject(struct esp *esp)
1465 struct esp_cmd_entry *ent = esp->active_cmd;
1466 struct scsi_cmnd *cmd = ent->cmd;
1467 struct esp_target_data *tp;
1468 int tgt;
1470 tgt = cmd->device->id;
1471 tp = &esp->target[tgt];
1473 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1474 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1476 if (!esp_need_to_nego_sync(tp)) {
1477 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1478 scsi_esp_cmd(esp, ESP_CMD_RATN);
1479 } else {
1480 esp->msg_out_len =
1481 spi_populate_sync_msg(&esp->msg_out[0],
1482 tp->nego_goal_period,
1483 tp->nego_goal_offset);
1484 tp->flags |= ESP_TGT_NEGO_SYNC;
1485 scsi_esp_cmd(esp, ESP_CMD_SATN);
1487 return;
1490 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1491 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1492 tp->esp_period = 0;
1493 tp->esp_offset = 0;
1494 esp_setsync(esp, tp, 0, 0, 0, 0);
1495 scsi_esp_cmd(esp, ESP_CMD_RATN);
1496 return;
1499 esp->msg_out[0] = ABORT_TASK_SET;
1500 esp->msg_out_len = 1;
1501 scsi_esp_cmd(esp, ESP_CMD_SATN);
1504 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1506 u8 period = esp->msg_in[3];
1507 u8 offset = esp->msg_in[4];
1508 u8 stp;
1510 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1511 goto do_reject;
1513 if (offset > 15)
1514 goto do_reject;
1516 if (offset) {
1517 int one_clock;
1519 if (period > esp->max_period) {
1520 period = offset = 0;
1521 goto do_sdtr;
1523 if (period < esp->min_period)
1524 goto do_reject;
1526 one_clock = esp->ccycle / 1000;
1527 stp = DIV_ROUND_UP(period << 2, one_clock);
1528 if (stp && esp->rev >= FAS236) {
1529 if (stp >= 50)
1530 stp--;
1532 } else {
1533 stp = 0;
1536 esp_setsync(esp, tp, period, offset, stp, offset);
1537 return;
1539 do_reject:
1540 esp->msg_out[0] = MESSAGE_REJECT;
1541 esp->msg_out_len = 1;
1542 scsi_esp_cmd(esp, ESP_CMD_SATN);
1543 return;
1545 do_sdtr:
1546 tp->nego_goal_period = period;
1547 tp->nego_goal_offset = offset;
1548 esp->msg_out_len =
1549 spi_populate_sync_msg(&esp->msg_out[0],
1550 tp->nego_goal_period,
1551 tp->nego_goal_offset);
1552 scsi_esp_cmd(esp, ESP_CMD_SATN);
1555 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1557 int size = 8 << esp->msg_in[3];
1558 u8 cfg3;
1560 if (esp->rev != FASHME)
1561 goto do_reject;
1563 if (size != 8 && size != 16)
1564 goto do_reject;
1566 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1567 goto do_reject;
1569 cfg3 = tp->esp_config3;
1570 if (size == 16) {
1571 tp->flags |= ESP_TGT_WIDE;
1572 cfg3 |= ESP_CONFIG3_EWIDE;
1573 } else {
1574 tp->flags &= ~ESP_TGT_WIDE;
1575 cfg3 &= ~ESP_CONFIG3_EWIDE;
1577 tp->esp_config3 = cfg3;
1578 esp->prev_cfg3 = cfg3;
1579 esp_write8(cfg3, ESP_CFG3);
1581 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1583 spi_period(tp->starget) = 0;
1584 spi_offset(tp->starget) = 0;
1585 if (!esp_need_to_nego_sync(tp)) {
1586 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1587 scsi_esp_cmd(esp, ESP_CMD_RATN);
1588 } else {
1589 esp->msg_out_len =
1590 spi_populate_sync_msg(&esp->msg_out[0],
1591 tp->nego_goal_period,
1592 tp->nego_goal_offset);
1593 tp->flags |= ESP_TGT_NEGO_SYNC;
1594 scsi_esp_cmd(esp, ESP_CMD_SATN);
1596 return;
1598 do_reject:
1599 esp->msg_out[0] = MESSAGE_REJECT;
1600 esp->msg_out_len = 1;
1601 scsi_esp_cmd(esp, ESP_CMD_SATN);
1604 static void esp_msgin_extended(struct esp *esp)
1606 struct esp_cmd_entry *ent = esp->active_cmd;
1607 struct scsi_cmnd *cmd = ent->cmd;
1608 struct esp_target_data *tp;
1609 int tgt = cmd->device->id;
1611 tp = &esp->target[tgt];
1612 if (esp->msg_in[2] == EXTENDED_SDTR) {
1613 esp_msgin_sdtr(esp, tp);
1614 return;
1616 if (esp->msg_in[2] == EXTENDED_WDTR) {
1617 esp_msgin_wdtr(esp, tp);
1618 return;
1621 shost_printk(KERN_INFO, esp->host,
1622 "Unexpected extended msg type %x\n", esp->msg_in[2]);
1624 esp->msg_out[0] = ABORT_TASK_SET;
1625 esp->msg_out_len = 1;
1626 scsi_esp_cmd(esp, ESP_CMD_SATN);
1629 /* Analyze msgin bytes received from target so far. Return non-zero
1630 * if there are more bytes needed to complete the message.
