1 <refentry id="vidioc-g-fbuf">
3 <refentrytitle>ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF</refentrytitle>
8 <refname>VIDIOC_G_FBUF</refname>
9 <refname>VIDIOC_S_FBUF</refname>
10 <refpurpose>Get or set frame buffer overlay parameters</refpurpose>
16 <funcdef>int <function>ioctl</function></funcdef>
17 <paramdef>int <parameter>fd</parameter></paramdef>
18 <paramdef>int <parameter>request</parameter></paramdef>
19 <paramdef>struct v4l2_framebuffer *<parameter>argp</parameter></paramdef>
24 <funcdef>int <function>ioctl</function></funcdef>
25 <paramdef>int <parameter>fd</parameter></paramdef>
26 <paramdef>int <parameter>request</parameter></paramdef>
27 <paramdef>const struct v4l2_framebuffer *<parameter>argp</parameter></paramdef>
33 <title>Arguments</title>
37 <term><parameter>fd</parameter></term>
43 <term><parameter>request</parameter></term>
45 <para>VIDIOC_G_FBUF, VIDIOC_S_FBUF</para>
49 <term><parameter>argp</parameter></term>
58 <title>Description</title>
60 <para>Applications can use the <constant>VIDIOC_G_FBUF</constant> and
61 <constant>VIDIOC_S_FBUF</constant> ioctl to get and set the
62 framebuffer parameters for a <link linkend="overlay">Video
63 Overlay</link> or <link linkend="osd">Video Output Overlay</link>
64 (OSD). The type of overlay is implied by the device type (capture or
65 output device) and can be determined with the &VIDIOC-QUERYCAP; ioctl.
66 One <filename>/dev/videoN</filename> device must not support both
67 kinds of overlay.</para>
69 <para>The V4L2 API distinguishes destructive and non-destructive
70 overlays. A destructive overlay copies captured video images into the
71 video memory of a graphics card. A non-destructive overlay blends
72 video images into a VGA signal or graphics into a video signal.
73 <wordasword>Video Output Overlays</wordasword> are always
74 non-destructive.</para>
76 <para>To get the current parameters applications call the
77 <constant>VIDIOC_G_FBUF</constant> ioctl with a pointer to a
78 <structname>v4l2_framebuffer</structname> structure. The driver fills
79 all fields of the structure or returns an &EINVAL; when overlays are
82 <para>To set the parameters for a <wordasword>Video Output
83 Overlay</wordasword>, applications must initialize the
84 <structfield>flags</structfield> field of a struct
85 <structname>v4l2_framebuffer</structname>. Since the framebuffer is
86 implemented on the TV card all other parameters are determined by the
87 driver. When an application calls <constant>VIDIOC_S_FBUF</constant>
88 with a pointer to this structure, the driver prepares for the overlay
89 and returns the framebuffer parameters as
90 <constant>VIDIOC_G_FBUF</constant> does, or it returns an error
93 <para>To set the parameters for a <wordasword>non-destructive
94 Video Overlay</wordasword>, applications must initialize the
95 <structfield>flags</structfield> field, the
96 <structfield>fmt</structfield> substructure, and call
97 <constant>VIDIOC_S_FBUF</constant>. Again the driver prepares for the
98 overlay and returns the framebuffer parameters as
99 <constant>VIDIOC_G_FBUF</constant> does, or it returns an error
102 <para>For a <wordasword>destructive Video Overlay</wordasword>
103 applications must additionally provide a
104 <structfield>base</structfield> address. Setting up a DMA to a
105 random memory location can jeopardize the system security, its
106 stability or even damage the hardware, therefore only the superuser
107 can set the parameters for a destructive video overlay.</para>
109 <!-- NB v4l2_pix_format is also specified in pixfmt.sgml.-->
111 <table pgwide="1" frame="none" id="v4l2-framebuffer">
112 <title>struct <structname>v4l2_framebuffer</structname></title>
118 <entry><structfield>capability</structfield></entry>
120 <entry>Overlay capability flags set by the driver, see
121 <xref linkend="framebuffer-cap" />.</entry>
125 <entry><structfield>flags</structfield></entry>
127 <entry>Overlay control flags set by application and
