2 * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3 * onboard audio. See notes in Documentation/sound/oss/vwsnd .
5 * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #undef VWSND_DEBUG /* define for debugging */
28 * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29 * Bug - if select() called before read(), pcm_setup() not called.
30 * Bug - output doesn't stop soon enough if process killed.
36 * Will readv/writev work? Write a test.
38 * insmod/rmmod 100 million times.
40 * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
43 * Concurrent threads banging on mixer simultaneously, both UP
44 * and SMP kernels. Especially, watch for thread A changing
45 * OUTSRC while thread B changes gain -- both write to the same
48 * What happens if a client opens /dev/audio then forks?
49 * Do two procs have /dev/audio open? Test.
51 * Pump audio through the CD, MIC and line inputs and verify that
52 * they mix/mute into the output.
61 * need more input apps
63 * Run tests while bombarding with signals. setitimer(2) will do it... */
66 * This driver is organized in nine sections.
67 * The nine sections are:
70 * low level lithium access
71 * high level lithium access
77 * initialization and loadable kernel module interface
79 * That is roughly the order of increasing abstraction, so forward
80 * dependencies are minimal.
86 * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87 * open descriptors to this driver. They store it in vwsnd_use_count.
88 * The global device list, vwsnd_dev_list, is immutable when the IN_USE
91 * devc->open_lock is a semaphore that is used to enforce the
92 * single reader/single writer rule for /dev/audio. The rule is
93 * that each device may have at most one reader and one writer.
94 * Open will block until the previous client has closed the
95 * device, unless O_NONBLOCK is specified.
97 * The semaphore devc->io_mutex serializes PCM I/O syscalls. This
98 * is unnecessary in Linux 2.2, because the kernel lock
99 * serializes read, write, and ioctl globally, but it's there,
100 * ready for the brave, new post-kernel-lock world.
102 * Locking between interrupt and baselevel is handled by the
103 * "lock" spinlock in vwsnd_port (one lock each for read and
104 * write). Each half holds the lock just long enough to see what
105 * area it owns and update its pointers. See pcm_output() and
106 * pcm_input() for most of the gory stuff.
108 * devc->mix_mutex serializes all mixer ioctls. This is also
109 * redundant because of the kernel lock.
111 * The lowest level lock is lith->lithium_lock. It is a
112 * spinlock which is held during the two-register tango of
113 * reading/writing an AD1843 register. See
114 * li_{read,write}_ad1843_reg().
118 * Sample Format Notes
120 * Lithium's DMA engine has two formats: 16-bit 2's complement
121 * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
122 * bytes per sample. 8-bit unsigned transfers 1 byte per sample
123 * and XORs each byte with 0x80. Lithium can input or output
124 * either mono or stereo in either format.
126 * The AD1843 has four formats: 16-bit 2's complement, 8-bit
127 * unsigned, 8-bit mu-Law and 8-bit A-Law.
129 * This driver supports five formats: AFMT_S8, AFMT_U8,
130 * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
132 * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133 * rely on Lithium's XOR to translate between U8 and S8.
135 * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136 * the 0x80 bit in software to compensate for Lithium's XOR.
137 * This happens in pcm_copy_{in,out}().
140 * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141 * Added some __init/__exit
144 #include <linux/module.h>
145 #include <linux/init.h>
147 #include <linux/spinlock.h>
148 #include <linux/wait.h>
149 #include <linux/interrupt.h>
150 #include <linux/mutex.h>
151 #include <linux/slab.h>
152 #include <linux/delay.h>
154 #include <asm/visws/cobalt.h>
156 #include "sound_config.h"
158 static DEFINE_MUTEX(vwsnd_mutex
);
160 /*****************************************************************************/
165 static int shut_up
= 1;
168 * dbgassert - called when an assertion fails.
171 static void dbgassert(const char *fcn
, int line
, const char *expr
)
174 panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
175 __FILE__
, fcn
, line
, expr
);
178 printk(KERN_ERR
"ASSERTION FAILED, %s:%s:%d %s\n",
179 __FILE__
, fcn
, line
, expr
);
180 x
= * (volatile int *) 0; /* force proc to exit */
185 * Bunch of useful debug macros:
187 * ASSERT - print unless e nonzero (panic if in interrupt)
188 * DBGDO - include arbitrary code if debugging
189 * DBGX - debug print raw (w/o function name)
190 * DBGP - debug print w/ function name
191 * DBGE - debug print function entry
192 * DBGC - debug print function call
193 * DBGR - debug print function return
194 * DBGXV - debug print raw when verbose
195 * DBGPV - debug print when verbose
196 * DBGEV - debug print function entry when verbose
197 * DBGRV - debug print function return when verbose
200 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e))
202 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
203 #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args))
204 #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args))
205 #define DBGC(rtn) (DBGP("calling %s\n", rtn))
206 #define DBGR() (DBGP("returning\n"))
207 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
208 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
209 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
210 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
211 #define DBGRV() (shut_up ? 0 : DBGR())
213 #else /* !VWSND_DEBUG */
215 #define ASSERT(e) ((void) 0)
216 #define DBGDO(x) /* don't */
217 #define DBGX(fmt, args...) ((void) 0)
218 #define DBGP(fmt, args...) ((void) 0)
219 #define DBGE(fmt, args...) ((void) 0)
220 #define DBGC(rtn) ((void) 0)
221 #define DBGR() ((void) 0)
222 #define DBGPV(fmt, args...) ((void) 0)
223 #define DBGXV(fmt, args...) ((void) 0)
224 #define DBGEV(fmt, args...) ((void) 0)
225 #define DBGCV(rtn) ((void) 0)
226 #define DBGRV() ((void) 0)
228 #endif /* !VWSND_DEBUG */
230 /*****************************************************************************/
231 /* low level lithium access */
234 * We need to talk to Lithium registers on three pages. Here are
235 * the pages' offsets from the base address (0xFF001000).
239 LI_PAGE0_OFFSET
= 0x01000 - 0x1000, /* FF001000 */
240 LI_PAGE1_OFFSET
= 0x0F000 - 0x1000, /* FF00F000 */
241 LI_PAGE2_OFFSET
= 0x10000 - 0x1000, /* FF010000 */
244 /* low-level lithium data */
246 typedef struct lithium
{
247 void * page0
; /* virtual addresses */
250 spinlock_t lock
; /* protects codec and UST/MSC access */
254 * li_destroy destroys the lithium_t structure and vm mappings.
257 static void li_destroy(lithium_t
*lith
)
260 iounmap(lith
->page0
);
264 iounmap(lith
->page1
);
268 iounmap(lith
->page2
);
274 * li_create initializes the lithium_t structure and sets up vm mappings
275 * to access the registers.
276 * Returns 0 on success, -errno on failure.
279 static int __init
li_create(lithium_t
*lith
, unsigned long baseaddr
)
281 spin_lock_init(&lith
->lock
);
282 lith
->page0
= ioremap_nocache(baseaddr
+ LI_PAGE0_OFFSET
, PAGE_SIZE
);
283 lith
->page1
= ioremap_nocache(baseaddr
+ LI_PAGE1_OFFSET
, PAGE_SIZE
);
284 lith
->page2
= ioremap_nocache(baseaddr
+ LI_PAGE2_OFFSET
, PAGE_SIZE
);
285 if (!lith
->page0
|| !lith
->page1
|| !lith
->page2
) {
293 * basic register accessors - read/write long/byte
296 static __inline__
unsigned long li_readl(lithium_t
*lith
, int off
)
298 return * (volatile unsigned long *) (lith
->page0
+ off
);
301 static __inline__
unsigned char li_readb(lithium_t
*lith
, int off
)
303 return * (volatile unsigned char *) (lith
->page0
+ off
);
306 static __inline__
void li_writel(lithium_t
*lith
, int off
, unsigned long val
)
308 * (volatile unsigned long *) (lith
->page0
+ off
) = val
;
311 static __inline__
void li_writeb(lithium_t
*lith
, int off
, unsigned char val
)
313 * (volatile unsigned char *) (lith
->page0
+ off
) = val
;
316 /*****************************************************************************/
317 /* High Level Lithium Access */
322 * Lithium has two dedicated DMA channels for audio. They are known
323 * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
324 * input, and comm2 is for output. Each is controlled by three
325 * registers: BASE (base address), CFG (config) and CCTL
328 * Each DMA channel points to a physically contiguous ring buffer in
329 * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
330 * There are three pointers into the ring buffer: read, write, and
331 * trigger. The pointers are 8 bits each. Each pointer points to
332 * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
333 * so there is no finer-granularity control.
335 * In comm1, the hardware updates the write ptr, and software updates
336 * the read ptr. In comm2, it's the opposite: hardware updates the
337 * read ptr, and software updates the write ptr. I designate the
338 * hardware-updated ptr as the hwptr, and the software-updated ptr as
341 * The trigger ptr and trigger mask are used to trigger interrupts.
342 * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
346 * A three bit wide field that represents a power of two mask
347 * that is used whenever the trigger pointer is compared to its
348 * respective read or write pointer. A value of zero here
349 * implies a mask of 0xFF and a value of seven implies a mask
350 * 0x01. This value can be used to sub-divide the ring buffer
351 * into pie sections so that interrupts monitor the progress of
352 * hardware from section to section.
354 * My interpretation of that is, whenever the hw ptr is updated, it is
355 * compared with the trigger ptr, and the result is masked by the
356 * trigger mask. (Actually, by the complement of the trigger mask.)
357 * If the result is zero, an interrupt is triggered. I.e., interrupt
358 * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
359 * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
361 * In yet different words, setting tmreg to 0 causes an interrupt after
362 * every 256 DMA chunks (8192 bytes) or once per traversal of the
363 * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
364 * (64 bytes) or 128 times per traversal of the ring buffer.
367 /* Lithium register offsets and bit definitions */
369 #define LI_HOST_CONTROLLER 0x000
370 # define LI_HC_RESET 0x00008000
371 # define LI_HC_LINK_ENABLE 0x00004000
372 # define LI_HC_LINK_FAILURE 0x00000004
373 # define LI_HC_LINK_CODEC 0x00000002
374 # define LI_HC_LINK_READY 0x00000001
376 #define LI_INTR_STATUS 0x010
377 #define LI_INTR_MASK 0x014
378 # define LI_INTR_LINK_ERR 0x00008000
379 # define LI_INTR_COMM2_TRIG 0x00000008
380 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
381 # define LI_INTR_COMM1_TRIG 0x00000002
382 # define LI_INTR_COMM1_OVERFLOW 0x00000001
384 #define LI_CODEC_COMMAND 0x018
385 # define LI_CC_BUSY 0x00008000
386 # define LI_CC_DIR 0x00000080
387 # define LI_CC_DIR_RD LI_CC_DIR
388 # define LI_CC_DIR_WR (!LI_CC_DIR)
389 # define LI_CC_ADDR_MASK 0x0000007F
391 #define LI_CODEC_DATA 0x01C
393 #define LI_COMM1_BASE 0x100
394 #define LI_COMM1_CTL 0x104
395 # define LI_CCTL_RESET 0x80000000
396 # define LI_CCTL_SIZE 0x70000000
397 # define LI_CCTL_DMA_ENABLE 0x08000000
398 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */
399 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
400 # define LI_CCTL_RPTR 0x0000FF00
401 # define LI_CCTL_WPTR 0x000000FF
402 #define LI_COMM1_CFG 0x108
403 # define LI_CCFG_LOCK 0x00008000
404 # define LI_CCFG_SLOT 0x00000070
405 # define LI_CCFG_DIRECTION 0x00000008
406 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
407 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
408 # define LI_CCFG_MODE 0x00000004
409 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
410 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE
411 # define LI_CCFG_FORMAT 0x00000003
412 # define LI_CCFG_FMT_8BIT 0x00000000
413 # define LI_CCFG_FMT_16BIT 0x00000001
414 #define LI_COMM2_BASE 0x10C
415 #define LI_COMM2_CTL 0x110
416 /* bit definitions are the same as LI_COMM1_CTL */
417 #define LI_COMM2_CFG 0x114
418 /* bit definitions are the same as LI_COMM1_CFG */
420 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
421 #define LI_UST_HIGH 0x204 /* microseconds since boot */
423 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
424 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
425 #define LI_AUDIO2_UST 0x308 /* counts samples actually */
426 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
429 * Lithium's DMA engine operates on chunks of 32 bytes. We call that
433 #define DMACHUNK_SHIFT 5
434 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
435 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
436 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
439 * Two convenient macros to shift bitfields into/out of position.
441 * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
442 * As long as mask is constant, we trust the compiler will change the
443 * multiply and divide into shifts.
446 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
447 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
450 * dma_chan_desc is invariant information about a Lithium
451 * DMA channel. There are two instances, li_comm1 and li_comm2.
453 * Note that the CCTL register fields are write ptr and read ptr, but what
454 * we care about are which pointer is updated by software and which by
458 typedef struct dma_chan_desc
{
466 unsigned long swptrmask
;
468 int direction
; /* LI_CCTL_DIR_IN/OUT */
471 static const dma_chan_desc_t li_comm1
= {
472 LI_COMM1_BASE
, /* base register offset */
473 LI_COMM1_CFG
, /* config register offset */
474 LI_COMM1_CTL
, /* control register offset */
475 LI_COMM1_CTL
+ 0, /* hw ptr reg offset (write ptr) */
476 LI_COMM1_CTL
+ 1, /* sw ptr reg offset (read ptr) */
477 LI_AUDIO1_UST
, /* ust reg offset */
478 LI_AUDIO1_MSC
, /* msc reg offset */
479 LI_CCTL_RPTR
, /* sw ptr bitmask in ctlval */
480 2, /* ad1843 serial slot */
481 LI_CCFG_DIR_IN
/* direction */
484 static const dma_chan_desc_t li_comm2
= {
485 LI_COMM2_BASE
, /* base register offset */
486 LI_COMM2_CFG
, /* config register offset */
487 LI_COMM2_CTL
, /* control register offset */
488 LI_COMM2_CTL
+ 1, /* hw ptr reg offset (read ptr) */
489 LI_COMM2_CTL
+ 0, /* sw ptr reg offset (writr ptr) */
490 LI_AUDIO2_UST
, /* ust reg offset */
491 LI_AUDIO2_MSC
, /* msc reg offset */
492 LI_CCTL_WPTR
, /* sw ptr bitmask in ctlval */
493 2, /* ad1843 serial slot */
494 LI_CCFG_DIR_OUT
/* direction */
498 * dma_chan is variable information about a Lithium DMA channel.
500 * The desc field points to invariant information.
501 * The lith field points to a lithium_t which is passed
502 * to li_read* and li_write* to access the registers.
503 * The *val fields shadow the lithium registers' contents.
506 typedef struct dma_chan
{
507 const dma_chan_desc_t
*desc
;
509 unsigned long baseval
;
510 unsigned long cfgval
;
511 unsigned long ctlval
;
515 * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
516 * UST is time in microseconds since the system booted, and MSC is a
517 * counter that increments with every audio sample.