1632 static int esp_msgin_process(struct esp *esp)
1634 u8 msg0 = esp->msg_in[0];
1635 int len = esp->msg_in_len;
1637 if (msg0 & 0x80) {
1638 /* Identify */
1639 shost_printk(KERN_INFO, esp->host,
1640 "Unexpected msgin identify\n");
1641 return 0;
1644 switch (msg0) {
1645 case EXTENDED_MESSAGE:
1646 if (len == 1)
1647 return 1;
1648 if (len < esp->msg_in[1] + 2)
1649 return 1;
1650 esp_msgin_extended(esp);
1651 return 0;
1653 case IGNORE_WIDE_RESIDUE: {
1654 struct esp_cmd_entry *ent;
1655 struct esp_cmd_priv *spriv;
1656 if (len == 1)
1657 return 1;
1659 if (esp->msg_in[1] != 1)
1660 goto do_reject;
1662 ent = esp->active_cmd;
1663 spriv = ESP_CMD_PRIV(ent->cmd);
1665 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1666 spriv->cur_sg--;
1667 spriv->cur_residue = 1;
1668 } else
1669 spriv->cur_residue++;
1670 spriv->tot_residue++;
1671 return 0;
1673 case NOP:
1674 return 0;
1675 case RESTORE_POINTERS:
1676 esp_restore_pointers(esp, esp->active_cmd);
1677 return 0;
1678 case SAVE_POINTERS:
1679 esp_save_pointers(esp, esp->active_cmd);
1680 return 0;
1682 case COMMAND_COMPLETE:
1683 case DISCONNECT: {
1684 struct esp_cmd_entry *ent = esp->active_cmd;
1686 ent->message = msg0;
1687 esp_event(esp, ESP_EVENT_FREE_BUS);
1688 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1689 return 0;
1691 case MESSAGE_REJECT:
1692 esp_msgin_reject(esp);
1693 return 0;
1695 default:
1696 do_reject:
1697 esp->msg_out[0] = MESSAGE_REJECT;
1698 esp->msg_out_len = 1;
1699 scsi_esp_cmd(esp, ESP_CMD_SATN);
1700 return 0;
1704 static int esp_process_event(struct esp *esp)
1706 int write, i;
1708 again:
1709 write = 0;
1710 esp_log_event("process event %d phase %x\n",
1711 esp->event, esp->sreg & ESP_STAT_PMASK);
1712 switch (esp->event) {
1713 case ESP_EVENT_CHECK_PHASE:
1714 switch (esp->sreg & ESP_STAT_PMASK) {
1715 case ESP_DOP:
1716 esp_event(esp, ESP_EVENT_DATA_OUT);
1717 break;
1718 case ESP_DIP:
1719 esp_event(esp, ESP_EVENT_DATA_IN);
1720 break;
1721 case ESP_STATP:
1722 esp_flush_fifo(esp);
1723 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1724 esp_event(esp, ESP_EVENT_STATUS);
1725 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1726 return 1;
1728 case ESP_MOP:
1729 esp_event(esp, ESP_EVENT_MSGOUT);
1730 break;
1732 case ESP_MIP:
1733 esp_event(esp, ESP_EVENT_MSGIN);
1734 break;
1736 case ESP_CMDP:
1737 esp_event(esp, ESP_EVENT_CMD_START);
1738 break;
1740 default:
1741 shost_printk(KERN_INFO, esp->host,
1742 "Unexpected phase, sreg=%02x\n",
1743 esp->sreg);
1744 esp_schedule_reset(esp);
1745 return 0;
1747 goto again;
1748 break;
1750 case ESP_EVENT_DATA_IN:
1751 write = 1;
1752 /* fallthru */
1754 case ESP_EVENT_DATA_OUT: {
1755 struct esp_cmd_entry *ent = esp->active_cmd;
1756 struct scsi_cmnd *cmd = ent->cmd;
1757 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1758 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1760 if (esp->rev == ESP100)
1761 scsi_esp_cmd(esp, ESP_CMD_NULL);
1763 if (write)
1764 ent->flags |= ESP_CMD_FLAG_WRITE;
1765 else
1766 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1768 if (esp->ops->dma_length_limit)
1769 dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1770 dma_len);
1771 else
1772 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1774 esp->data_dma_len = dma_len;
1776 if (!dma_len) {
1777 shost_printk(KERN_ERR, esp->host,
1778 "DMA length is zero!\n");
1779 shost_printk(KERN_ERR, esp->host,
1780 "cur adr[%08llx] len[%08x]\n",
1781 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1782 esp_cur_dma_len(ent, cmd));
1783 esp_schedule_reset(esp);
1784 return 0;
1787 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1788 (unsigned long long)dma_addr, dma_len, write);
1790 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1791 write, ESP_CMD_DMA | ESP_CMD_TI);
1792 esp_event(esp, ESP_EVENT_DATA_DONE);
1793 break;
1795 case ESP_EVENT_DATA_DONE: {
1796 struct esp_cmd_entry *ent = esp->active_cmd;
1797 struct scsi_cmnd *cmd = ent->cmd;
1798 int bytes_sent;
1800 if (esp->ops->dma_error(esp)) {
1801 shost_printk(KERN_INFO, esp->host,
1802 "data done, DMA error, resetting\n");
1803 esp_schedule_reset(esp);
1804 return 0;
1807 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1808 /* XXX parity errors, etc. XXX */
1810 esp->ops->dma_drain(esp);
1812 esp->ops->dma_invalidate(esp);
1814 if (esp->ireg != ESP_INTR_BSERV) {
1815 /* We should always see exactly a bus-service
1816 * interrupt at the end of a successful transfer.