128 driver, see <xref linkend="framebuffer-flags" /></entry>
131 <entry>void *</entry>
132 <entry><structfield>base</structfield></entry>
134 <entry>Physical base address of the framebuffer,
135 that is the address of the pixel in the top left corner of the
136 framebuffer.<footnote><para>A physical base address may not suit all
137 platforms. GK notes in theory we should pass something like PCI device
138 + memory region + offset instead. If you encounter problems please
139 discuss on the linux-media mailing list: &v4l-ml;.</para></footnote></entry>
145 <entry>This field is irrelevant to
146 <wordasword>non-destructive Video Overlays</wordasword>. For
147 <wordasword>destructive Video Overlays</wordasword> applications must
148 provide a base address. The driver may accept only base addresses
149 which are a multiple of two, four or eight bytes. For
150 <wordasword>Video Output Overlays</wordasword> the driver must return
151 a valid base address, so applications can find the corresponding Linux
152 framebuffer device (see <xref linkend="osd" />).</entry>
155 <entry>struct</entry>
156 <entry><structfield>fmt</structfield></entry>
158 <entry>Layout of the frame buffer.</entry>
163 <entry><structfield>width</structfield></entry>
164 <entry>Width of the frame buffer in pixels.</entry>
169 <entry><structfield>height</structfield></entry>
170 <entry>Height of the frame buffer in pixels.</entry>
175 <entry><structfield>pixelformat</structfield></entry>
176 <entry>The pixel format of the
183 <entry>For <wordasword>non-destructive Video
184 Overlays</wordasword> this field only defines a format for the
185 &v4l2-window; <structfield>chromakey</structfield> field.</entry>
191 <entry>For <wordasword>destructive Video
192 Overlays</wordasword> applications must initialize this field. For
193 <wordasword>Video Output Overlays</wordasword> the driver must return
194 a valid format.</entry>
200 <entry>Usually this is an RGB format (for example
201 <link linkend="V4L2-PIX-FMT-RGB565"><constant>V4L2_PIX_FMT_RGB565</constant></link>)
202 but YUV formats (only packed YUV formats when chroma keying is used,
203 not including <constant>V4L2_PIX_FMT_YUYV</constant> and
204 <constant>V4L2_PIX_FMT_UYVY</constant>) and the
205 <constant>V4L2_PIX_FMT_PAL8</constant> format are also permitted. The
206 behavior of the driver when an application requests a compressed
207 format is undefined. See <xref linkend="pixfmt" /> for information on
208 pixel formats.</entry>
212 <entry>&v4l2-field;</entry>
213 <entry><structfield>field</structfield></entry>
214 <entry>Drivers and applications shall ignore this field.
215 If applicable, the field order is selected with the &VIDIOC-S-FMT;
216 ioctl, using the <structfield>field</structfield> field of
217 &v4l2-window;.</entry>
222 <entry><structfield>bytesperline</structfield></entry>
223 <entry>Distance in bytes between the leftmost pixels in
224 two adjacent lines.</entry>
227 <entry spanname="hspan"><para>This field is irrelevant to
228 <wordasword>non-destructive Video
229 Overlays</wordasword>.</para><para>For <wordasword>destructive Video
230 Overlays</wordasword> both applications and drivers can set this field
231 to request padding bytes at the end of each line. Drivers however may
232 ignore the requested value, returning <structfield>width</structfield>
233 times bytes-per-pixel or a larger value required by the hardware. That
234 implies applications can just set this field to zero to get a
235 reasonable default.</para><para>For <wordasword>Video Output
236 Overlays</wordasword> the driver must return a valid
237 value.</para><para>Video hardware may access padding bytes, therefore
238 they must reside in accessible memory. Consider for example the case
239 where padding bytes after the last line of an image cross a system
240 page boundary. Capture devices may write padding bytes, the value is
241 undefined. Output devices ignore the contents of padding