520 typedef struct ustmsc
{
521 unsigned long long ust
;
526 * li_ad1843_wait waits until lithium says the AD1843 register
527 * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
529 * Locking: must be called with lithium_lock held.
532 static int li_ad1843_wait(lithium_t
*lith
)
534 unsigned long later
= jiffies
+ 2;
535 while (li_readl(lith
, LI_CODEC_COMMAND
) & LI_CC_BUSY
)
536 if (time_after_eq(jiffies
, later
))
542 * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
544 * Returns unsigned register value on success, -errno on failure.
547 static int li_read_ad1843_reg(lithium_t
*lith
, int reg
)
551 ASSERT(!in_interrupt());
552 spin_lock(&lith
->lock
);
554 val
= li_ad1843_wait(lith
);
556 li_writel(lith
, LI_CODEC_COMMAND
, LI_CC_DIR_RD
| reg
);
557 val
= li_ad1843_wait(lith
);
560 val
= li_readl(lith
, LI_CODEC_DATA
);
562 spin_unlock(&lith
->lock
);
564 DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
571 * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
574 static void li_write_ad1843_reg(lithium_t
*lith
, int reg
, int newval
)
576 spin_lock(&lith
->lock
);
578 if (li_ad1843_wait(lith
) == 0) {
579 li_writel(lith
, LI_CODEC_DATA
, newval
);
580 li_writel(lith
, LI_CODEC_COMMAND
, LI_CC_DIR_WR
| reg
);
583 spin_unlock(&lith
->lock
);
587 * li_setup_dma calculates all the register settings for DMA in a particular
588 * mode. It takes too many arguments.
591 static void li_setup_dma(dma_chan_t
*chan
,
592 const dma_chan_desc_t
*desc
,
594 unsigned long buffer_paddr
,
600 unsigned long mode
, format
;
601 unsigned long size
, tmask
;
603 DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
604 "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
605 chan
, desc
, lith
, buffer_paddr
,
606 bufshift
, fragshift
, channels
, sampsize
);
608 /* Reset the channel first. */
610 li_writel(lith
, desc
->ctlreg
, LI_CCTL_RESET
);
612 ASSERT(channels
== 1 || channels
== 2);
614 mode
= LI_CCFG_MODE_STEREO
;
616 mode
= LI_CCFG_MODE_MONO
;
617 ASSERT(sampsize
== 1 || sampsize
== 2);
619 format
= LI_CCFG_FMT_16BIT
;
621 format
= LI_CCFG_FMT_8BIT
;
626 * Lithium DMA address register takes a 40-bit physical
627 * address, right-shifted by 8 so it fits in 32 bits. Bit 37
628 * must be set -- it enables cache coherence.
631 ASSERT(!(buffer_paddr
& 0xFF));
632 chan
->baseval
= (buffer_paddr
>> 8) | 1 << (37 - 8);
634 chan
->cfgval
= ((chan
->cfgval
& ~LI_CCFG_LOCK
) |
635 SHIFT_FIELD(desc
->ad1843_slot
, LI_CCFG_SLOT
) |
641 tmask
= 13 - fragshift
; /* See Lithium DMA Notes above. */
642 ASSERT(size
>= 2 && size
<= 7);
643 ASSERT(tmask
>= 1 && tmask
<= 7);
644 chan
->ctlval
= ((chan
->ctlval
& ~LI_CCTL_RESET
) |
645 SHIFT_FIELD(size
, LI_CCTL_SIZE
) |
646 (chan
->ctlval
& ~LI_CCTL_DMA_ENABLE
) |
647 SHIFT_FIELD(tmask
, LI_CCTL_TMASK
) |
648 SHIFT_FIELD(0, LI_CCTL_TPTR
));
650 DBGPV("basereg 0x%x = 0x%lx\n", desc
->basereg
, chan
->baseval
);
651 DBGPV("cfgreg 0x%x = 0x%lx\n", desc
->cfgreg
, chan
->cfgval
);
652 DBGPV("ctlreg 0x%x = 0x%lx\n", desc
->ctlreg
, chan
->ctlval
);
654 li_writel(lith
, desc
->basereg
, chan
->baseval
);
655 li_writel(lith
, desc
->cfgreg
, chan
->cfgval
);
656 li_writel(lith
, desc
->ctlreg
, chan
->ctlval
);
661 static void li_shutdown_dma(dma_chan_t
*chan
)
663 lithium_t
*lith
= chan
->lith
;
664 void * lith1
= lith
->page1
;
666 DBGEV("(chan=0x%p)\n", chan
);
668 chan
->ctlval
&= ~LI_CCTL_DMA_ENABLE
;
669 DBGPV("ctlreg 0x%x = 0x%lx\n", chan
->desc
->ctlreg
, chan
->ctlval
);
670 li_writel(lith
, chan
->desc
->ctlreg
, chan
->ctlval
);
673 * Offset 0x500 on Lithium page 1 is an undocumented,
674 * unsupported register that holds the zero sample value.
675 * Lithium is supposed to output zero samples when DMA is
676 * inactive, and repeat the last sample when DMA underflows.
677 * But it has a bug, where, after underflow occurs, the zero
678 * sample is not reset.
680 * I expect this to break in a future rev of Lithium.
683 if (lith1
&& chan
->desc
->direction
== LI_CCFG_DIR_OUT
)
684 * (volatile unsigned long *) (lith1
+ 0x500) = 0;
688 * li_activate_dma always starts dma at the beginning of the buffer.
690 * N.B., these may be called from interrupt.
693 static __inline__
void li_activate_dma(dma_chan_t
*chan
)
695 chan
->ctlval
|= LI_CCTL_DMA_ENABLE
;
696 DBGPV("ctlval = 0x%lx\n", chan
->ctlval
);
697 li_writel(chan
->lith
, chan
->desc
->ctlreg
, chan
->ctlval
);
700 static void li_deactivate_dma(dma_chan_t
*chan
)
702 lithium_t
*lith
= chan
->lith
;
703 void * lith2
= lith
->page2
;
705 chan
->ctlval
&= ~(LI_CCTL_DMA_ENABLE
| LI_CCTL_RPTR
| LI_CCTL_WPTR
);
706 DBGPV("ctlval = 0x%lx\n", chan
->ctlval
);
707 DBGPV("ctlreg 0x%x = 0x%lx\n", chan
->desc
->ctlreg
, chan
->ctlval
);
708 li_writel(lith
, chan
->desc
->ctlreg
, chan
->ctlval
);
711 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
712 * unsupported registers that are internal copies of the DMA
713 * read and write pointers. Because of a Lithium bug, these
714 * registers aren't zeroed correctly when DMA is shut off. So
715 * we whack them directly.
717 * I expect this to break in a future rev of Lithium.
720 if (lith2
&& chan
->desc
->direction
== LI_CCFG_DIR_OUT
) {
721 * (volatile unsigned long *) (lith2
+ 0x98) = 0;
722 * (volatile unsigned long *) (lith2
+ 0x9C) = 0;
727 * read/write the ring buffer pointers. These routines' arguments and results
728 * are byte offsets from the beginning of the ring buffer.
731 static __inline__
int li_read_swptr(dma_chan_t
*chan
)
733 const unsigned long mask
= chan
->desc
->swptrmask
;
735 return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan
->ctlval
, mask
));
738 static __inline__
int li_read_hwptr(dma_chan_t
*chan
)
740 return CHUNKS_TO_BYTES(li_readb(chan
->lith
, chan
->desc
->hwptrreg
));
743 static __inline__
void li_write_swptr(dma_chan_t
*chan
, int val
)
745 const unsigned long mask
= chan
->desc
->swptrmask
;
747 ASSERT(!(val
& ~CHUNKS_TO_BYTES(0xFF)));
748 val
= BYTES_TO_CHUNKS(val
);
749 chan
->ctlval
= (chan
->ctlval
& ~mask
) | SHIFT_FIELD(val
, mask
);
750 li_writeb(chan
->lith
, chan
->desc
->swptrreg
, val
);
753 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
755 static void li_read_USTMSC(dma_chan_t
*chan
, ustmsc_t
*ustmsc
)
757 lithium_t
*lith
= chan
->lith
;
758 const dma_chan_desc_t
*desc
= chan
->desc
;
759 unsigned long now_low
, now_high0
, now_high1
, chan_ust
;
761 spin_lock(&lith
->lock
);
764 * retry until we do all five reads without the
765 * high word changing. (High word increments
766 * every 2^32 microseconds, i.e., not often)
769 now_high0
= li_readl(lith
, LI_UST_HIGH
);
770 now_low
= li_readl(lith
, LI_UST_LOW
);
773 * Lithium guarantees these two reads will be
774 * atomic -- ust will not increment after msc
778 ustmsc
->msc
= li_readl(lith
, desc
->mscreg
);
779 chan_ust
= li_readl(lith
, desc
->ustreg
);
781 now_high1
= li_readl(lith
, LI_UST_HIGH
);
782 } while (now_high0
!= now_high1
);
784 spin_unlock(&lith
->lock
);
785 ustmsc
->ust
= ((unsigned long long) now_high0
<< 32 | chan_ust
);
788 static void li_enable_interrupts(lithium_t
*lith
, unsigned int mask
)
790 DBGEV("(lith=0x%p, mask=0x%x)\n", lith
, mask
);
792 /* clear any already-pending interrupts. */
794 li_writel(lith
, LI_INTR_STATUS
, mask
);
796 /* enable the interrupts. */
798 mask
|= li_readl(lith
, LI_INTR_MASK
);
799 li_writel(lith
, LI_INTR_MASK
, mask
);
802 static void li_disable_interrupts(lithium_t
*lith
, unsigned int mask
)
804 unsigned int keepmask
;
806 DBGEV("(lith=0x%p, mask=0x%x)\n", lith
, mask
);
808 /* disable the interrupts */
810 keepmask
= li_readl(lith
, LI_INTR_MASK
) & ~mask
;
811 li_writel(lith
, LI_INTR_MASK
, keepmask
);
813 /* clear any pending interrupts. */
815 li_writel(lith
, LI_INTR_STATUS
, mask
);
818 /* Get the interrupt status and clear all pending interrupts. */
820 static unsigned int li_get_clear_intr_status(lithium_t
*lith
)
824 status
= li_readl(lith
, LI_INTR_STATUS
);
825 li_writel(lith
, LI_INTR_STATUS
, ~0);
826 return status
& li_readl(lith
, LI_INTR_MASK
);
829 static int li_init(lithium_t
*lith
)
831 /* 1. System power supplies stabilize. */
833 /* 2. Assert the ~RESET signal. */
835 li_writel(lith
, LI_HOST_CONTROLLER
, LI_HC_RESET
);
838 /* 3. Deassert the ~RESET signal and enter a wait period to allow
839 the AD1843 internal clocks and the external crystal oscillator
842 li_writel(lith
, LI_HOST_CONTROLLER
, LI_HC_LINK_ENABLE
);
848 /*****************************************************************************/
852 * AD1843 bitfield definitions. All are named as in the AD1843 data
853 * sheet, with ad1843_ prepended and individual bit numbers removed.
855 * E.g., bits LSS0 through LSS2 become ad1843_LSS.
857 * Only the bitfields we need are defined.
860 typedef struct ad1843_bitfield
{
866 static const ad1843_bitfield_t
867 ad1843_PDNO
= { 0, 14, 1 }, /* Converter Power-Down Flag */
868 ad1843_INIT
= { 0, 15, 1 }, /* Clock Initialization Flag */
869 ad1843_RIG
= { 2, 0, 4 }, /* Right ADC Input Gain */
870 ad1843_RMGE
= { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
871 ad1843_RSS
= { 2, 5, 3 }, /* Right ADC Source Select */
872 ad1843_LIG
= { 2, 8, 4 }, /* Left ADC Input Gain */
873 ad1843_LMGE
= { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
874 ad1843_LSS
= { 2, 13, 3 }, /* Left ADC Source Select */
875 ad1843_RX1M
= { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
876 ad1843_RX1MM
= { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
877 ad1843_LX1M
= { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
878 ad1843_LX1MM
= { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
879 ad1843_RX2M
= { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
880 ad1843_RX2MM
= { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
881 ad1843_LX2M
= { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
882 ad1843_LX2MM
= { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
883 ad1843_RMCM
= { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
884 ad1843_RMCMM
= { 7, 7, 1 }, /* Right Mic Mix Mute */
885 ad1843_LMCM
= { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
886 ad1843_LMCMM
= { 7, 15, 1 }, /* Left Mic Mix Mute */
887 ad1843_HPOS
= { 8, 4, 1 }, /* Headphone Output Voltage Swing */
888 ad1843_HPOM
= { 8, 5, 1 }, /* Headphone Output Mute */
889 ad1843_RDA1G
= { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
890 ad1843_RDA1GM
= { 9, 7, 1 }, /* Right DAC1 Analog Mute */
891 ad1843_LDA1G
= { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
892 ad1843_LDA1GM
= { 9, 15, 1 }, /* Left DAC1 Analog Mute */
893 ad1843_RDA1AM
= { 11, 7, 1 }, /* Right DAC1 Digital Mute */
894 ad1843_LDA1AM
= { 11, 15, 1 }, /* Left DAC1 Digital Mute */
895 ad1843_ADLC
= { 15, 0, 2 }, /* ADC Left Sample Rate Source */
896 ad1843_ADRC
= { 15, 2, 2 }, /* ADC Right Sample Rate Source */
897 ad1843_DA1C
= { 15, 8, 2 }, /* DAC1 Sample Rate Source */
898 ad1843_C1C
= { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
899 ad1843_C2C
= { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
900 ad1843_DAADL
= { 25, 4, 2 }, /* Digital ADC Left Source Select */
901 ad1843_DAADR
= { 25, 6, 2 }, /* Digital ADC Right Source Select */
902 ad1843_DRSFLT
= { 25, 15, 1 }, /* Digital Reampler Filter Mode */
903 ad1843_ADLF
= { 26, 0, 2 }, /* ADC Left Channel Data Format */
904 ad1843_ADRF
= { 26, 2, 2 }, /* ADC Right Channel Data Format */
905 ad1843_ADTLK
= { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
906 ad1843_SCF
= { 26, 7, 1 }, /* SCLK Frequency Select */
907 ad1843_DA1F
= { 26, 8, 2 }, /* DAC1 Data Format Select */
908 ad1843_DA1SM
= { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
909 ad1843_ADLEN
= { 27, 0, 1 }, /* ADC Left Channel Enable */
910 ad1843_ADREN
= { 27, 1, 1 }, /* ADC Right Channel Enable */
911 ad1843_AAMEN
= { 27, 4, 1 }, /* Analog to Analog Mix Enable */
912 ad1843_ANAEN
= { 27, 7, 1 }, /* Analog Channel Enable */
913 ad1843_DA1EN
= { 27, 8, 1 }, /* DAC1 Enable */
914 ad1843_DA2EN
= { 27, 9, 1 }, /* DAC2 Enable */
915 ad1843_C1EN
= { 28, 11, 1 }, /* Clock Generator 1 Enable */
916 ad1843_C2EN
= { 28, 12, 1 }, /* Clock Generator 2 Enable */
917 ad1843_PDNI
= { 28, 15, 1 }; /* Converter Power Down */
920 * The various registers of the AD1843 use three different formats for
921 * specifying gain. The ad1843_gain structure parameterizes the
925 typedef struct ad1843_gain
{
927 int negative
; /* nonzero if gain is negative. */
928 const ad1843_bitfield_t
*lfield
;
929 const ad1843_bitfield_t
*rfield
;
933 static const ad1843_gain_t ad1843_gain_RECLEV
934 = { 0, &ad1843_LIG
, &ad1843_RIG
};
935 static const ad1843_gain_t ad1843_gain_LINE
936 = { 1, &ad1843_LX1M
, &ad1843_RX1M
};
937 static const ad1843_gain_t ad1843_gain_CD
938 = { 1, &ad1843_LX2M
, &ad1843_RX2M
};
939 static const ad1843_gain_t ad1843_gain_MIC
940 = { 1, &ad1843_LMCM
, &ad1843_RMCM
};
941 static const ad1843_gain_t ad1843_gain_PCM
942 = { 1, &ad1843_LDA1G
, &ad1843_RDA1G
};
944 /* read the current value of an AD1843 bitfield. */
946 static int ad1843_read_bits(lithium_t
*lith
, const ad1843_bitfield_t
*field
)
948 int w
= li_read_ad1843_reg(lith
, field
->reg
);
949 int val
= w
>> field
->lo_bit
& ((1 << field
->nbits
) - 1);
951 DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
952 lith
, field
->reg
, field
->lo_bit
, field
->nbits
, val
);
958 * write a new value to an AD1843 bitfield and return the old value.