1818 shost_printk(KERN_INFO, esp->host,
1819 "data done, not BSERV, resetting\n");
1820 esp_schedule_reset(esp);
1821 return 0;
1824 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1826 esp_log_datadone("data done flgs[%x] sent[%d]\n",
1827 ent->flags, bytes_sent);
1829 if (bytes_sent < 0) {
1830 /* XXX force sync mode for this target XXX */
1831 esp_schedule_reset(esp);
1832 return 0;
1835 esp_advance_dma(esp, ent, cmd, bytes_sent);
1836 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1837 goto again;
1840 case ESP_EVENT_STATUS: {
1841 struct esp_cmd_entry *ent = esp->active_cmd;
1843 if (esp->ireg & ESP_INTR_FDONE) {
1844 ent->status = esp_read8(ESP_FDATA);
1845 ent->message = esp_read8(ESP_FDATA);
1846 scsi_esp_cmd(esp, ESP_CMD_MOK);
1847 } else if (esp->ireg == ESP_INTR_BSERV) {
1848 ent->status = esp_read8(ESP_FDATA);
1849 ent->message = 0xff;
1850 esp_event(esp, ESP_EVENT_MSGIN);
1851 return 0;
1854 if (ent->message != COMMAND_COMPLETE) {
1855 shost_printk(KERN_INFO, esp->host,
1856 "Unexpected message %x in status\n",
1857 ent->message);
1858 esp_schedule_reset(esp);
1859 return 0;
1862 esp_event(esp, ESP_EVENT_FREE_BUS);
1863 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1864 break;
1866 case ESP_EVENT_FREE_BUS: {
1867 struct esp_cmd_entry *ent = esp->active_cmd;
1868 struct scsi_cmnd *cmd = ent->cmd;
1870 if (ent->message == COMMAND_COMPLETE ||
1871 ent->message == DISCONNECT)
1872 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1874 if (ent->message == COMMAND_COMPLETE) {
1875 esp_log_cmddone("Command done status[%x] message[%x]\n",
1876 ent->status, ent->message);
1877 if (ent->status == SAM_STAT_TASK_SET_FULL)
1878 esp_event_queue_full(esp, ent);
1880 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1881 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1882 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1883 esp_autosense(esp, ent);
1884 } else {
1885 esp_cmd_is_done(esp, ent, cmd,
1886 compose_result(ent->status,
1887 ent->message,
1888 DID_OK));
1890 } else if (ent->message == DISCONNECT) {
1891 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1892 cmd->device->id,
1893 ent->tag[0], ent->tag[1]);
1895 esp->active_cmd = NULL;
1896 esp_maybe_execute_command(esp);
1897 } else {
1898 shost_printk(KERN_INFO, esp->host,
1899 "Unexpected message %x in freebus\n",
1900 ent->message);
1901 esp_schedule_reset(esp);
1902 return 0;
1904 if (esp->active_cmd)
1905 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1906 break;
1908 case ESP_EVENT_MSGOUT: {
1909 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1911 if (esp_debug & ESP_DEBUG_MSGOUT) {
1912 int i;
1913 printk("ESP: Sending message [ ");
1914 for (i = 0; i < esp->msg_out_len; i++)
1915 printk("%02x ", esp->msg_out[i]);
1916 printk("]\n");
1919 if (esp->rev == FASHME) {
1920 int i;
1922 /* Always use the fifo. */
1923 for (i = 0; i < esp->msg_out_len; i++) {
1924 esp_write8(esp->msg_out[i], ESP_FDATA);
1925 esp_write8(0, ESP_FDATA);
1927 scsi_esp_cmd(esp, ESP_CMD_TI);
1928 } else {
1929 if (esp->msg_out_len == 1) {
1930 esp_write8(esp->msg_out[0], ESP_FDATA);
1931 scsi_esp_cmd(esp, ESP_CMD_TI);
1932 } else if (esp->flags & ESP_FLAG_USE_FIFO) {
1933 for (i = 0; i < esp->msg_out_len; i++)
1934 esp_write8(esp->msg_out[i], ESP_FDATA);
1935 scsi_esp_cmd(esp, ESP_CMD_TI);
1936 } else {
1937 /* Use DMA. */
1938 memcpy(esp->command_block,
1939 esp->msg_out,
1940 esp->msg_out_len);
1942 esp->ops->send_dma_cmd(esp,
1943 esp->command_block_dma,
1944 esp->msg_out_len,
1945 esp->msg_out_len,
1947 ESP_CMD_DMA|ESP_CMD_TI);
1950 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1951 break;
1953 case ESP_EVENT_MSGOUT_DONE:
1954 if (esp->rev == FASHME) {
1955 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1956 } else {
1957 if (esp->msg_out_len > 1)
1958 esp->ops->dma_invalidate(esp);
1961 if (!(esp->ireg & ESP_INTR_DC)) {
1962 if (esp->rev != FASHME)