242 bytes.</para><para>When the image format is planar the
243 <structfield>bytesperline</structfield> value applies to the first
244 plane and is divided by the same factor as the
245 <structfield>width</structfield> field for the other planes. For
246 example the Cb and Cr planes of a YUV 4:2:0 image have half as many
247 padding bytes following each line as the Y plane. To avoid ambiguities
248 drivers must return a <structfield>bytesperline</structfield> value
249 rounded up to a multiple of the scale factor.</para></entry>
254 <entry><structfield>sizeimage</structfield></entry>
255 <entry><para>This field is irrelevant to
256 <wordasword>non-destructive Video Overlays</wordasword>. For
257 <wordasword>destructive Video Overlays</wordasword> applications must
258 initialize this field. For <wordasword>Video Output
259 Overlays</wordasword> the driver must return a valid
260 format.</para><para>Together with <structfield>base</structfield> it
261 defines the framebuffer memory accessible by the
262 driver.</para></entry>
266 <entry>&v4l2-colorspace;</entry>
267 <entry><structfield>colorspace</structfield></entry>
268 <entry>This information supplements the
269 <structfield>pixelformat</structfield> and must be set by the driver,
270 see <xref linkend="colorspaces" />.</entry>
275 <entry><structfield>priv</structfield></entry>
276 <entry>Reserved. Drivers and applications must set this field to
283 <table pgwide="1" frame="none" id="framebuffer-cap">
284 <title>Frame Buffer Capability Flags</title>
289 <entry><constant>V4L2_FBUF_CAP_EXTERNOVERLAY</constant></entry>
290 <entry>0x0001</entry>
291 <entry>The device is capable of non-destructive overlays.
292 When the driver clears this flag, only destructive overlays are
293 supported. There are no drivers yet which support both destructive and
294 non-destructive overlays. Video Output Overlays are in practice always
295 non-destructive.</entry>
298 <entry><constant>V4L2_FBUF_CAP_CHROMAKEY</constant></entry>
299 <entry>0x0002</entry>
300 <entry>The device supports clipping by chroma-keying the
301 images. That is, image pixels replace pixels in the VGA or video
302 signal only where the latter assume a certain color. Chroma-keying
303 makes no sense for destructive overlays.</entry>
306 <entry><constant>V4L2_FBUF_CAP_LIST_CLIPPING</constant></entry>
307 <entry>0x0004</entry>
308 <entry>The device supports clipping using a list of clip
312 <entry><constant>V4L2_FBUF_CAP_BITMAP_CLIPPING</constant></entry>
313 <entry>0x0008</entry>
314 <entry>The device supports clipping using a bit mask.</entry>
317 <entry><constant>V4L2_FBUF_CAP_LOCAL_ALPHA</constant></entry>
318 <entry>0x0010</entry>
319 <entry>The device supports clipping/blending using the
320 alpha channel of the framebuffer or VGA signal. Alpha blending makes
321 no sense for destructive overlays.</entry>
324 <entry><constant>V4L2_FBUF_CAP_GLOBAL_ALPHA</constant></entry>
325 <entry>0x0020</entry>
326 <entry>The device supports alpha blending using a global
327 alpha value. Alpha blending makes no sense for destructive overlays.</entry>
330 <entry><constant>V4L2_FBUF_CAP_LOCAL_INV_ALPHA</constant></entry>
331 <entry>0x0040</entry>
332 <entry>The device supports clipping/blending using the
333 inverted alpha channel of the framebuffer or VGA signal. Alpha
334 blending makes no sense for destructive overlays.</entry>
337 <entry><constant>V4L2_FBUF_CAP_SRC_CHROMAKEY</constant></entry>
338 <entry>0x0080</entry>
339 <entry>The device supports Source Chroma-keying. Video pixels
340 with the chroma-key colors are replaced by framebuffer pixels, which is exactly opposite of
341 <constant>V4L2_FBUF_CAP_CHROMAKEY</constant></entry>
347 <table pgwide="1" frame="none" id="framebuffer-flags">
348 <title>Frame Buffer Flags</title>
353 <entry><constant>V4L2_FBUF_FLAG_PRIMARY</constant></entry>
354 <entry>0x0001</entry>
355 <entry>The framebuffer is the primary graphics surface.