961 static int ad1843_write_bits(lithium_t
*lith
,
962 const ad1843_bitfield_t
*field
,
965 int w
= li_read_ad1843_reg(lith
, field
->reg
);
966 int mask
= ((1 << field
->nbits
) - 1) << field
->lo_bit
;
967 int oldval
= (w
& mask
) >> field
->lo_bit
;
968 int newbits
= (newval
<< field
->lo_bit
) & mask
;
969 w
= (w
& ~mask
) | newbits
;
970 (void) li_write_ad1843_reg(lith
, field
->reg
, w
);
972 DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
974 lith
, field
->reg
, field
->lo_bit
, field
->nbits
, newval
,
981 * ad1843_read_multi reads multiple bitfields from the same AD1843
982 * register. It uses a single read cycle to do it. (Reading the
983 * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
988 * ad1843_read_multi(lith, nfields,
989 * &ad1843_FIELD1, &val1,
990 * &ad1843_FIELD2, &val2, ...);
993 static void ad1843_read_multi(lithium_t
*lith
, int argcount
, ...)
996 const ad1843_bitfield_t
*fp
;
997 int w
= 0, mask
, *value
, reg
= -1;
999 va_start(ap
, argcount
);
1000 while (--argcount
>= 0) {
1001 fp
= va_arg(ap
, const ad1843_bitfield_t
*);
1002 value
= va_arg(ap
, int *);
1005 w
= li_read_ad1843_reg(lith
, reg
);
1007 ASSERT(reg
== fp
->reg
);
1008 mask
= (1 << fp
->nbits
) - 1;
1009 *value
= w
>> fp
->lo_bit
& mask
;
1015 * ad1843_write_multi stores multiple bitfields into the same AD1843
1016 * register. It uses one read and one write cycle to do it.
1020 * ad1843_write_multi(lith, nfields,
1021 * &ad1843_FIELD1, val1,
1022 * &ad1843_FIELF2, val2, ...);
1025 static void ad1843_write_multi(lithium_t
*lith
, int argcount
, ...)
1029 const ad1843_bitfield_t
*fp
;
1031 int w
, m
, mask
, bits
;
1037 va_start(ap
, argcount
);
1038 while (--argcount
>= 0) {
1039 fp
= va_arg(ap
, const ad1843_bitfield_t
*);
1040 value
= va_arg(ap
, int);
1043 ASSERT(fp
->reg
== reg
);
1044 m
= ((1 << fp
->nbits
) - 1) << fp
->lo_bit
;
1046 bits
|= (value
<< fp
->lo_bit
) & m
;
1049 ASSERT(!(bits
& ~mask
));
1051 w
= li_read_ad1843_reg(lith
, reg
);
1054 w
= (w
& ~mask
) | bits
;
1055 (void) li_write_ad1843_reg(lith
, reg
, w
);
1059 * ad1843_get_gain reads the specified register and extracts the gain value
1060 * using the supplied gain type. It returns the gain in OSS format.
1063 static int ad1843_get_gain(lithium_t
*lith
, const ad1843_gain_t
*gp
)
1066 unsigned short mask
= (1 << gp
->lfield
->nbits
) - 1;
1068 ad1843_read_multi(lith
, 2, gp
->lfield
, &lg
, gp
->rfield
, &rg
);
1073 lg
= (lg
* 100 + (mask
>> 1)) / mask
;
1074 rg
= (rg
* 100 + (mask
>> 1)) / mask
;
1075 return lg
<< 0 | rg
<< 8;
1079 * Set an audio channel's gain. Converts from OSS format to AD1843's
1082 * Returns the new gain, which may be lower than the old gain.
1085 static int ad1843_set_gain(lithium_t
*lith
,
1086 const ad1843_gain_t
*gp
,
1089 unsigned short mask
= (1 << gp
->lfield
->nbits
) - 1;
1091 int lg
= newval
>> 0 & 0xFF;
1092 int rg
= newval
>> 8;
1093 if (lg
< 0 || lg
> 100 || rg
< 0 || rg
> 100)
1095 lg
= (lg
* mask
+ (mask
>> 1)) / 100;
1096 rg
= (rg
* mask
+ (mask
>> 1)) / 100;
1101 ad1843_write_multi(lith
, 2, gp
->lfield
, lg
, gp
->rfield
, rg
);
1102 return ad1843_get_gain(lith
, gp
);
1105 /* Returns the current recording source, in OSS format. */
1107 static int ad1843_get_recsrc(lithium_t
*lith
)
1109 int ls
= ad1843_read_bits(lith
, &ad1843_LSS
);
1113 return SOUND_MASK_MIC
;
1115 return SOUND_MASK_LINE
;
1117 return SOUND_MASK_CD
;
1119 return SOUND_MASK_PCM
;
1127 * Enable/disable digital resample mode in the AD1843.
1129 * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1130 * while switching modes. So we save DA1's state (DA2's state is not
1131 * interesting), power them down, switch into/out of resample mode,
1132 * power them up, and restore state.
1134 * This will cause audible glitches if D/A or A/D is going on, so the
1135 * driver disallows that (in mixer_write_ioctl()).
1137 * The open question is, is this worth doing? I'm leaving it in,
1138 * because it's written, but...
1141 static void ad1843_set_resample_mode(lithium_t
*lith
, int onoff
)
1143 /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1144 int save_da1
= li_read_ad1843_reg(lith
, 9);
1146 /* Power down A/D and D/A. */
1147 ad1843_write_multi(lith
, 4,
1154 ASSERT(onoff
== 0 || onoff
== 1);
1155 ad1843_write_bits(lith
, &ad1843_DRSFLT
, onoff
);
1157 /* Power up A/D and D/A. */
1158 ad1843_write_multi(lith
, 3,
1163 /* Restore DA1 mute and gain. */
1164 li_write_ad1843_reg(lith
, 9, save_da1
);
1168 * Set recording source. Arg newsrc specifies an OSS channel mask.
1170 * The complication is that when we switch into/out of loopback mode
1171 * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1172 * digital resampling mode.
1174 * Returns newsrc on success, -errno on failure.
1177 static int ad1843_set_recsrc(lithium_t
*lith
, int newsrc
)
1183 case SOUND_MASK_PCM
:
1187 case SOUND_MASK_MIC
:
1191 case SOUND_MASK_LINE
:
1202 oldbits
= ad1843_read_bits(lith
, &ad1843_LSS
);
1203 if (newsrc
== SOUND_MASK_PCM
&& oldbits
!= 6) {
1204 DBGP("enabling digital resample mode\n");
1205 ad1843_set_resample_mode(lith
, 1);
1206 ad1843_write_multi(lith
, 2,
1209 } else if (newsrc
!= SOUND_MASK_PCM
&& oldbits
== 6) {
1210 DBGP("disabling digital resample mode\n");
1211 ad1843_set_resample_mode(lith
, 0);
1212 ad1843_write_multi(lith
, 2,
1216 ad1843_write_multi(lith
, 2, &ad1843_LSS
, bits
, &ad1843_RSS
, bits
);
1221 * Return current output sources, in OSS format.
1224 static int ad1843_get_outsrc(lithium_t
*lith
)
1226 int pcm
, line
, mic
, cd
;
1228 pcm
= ad1843_read_bits(lith
, &ad1843_LDA1GM
) ? 0 : SOUND_MASK_PCM
;
1229 line
= ad1843_read_bits(lith
, &ad1843_LX1MM
) ? 0 : SOUND_MASK_LINE
;
1230 cd
= ad1843_read_bits(lith
, &ad1843_LX2MM
) ? 0 : SOUND_MASK_CD
;
1231 mic
= ad1843_read_bits(lith
, &ad1843_LMCMM
) ? 0 : SOUND_MASK_MIC
;
1233 return pcm
| line
| cd
| mic
;
1237 * Set output sources. Arg is a mask of active sources in OSS format.
1239 * Returns source mask on success, -errno on failure.
1242 static int ad1843_set_outsrc(lithium_t
*lith
, int mask
)
1244 int pcm
, line
, mic
, cd
;
1246 if (mask
& ~(SOUND_MASK_PCM
| SOUND_MASK_LINE
|
1247 SOUND_MASK_CD
| SOUND_MASK_MIC
))
1249 pcm
= (mask
& SOUND_MASK_PCM
) ? 0 : 1;
1250 line
= (mask
& SOUND_MASK_LINE
) ? 0 : 1;
1251 mic
= (mask
& SOUND_MASK_MIC
) ? 0 : 1;
1252 cd
= (mask
& SOUND_MASK_CD
) ? 0 : 1;
1254 ad1843_write_multi(lith
, 2, &ad1843_LDA1GM
, pcm
, &ad1843_RDA1GM
, pcm
);
1255 ad1843_write_multi(lith
, 2, &ad1843_LX1MM
, line
, &ad1843_RX1MM
, line
);
1256 ad1843_write_multi(lith
, 2, &ad1843_LX2MM
, cd
, &ad1843_RX2MM
, cd
);
1257 ad1843_write_multi(lith
, 2, &ad1843_LMCMM
, mic
, &ad1843_RMCMM
, mic
);
1262 /* Setup ad1843 for D/A conversion. */
1264 static void ad1843_setup_dac(lithium_t
*lith
,
1269 int ad_fmt
= 0, ad_mode
= 0;
1271 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1272 lith
, framerate
, fmt
, channels
);
1275 case AFMT_S8
: ad_fmt
= 1; break;
1276 case AFMT_U8
: ad_fmt
= 1; break;
1277 case AFMT_S16_LE
: ad_fmt
= 1; break;
1278 case AFMT_MU_LAW
: ad_fmt
= 2; break;
1279 case AFMT_A_LAW
: ad_fmt
= 3; break;
1284 case 2: ad_mode
= 0; break;
1285 case 1: ad_mode
= 1; break;
1289 DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode
, ad_fmt
);
1290 ASSERT(framerate
>= 4000 && framerate
<= 49000);
1291 ad1843_write_bits(lith
, &ad1843_C1C
, framerate
);
1292 ad1843_write_multi(lith
, 2,
1293 &ad1843_DA1SM
, ad_mode
, &ad1843_DA1F
, ad_fmt
);
1296 static void ad1843_shutdown_dac(lithium_t
*lith
)
1298 ad1843_write_bits(lith
, &ad1843_DA1F
, 1);
1301 static void ad1843_setup_adc(lithium_t
*lith
, int framerate
, int fmt
, int channels
)
1305 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1306 lith
, framerate
, fmt
, channels
);
1309 case AFMT_S8
: da_fmt
= 1; break;
1310 case AFMT_U8
: da_fmt
= 1; break;
1311 case AFMT_S16_LE
: da_fmt
= 1; break;
1312 case AFMT_MU_LAW
: da_fmt
= 2; break;
1313 case AFMT_A_LAW
: da_fmt
= 3; break;
1317 DBGPV("da_fmt = %d\n", da_fmt
);
1318 ASSERT(framerate
>= 4000 && framerate
<= 49000);
1319 ad1843_write_bits(lith
, &ad1843_C2C
, framerate
);
1320 ad1843_write_multi(lith
, 2,
1321 &ad1843_ADLF
, da_fmt
, &ad1843_ADRF
, da_fmt
);
1324 static void ad1843_shutdown_adc(lithium_t
*lith
)
1330 * Fully initialize the ad1843. As described in the AD1843 data
1331 * sheet, section "START-UP SEQUENCE". The numbered comments are
1332 * subsection headings from the data sheet. See the data sheet, pages
1333 * 52-54, for more info.
1335 * return 0 on success, -errno on failure. */
1337 static int __init
ad1843_init(lithium_t
*lith
)
1339 unsigned long later
;
1342 err
= li_init(lith
);
1346 if (ad1843_read_bits(lith
, &ad1843_INIT
) != 0) {
1347 printk(KERN_ERR
"vwsnd sound: AD1843 won't initialize\n");
1351 ad1843_write_bits(lith
, &ad1843_SCF
, 1);
1353 /* 4. Put the conversion resources into standby. */
1355 ad1843_write_bits(lith
, &ad1843_PDNI
, 0);
1356 later
= jiffies
+ HZ
/ 2; /* roughly half a second */
1358 while (ad1843_read_bits(lith
, &ad1843_PDNO
)) {
1359 if (time_after(jiffies
, later
)) {
1361 "vwsnd audio: AD1843 won't power up\n");
1368 /* 5. Power up the clock generators and enable clock output pins. */
1370 ad1843_write_multi(lith
, 2, &ad1843_C1EN
, 1, &ad1843_C2EN
, 1);
1372 /* 6. Configure conversion resources while they are in standby. */
1374 /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
1376 ad1843_write_multi(lith
, 3,
1381 /* 7. Enable conversion resources. */
1383 ad1843_write_bits(lith
, &ad1843_ADTLK
, 1);
1384 ad1843_write_multi(lith
, 5,
1391 /* 8. Configure conversion resources while they are enabled. */
1393 ad1843_write_bits(lith
, &ad1843_DA1C
, 1);
1395 /* Unmute all channels. */
1397 ad1843_set_outsrc(lith
,
1398 (SOUND_MASK_PCM
| SOUND_MASK_LINE
|
1399 SOUND_MASK_MIC
| SOUND_MASK_CD
));
1400 ad1843_write_multi(lith
, 2, &ad1843_LDA1AM
, 0, &ad1843_RDA1AM
, 0);
1402 /* Set default recording source to Line In and set
1403 * mic gain to +20 dB.