1963 scsi_esp_cmd(esp, ESP_CMD_NULL);
1965 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1966 goto again;
1967 case ESP_EVENT_MSGIN:
1968 if (esp->ireg & ESP_INTR_BSERV) {
1969 if (esp->rev == FASHME) {
1970 if (!(esp_read8(ESP_STATUS2) &
1971 ESP_STAT2_FEMPTY))
1972 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1973 } else {
1974 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1975 if (esp->rev == ESP100)
1976 scsi_esp_cmd(esp, ESP_CMD_NULL);
1978 scsi_esp_cmd(esp, ESP_CMD_TI);
1979 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1980 return 1;
1982 if (esp->ireg & ESP_INTR_FDONE) {
1983 u8 val;
1985 if (esp->rev == FASHME)
1986 val = esp->fifo[0];
1987 else
1988 val = esp_read8(ESP_FDATA);
1989 esp->msg_in[esp->msg_in_len++] = val;
1991 esp_log_msgin("Got msgin byte %x\n", val);
1993 if (!esp_msgin_process(esp))
1994 esp->msg_in_len = 0;
1996 if (esp->rev == FASHME)
1997 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1999 scsi_esp_cmd(esp, ESP_CMD_MOK);
2001 if (esp->event != ESP_EVENT_FREE_BUS)
2002 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2003 } else {
2004 shost_printk(KERN_INFO, esp->host,
2005 "MSGIN neither BSERV not FDON, resetting");
2006 esp_schedule_reset(esp);
2007 return 0;
2009 break;
2010 case ESP_EVENT_CMD_START:
2011 memcpy(esp->command_block, esp->cmd_bytes_ptr,
2012 esp->cmd_bytes_left);
2013 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2014 esp_event(esp, ESP_EVENT_CMD_DONE);
2015 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2016 break;
2017 case ESP_EVENT_CMD_DONE:
2018 esp->ops->dma_invalidate(esp);
2019 if (esp->ireg & ESP_INTR_BSERV) {
2020 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2021 goto again;
2023 esp_schedule_reset(esp);
2024 return 0;
2025 break;
2027 case ESP_EVENT_RESET:
2028 scsi_esp_cmd(esp, ESP_CMD_RS);
2029 break;
2031 default:
2032 shost_printk(KERN_INFO, esp->host,
2033 "Unexpected event %x, resetting\n", esp->event);
2034 esp_schedule_reset(esp);
2035 return 0;
2036 break;
2038 return 1;
2041 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2043 struct scsi_cmnd *cmd = ent->cmd;
2045 esp_unmap_dma(esp, cmd);
2046 esp_free_lun_tag(ent, cmd->device->hostdata);
2047 cmd->result = DID_RESET << 16;
2049 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
2050 esp->ops->unmap_single(esp, ent->sense_dma,
2051 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
2052 ent->sense_ptr = NULL;
2055 cmd->scsi_done(cmd);
2056 list_del(&ent->list);
2057 esp_put_ent(esp, ent);
2060 static void esp_clear_hold(struct scsi_device *dev, void *data)
2062 struct esp_lun_data *lp = dev->hostdata;
2064 BUG_ON(lp->num_tagged);
2065 lp->hold = 0;
2068 static void esp_reset_cleanup(struct esp *esp)
2070 struct esp_cmd_entry *ent, *tmp;
2071 int i;
2073 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2074 struct scsi_cmnd *cmd = ent->cmd;
2076 list_del(&ent->list);
2077 cmd->result = DID_RESET << 16;
2078 cmd->scsi_done(cmd);
2079 esp_put_ent(esp, ent);
2082 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2083 if (ent == esp->active_cmd)
2084 esp->active_cmd = NULL;
2085 esp_reset_cleanup_one(esp, ent);
2088 BUG_ON(esp->active_cmd != NULL);
2090 /* Force renegotiation of sync/wide transfers. */
2091 for (i = 0; i < ESP_MAX_TARGET; i++) {
2092 struct esp_target_data *tp = &esp->target[i];
2094 tp->esp_period = 0;
2095 tp->esp_offset = 0;
2096 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2097 ESP_CONFIG3_FSCSI |
2098 ESP_CONFIG3_FAST);
2099 tp->flags &= ~ESP_TGT_WIDE;
2100 tp->flags |= ESP_TGT_CHECK_NEGO;
2102 if (tp->starget)
2103 __starget_for_each_device(tp->starget, NULL,
2104 esp_clear_hold);
2106 esp->flags &= ~ESP_FLAG_RESETTING;
2109 /* Runs under host->lock */
2110 static void __esp_interrupt(struct esp *esp)
2112 int finish_reset, intr_done;
2113 u8 phase;
2116 * Once INTRPT is read STATUS and SSTEP are cleared.