356 In other words, the overlay is destructive. This flag is typically set by any
357 driver that doesn't have the <constant>V4L2_FBUF_CAP_EXTERNOVERLAY</constant>
358 capability and it is cleared otherwise.</entry>
361 <entry><constant>V4L2_FBUF_FLAG_OVERLAY</constant></entry>
362 <entry>0x0002</entry>
363 <entry>If this flag is set for a video capture device, then the
364 driver will set the initial overlay size to cover the full framebuffer size,
365 otherwise the existing overlay size (as set by &VIDIOC-S-FMT;) will be used.
367 Only one video capture driver (bttv) supports this flag. The use of this flag
368 for capture devices is deprecated. There is no way to detect which drivers
369 support this flag, so the only reliable method of setting the overlay size is
370 through &VIDIOC-S-FMT;.
372 If this flag is set for a video output device, then the video output overlay
373 window is relative to the top-left corner of the framebuffer and restricted
374 to the size of the framebuffer. If it is cleared, then the video output
375 overlay window is relative to the video output display.
379 <entry><constant>V4L2_FBUF_FLAG_CHROMAKEY</constant></entry>
380 <entry>0x0004</entry>
381 <entry>Use chroma-keying. The chroma-key color is
382 determined by the <structfield>chromakey</structfield> field of
383 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
386 <xref linkend="osd" />.</entry>
389 <entry spanname="hspan">There are no flags to enable
390 clipping using a list of clip rectangles or a bitmap. These methods
391 are negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
392 linkend="overlay" /> and <xref linkend="osd" />.</entry>
395 <entry><constant>V4L2_FBUF_FLAG_LOCAL_ALPHA</constant></entry>
396 <entry>0x0008</entry>
397 <entry>Use the alpha channel of the framebuffer to clip or
398 blend framebuffer pixels with video images. The blend
399 function is: output = framebuffer pixel * alpha + video pixel * (1 -
400 alpha). The actual alpha depth depends on the framebuffer pixel
404 <entry><constant>V4L2_FBUF_FLAG_GLOBAL_ALPHA</constant></entry>
405 <entry>0x0010</entry>
406 <entry>Use a global alpha value to blend the framebuffer
407 with video images. The blend function is: output = (framebuffer pixel
408 * alpha + video pixel * (255 - alpha)) / 255. The alpha value is
409 determined by the <structfield>global_alpha</structfield> field of
410 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
412 and <xref linkend="osd" />.</entry>
415 <entry><constant>V4L2_FBUF_FLAG_LOCAL_INV_ALPHA</constant></entry>
416 <entry>0x0020</entry>
418 <constant>V4L2_FBUF_FLAG_LOCAL_ALPHA</constant>, use the alpha channel
419 of the framebuffer to clip or blend framebuffer pixels with video
420 images, but with an inverted alpha value. The blend function is:
421 output = framebuffer pixel * (1 - alpha) + video pixel * alpha. The
422 actual alpha depth depends on the framebuffer pixel format.</entry>
425 <entry><constant>V4L2_FBUF_FLAG_SRC_CHROMAKEY</constant></entry>
426 <entry>0x0040</entry>
427 <entry>Use source chroma-keying. The source chroma-key color is
428 determined by the <structfield>chromakey</structfield> field of
429 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
430 linkend="overlay" /> and <xref linkend="osd" />.
431 Both chroma-keying are mutual exclusive to each other, so same
432 <structfield>chromakey</structfield> field of &v4l2-window; is being used.</entry>
444 <term><errorcode>EPERM</errorcode></term>
446 <para><constant>VIDIOC_S_FBUF</constant> can only be called
447 by a privileged user to negotiate the parameters for a destructive
452 <term><errorcode>EINVAL</errorcode></term>
454 <para>The <constant>VIDIOC_S_FBUF</constant> parameters are unsuitable.</para>