1406 ad1843_set_recsrc(lith
, SOUND_MASK_LINE
);
1407 ad1843_write_multi(lith
, 2, &ad1843_LMGE
, 1, &ad1843_RMGE
, 1);
1409 /* Set Speaker Out level to +/- 4V and unmute it. */
1411 ad1843_write_multi(lith
, 2, &ad1843_HPOS
, 1, &ad1843_HPOM
, 0);
1416 /*****************************************************************************/
1419 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1420 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1422 typedef enum vwsnd_port_swstate
{ /* software state */
1427 } vwsnd_port_swstate_t
;
1429 typedef enum vwsnd_port_hwstate
{ /* hardware state */
1432 } vwsnd_port_hwstate_t
;
1435 * These flags are read by ISR, but only written at baseline.
1438 typedef enum vwsnd_port_flags
{
1440 ERFLOWN
= 1 << 1, /* overflown or underflown */
1442 } vwsnd_port_flags_t
;
1445 * vwsnd_port is the per-port data structure. Each device has two
1446 * ports, one for input and one for output.
1450 * port->lock protects: hwstate, flags, swb_[iu]_avail.
1452 * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
1454 * everything else is only written by open/release or
1455 * pcm_{setup,shutdown}(), which are serialized by a
1456 * combination of devc->open_mutex and devc->io_mutex.
1459 typedef struct vwsnd_port
{
1462 wait_queue_head_t queue
;
1463 vwsnd_port_swstate_t swstate
;
1464 vwsnd_port_hwstate_t hwstate
;
1465 vwsnd_port_flags_t flags
;
1472 unsigned int zero_word
; /* zero for the sample format */
1478 unsigned int hw_fragshift
;
1479 unsigned int hw_fragsize
;
1480 unsigned int hw_fragcount
;
1483 unsigned long hwbuf_paddr
;
1484 unsigned long hwbuf_vaddr
;
1485 void * hwbuf
; /* hwbuf == hwbuf_vaddr */
1486 int hwbuf_max
; /* max bytes to preload */
1489 unsigned int swbuf_size
; /* size in bytes */
1490 unsigned int swb_u_idx
; /* index of next user byte */
1491 unsigned int swb_i_idx
; /* index of next intr byte */
1492 unsigned int swb_u_avail
; /* # bytes avail to user */
1493 unsigned int swb_i_avail
; /* # bytes avail to intr */
1505 /* vwsnd_dev is the per-device data structure. */
1507 typedef struct vwsnd_dev
{
1508 struct vwsnd_dev
*next_dev
;
1509 int audio_minor
; /* minor number of audio device */
1510 int mixer_minor
; /* minor number of mixer device */
1512 struct mutex open_mutex
;
1513 struct mutex io_mutex
;
1514 struct mutex mix_mutex
;
1516 wait_queue_head_t open_wait
;
1524 static vwsnd_dev_t
*vwsnd_dev_list
; /* linked list of all devices */
1526 static atomic_t vwsnd_use_count
= ATOMIC_INIT(0);
1528 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1529 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1530 # define IN_USE (atomic_read(&vwsnd_use_count) != 0)
1533 * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
1534 * be up to 8 Kb. This driver always uses 8 Kb.
1536 * Memory bug workaround -- I'm not sure what's going on here, but
1537 * somehow pcm_copy_out() was triggering segv's going on to the next
1538 * page of the hw buffer. So, I make the hw buffer one size bigger
1539 * than we actually use. That way, the following page is allocated
1540 * and mapped, and no error. I suspect that something is broken
1541 * in Cobalt, but haven't really investigated. HBO is the actual
1542 * size of the buffer, and HWBUF_ORDER is what we allocate.
1545 #define HWBUF_SHIFT 13
1546 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1547 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1548 # define HWBUF_ORDER (HBO + 1) /* next size bigger */
1549 #define MIN_SPEED 4000
1550 #define MAX_SPEED 49000
1552 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
1553 #define MAX_FRAGSHIFT (PAGE_SHIFT)
1554 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
1555 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
1556 #define MIN_FRAGCOUNT(fragsize) 3
1557 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
1558 #define DEFAULT_FRAGSHIFT 12
1559 #define DEFAULT_FRAGCOUNT 16
1560 #define DEFAULT_SUBDIVSHIFT 0
1563 * The software buffer (swbuf) is a ring buffer shared between user
1564 * level and interrupt level. Each level owns some of the bytes in
1565 * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1566 * User level calls _u for user, and interrupt level calls _i for
1569 * port->swb_{u,i}_avail is the number of bytes available to that level.
1571 * port->swb_{u,i}_idx is the index of the first available byte in the
1574 * Each level calls swb_inc_{u,i}() to atomically increment its index,
1575 * recalculate the number of bytes available for both sides, and
1576 * return the number of bytes available. Since each side can only
1577 * give away bytes, the other side can only increase the number of
1578 * bytes available to this side. Each side updates its own index
1579 * variable, swb_{u,i}_idx, so no lock is needed to read it.
1581 * To query the number of bytes available, call swb_inc_{u,i} with an
1582 * increment of zero.
1585 static __inline__
unsigned int __swb_inc_u(vwsnd_port_t
*port
, int inc
)
1588 port
->swb_u_idx
+= inc
;
1589 port
->swb_u_idx
%= port
->swbuf_size
;
1590 port
->swb_u_avail
-= inc
;
1591 port
->swb_i_avail
+= inc
;
1593 return port
->swb_u_avail
;
1596 static __inline__
unsigned int swb_inc_u(vwsnd_port_t
*port
, int inc
)
1598 unsigned long flags
;
1601 spin_lock_irqsave(&port
->lock
, flags
);
1603 ret
= __swb_inc_u(port
, inc
);
1605 spin_unlock_irqrestore(&port
->lock
, flags
);
1609 static __inline__
unsigned int __swb_inc_i(vwsnd_port_t
*port
, int inc
)
1612 port
->swb_i_idx
+= inc
;
1613 port
->swb_i_idx
%= port
->swbuf_size
;
1614 port
->swb_i_avail
-= inc
;
1615 port
->swb_u_avail
+= inc
;
1617 return port
->swb_i_avail
;
1620 static __inline__
unsigned int swb_inc_i(vwsnd_port_t
*port
, int inc
)
1622 unsigned long flags
;
1625 spin_lock_irqsave(&port
->lock
, flags
);
1627 ret
= __swb_inc_i(port
, inc
);
1629 spin_unlock_irqrestore(&port
->lock
, flags
);
1634 * pcm_setup - this routine initializes all port state after
1635 * mode-setting ioctls have been done, but before the first I/O is
1638 * Locking: called with devc->io_mutex held.
1640 * Returns 0 on success, -errno on failure.
1643 static int pcm_setup(vwsnd_dev_t
*devc
,
1644 vwsnd_port_t
*rport
,
1645 vwsnd_port_t
*wport
)
1647 vwsnd_port_t
*aport
= rport
? rport
: wport
;
1649 unsigned int zero_word
;
1651 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc
, rport
, wport
);
1653 ASSERT(aport
!= NULL
);
1654 if (aport
->swbuf
!= NULL
)
1656 switch (aport
->sw_samplefmt
) {
1659 zero_word
= 0xFFFFFFFF ^ 0x80808080;
1664 zero_word
= 0xD5D5D5D5 ^ 0x80808080;
1669 zero_word
= 0x80808080;
1674 zero_word
= 0x00000000;
1679 zero_word
= 0x00000000;
1683 sample_size
= 0; /* prevent compiler warning */
1687 aport
->sample_size
= sample_size
;
1688 aport
->zero_word
= zero_word
;
1689 aport
->frame_size
= aport
->sw_channels
* aport
->sample_size
;
1690 aport
->hw_fragshift
= aport
->sw_fragshift
- aport
->sw_subdivshift
;
1691 aport
->hw_fragsize
= 1 << aport
->hw_fragshift
;
1692 aport
->hw_fragcount
= aport
->sw_fragcount
<< aport
->sw_subdivshift
;
1693 ASSERT(aport
->hw_fragsize
>= MIN_FRAGSIZE
);
1694 ASSERT(aport
->hw_fragsize
<= MAX_FRAGSIZE
);
1695 ASSERT(aport
->hw_fragcount
>= MIN_FRAGCOUNT(aport
->hw_fragsize
));
1696 ASSERT(aport
->hw_fragcount
<= MAX_FRAGCOUNT(aport
->hw_fragsize
));
1698 int hwfrags
, swfrags
;
1699 rport
->hwbuf_max
= aport
->hwbuf_size
- DMACHUNK_SIZE
;
1700 hwfrags
= rport
->hwbuf_max
>> aport
->hw_fragshift
;
1701 swfrags
= aport
->hw_fragcount
- hwfrags
;
1704 rport
->swbuf_size
= swfrags
* aport
->hw_fragsize
;
1705 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags
, swfrags
);
1706 DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1707 rport
->hwbuf_max
, rport
->swbuf_size
);
1710 int hwfrags
, swfrags
;
1711 int total_bytes
= aport
->hw_fragcount
* aport
->hw_fragsize
;
1712 wport
->hwbuf_max
= aport
->hwbuf_size
- DMACHUNK_SIZE
;
1713 if (wport
->hwbuf_max
> total_bytes
)
1714 wport
->hwbuf_max
= total_bytes
;
1715 hwfrags
= wport
->hwbuf_max
>> aport
->hw_fragshift
;
1716 DBGPV("hwfrags = %d\n", hwfrags
);
1717 swfrags
= aport
->hw_fragcount
- hwfrags
;
1720 wport
->swbuf_size
= swfrags
* aport
->hw_fragsize
;
1721 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags
, swfrags
);
1722 DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1723 wport
->hwbuf_max
, wport
->swbuf_size
);
1726 aport
->swb_u_idx
= 0;
1727 aport
->swb_i_idx
= 0;
1728 aport
->byte_count
= 0;
1731 * Is this a Cobalt bug? We need to make this buffer extend
1732 * one page further than we actually use -- somehow memcpy
1733 * causes an exceptoin otherwise. I suspect there's a bug in
1734 * Cobalt (or somewhere) where it's generating a fault on a
1735 * speculative load or something. Obviously, I haven't taken
1736 * the time to track it down.
1739 aport
->swbuf
= vmalloc(aport
->swbuf_size
+ PAGE_SIZE
);
1742 if (rport
&& wport
) {
1743 ASSERT(aport
== rport
);
1744 ASSERT(wport
->swbuf
== NULL
);
1745 /* One extra page - see comment above. */
1746 wport
->swbuf
= vmalloc(aport
->swbuf_size
+ PAGE_SIZE
);
1747 if (!wport
->swbuf
) {
1748 vfree(aport
->swbuf
);
1749 aport
->swbuf
= NULL
;
1752 wport
->sample_size
= rport
->sample_size
;
1753 wport
->zero_word
= rport
->zero_word
;
1754 wport
->frame_size
= rport
->frame_size
;
1755 wport
->hw_fragshift
= rport
->hw_fragshift
;
1756 wport
->hw_fragsize
= rport
->hw_fragsize
;
1757 wport
->hw_fragcount
= rport
->hw_fragcount
;
1758 wport
->swbuf_size
= rport
->swbuf_size
;
1759 wport
->hwbuf_max
= rport
->hwbuf_max
;
1760 wport
->swb_u_idx
= rport
->swb_u_idx
;
1761 wport
->swb_i_idx
= rport
->swb_i_idx
;
1762 wport
->byte_count
= rport
->byte_count
;
1765 rport
->swb_u_avail
= 0;
1766 rport
->swb_i_avail
= rport
->swbuf_size
;
1767 rport
->swstate
= SW_RUN
;
1768 li_setup_dma(&rport
->chan
,
1773 rport
->hw_fragshift
,
1775 rport
->sample_size
);
1776 ad1843_setup_adc(&devc
->lith
,
1777 rport
->sw_framerate
,
1778 rport
->sw_samplefmt
,
1779 rport
->sw_channels
);
1780 li_enable_interrupts(&devc
->lith
, READ_INTR_MASK
);
1781 if (!(rport
->flags
& DISABLED
)) {
1783 rport
->hwstate
= HW_RUNNING
;
1784 li_activate_dma(&rport
->chan
);
1785 li_read_USTMSC(&rport
->chan
, &ustmsc
);
1786 rport
->MSC_offset
= ustmsc
.msc
;
1790 if (wport
->hwbuf_max
> wport
->swbuf_size
)
1791 wport
->hwbuf_max
= wport
->swbuf_size
;
1792 wport
->flags
&= ~ERFLOWN
;
1793 wport
->swb_u_avail
= wport
->swbuf_size
;
1794 wport
->swb_i_avail
= 0;
1795 wport
->swstate
= SW_RUN
;
1796 li_setup_dma(&wport
->chan
,
1801 wport
->hw_fragshift
,
1803 wport
->sample_size
);
1804 ad1843_setup_dac(&devc
->lith
,
1805 wport
->sw_framerate
,
1806 wport
->sw_samplefmt
,
1807 wport
->sw_channels
);
1808 li_enable_interrupts(&devc
->lith
, WRITE_INTR_MASK
);
1815 * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1816 * Only called from pcm_shutdown.
1819 static void pcm_shutdown_port(vwsnd_dev_t
*devc
,
1820 vwsnd_port_t
*aport
,
1823 unsigned long flags
;
1824 vwsnd_port_hwstate_t hwstate
;
1825 DECLARE_WAITQUEUE(wait
, current
);
1827 aport
->swstate
= SW_INITIAL
;
1828 add_wait_queue(&aport
->queue
, &wait
);
1830 set_current_state(TASK_UNINTERRUPTIBLE
);
1831 spin_lock_irqsave(&aport
->lock
, flags
);
1833 hwstate
= aport
->hwstate
;
1835 spin_unlock_irqrestore(&aport
->lock
, flags
);
1836 if (hwstate
== HW_STOPPED
)
1840 current
->state
= TASK_RUNNING
;
1841 remove_wait_queue(&aport
->queue
, &wait
);
1842 li_disable_interrupts(&devc
->lith
, mask
);
1843 if (aport
== &devc
->rport
)
1844 ad1843_shutdown_adc(&devc
->lith
);
1845 else /* aport == &devc->wport) */
1846 ad1843_shutdown_dac(&devc
->lith
);
1847 li_shutdown_dma(&aport
->chan
);
1848 vfree(aport
->swbuf
);
1849 aport
->swbuf
= NULL
;
1850 aport
->byte_count
= 0;
1854 * pcm_shutdown undoes what pcm_setup did.
1855 * Also sets the ports' swstate to newstate.