2118 esp->sreg = esp_read8(ESP_STATUS);
2119 esp->seqreg = esp_read8(ESP_SSTEP);
2120 esp->ireg = esp_read8(ESP_INTRPT);
2122 if (esp->flags & ESP_FLAG_RESETTING) {
2123 finish_reset = 1;
2124 } else {
2125 if (esp_check_gross_error(esp))
2126 return;
2128 finish_reset = esp_check_spur_intr(esp);
2129 if (finish_reset < 0)
2130 return;
2133 if (esp->ireg & ESP_INTR_SR)
2134 finish_reset = 1;
2136 if (finish_reset) {
2137 esp_reset_cleanup(esp);
2138 if (esp->eh_reset) {
2139 complete(esp->eh_reset);
2140 esp->eh_reset = NULL;
2142 return;
2145 phase = (esp->sreg & ESP_STAT_PMASK);
2146 if (esp->rev == FASHME) {
2147 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2148 esp->select_state == ESP_SELECT_NONE &&
2149 esp->event != ESP_EVENT_STATUS &&
2150 esp->event != ESP_EVENT_DATA_DONE) ||
2151 (esp->ireg & ESP_INTR_RSEL)) {
2152 esp->sreg2 = esp_read8(ESP_STATUS2);
2153 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2154 (esp->sreg2 & ESP_STAT2_F1BYTE))
2155 hme_read_fifo(esp);
2159 esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2160 "sreg2[%02x] ireg[%02x]\n",
2161 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2163 intr_done = 0;
2165 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2166 shost_printk(KERN_INFO, esp->host,
2167 "unexpected IREG %02x\n", esp->ireg);
2168 if (esp->ireg & ESP_INTR_IC)
2169 esp_dump_cmd_log(esp);
2171 esp_schedule_reset(esp);
2172 } else {
2173 if (!(esp->ireg & ESP_INTR_RSEL)) {
2174 /* Some combination of FDONE, BSERV, DC. */
2175 if (esp->select_state != ESP_SELECT_NONE)
2176 intr_done = esp_finish_select(esp);
2177 } else if (esp->ireg & ESP_INTR_RSEL) {
2178 if (esp->active_cmd)
2179 (void) esp_finish_select(esp);
2180 intr_done = esp_reconnect(esp);
2183 while (!intr_done)
2184 intr_done = esp_process_event(esp);
2187 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2189 struct esp *esp = dev_id;
2190 unsigned long flags;
2191 irqreturn_t ret;
2193 spin_lock_irqsave(esp->host->host_lock, flags);
2194 ret = IRQ_NONE;
2195 if (esp->ops->irq_pending(esp)) {
2196 ret = IRQ_HANDLED;
2197 for (;;) {
2198 int i;
2200 __esp_interrupt(esp);
2201 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2202 break;
2203 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2205 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2206 if (esp->ops->irq_pending(esp))
2207 break;
2209 if (i == ESP_QUICKIRQ_LIMIT)
2210 break;
2213 spin_unlock_irqrestore(esp->host->host_lock, flags);
2215 return ret;
2217 EXPORT_SYMBOL(scsi_esp_intr);
2219 static void esp_get_revision(struct esp *esp)
2221 u8 val;
2223 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2224 if (esp->config2 == 0) {
2225 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2226 esp_write8(esp->config2, ESP_CFG2);
2228 val = esp_read8(ESP_CFG2);
2229 val &= ~ESP_CONFIG2_MAGIC;
2231 esp->config2 = 0;
2232 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2234 * If what we write to cfg2 does not come back,
2235 * cfg2 is not implemented.
2236 * Therefore this must be a plain esp100.
2238 esp->rev = ESP100;
2239 return;
2243 esp_set_all_config3(esp, 5);
2244 esp->prev_cfg3 = 5;
2245 esp_write8(esp->config2, ESP_CFG2);
2246 esp_write8(0, ESP_CFG3);
2247 esp_write8(esp->prev_cfg3, ESP_CFG3);
2249 val = esp_read8(ESP_CFG3);
2250 if (val != 5) {
2251 /* The cfg2 register is implemented, however
2252 * cfg3 is not, must be esp100a.
2254 esp->rev = ESP100A;
2255 } else {
2256 esp_set_all_config3(esp, 0);
2257 esp->prev_cfg3 = 0;
2258 esp_write8(esp->prev_cfg3, ESP_CFG3);
2260 /* All of cfg{1,2,3} implemented, must be one of
2261 * the fas variants, figure out which one.
2263 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2264 esp->rev = FAST;
2265 esp->sync_defp = SYNC_DEFP_FAST;
2266 } else {
2267 esp->rev = ESP236;
2272 static void esp_init_swstate(struct esp *esp)
2274 int i;
2276 INIT_LIST_HEAD(&esp->queued_cmds);
2277 INIT_LIST_HEAD(&esp->active_cmds);
2278 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2280 /* Start with a clear state, domain validation (via ->slave_configure,
2281 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2282 * commands.
2284 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2285 esp->target[i].flags = 0;
2286 esp->target[i].nego_goal_period = 0;
2287 esp->target[i].nego_goal_offset = 0;
2288 esp->target[i].nego_goal_width = 0;
2289 esp->target[i].nego_goal_tags = 0;
2293 /* This places the ESP into a known state at boot time. */
2294 static void esp_bootup_reset(struct esp *esp)
2296 u8 val;
2298 /* Reset the DMA */
2299 esp->ops->reset_dma(esp);
2301 /* Reset the ESP */
2302 esp_reset_esp(esp);
2304 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2305 val = esp_read8(ESP_CFG1);
2306 val |= ESP_CONFIG1_SRRDISAB;
2307 esp_write8(val, ESP_CFG1);
2309 scsi_esp_cmd(esp, ESP_CMD_RS);
2310 udelay(400);
2312 esp_write8(esp->config1, ESP_CFG1);
2314 /* Eat any bitrot in the chip and we are done... */
2315 esp_read8(ESP_INTRPT);
2318 static void esp_set_clock_params(struct esp *esp)
2320 int fhz;
2321 u8 ccf;
2323 /* This is getting messy but it has to be done correctly or else
2324 * you get weird behavior all over the place. We are trying to
2325 * basically figure out three pieces of information.
2327 * a) Clock Conversion Factor
2329 * This is a representation of the input crystal clock frequency
2330 * going into the ESP on this machine. Any operation whose timing
2331 * is longer than 400ns depends on this value being correct. For
2332 * example, you'll get blips for arbitration/selection during high
2333 * load or with multiple targets if this is not set correctly.
2335 * b) Selection Time-Out
2337 * The ESP isn't very bright and will arbitrate for the bus and try
2338 * to select a target forever if you let it. This value tells the
2339 * ESP when it has taken too long to negotiate and that it should
2340 * interrupt the CPU so we can see what happened. The value is
2341 * computed as follows (from NCR/Symbios chip docs).
2343 * (Time Out Period) * (Input Clock)
2344 * STO = ----------------------------------
2345 * (8192) * (Clock Conversion Factor)
2347 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2349 * c) Imperical constants for synchronous offset and transfer period
2350 * register values
2352 * This entails the smallest and largest sync period we could ever
2353 * handle on this ESP.
2355 fhz = esp->cfreq;
2357 ccf = ((fhz / 1000000) + 4) / 5;
2358 if (ccf == 1)
2359 ccf = 2;
2361 /* If we can't find anything reasonable, just assume 20MHZ.
2362 * This is the clock frequency of the older sun4c's where I've
2363 * been unable to find the clock-frequency PROM property. All
2364 * other machines provide useful values it seems.
2366 if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2367 fhz = 20000000;
2368 ccf = 4;
2371 esp->cfact = (ccf == 8 ? 0 : ccf);
2372 esp->cfreq = fhz;
2373 esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2374 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2375 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2376 esp->sync_defp = SYNC_DEFP_SLOW;
2379 static const char *esp_chip_names[] = {
2380 "ESP100",
2381 "ESP100A",
2382 "ESP236",
2383 "FAS236",
2384 "FAS100A",
2385 "FAST",
2386 "FASHME",
2387 "AM53C974",
2390 static struct scsi_transport_template *esp_transport_template;
2392 int scsi_esp_register(struct esp *esp, struct device *dev)
2394 static int instance;
2395 int err;
2397 if (!esp->num_tags)
2398 esp->num_tags = ESP_DEFAULT_TAGS;
2399 esp->host->transportt = esp_transport_template;
2400 esp->host->max_lun = ESP_MAX_LUN;
2401 esp->host->cmd_per_lun = 2;
2402 esp->host->unique_id = instance;
2404 esp_set_clock_params(esp);
2406 esp_get_revision(esp);
2408 esp_init_swstate(esp);
2410 esp_bootup_reset(esp);
2412 dev_printk(KERN_INFO, dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2413 esp->host->unique_id, esp->regs, esp->dma_regs,
2414 esp->host->irq);
2415 dev_printk(KERN_INFO, dev,
2416 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2417 esp->host->unique_id, esp_chip_names[esp->rev],
2418 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2420 /* Let the SCSI bus reset settle. */
2421 ssleep(esp_bus_reset_settle);
2423 err = scsi_add_host(esp->host, dev);
2424 if (err)
2425 return err;
2427 instance++;
2429 scsi_scan_host(esp->host);
2431 return 0;
2433 EXPORT_SYMBOL(scsi_esp_register);
2435 void scsi_esp_unregister(struct esp *esp)
2437 scsi_remove_host(esp->host);
2439 EXPORT_SYMBOL(scsi_esp_unregister);
2441 static int esp_target_alloc(struct scsi_target *starget)
2443 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2444 struct esp_target_data *tp = &esp->target[starget->id];
2446 tp->starget = starget;
2448 return 0;
2451 static void esp_target_destroy(struct scsi_target *starget)
2453 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2454 struct esp_target_data *tp = &esp->target[starget->id];
2456 tp->starget = NULL;
2459 static int esp_slave_alloc(struct scsi_device *dev)
2461 struct esp *esp = shost_priv(dev->host);
2462 struct esp_target_data *tp = &esp->target[dev->id];
2463 struct esp_lun_data *lp;
2465 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2466 if (!lp)
2467 return -ENOMEM;
2468 dev->hostdata = lp;
2470 spi_min_period(tp->starget) = esp->min_period;
2471 spi_max_offset(tp->starget) = 15;
2473 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2474 spi_max_width(tp->starget) = 1;
2475 else
2476 spi_max_width(tp->starget) = 0;
2478 return 0;
2481 static int esp_slave_configure(struct scsi_device *dev)
2483 struct esp *esp = shost_priv(dev->host);
2484 struct esp_target_data *tp = &esp->target[dev->id];
2486 if (dev->tagged_supported)
2487 scsi_change_queue_depth(dev, esp->num_tags);
2489 tp->flags |= ESP_TGT_DISCONNECT;
2491 if (!spi_initial_dv(dev->sdev_target))
2492 spi_dv_device(dev);
2494 return 0;
2497 static void esp_slave_destroy(struct scsi_device *dev)
2499 struct esp_lun_data *lp = dev->hostdata;
2501 kfree(lp);
2502 dev->hostdata = NULL;
2505 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2507 struct esp *esp = shost_priv(cmd->device->host);
2508 struct esp_cmd_entry *ent, *tmp;
2509 struct completion eh_done;
2510 unsigned long flags;
2512 /* XXX This helps a lot with debugging but might be a bit
2513 * XXX much for the final driver.