1858 static void pcm_shutdown(vwsnd_dev_t
*devc
,
1859 vwsnd_port_t
*rport
,
1860 vwsnd_port_t
*wport
)
1862 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc
, rport
, wport
);
1864 if (rport
&& rport
->swbuf
) {
1865 DBGPV("shutting down rport\n");
1866 pcm_shutdown_port(devc
, rport
, READ_INTR_MASK
);
1868 if (wport
&& wport
->swbuf
) {
1869 DBGPV("shutting down wport\n");
1870 pcm_shutdown_port(devc
, wport
, WRITE_INTR_MASK
);
1875 static void pcm_copy_in(vwsnd_port_t
*rport
, int swidx
, int hwidx
, int nb
)
1877 char *src
= rport
->hwbuf
+ hwidx
;
1878 char *dst
= rport
->swbuf
+ swidx
;
1879 int fmt
= rport
->sw_samplefmt
;
1881 DBGPV("swidx = %d, hwidx = %d\n", swidx
, hwidx
);
1882 ASSERT(rport
->hwbuf
!= NULL
);
1883 ASSERT(rport
->swbuf
!= NULL
);
1884 ASSERT(nb
> 0 && (nb
% 32) == 0);
1885 ASSERT(swidx
% 32 == 0 && hwidx
% 32 == 0);
1886 ASSERT(swidx
>= 0 && swidx
+ nb
<= rport
->swbuf_size
);
1887 ASSERT(hwidx
>= 0 && hwidx
+ nb
<= rport
->hwbuf_size
);
1889 if (fmt
== AFMT_MU_LAW
|| fmt
== AFMT_A_LAW
|| fmt
== AFMT_S8
) {
1891 /* See Sample Format Notes above. */
1893 char *end
= src
+ nb
;
1895 *dst
++ = *src
++ ^ 0x80;
1897 memcpy(dst
, src
, nb
);
1900 static void pcm_copy_out(vwsnd_port_t
*wport
, int swidx
, int hwidx
, int nb
)
1902 char *src
= wport
->swbuf
+ swidx
;
1903 char *dst
= wport
->hwbuf
+ hwidx
;
1904 int fmt
= wport
->sw_samplefmt
;
1906 ASSERT(nb
> 0 && (nb
% 32) == 0);
1907 ASSERT(wport
->hwbuf
!= NULL
);
1908 ASSERT(wport
->swbuf
!= NULL
);
1909 ASSERT(swidx
% 32 == 0 && hwidx
% 32 == 0);
1910 ASSERT(swidx
>= 0 && swidx
+ nb
<= wport
->swbuf_size
);
1911 ASSERT(hwidx
>= 0 && hwidx
+ nb
<= wport
->hwbuf_size
);
1912 if (fmt
== AFMT_MU_LAW
|| fmt
== AFMT_A_LAW
|| fmt
== AFMT_S8
) {
1914 /* See Sample Format Notes above. */
1916 char *end
= src
+ nb
;
1918 *dst
++ = *src
++ ^ 0x80;
1920 memcpy(dst
, src
, nb
);
1924 * pcm_output() is called both from baselevel and from interrupt level.
1925 * This is where audio frames are copied into the hardware-accessible
1928 * Locking note: The part of this routine that figures out what to do
1929 * holds wport->lock. The longer part releases wport->lock, but sets
1930 * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
1931 * checks for more work to do.
1933 * If another thread calls pcm_output() while HW_BUSY is set, it
1934 * returns immediately, knowing that the thread that set HW_BUSY will
1935 * look for more work to do before returning.
1937 * This has the advantage that port->lock is held for several short
1938 * periods instead of one long period. Also, when pcm_output is
1939 * called from base level, it reenables interrupts.
1942 static void pcm_output(vwsnd_dev_t
*devc
, int erflown
, int nb
)
1944 vwsnd_port_t
*wport
= &devc
->wport
;
1945 const int hwmax
= wport
->hwbuf_max
;
1946 const int hwsize
= wport
->hwbuf_size
;
1947 const int swsize
= wport
->swbuf_size
;
1948 const int fragsize
= wport
->hw_fragsize
;
1949 unsigned long iflags
;
1951 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc
, erflown
, nb
);
1952 spin_lock_irqsave(&wport
->lock
, iflags
);
1954 wport
->flags
|= ERFLOWN
;
1955 (void) __swb_inc_u(wport
, nb
);
1956 if (wport
->flags
& HW_BUSY
) {
1957 spin_unlock_irqrestore(&wport
->lock
, iflags
);
1958 DBGPV("returning: HW BUSY\n");
1961 if (wport
->flags
& DISABLED
) {
1962 spin_unlock_irqrestore(&wport
->lock
, iflags
);
1963 DBGPV("returning: DISABLED\n");
1966 wport
->flags
|= HW_BUSY
;
1968 int swptr
, hwptr
, hw_avail
, sw_avail
, swidx
;
1969 vwsnd_port_hwstate_t hwstate
= wport
->hwstate
;
1970 vwsnd_port_swstate_t swstate
= wport
->swstate
;
1974 hwptr
= li_read_hwptr(&wport
->chan
);
1975 swptr
= li_read_swptr(&wport
->chan
);
1976 hw_unavail
= (swptr
- hwptr
+ hwsize
) % hwsize
;
1977 hw_avail
= (hwmax
- hw_unavail
) & -fragsize
;
1978 sw_avail
= wport
->swb_i_avail
& -fragsize
;
1979 if (sw_avail
&& swstate
== SW_RUN
) {
1980 if (wport
->flags
& ERFLOWN
) {
1981 wport
->flags
&= ~ERFLOWN
;
1983 } else if (swstate
== SW_INITIAL
||
1984 swstate
== SW_OFF
||
1985 (swstate
== SW_DRAIN
&&
1987 (wport
->flags
& ERFLOWN
))) {
1988 DBGP("stopping. hwstate = %d\n", hwstate
);
1989 if (hwstate
!= HW_STOPPED
) {
1990 li_deactivate_dma(&wport
->chan
);
1991 wport
->hwstate
= HW_STOPPED
;
1993 wake_up(&wport
->queue
);
1996 if (!sw_avail
|| !hw_avail
)
1998 spin_unlock_irqrestore(&wport
->lock
, iflags
);
2001 * We gave up the port lock, but we have the HW_BUSY flag.
2002 * Proceed without accessing any nonlocal state.
2003 * Do not exit the loop -- must check for more work.
2006 swidx
= wport
->swb_i_idx
;
2010 if (nb
> hwsize
- swptr
)
2011 nb
= hwsize
- swptr
; /* don't overflow hwbuf */
2012 if (nb
> swsize
- swidx
)
2013 nb
= swsize
- swidx
; /* don't overflow swbuf */
2015 if (nb
% fragsize
) {
2016 DBGP("nb = %d, fragsize = %d\n", nb
, fragsize
);
2017 DBGP("hw_avail = %d\n", hw_avail
);
2018 DBGP("sw_avail = %d\n", sw_avail
);
2019 DBGP("hwsize = %d, swptr = %d\n", hwsize
, swptr
);
2020 DBGP("swsize = %d, swidx = %d\n", swsize
, swidx
);
2022 ASSERT(!(nb
% fragsize
));
2023 DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2024 swidx
, swidx
+ nb
, swptr
, swptr
+ nb
);
2025 pcm_copy_out(wport
, swidx
, swptr
, nb
);
2026 li_write_swptr(&wport
->chan
, (swptr
+ nb
) % hwsize
);
2027 spin_lock_irqsave(&wport
->lock
, iflags
);
2028 if (hwstate
== HW_STOPPED
) {
2029 DBGPV("starting\n");
2030 li_activate_dma(&wport
->chan
);
2031 wport
->hwstate
= HW_RUNNING
;
2032 li_read_USTMSC(&wport
->chan
, &ustmsc
);
2033 ASSERT(wport
->byte_count
% wport
->frame_size
== 0);
2034 wport
->MSC_offset
= ustmsc
.msc
- wport
->byte_count
/ wport
->frame_size
;
2036 __swb_inc_i(wport
, nb
);
2037 wport
->byte_count
+= nb
;
2038 wport
->frag_count
+= nb
/ fragsize
;
2039 ASSERT(nb
% fragsize
== 0);
2040 wake_up(&wport
->queue
);
2042 wport
->flags
&= ~HW_BUSY
;
2043 spin_unlock_irqrestore(&wport
->lock
, iflags
);
2048 * pcm_input() is called both from baselevel and from interrupt level.
2049 * This is where audio frames are copied out of the hardware-accessible
2052 * Locking note: The part of this routine that figures out what to do
2053 * holds rport->lock. The longer part releases rport->lock, but sets
2054 * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
2055 * checks for more work to do.
2057 * If another thread calls pcm_input() while HW_BUSY is set, it
2058 * returns immediately, knowing that the thread that set HW_BUSY will
2059 * look for more work to do before returning.
2061 * This has the advantage that port->lock is held for several short
2062 * periods instead of one long period. Also, when pcm_input is
2063 * called from base level, it reenables interrupts.
2066 static void pcm_input(vwsnd_dev_t
*devc
, int erflown
, int nb
)
2068 vwsnd_port_t
*rport
= &devc
->rport
;
2069 const int hwmax
= rport
->hwbuf_max
;
2070 const int hwsize
= rport
->hwbuf_size
;
2071 const int swsize
= rport
->swbuf_size
;
2072 const int fragsize
= rport
->hw_fragsize
;
2073 unsigned long iflags
;
2075 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc
, erflown
, nb
);
2077 spin_lock_irqsave(&rport
->lock
, iflags
);
2079 rport
->flags
|= ERFLOWN
;
2080 (void) __swb_inc_u(rport
, nb
);
2081 if (rport
->flags
& HW_BUSY
|| !rport
->swbuf
) {
2082 spin_unlock_irqrestore(&rport
->lock
, iflags
);
2083 DBGPV("returning: HW BUSY or !swbuf\n");
2086 if (rport
->flags
& DISABLED
) {
2087 spin_unlock_irqrestore(&rport
->lock
, iflags
);
2088 DBGPV("returning: DISABLED\n");
2091 rport
->flags
|= HW_BUSY
;
2093 int swptr
, hwptr
, hw_avail
, sw_avail
, swidx
;
2094 vwsnd_port_hwstate_t hwstate
= rport
->hwstate
;
2095 vwsnd_port_swstate_t swstate
= rport
->swstate
;
2097 hwptr
= li_read_hwptr(&rport
->chan
);
2098 swptr
= li_read_swptr(&rport
->chan
);
2099 hw_avail
= (hwptr
- swptr
+ hwsize
) % hwsize
& -fragsize
;
2100 if (hw_avail
> hwmax
)
2102 sw_avail
= rport
->swb_i_avail
& -fragsize
;
2103 if (swstate
!= SW_RUN
) {
2104 DBGP("stopping. hwstate = %d\n", hwstate
);
2105 if (hwstate
!= HW_STOPPED
) {
2106 li_deactivate_dma(&rport
->chan
);
2107 rport
->hwstate
= HW_STOPPED
;
2109 wake_up(&rport
->queue
);
2112 if (!sw_avail
|| !hw_avail
)
2114 spin_unlock_irqrestore(&rport
->lock
, iflags
);
2117 * We gave up the port lock, but we have the HW_BUSY flag.
2118 * Proceed without accessing any nonlocal state.
2119 * Do not exit the loop -- must check for more work.
2122 swidx
= rport
->swb_i_idx
;
2126 if (nb
> hwsize
- swptr
)
2127 nb
= hwsize
- swptr
; /* don't overflow hwbuf */
2128 if (nb
> swsize
- swidx
)
2129 nb
= swsize
- swidx
; /* don't overflow swbuf */
2131 if (nb
% fragsize
) {
2132 DBGP("nb = %d, fragsize = %d\n", nb
, fragsize
);
2133 DBGP("hw_avail = %d\n", hw_avail
);
2134 DBGP("sw_avail = %d\n", sw_avail
);
2135 DBGP("hwsize = %d, swptr = %d\n", hwsize
, swptr
);
2136 DBGP("swsize = %d, swidx = %d\n", swsize
, swidx
);
2138 ASSERT(!(nb
% fragsize
));
2139 DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2140 swptr
, swptr
+ nb
, swidx
, swidx
+ nb
);
2141 pcm_copy_in(rport
, swidx
, swptr
, nb
);
2142 li_write_swptr(&rport
->chan
, (swptr
+ nb
) % hwsize
);
2143 spin_lock_irqsave(&rport
->lock
, iflags
);
2144 __swb_inc_i(rport
, nb
);
2145 rport
->byte_count
+= nb
;
2146 rport
->frag_count
+= nb
/ fragsize
;
2147 ASSERT(nb
% fragsize
== 0);
2148 wake_up(&rport
->queue
);
2150 rport
->flags
&= ~HW_BUSY
;
2151 spin_unlock_irqrestore(&rport
->lock
, iflags
);
2156 * pcm_flush_frag() writes zero samples to fill the current fragment,
2157 * then flushes it to the hardware.
2159 * It is only meaningful to flush output, not input.
2162 static void pcm_flush_frag(vwsnd_dev_t
*devc
)
2164 vwsnd_port_t
*wport
= &devc
->wport
;
2166 DBGPV("swstate = %d\n", wport
->swstate
);
2167 if (wport
->swstate
== SW_RUN
) {
2168 int idx
= wport
->swb_u_idx
;
2169 int end
= (idx
+ wport
->hw_fragsize
- 1)
2170 >> wport
->hw_fragshift
2171 << wport
->hw_fragshift
;
2173 DBGPV("clearing %d bytes\n", nb
);
2175 memset(wport
->swbuf
+ idx
,
2176 (char) wport
->zero_word
,
2178 wport
->swstate
= SW_DRAIN
;
2179 pcm_output(devc
, 0, nb
);
2185 * Wait for output to drain. This sleeps uninterruptibly because
2186 * there is nothing intelligent we can do if interrupted. This
2187 * means the process will be delayed in responding to the signal.
2190 static void pcm_write_sync(vwsnd_dev_t
*devc
)
2192 vwsnd_port_t
*wport
= &devc
->wport
;
2193 DECLARE_WAITQUEUE(wait
, current
);
2194 unsigned long flags
;
2195 vwsnd_port_hwstate_t hwstate
;
2197 DBGEV("(devc=0x%p)\n", devc
);
2198 add_wait_queue(&wport
->queue
, &wait
);
2200 set_current_state(TASK_UNINTERRUPTIBLE
);
2201 spin_lock_irqsave(&wport
->lock
, flags
);
2203 hwstate
= wport
->hwstate
;
2205 spin_unlock_irqrestore(&wport
->lock
, flags
);
2206 if (hwstate
== HW_STOPPED
)
2210 current
->state
= TASK_RUNNING
;
2211 remove_wait_queue(&wport
->queue
, &wait
);
2212 DBGPV("swstate = %d, hwstate = %d\n", wport
->swstate
, wport
->hwstate
);
2216 /*****************************************************************************/
2220 * seek on an audio device always fails.
2223 static void vwsnd_audio_read_intr(vwsnd_dev_t
*devc
, unsigned int status
)
2225 int overflown
= status
& LI_INTR_COMM1_OVERFLOW
;
2227 if (status
& READ_INTR_MASK
)
2228 pcm_input(devc
, overflown
, 0);
2231 static void vwsnd_audio_write_intr(vwsnd_dev_t
*devc
, unsigned int status
)
2233 int underflown
= status
& LI_INTR_COMM2_UNDERFLOW
;
2235 if (status
& WRITE_INTR_MASK
)
2236 pcm_output(devc
, underflown
, 0);
2239 static irqreturn_t
vwsnd_audio_intr(int irq
, void *dev_id
)
2241 vwsnd_dev_t
*devc
= dev_id
;
2242 unsigned int status
;
2244 DBGEV("(irq=%d, dev_id=0x%p)\n", irq
, dev_id
);
2246 status
= li_get_clear_intr_status(&devc
->lith
);
2247 vwsnd_audio_read_intr(devc
, status
);
2248 vwsnd_audio_write_intr(devc
, status
);
2252 static ssize_t
vwsnd_audio_do_read(struct file
*file
,
2257 vwsnd_dev_t
*devc
= file
->private_data
;
2258 vwsnd_port_t
*rport
= ((file
->f_mode
& FMODE_READ
) ?
2259 &devc
->rport
: NULL
);
2262 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2263 file
, buffer
, count
, ppos
);
2268 if (rport
->swbuf
== NULL
) {
2269 vwsnd_port_t
*wport
= (file
->f_mode
& FMODE_WRITE
) ?
2270 &devc
->wport
: NULL
;
2271 ret
= pcm_setup(devc
, rport
, wport
);
2276 if (!access_ok(VERIFY_READ
, buffer
, count
))
2280 DECLARE_WAITQUEUE(wait
, current
);
2281 add_wait_queue(&rport
->queue
, &wait
);
2282 while ((nb
= swb_inc_u(rport
, 0)) == 0) {
2283 DBGPV("blocking\n");
2284 set_current_state(TASK_INTERRUPTIBLE
);
2285 if (rport
->flags
& DISABLED
||
2286 file
->f_flags
& O_NONBLOCK
) {
2287 current
->state
= TASK_RUNNING
;
2288 remove_wait_queue(&rport
->queue
, &wait
);
2289 return ret
? ret
: -EAGAIN
;
2292 if (signal_pending(current
)) {
2293 current
->state
= TASK_RUNNING
;
2294 remove_wait_queue(&rport
->queue
, &wait
);
2295 return ret
? ret
: -ERESTARTSYS
;
2298 current
->state
= TASK_RUNNING
;
2299 remove_wait_queue(&rport
->queue
, &wait
);
2300 pcm_input(devc
, 0, 0);
2301 /* nb bytes are available in userbuf. */
2304 DBGPV("nb = %d\n", nb
);
2305 if (copy_to_user(buffer
, rport
->swbuf
+ rport
->swb_u_idx
, nb
))
2307 (void) swb_inc_u(rport
, nb
);
2312 DBGPV("returning %d\n", ret
);
2316 static ssize_t
vwsnd_audio_read(struct file
*file
,
2321 vwsnd_dev_t
*devc
= file
->private_data
;
2324 mutex_lock(&devc
->io_mutex
);
2325 ret
= vwsnd_audio_do_read(file
, buffer
, count
, ppos
);
2326 mutex_unlock(&devc
->io_mutex
);
2330 static ssize_t
vwsnd_audio_do_write(struct file
*file
,
2335 vwsnd_dev_t
*devc
= file
->private_data
;
2336 vwsnd_port_t
*wport
= ((file
->f_mode
& FMODE_WRITE
) ?
2337 &devc
->wport
: NULL
);
2340 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2341 file
, buffer
, count
, ppos
);
2346 if (wport
->swbuf
== NULL
) {
2347 vwsnd_port_t
*rport
= (file
->f_mode
& FMODE_READ
) ?
2348 &devc
->rport
: NULL
;
2349 ret
= pcm_setup(devc
, rport
, wport
);
2353 if (!access_ok(VERIFY_WRITE
, buffer
, count
))
2357 DECLARE_WAITQUEUE(wait
, current
);
2358 add_wait_queue(&wport
->queue
, &wait
);
2359 while ((nb
= swb_inc_u(wport
, 0)) == 0) {
2360 set_current_state(TASK_INTERRUPTIBLE
);
2361 if (wport
->flags
& DISABLED
||
2362 file
->f_flags
& O_NONBLOCK
) {
2363 current
->state
= TASK_RUNNING
;
2364 remove_wait_queue(&wport
->queue
, &wait
);
2365 return ret
? ret
: -EAGAIN
;
2368 if (signal_pending(current
)) {
2369 current
->state
= TASK_RUNNING
;
2370 remove_wait_queue(&wport
->queue
, &wait
);
2371 return ret
? ret
: -ERESTARTSYS
;
2374 current
->state
= TASK_RUNNING
;
2375 remove_wait_queue(&wport
->queue
, &wait
);
2376 /* nb bytes are available in userbuf. */
2379 DBGPV("nb = %d\n", nb
);
2380 if (copy_from_user(wport
->swbuf
+ wport
->swb_u_idx
, buffer
, nb
))
2382 pcm_output(devc
, 0, nb
);
2387 DBGPV("returning %d\n", ret
);
2391 static ssize_t
vwsnd_audio_write(struct file
*file
,
2396 vwsnd_dev_t
*devc
= file
->private_data
;
2399 mutex_lock(&devc
->io_mutex
);
2400 ret
= vwsnd_audio_do_write(file
, buffer
, count
, ppos
);
2401 mutex_unlock(&devc
->io_mutex
);
2405 /* No kernel lock - fine */
2406 static unsigned int vwsnd_audio_poll(struct file
*file
,
2407 struct poll_table_struct
*wait
)
2409 vwsnd_dev_t
*devc
= (vwsnd_dev_t
*) file
->private_data
;
2410 vwsnd_port_t
*rport
= (file
->f_mode
& FMODE_READ
) ?
2411 &devc
->rport
: NULL
;
2412 vwsnd_port_t
*wport
= (file
->f_mode
& FMODE_WRITE
) ?
2413 &devc
->wport
: NULL
;
2414 unsigned int mask
= 0;
2416 DBGEV("(file=0x%p, wait=0x%p)\n", file
, wait
);
2418 ASSERT(rport
|| wport
);
2420 poll_wait(file
, &rport
->queue
, wait
);
2421 if (swb_inc_u(rport
, 0))
2422 mask
|= (POLLIN
| POLLRDNORM
);
2425 poll_wait(file
, &wport
->queue
, wait
);
2426 if (wport
->swbuf
== NULL
|| swb_inc_u(wport
, 0))
2427 mask
|= (POLLOUT
| POLLWRNORM
);
2430 DBGPV("returning 0x%x\n", mask
);
2434 static int vwsnd_audio_do_ioctl(struct file
*file
,
2438 vwsnd_dev_t
*devc
= (vwsnd_dev_t
*) file
->private_data
;
2439 vwsnd_port_t
*rport
= (file
->f_mode
& FMODE_READ
) ?
2440 &devc
->rport
: NULL
;
2441 vwsnd_port_t
*wport
= (file
->f_mode
& FMODE_WRITE
) ?
2442 &devc
->wport
: NULL
;
2443 vwsnd_port_t
*aport
= rport
? rport
: wport
;
2444 struct audio_buf_info buf_info
;
2445 struct count_info info
;
2446 unsigned long flags
;
2450 DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2453 case OSS_GETVERSION
: /* _SIOR ('M', 118, int) */
2454 DBGX("OSS_GETVERSION\n");
2455 ival
= SOUND_VERSION
;
2456 return put_user(ival
, (int *) arg
);
2458 case SNDCTL_DSP_GETCAPS
: /* _SIOR ('P',15, int) */
2459 DBGX("SNDCTL_DSP_GETCAPS\n");
2460 ival
= DSP_CAP_DUPLEX
| DSP_CAP_REALTIME
| DSP_CAP_TRIGGER
;
2461 return put_user(ival
, (int *) arg
);
2463 case SNDCTL_DSP_GETFMTS
: /* _SIOR ('P',11, int) */
2464 DBGX("SNDCTL_DSP_GETFMTS\n");
2465 ival
= (AFMT_S16_LE
| AFMT_MU_LAW
| AFMT_A_LAW
|
2467 return put_user(ival
, (int *) arg
);
2470 case SOUND_PCM_READ_RATE
: /* _SIOR ('P', 2, int) */
2471 DBGX("SOUND_PCM_READ_RATE\n");
2472 ival
= aport
->sw_framerate
;
2473 return put_user(ival
, (int *) arg
);
2475 case SOUND_PCM_READ_CHANNELS
: /* _SIOR ('P', 6, int) */
2476 DBGX("SOUND_PCM_READ_CHANNELS\n");
2477 ival
= aport
->sw_channels
;
2478 return put_user(ival
, (int *) arg
);
2480 case SNDCTL_DSP_SPEED
: /* _SIOWR('P', 2, int) */
2481 if (get_user(ival
, (int *) arg
))
2483 DBGX("SNDCTL_DSP_SPEED %d\n", ival
);
2485 if (aport
->swstate
!= SW_INITIAL
) {
2486 DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2490 if (ival
< MIN_SPEED
)
2492 if (ival
> MAX_SPEED
)
2495 rport
->sw_framerate
= ival
;
2497 wport
->sw_framerate
= ival
;
2499 ival
= aport
->sw_framerate
;
2500 return put_user(ival
, (int *) arg
);
2502 case SNDCTL_DSP_STEREO
: /* _SIOWR('P', 3, int) */
2503 if (get_user(ival
, (int *) arg
))
2505 DBGX("SNDCTL_DSP_STEREO %d\n", ival
);
2506 if (ival
!= 0 && ival
!= 1)
2508 if (aport
->swstate
!= SW_INITIAL
)
2511 rport
->sw_channels
= ival
+ 1;
2513 wport
->sw_channels
= ival
+ 1;
2514 return put_user(ival
, (int *) arg
);
2516 case SNDCTL_DSP_CHANNELS
: /* _SIOWR('P', 6, int) */
2517 if (get_user(ival
, (int *) arg
))
2519 DBGX("SNDCTL_DSP_CHANNELS %d\n", ival
);
2520 if (ival
!= 1 && ival
!= 2)
2522 if (aport
->swstate
!= SW_INITIAL
)
2525 rport
->sw_channels
= ival
;
2527 wport
->sw_channels
= ival
;
2528 return put_user(ival
, (int *) arg
);
2530 case SNDCTL_DSP_GETBLKSIZE
: /* _SIOWR('P', 4, int) */
2531 ival
= pcm_setup(devc
, rport
, wport
);
2533 DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival
);
2536 ival
= 1 << aport
->sw_fragshift
;
2537 DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival
);
2538 return put_user(ival
, (int *) arg
);
2540 case SNDCTL_DSP_SETFRAGMENT
: /* _SIOWR('P',10, int) */
2541 if (get_user(ival
, (int *) arg
))
2543 DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2544 ival
>> 16, ival
& 0xFFFF);
2545 if (aport
->swstate
!= SW_INITIAL
)
2548 int sw_fragshift
= ival
& 0xFFFF;
2549 int sw_subdivshift
= aport
->sw_subdivshift
;
2550 int hw_fragshift
= sw_fragshift
- sw_subdivshift
;
2551 int sw_fragcount
= (ival
>> 16) & 0xFFFF;
2553 if (hw_fragshift
< MIN_FRAGSHIFT
)
2554 hw_fragshift
= MIN_FRAGSHIFT
;
2555 if (hw_fragshift
> MAX_FRAGSHIFT
)
2556 hw_fragshift
= MAX_FRAGSHIFT
;
2557 sw_fragshift
= hw_fragshift
+ aport
->sw_subdivshift
;
2558 hw_fragsize
= 1 << hw_fragshift
;
2559 if (sw_fragcount
< MIN_FRAGCOUNT(hw_fragsize
))
2560 sw_fragcount
= MIN_FRAGCOUNT(hw_fragsize
);
2561 if (sw_fragcount
> MAX_FRAGCOUNT(hw_fragsize
))
2562 sw_fragcount
= MAX_FRAGCOUNT(hw_fragsize
);
2563 DBGPV("sw_fragshift = %d\n", sw_fragshift
);
2564 DBGPV("rport = 0x%p, wport = 0x%p\n", rport
, wport
);
2566 rport
->sw_fragshift
= sw_fragshift
;
2567 rport
->sw_fragcount
= sw_fragcount
;
2570 wport
->sw_fragshift
= sw_fragshift
;
2571 wport
->sw_fragcount
= sw_fragcount
;
2573 ival
= sw_fragcount
<< 16 | sw_fragshift
;
2575 DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2576 ival
>> 16, ival
& 0xFFFF);
2577 return put_user(ival
, (int *) arg
);
2579 case SNDCTL_DSP_SUBDIVIDE
: /* _SIOWR('P', 9, int) */
2580 if (get_user(ival
, (int *) arg
))
2582 DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival
);
2583 if (aport
->swstate
!= SW_INITIAL
)
2587 int hw_fragshift
, hw_fragsize
, hw_fragcount
;
2589 case 1: subdivshift
= 0; break;
2590 case 2: subdivshift
= 1; break;
2591 case 4: subdivshift
= 2; break;
2592 default: return -EINVAL
;
2594 hw_fragshift
= aport
->sw_fragshift
- subdivshift
;
2595 if (hw_fragshift
< MIN_FRAGSHIFT
||
2596 hw_fragshift
> MAX_FRAGSHIFT
)
2598 hw_fragsize
= 1 << hw_fragshift
;
2599 hw_fragcount
= aport
->sw_fragcount
>> subdivshift
;
2600 if (hw_fragcount
< MIN_FRAGCOUNT(hw_fragsize
) ||
2601 hw_fragcount
> MAX_FRAGCOUNT(hw_fragsize
))
2604 rport
->sw_subdivshift
= subdivshift
;
2606 wport
->sw_subdivshift
= subdivshift
;
2610 case SNDCTL_DSP_SETFMT
: /* _SIOWR('P',5, int) */
2611 if (get_user(ival
, (int *) arg
))
2613 DBGX("SNDCTL_DSP_SETFMT %d\n", ival
);
2614 if (ival
!= AFMT_QUERY
) {
2615 if (aport
->swstate
!= SW_INITIAL
) {
2616 DBGP("SETFMT failed, swstate = %d\n",
2627 rport
->sw_samplefmt
= ival
;
2629 wport
->sw_samplefmt
= ival
;
2635 ival
= aport
->sw_samplefmt
;
2636 return put_user(ival
, (int *) arg
);
2638 case SNDCTL_DSP_GETOSPACE
: /* _SIOR ('P',12, audio_buf_info) */
2639 DBGXV("SNDCTL_DSP_GETOSPACE\n");
2642 ival
= pcm_setup(devc
, rport
, wport
);
2645 ival
= swb_inc_u(wport
, 0);
2646 buf_info
.fragments
= ival
>> wport
->sw_fragshift
;
2647 buf_info
.fragstotal
= wport
->sw_fragcount
;
2648 buf_info
.fragsize
= 1 << wport
->sw_fragshift
;
2649 buf_info
.bytes
= ival
;
2650 DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2651 buf_info
.fragments
, buf_info
.fragstotal
,
2652 buf_info
.fragsize
, buf_info
.bytes
);
2653 if (copy_to_user((void *) arg
, &buf_info
, sizeof buf_info
))
2657 case SNDCTL_DSP_GETISPACE
: /* _SIOR ('P',13, audio_buf_info) */
2658 DBGX("SNDCTL_DSP_GETISPACE\n");
2661 ival
= pcm_setup(devc
, rport
, wport
);
2664 ival
= swb_inc_u(rport
, 0);
2665 buf_info
.fragments
= ival
>> rport
->sw_fragshift
;
2666 buf_info
.fragstotal
= rport
->sw_fragcount
;
2667 buf_info
.fragsize
= 1 << rport
->sw_fragshift
;
2668 buf_info
.bytes
= ival
;
2669 DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2670 buf_info
.fragments
, buf_info
.fragstotal
,
2671 buf_info
.fragsize
, buf_info
.bytes
);
2672 if (copy_to_user((void *) arg
, &buf_info
, sizeof buf_info
))
2676 case SNDCTL_DSP_NONBLOCK
: /* _SIO ('P',14) */
2677 DBGX("SNDCTL_DSP_NONBLOCK\n");
2678 spin_lock(&file
->f_lock
);
2679 file
->f_flags
|= O_NONBLOCK
;
2680 spin_unlock(&file
->f_lock
);
2683 case SNDCTL_DSP_RESET
: /* _SIO ('P', 0) */
2684 DBGX("SNDCTL_DSP_RESET\n");
2686 * Nothing special needs to be done for input. Input
2687 * samples sit in swbuf, but it will be reinitialized
2688 * to empty when pcm_setup() is called.