2515 spin_lock_irqsave(esp->host->host_lock, flags);
2516 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2517 cmd, cmd->cmnd[0]);
2518 ent = esp->active_cmd;
2519 if (ent)
2520 shost_printk(KERN_ERR, esp->host,
2521 "Current command [%p:%02x]\n",
2522 ent->cmd, ent->cmd->cmnd[0]);
2523 list_for_each_entry(ent, &esp->queued_cmds, list) {
2524 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2525 ent->cmd, ent->cmd->cmnd[0]);
2527 list_for_each_entry(ent, &esp->active_cmds, list) {
2528 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2529 ent->cmd, ent->cmd->cmnd[0]);
2531 esp_dump_cmd_log(esp);
2532 spin_unlock_irqrestore(esp->host->host_lock, flags);
2534 spin_lock_irqsave(esp->host->host_lock, flags);
2536 ent = NULL;
2537 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2538 if (tmp->cmd == cmd) {
2539 ent = tmp;
2540 break;
2544 if (ent) {
2545 /* Easiest case, we didn't even issue the command
2546 * yet so it is trivial to abort.
2548 list_del(&ent->list);
2550 cmd->result = DID_ABORT << 16;
2551 cmd->scsi_done(cmd);
2553 esp_put_ent(esp, ent);
2555 goto out_success;
2558 init_completion(&eh_done);
2560 ent = esp->active_cmd;
2561 if (ent && ent->cmd == cmd) {
2562 /* Command is the currently active command on
2563 * the bus. If we already have an output message
2564 * pending, no dice.
2566 if (esp->msg_out_len)
2567 goto out_failure;
2569 /* Send out an abort, encouraging the target to
2570 * go to MSGOUT phase by asserting ATN.
2572 esp->msg_out[0] = ABORT_TASK_SET;
2573 esp->msg_out_len = 1;
2574 ent->eh_done = &eh_done;
2576 scsi_esp_cmd(esp, ESP_CMD_SATN);
2577 } else {
2578 /* The command is disconnected. This is not easy to
2579 * abort. For now we fail and let the scsi error
2580 * handling layer go try a scsi bus reset or host
2581 * reset.
2583 * What we could do is put together a scsi command
2584 * solely for the purpose of sending an abort message
2585 * to the target. Coming up with all the code to
2586 * cook up scsi commands, special case them everywhere,
2587 * etc. is for questionable gain and it would be better
2588 * if the generic scsi error handling layer could do at
2589 * least some of that for us.
2591 * Anyways this is an area for potential future improvement
2592 * in this driver.
2594 goto out_failure;
2597 spin_unlock_irqrestore(esp->host->host_lock, flags);
2599 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2600 spin_lock_irqsave(esp->host->host_lock, flags);
2601 ent->eh_done = NULL;
2602 spin_unlock_irqrestore(esp->host->host_lock, flags);
2604 return FAILED;
2607 return SUCCESS;
2609 out_success:
2610 spin_unlock_irqrestore(esp->host->host_lock, flags);
2611 return SUCCESS;
2613 out_failure:
2614 /* XXX This might be a good location to set ESP_TGT_BROKEN
2615 * XXX since we know which target/lun in particular is
2616 * XXX causing trouble.
2618 spin_unlock_irqrestore(esp->host->host_lock, flags);
2619 return FAILED;
2622 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2624 struct esp *esp = shost_priv(cmd->device->host);
2625 struct completion eh_reset;
2626 unsigned long flags;
2628 init_completion(&eh_reset);
2630 spin_lock_irqsave(esp->host->host_lock, flags);
2632 esp->eh_reset = &eh_reset;
2634 /* XXX This is too simple... We should add lots of
2635 * XXX checks here so that if we find that the chip is
2636 * XXX very wedged we return failure immediately so
2637 * XXX that we can perform a full chip reset.