2690 if (wport
&& wport
->swbuf
) {
2691 wport
->swstate
= SW_INITIAL
;
2692 pcm_output(devc
, 0, 0);
2693 pcm_write_sync(devc
);
2695 pcm_shutdown(devc
, rport
, wport
);
2698 case SNDCTL_DSP_SYNC
: /* _SIO ('P', 1) */
2699 DBGX("SNDCTL_DSP_SYNC\n");
2701 pcm_flush_frag(devc
);
2702 pcm_write_sync(devc
);
2704 pcm_shutdown(devc
, rport
, wport
);
2707 case SNDCTL_DSP_POST
: /* _SIO ('P', 8) */
2708 DBGX("SNDCTL_DSP_POST\n");
2711 pcm_flush_frag(devc
);
2714 case SNDCTL_DSP_GETIPTR
: /* _SIOR ('P', 17, count_info) */
2715 DBGX("SNDCTL_DSP_GETIPTR\n");
2718 spin_lock_irqsave(&rport
->lock
, flags
);
2721 if (rport
->hwstate
== HW_RUNNING
) {
2722 ASSERT(rport
->swstate
== SW_RUN
);
2723 li_read_USTMSC(&rport
->chan
, &ustmsc
);
2724 info
.bytes
= ustmsc
.msc
- rport
->MSC_offset
;
2725 info
.bytes
*= rport
->frame_size
;
2727 info
.bytes
= rport
->byte_count
;
2729 info
.blocks
= rport
->frag_count
;
2730 info
.ptr
= 0; /* not implemented */
2731 rport
->frag_count
= 0;
2733 spin_unlock_irqrestore(&rport
->lock
, flags
);
2734 if (copy_to_user((void *) arg
, &info
, sizeof info
))
2738 case SNDCTL_DSP_GETOPTR
: /* _SIOR ('P',18, count_info) */
2739 DBGX("SNDCTL_DSP_GETOPTR\n");
2742 spin_lock_irqsave(&wport
->lock
, flags
);
2745 if (wport
->hwstate
== HW_RUNNING
) {
2746 ASSERT(wport
->swstate
== SW_RUN
);
2747 li_read_USTMSC(&wport
->chan
, &ustmsc
);
2748 info
.bytes
= ustmsc
.msc
- wport
->MSC_offset
;
2749 info
.bytes
*= wport
->frame_size
;
2751 info
.bytes
= wport
->byte_count
;
2753 info
.blocks
= wport
->frag_count
;
2754 info
.ptr
= 0; /* not implemented */
2755 wport
->frag_count
= 0;
2757 spin_unlock_irqrestore(&wport
->lock
, flags
);
2758 if (copy_to_user((void *) arg
, &info
, sizeof info
))
2762 case SNDCTL_DSP_GETODELAY
: /* _SIOR ('P', 23, int) */
2763 DBGX("SNDCTL_DSP_GETODELAY\n");
2766 spin_lock_irqsave(&wport
->lock
, flags
);
2768 int fsize
= wport
->frame_size
;
2769 ival
= wport
->swb_i_avail
/ fsize
;
2770 if (wport
->hwstate
== HW_RUNNING
) {
2771 int swptr
, hwptr
, hwframes
, hwbytes
, hwsize
;
2775 hwsize
= wport
->hwbuf_size
;
2776 swptr
= li_read_swptr(&wport
->chan
);
2777 li_read_USTMSC(&wport
->chan
, &ustmsc
);
2778 hwframes
= ustmsc
.msc
- wport
->MSC_offset
;
2779 totalhwbytes
= hwframes
* fsize
;
2780 hwptr
= totalhwbytes
% hwsize
;
2781 hwbytes
= (swptr
- hwptr
+ hwsize
) % hwsize
;
2782 ival
+= hwbytes
/ fsize
;
2785 spin_unlock_irqrestore(&wport
->lock
, flags
);
2786 return put_user(ival
, (int *) arg
);
2788 case SNDCTL_DSP_PROFILE
: /* _SIOW ('P', 23, int) */
2789 DBGX("SNDCTL_DSP_PROFILE\n");
2792 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2793 * (private email, March 24, 1999):
2795 * This gives the sound driver a hint on what it
2796 * should do with partial fragments
2797 * (i.e. fragments partially filled with write).
2798 * This can direct the driver to zero them or
2799 * leave them alone. But don't ask me what this
2800 * is good for, my driver just zeroes the last
2801 * fragment before the receiver stops, no idea
2802 * what good for any other behaviour could
2803 * be. Implementing it as NOP seems safe.
2808 case SNDCTL_DSP_GETTRIGGER
: /* _SIOR ('P',16, int) */
2809 DBGX("SNDCTL_DSP_GETTRIGGER\n");
2812 spin_lock_irqsave(&rport
->lock
, flags
);
2814 if (!(rport
->flags
& DISABLED
))
2815 ival
|= PCM_ENABLE_INPUT
;
2817 spin_unlock_irqrestore(&rport
->lock
, flags
);
2820 spin_lock_irqsave(&wport
->lock
, flags
);
2822 if (!(wport
->flags
& DISABLED
))
2823 ival
|= PCM_ENABLE_OUTPUT
;
2825 spin_unlock_irqrestore(&wport
->lock
, flags
);
2827 return put_user(ival
, (int *) arg
);
2829 case SNDCTL_DSP_SETTRIGGER
: /* _SIOW ('P',16, int) */
2830 if (get_user(ival
, (int *) arg
))
2832 DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival
);
2835 * If user is disabling I/O and port is not in initial
2836 * state, fail with EINVAL.
2839 if (((rport
&& !(ival
& PCM_ENABLE_INPUT
)) ||
2840 (wport
&& !(ival
& PCM_ENABLE_OUTPUT
))) &&
2841 aport
->swstate
!= SW_INITIAL
)
2845 vwsnd_port_hwstate_t hwstate
;
2846 spin_lock_irqsave(&rport
->lock
, flags
);
2848 hwstate
= rport
->hwstate
;
2849 if (ival
& PCM_ENABLE_INPUT
)
2850 rport
->flags
&= ~DISABLED
;
2852 rport
->flags
|= DISABLED
;
2854 spin_unlock_irqrestore(&rport
->lock
, flags
);
2855 if (hwstate
!= HW_RUNNING
&& ival
& PCM_ENABLE_INPUT
) {
2857 if (rport
->swstate
== SW_INITIAL
)
2858 pcm_setup(devc
, rport
, wport
);
2860 li_activate_dma(&rport
->chan
);
2864 vwsnd_port_flags_t pflags
;
2865 spin_lock_irqsave(&wport
->lock
, flags
);
2867 pflags
= wport
->flags
;
2868 if (ival
& PCM_ENABLE_OUTPUT
)
2869 wport
->flags
&= ~DISABLED
;
2871 wport
->flags
|= DISABLED
;
2873 spin_unlock_irqrestore(&wport
->lock
, flags
);
2874 if (pflags
& DISABLED
&& ival
& PCM_ENABLE_OUTPUT
) {
2875 if (wport
->swstate
== SW_RUN
)
2876 pcm_output(devc
, 0, 0);
2882 DBGP("unknown ioctl 0x%x\n", cmd
);
2885 DBGP("unimplemented ioctl 0x%x\n", cmd
);
2889 static long vwsnd_audio_ioctl(struct file
*file
,
2893 vwsnd_dev_t
*devc
= (vwsnd_dev_t
*) file
->private_data
;
2896 mutex_lock(&vwsnd_mutex
);
2897 mutex_lock(&devc
->io_mutex
);
2898 ret
= vwsnd_audio_do_ioctl(file
, cmd
, arg
);
2899 mutex_unlock(&devc
->io_mutex
);
2900 mutex_unlock(&vwsnd_mutex
);
2907 static int vwsnd_audio_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2909 DBGE("(file=0x%p, vma=0x%p)\n", file
, vma
);
2914 * Open the audio device for read and/or write.
2916 * Returns 0 on success, -errno on failure.
2919 static int vwsnd_audio_open(struct inode
*inode
, struct file
*file
)
2922 int minor
= iminor(inode
);
2926 DBGE("(inode=0x%p, file=0x%p)\n", inode
, file
);
2928 mutex_lock(&vwsnd_mutex
);
2930 for (devc
= vwsnd_dev_list
; devc
; devc
= devc
->next_dev
)
2931 if ((devc
->audio_minor
& ~0x0F) == (minor
& ~0x0F))
2936 mutex_unlock(&vwsnd_mutex
);
2940 mutex_lock(&devc
->open_mutex
);
2942 prepare_to_wait(&devc
->open_wait
, &wait
, TASK_INTERRUPTIBLE
);
2943 if (!(devc
->open_mode
& file
->f_mode
))
2946 mutex_unlock(&devc
->open_mutex
);
2947 mutex_unlock(&vwsnd_mutex
);
2948 if (file
->f_flags
& O_NONBLOCK
) {
2953 if (signal_pending(current
)) {
2955 return -ERESTARTSYS
;
2957 mutex_lock(&vwsnd_mutex
);
2958 mutex_lock(&devc
->open_mutex
);
2960 finish_wait(&devc
->open_wait
, &wait
);
2961 devc
->open_mode
|= file
->f_mode
& (FMODE_READ
| FMODE_WRITE
);
2962 mutex_unlock(&devc
->open_mutex
);
2964 /* get default sample format from minor number. */
2967 if ((minor
& 0xF) == SND_DEV_DSP
)
2968 sw_samplefmt
= AFMT_U8
;
2969 else if ((minor
& 0xF) == SND_DEV_AUDIO
)
2970 sw_samplefmt
= AFMT_MU_LAW
;
2971 else if ((minor
& 0xF) == SND_DEV_DSP16
)
2972 sw_samplefmt
= AFMT_S16_LE
;
2976 /* Initialize vwsnd_ports. */
2978 mutex_lock(&devc
->io_mutex
);
2980 if (file
->f_mode
& FMODE_READ
) {
2981 devc
->rport
.swstate
= SW_INITIAL
;
2982 devc
->rport
.flags
= 0;
2983 devc
->rport
.sw_channels
= 1;
2984 devc
->rport
.sw_samplefmt
= sw_samplefmt
;
2985 devc
->rport
.sw_framerate
= 8000;
2986 devc
->rport
.sw_fragshift
= DEFAULT_FRAGSHIFT
;
2987 devc
->rport
.sw_fragcount
= DEFAULT_FRAGCOUNT
;
2988 devc
->rport
.sw_subdivshift
= DEFAULT_SUBDIVSHIFT
;
2989 devc
->rport
.byte_count
= 0;
2990 devc
->rport
.frag_count
= 0;
2992 if (file
->f_mode
& FMODE_WRITE
) {
2993 devc
->wport
.swstate
= SW_INITIAL
;
2994 devc
->wport
.flags
= 0;
2995 devc
->wport
.sw_channels
= 1;
2996 devc
->wport
.sw_samplefmt
= sw_samplefmt
;
2997 devc
->wport
.sw_framerate
= 8000;
2998 devc
->wport
.sw_fragshift
= DEFAULT_FRAGSHIFT
;
2999 devc
->wport
.sw_fragcount
= DEFAULT_FRAGCOUNT
;
3000 devc
->wport
.sw_subdivshift
= DEFAULT_SUBDIVSHIFT
;
3001 devc
->wport
.byte_count
= 0;
3002 devc
->wport
.frag_count
= 0;
3005 mutex_unlock(&devc
->io_mutex
);
3007 file
->private_data
= devc
;
3009 mutex_unlock(&vwsnd_mutex
);
3014 * Release (close) the audio device.
3017 static int vwsnd_audio_release(struct inode
*inode
, struct file
*file
)
3019 vwsnd_dev_t
*devc
= (vwsnd_dev_t
*) file
->private_data
;
3020 vwsnd_port_t
*wport
= NULL
, *rport
= NULL
;
3023 mutex_lock(&vwsnd_mutex
);
3024 mutex_lock(&devc
->io_mutex
);
3026 DBGEV("(inode=0x%p, file=0x%p)\n", inode
, file
);
3028 if (file
->f_mode
& FMODE_READ
)
3029 rport
= &devc
->rport
;
3030 if (file
->f_mode
& FMODE_WRITE
) {
3031 wport
= &devc
->wport
;
3032 pcm_flush_frag(devc
);
3033 pcm_write_sync(devc
);
3035 pcm_shutdown(devc
, rport
, wport
);
3037 rport
->swstate
= SW_OFF
;
3039 wport
->swstate
= SW_OFF
;
3041 mutex_unlock(&devc
->io_mutex
);
3043 mutex_lock(&devc
->open_mutex
);
3045 devc
->open_mode
&= ~file
->f_mode
;
3047 mutex_unlock(&devc
->open_mutex
);
3048 wake_up(&devc
->open_wait
);
3051 mutex_unlock(&vwsnd_mutex
);
3055 static const struct file_operations vwsnd_audio_fops
= {
3056 .owner
= THIS_MODULE
,
3057 .llseek
= no_llseek
,
3058 .read
= vwsnd_audio_read
,
3059 .write
= vwsnd_audio_write
,
3060 .poll
= vwsnd_audio_poll
,
3061 .unlocked_ioctl
= vwsnd_audio_ioctl
,
3062 .mmap
= vwsnd_audio_mmap
,
3063 .open
= vwsnd_audio_open
,
3064 .release
= vwsnd_audio_release
,
3067 /*****************************************************************************/
3070 /* open the mixer device. */
3072 static int vwsnd_mixer_open(struct inode
*inode
, struct file
*file
)
3076 DBGEV("(inode=0x%p, file=0x%p)\n", inode
, file
);
3079 mutex_lock(&vwsnd_mutex
);
3080 for (devc
= vwsnd_dev_list
; devc
; devc
= devc
->next_dev
)
3081 if (devc
->mixer_minor
== iminor(inode
))
3086 mutex_unlock(&vwsnd_mutex
);
3089 file
->private_data
= devc
;
3090 mutex_unlock(&vwsnd_mutex
);
3094 /* release (close) the mixer device. */
3096 static int vwsnd_mixer_release(struct inode
*inode
, struct file
*file
)
3098 DBGEV("(inode=0x%p, file=0x%p)\n", inode
, file
);
3103 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3105 static int mixer_read_ioctl(vwsnd_dev_t
*devc
, unsigned int nr
, void __user
*arg
)
3109 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc
, nr
, arg
);
3112 case SOUND_MIXER_CAPS
:
3113 val
= SOUND_CAP_EXCL_INPUT
;
3116 case SOUND_MIXER_DEVMASK
:
3117 val
= (SOUND_MASK_PCM
| SOUND_MASK_LINE
|
3118 SOUND_MASK_MIC
| SOUND_MASK_CD
| SOUND_MASK_RECLEV
);
3121 case SOUND_MIXER_STEREODEVS
:
3122 val
= (SOUND_MASK_PCM
| SOUND_MASK_LINE
|
3123 SOUND_MASK_MIC
| SOUND_MASK_CD
| SOUND_MASK_RECLEV
);
3126 case SOUND_MIXER_OUTMASK
:
3127 val
= (SOUND_MASK_PCM
| SOUND_MASK_LINE
|
3128 SOUND_MASK_MIC
| SOUND_MASK_CD
);
3131 case SOUND_MIXER_RECMASK
:
3132 val
= (SOUND_MASK_PCM
| SOUND_MASK_LINE
|
3133 SOUND_MASK_MIC
| SOUND_MASK_CD
);
3136 case SOUND_MIXER_PCM
:
3137 val
= ad1843_get_gain(&devc
->lith
, &ad1843_gain_PCM
);
3140 case SOUND_MIXER_LINE
:
3141 val
= ad1843_get_gain(&devc
->lith
, &ad1843_gain_LINE
);
3144 case SOUND_MIXER_MIC
:
3145 val
= ad1843_get_gain(&devc
->lith
, &ad1843_gain_MIC
);
3148 case SOUND_MIXER_CD
:
3149 val
= ad1843_get_gain(&devc
->lith
, &ad1843_gain_CD
);
3152 case SOUND_MIXER_RECLEV
:
3153 val
= ad1843_get_gain(&devc
->lith
, &ad1843_gain_RECLEV
);
3156 case SOUND_MIXER_RECSRC
:
3157 val
= ad1843_get_recsrc(&devc
->lith
);
3160 case SOUND_MIXER_OUTSRC
:
3161 val
= ad1843_get_outsrc(&devc
->lith
);
3167 return put_user(val
, (int __user
*) arg
);
3170 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3172 static int mixer_write_ioctl(vwsnd_dev_t
*devc
, unsigned int nr
, void __user
*arg
)
3177 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc
, nr
, arg
);
3179 err
= get_user(val
, (int __user
*) arg
);
3183 case SOUND_MIXER_PCM
:
3184 val
= ad1843_set_gain(&devc
->lith
, &ad1843_gain_PCM
, val
);
3187 case SOUND_MIXER_LINE
:
3188 val
= ad1843_set_gain(&devc
->lith
, &ad1843_gain_LINE
, val
);
3191 case SOUND_MIXER_MIC
:
3192 val
= ad1843_set_gain(&devc
->lith
, &ad1843_gain_MIC
, val
);
3195 case SOUND_MIXER_CD
:
3196 val
= ad1843_set_gain(&devc
->lith
, &ad1843_gain_CD
, val
);
3199 case SOUND_MIXER_RECLEV
:
3200 val
= ad1843_set_gain(&devc
->lith
, &ad1843_gain_RECLEV
, val
);
3203 case SOUND_MIXER_RECSRC
:
3204 if (devc
->rport
.swbuf
|| devc
->wport
.swbuf
)
3205 return -EBUSY
; /* can't change recsrc while running */
3206 val
= ad1843_set_recsrc(&devc
->lith
, val
);
3209 case SOUND_MIXER_OUTSRC
:
3210 val
= ad1843_set_outsrc(&devc
->lith
, val
);
3218 return put_user(val
, (int __user
*) arg
);
3221 /* This is the ioctl entry to the mixer driver. */
3223 static long vwsnd_mixer_ioctl(struct file
*file
,
3227 vwsnd_dev_t
*devc
= (vwsnd_dev_t
*) file
->private_data
;
3228 const unsigned int nrmask
= _IOC_NRMASK
<< _IOC_NRSHIFT
;
3229 const unsigned int nr
= (cmd
& nrmask
) >> _IOC_NRSHIFT
;
3232 DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc
, cmd
, arg
);
3234 mutex_lock(&vwsnd_mutex
);
3235 mutex_lock(&devc
->mix_mutex
);
3237 if ((cmd
& ~nrmask
) == MIXER_READ(0))
3238 retval
= mixer_read_ioctl(devc
, nr
, (void __user
*) arg
);
3239 else if ((cmd
& ~nrmask
) == MIXER_WRITE(0))
3240 retval
= mixer_write_ioctl(devc
, nr
, (void __user
*) arg
);
3244 mutex_unlock(&devc
->mix_mutex
);
3245 mutex_unlock(&vwsnd_mutex
);
3249 static const struct file_operations vwsnd_mixer_fops
= {
3250 .owner
= THIS_MODULE
,
3251 .llseek
= no_llseek
,
3252 .unlocked_ioctl
= vwsnd_mixer_ioctl
,
3253 .open
= vwsnd_mixer_open
,
3254 .release
= vwsnd_mixer_release
,
3257 /*****************************************************************************/
3258 /* probe/attach/unload */
3260 /* driver probe routine. Return nonzero if hardware is found. */
3262 static int __init
probe_vwsnd(struct address_info
*hw_config
)
3266 unsigned long later
;
3268 DBGEV("(hw_config=0x%p)\n", hw_config
);
3270 /* XXX verify lithium present (to prevent crash on non-vw) */
3272 if (li_create(&lith
, hw_config
->io_base
) != 0) {
3273 printk(KERN_WARNING
"probe_vwsnd: can't map lithium\n");
3276 later
= jiffies
+ 2;
3277 li_writel(&lith
, LI_HOST_CONTROLLER
, LI_HC_LINK_ENABLE
);
3279 w
= li_readl(&lith
, LI_HOST_CONTROLLER
);
3280 } while (w
== LI_HC_LINK_ENABLE
&& time_before(jiffies
, later
));
3284 DBGPV("HC = 0x%04x\n", w
);
3286 if ((w
== LI_HC_LINK_ENABLE
) || (w
& LI_HC_LINK_CODEC
)) {
3288 /* This may indicate a beta machine with no audio,
3289 * or a future machine with different audio.
3290 * On beta-release 320 w/ no audio, HC == 0x4000 */
3292 printk(KERN_WARNING
"probe_vwsnd: audio codec not found\n");
3296 if (w
& LI_HC_LINK_FAILURE
) {
3297 printk(KERN_WARNING
"probe_vwsnd: can't init audio codec\n");
3301 printk(KERN_INFO
"vwsnd: lithium audio at mmio %#x irq %d\n",
3302 hw_config
->io_base
, hw_config
->irq
);
3308 * driver attach routine. Initialize driver data structures and
3309 * initialize hardware. A new vwsnd_dev_t is allocated and put
3310 * onto the global list, vwsnd_dev_list.
3312 * Return +minor_dev on success, -errno on failure.
3315 static int __init
attach_vwsnd(struct address_info
*hw_config
)
3317 vwsnd_dev_t
*devc
= NULL
;
3320 DBGEV("(hw_config=0x%p)\n", hw_config
);
3322 devc
= kmalloc(sizeof (vwsnd_dev_t
), GFP_KERNEL
);
3326 err
= li_create(&devc
->lith
, hw_config
->io_base
);
3330 init_waitqueue_head(&devc
->open_wait
);
3332 devc
->rport
.hwbuf_size
= HWBUF_SIZE
;
3333 devc
->rport
.hwbuf_vaddr
= __get_free_pages(GFP_KERNEL
, HWBUF_ORDER
);
3334 if (!devc
->rport
.hwbuf_vaddr
)
3336 devc
->rport
.hwbuf
= (void *) devc
->rport
.hwbuf_vaddr
;
3337 devc
->rport
.hwbuf_paddr
= virt_to_phys(devc
->rport
.hwbuf
);
3340 * Quote from the NT driver:
3342 * // WARNING!!! HACK to setup output dma!!!
3343 * // This is required because even on output there is some data
3344 * // trickling into the input DMA channel. This is a bug in the
3345 * // Lithium microcode.
3348 * We set the input side's DMA base address here. It will remain
3349 * valid until the driver is unloaded.
3352 li_writel(&devc
->lith
, LI_COMM1_BASE
,
3353 devc
->rport
.hwbuf_paddr
>> 8 | 1 << (37 - 8));
3355 devc
->wport
.hwbuf_size
= HWBUF_SIZE
;
3356 devc
->wport
.hwbuf_vaddr
= __get_free_pages(GFP_KERNEL
, HWBUF_ORDER
);
3357 if (!devc
->wport
.hwbuf_vaddr
)
3359 devc
->wport
.hwbuf
= (void *) devc
->wport
.hwbuf_vaddr
;
3360 devc
->wport
.hwbuf_paddr
= virt_to_phys(devc
->wport
.hwbuf
);
3361 DBGP("wport hwbuf = 0x%p\n", devc
->wport
.hwbuf
);
3364 err
= ad1843_init(&devc
->lith
);
3369 /* install interrupt handler */
3371 err
= request_irq(hw_config
->irq
, vwsnd_audio_intr
, 0, "vwsnd", devc
);
3375 /* register this device's drivers. */
3377 devc
->audio_minor
= register_sound_dsp(&vwsnd_audio_fops
, -1);
3378 if ((err
= devc
->audio_minor
) < 0) {
3379 DBGDO(printk(KERN_WARNING
3380 "attach_vwsnd: register_sound_dsp error %d\n",
3384 devc
->mixer_minor
= register_sound_mixer(&vwsnd_mixer_fops
,
3385 devc
->audio_minor
>> 4);
3386 if ((err
= devc
->mixer_minor
) < 0) {
3387 DBGDO(printk(KERN_WARNING
3388 "attach_vwsnd: register_sound_mixer error %d\n",
3393 /* Squirrel away device indices for unload routine. */
3395 hw_config
->slots
[0] = devc
->audio_minor
;
3397 /* Initialize as much of *devc as possible */
3399 mutex_init(&devc
->open_mutex
);
3400 mutex_init(&devc
->io_mutex
);
3401 mutex_init(&devc
->mix_mutex
);
3402 devc
->open_mode
= 0;
3403 spin_lock_init(&devc
->rport
.lock
);
3404 init_waitqueue_head(&devc
->rport
.queue
);
3405 devc
->rport
.swstate
= SW_OFF
;
3406 devc
->rport
.hwstate
= HW_STOPPED
;
3407 devc
->rport
.flags
= 0;
3408 devc
->rport
.swbuf
= NULL
;
3409 spin_lock_init(&devc
->wport
.lock
);
3410 init_waitqueue_head(&devc
->wport
.queue
);
3411 devc
->wport
.swstate
= SW_OFF
;
3412 devc
->wport
.hwstate
= HW_STOPPED
;
3413 devc
->wport
.flags
= 0;
3414 devc
->wport
.swbuf
= NULL
;
3416 /* Success. Link us onto the local device list. */
3418 devc
->next_dev
= vwsnd_dev_list
;
3419 vwsnd_dev_list
= devc
;
3420 return devc
->audio_minor
;
3422 /* So many ways to fail. Undo what we did. */
3425 unregister_sound_dsp(devc
->audio_minor
);
3427 free_irq(hw_config
->irq
, devc
);
3430 free_pages(devc
->wport
.hwbuf_vaddr
, HWBUF_ORDER
);
3432 free_pages(devc
->rport
.hwbuf_vaddr
, HWBUF_ORDER
);
3434 li_destroy(&devc
->lith
);
3441 static int __exit
unload_vwsnd(struct address_info
*hw_config
)
3443 vwsnd_dev_t
*devc
, **devcp
;
3447 devcp
= &vwsnd_dev_list
;
3448 while ((devc
= *devcp
)) {
3449 if (devc
->audio_minor
== hw_config
->slots
[0]) {
3450 *devcp
= devc
->next_dev
;
3453 devcp
= &devc
->next_dev
;
3459 unregister_sound_mixer(devc
->mixer_minor
);
3460 unregister_sound_dsp(devc
->audio_minor
);
3461 free_irq(hw_config
->irq
, devc
);
3462 free_pages(devc
->wport
.hwbuf_vaddr
, HWBUF_ORDER
);
3463 free_pages(devc
->rport
.hwbuf_vaddr
, HWBUF_ORDER
);
3464 li_destroy(&devc
->lith
);
3470 /*****************************************************************************/
3471 /* initialization and loadable kernel module interface */
3473 static struct address_info the_hw_config
= {
3474 0xFF001000, /* lithium phys addr */
3475 CO_IRQ(CO_APIC_LI_AUDIO
) /* irq */
3478 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3479 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3480 MODULE_LICENSE("GPL");
3482 static int __init
init_vwsnd(void)
3487 DBGXV("sound::vwsnd::init_module()\n");
3489 if (!probe_vwsnd(&the_hw_config
))
3492 err
= attach_vwsnd(&the_hw_config
);
3498 static void __exit
cleanup_vwsnd(void)
3500 DBGX("sound::vwsnd::cleanup_module()\n");
3502 unload_vwsnd(&the_hw_config
);
3505 module_init(init_vwsnd
);
3506 module_exit(cleanup_vwsnd
);