2639 esp->flags |= ESP_FLAG_RESETTING;
2640 scsi_esp_cmd(esp, ESP_CMD_RS);
2642 spin_unlock_irqrestore(esp->host->host_lock, flags);
2644 ssleep(esp_bus_reset_settle);
2646 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2647 spin_lock_irqsave(esp->host->host_lock, flags);
2648 esp->eh_reset = NULL;
2649 spin_unlock_irqrestore(esp->host->host_lock, flags);
2651 return FAILED;
2654 return SUCCESS;
2657 /* All bets are off, reset the entire device. */
2658 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2660 struct esp *esp = shost_priv(cmd->device->host);
2661 unsigned long flags;
2663 spin_lock_irqsave(esp->host->host_lock, flags);
2664 esp_bootup_reset(esp);
2665 esp_reset_cleanup(esp);
2666 spin_unlock_irqrestore(esp->host->host_lock, flags);
2668 ssleep(esp_bus_reset_settle);
2670 return SUCCESS;
2673 static const char *esp_info(struct Scsi_Host *host)
2675 return "esp";
2678 struct scsi_host_template scsi_esp_template = {
2679 .module = THIS_MODULE,
2680 .name = "esp",
2681 .info = esp_info,
2682 .queuecommand = esp_queuecommand,
2683 .target_alloc = esp_target_alloc,
2684 .target_destroy = esp_target_destroy,
2685 .slave_alloc = esp_slave_alloc,
2686 .slave_configure = esp_slave_configure,
2687 .slave_destroy = esp_slave_destroy,
2688 .eh_abort_handler = esp_eh_abort_handler,
2689 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2690 .eh_host_reset_handler = esp_eh_host_reset_handler,
2691 .can_queue = 7,
2692 .this_id = 7,
2693 .sg_tablesize = SG_ALL,
2694 .use_clustering = ENABLE_CLUSTERING,
2695 .max_sectors = 0xffff,
2696 .skip_settle_delay = 1,
2698 EXPORT_SYMBOL(scsi_esp_template);
2700 static void esp_get_signalling(struct Scsi_Host *host)
2702 struct esp *esp = shost_priv(host);
2703 enum spi_signal_type type;
2705 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2706 type = SPI_SIGNAL_HVD;
2707 else
2708 type = SPI_SIGNAL_SE;
2710 spi_signalling(host) = type;
2713 static void esp_set_offset(struct scsi_target *target, int offset)
2715 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2716 struct esp *esp = shost_priv(host);
2717 struct esp_target_data *tp = &esp->target[target->id];
2719 if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2720 tp->nego_goal_offset = 0;
2721 else
2722 tp->nego_goal_offset = offset;
2723 tp->flags |= ESP_TGT_CHECK_NEGO;
2726 static void esp_set_period(struct scsi_target *target, int period)
2728 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2729 struct esp *esp = shost_priv(host);
2730 struct esp_target_data *tp = &esp->target[target->id];
2732 tp->nego_goal_period = period;
2733 tp->flags |= ESP_TGT_CHECK_NEGO;
2736 static void esp_set_width(struct scsi_target *target, int width)
2738 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2739 struct esp *esp = shost_priv(host);
2740 struct esp_target_data *tp = &esp->target[target->id];
2742 tp->nego_goal_width = (width ? 1 : 0);
2743 tp->flags |= ESP_TGT_CHECK_NEGO;
2746 static struct spi_function_template esp_transport_ops = {
2747 .set_offset = esp_set_offset,
2748 .show_offset = 1,
2749 .set_period = esp_set_period,
2750 .show_period = 1,
2751 .set_width = esp_set_width,
2752 .show_width = 1,
2753 .get_signalling = esp_get_signalling,
2756 static int __init esp_init(void)
2758 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2759 sizeof(struct esp_cmd_priv));
2761 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2762 if (!esp_transport_template)
2763 return -ENODEV;
2765 return 0;
2768 static void __exit esp_exit(void)
2770 spi_release_transport(esp_transport_template);
2773 MODULE_DESCRIPTION("ESP SCSI driver core");
2774 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2775 MODULE_LICENSE("GPL");
2776 MODULE_VERSION(DRV_VERSION);
2778 module_param(esp_bus_reset_settle, int, 0);
2779 MODULE_PARM_DESC(esp_bus_reset_settle,
2780 "ESP scsi bus reset delay in seconds");
2782 module_param(esp_debug, int, 0);
2783 MODULE_PARM_DESC(esp_debug,
2784 "ESP bitmapped debugging message enable value:\n"
2785 " 0x00000001 Log interrupt events\n"
2786 " 0x00000002 Log scsi commands\n"
2787 " 0x00000004 Log resets\n"
2788 " 0x00000008 Log message in events\n"
2789 " 0x00000010 Log message out events\n"
2790 " 0x00000020 Log command completion\n"
2791 " 0x00000040 Log disconnects\n"
2792 " 0x00000080 Log data start\n"
2793 " 0x00000100 Log data done\n"
2794 " 0x00000200 Log reconnects\n"
2795 " 0x00000400 Log auto-sense data\n"
2798 module_init(esp_init);
2799 module_exit(esp_exit);