1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
200 * Tracking user of a slab.
202 #define TRACK_ADDRS_COUNT 16
204 unsigned long addr
; /* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
208 int cpu
; /* Was running on cpu */
209 int pid
; /* Pid context */
210 unsigned long when
; /* When did the operation occur */
213 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
216 static int sysfs_slab_add(struct kmem_cache
*);
217 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
219 static void sysfs_slab_remove(struct kmem_cache
*s
);
221 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
225 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
235 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
248 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
249 unsigned long ptr_addr
)
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache
*s
,
262 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
263 (unsigned long)ptr_addr
);
266 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
268 return freelist_dereference(s
, object
+ s
->offset
);
271 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
273 prefetch(object
+ s
->offset
);
276 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
278 unsigned long freepointer_addr
;
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s
, object
);
284 freepointer_addr
= (unsigned long)object
+ s
->offset
;
285 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
286 return freelist_ptr(s
, p
, freepointer_addr
);
289 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
291 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
297 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
311 /* Determine object index from a given position */
312 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
314 return (p
- addr
) / s
->size
;
317 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
319 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
322 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
325 struct kmem_cache_order_objects x
= {
326 (order
<< OO_SHIFT
) + order_objects(order
, size
)
332 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
334 return x
.x
>> OO_SHIFT
;
337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
339 return x
.x
& OO_MASK
;
343 * Per slab locking using the pagelock
345 static __always_inline
void slab_lock(struct page
*page
)
347 VM_BUG_ON_PAGE(PageTail(page
), page
);
348 bit_spin_lock(PG_locked
, &page
->flags
);
351 static __always_inline
void slab_unlock(struct page
*page
)
353 VM_BUG_ON_PAGE(PageTail(page
), page
);
354 __bit_spin_unlock(PG_locked
, &page
->flags
);
357 /* Interrupts must be disabled (for the fallback code to work right) */
358 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
359 void *freelist_old
, unsigned long counters_old
,
360 void *freelist_new
, unsigned long counters_new
,
363 VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 if (s
->flags
& __CMPXCHG_DOUBLE
) {
367 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
368 freelist_old
, counters_old
,
369 freelist_new
, counters_new
))
375 if (page
->freelist
== freelist_old
&&
376 page
->counters
== counters_old
) {
377 page
->freelist
= freelist_new
;
378 page
->counters
= counters_new
;
386 stat(s
, CMPXCHG_DOUBLE_FAIL
);
388 #ifdef SLUB_DEBUG_CMPXCHG
389 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
395 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
396 void *freelist_old
, unsigned long counters_old
,
397 void *freelist_new
, unsigned long counters_new
,
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 if (s
->flags
& __CMPXCHG_DOUBLE
) {
403 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
404 freelist_old
, counters_old
,
405 freelist_new
, counters_new
))
412 local_irq_save(flags
);
414 if (page
->freelist
== freelist_old
&&
415 page
->counters
== counters_old
) {
416 page
->freelist
= freelist_new
;
417 page
->counters
= counters_new
;
419 local_irq_restore(flags
);
423 local_irq_restore(flags
);
427 stat(s
, CMPXCHG_DOUBLE_FAIL
);
429 #ifdef SLUB_DEBUG_CMPXCHG
430 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
436 #ifdef CONFIG_SLUB_DEBUG
438 * Determine a map of object in use on a page.
440 * Node listlock must be held to guarantee that the page does
441 * not vanish from under us.
443 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
446 void *addr
= page_address(page
);
448 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
449 set_bit(slab_index(p
, s
, addr
), map
);
452 static inline unsigned int size_from_object(struct kmem_cache
*s
)
454 if (s
->flags
& SLAB_RED_ZONE
)
455 return s
->size
- s
->red_left_pad
;
460 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
462 if (s
->flags
& SLAB_RED_ZONE
)
463 p
-= s
->red_left_pad
;
471 #if defined(CONFIG_SLUB_DEBUG_ON)
472 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
474 static slab_flags_t slub_debug
;
477 static char *slub_debug_slabs
;
478 static int disable_higher_order_debug
;
481 * slub is about to manipulate internal object metadata. This memory lies
482 * outside the range of the allocated object, so accessing it would normally
483 * be reported by kasan as a bounds error. metadata_access_enable() is used
484 * to tell kasan that these accesses are OK.
486 static inline void metadata_access_enable(void)
488 kasan_disable_current();
491 static inline void metadata_access_disable(void)
493 kasan_enable_current();
500 /* Verify that a pointer has an address that is valid within a slab page */
501 static inline int check_valid_pointer(struct kmem_cache
*s
,
502 struct page
*page
, void *object
)
509 base
= page_address(page
);
510 object
= restore_red_left(s
, object
);
511 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
512 (object
- base
) % s
->size
) {
519 static void print_section(char *level
, char *text
, u8
*addr
,
522 metadata_access_enable();
523 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
525 metadata_access_disable();
528 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
529 enum track_item alloc
)
534 p
= object
+ s
->offset
+ sizeof(void *);
536 p
= object
+ s
->inuse
;
541 static void set_track(struct kmem_cache
*s
, void *object
,
542 enum track_item alloc
, unsigned long addr
)
544 struct track
*p
= get_track(s
, object
, alloc
);
547 #ifdef CONFIG_STACKTRACE
548 struct stack_trace trace
;
551 trace
.nr_entries
= 0;
552 trace
.max_entries
= TRACK_ADDRS_COUNT
;
553 trace
.entries
= p
->addrs
;
555 metadata_access_enable();
556 save_stack_trace(&trace
);
557 metadata_access_disable();
559 /* See rant in lockdep.c */
560 if (trace
.nr_entries
!= 0 &&
561 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
564 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
568 p
->cpu
= smp_processor_id();
569 p
->pid
= current
->pid
;
572 memset(p
, 0, sizeof(struct track
));
575 static void init_tracking(struct kmem_cache
*s
, void *object
)
577 if (!(s
->flags
& SLAB_STORE_USER
))
580 set_track(s
, object
, TRACK_FREE
, 0UL);
581 set_track(s
, object
, TRACK_ALLOC
, 0UL);
584 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
591 #ifdef CONFIG_STACKTRACE
594 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
596 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
603 static void print_tracking(struct kmem_cache
*s
, void *object
)
605 unsigned long pr_time
= jiffies
;
606 if (!(s
->flags
& SLAB_STORE_USER
))
609 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
610 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
613 static void print_page_info(struct page
*page
)
615 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
616 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
620 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
622 struct va_format vaf
;
628 pr_err("=============================================================================\n");
629 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
630 pr_err("-----------------------------------------------------------------------------\n\n");
632 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
636 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
638 struct va_format vaf
;
644 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
648 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
650 unsigned int off
; /* Offset of last byte */
651 u8
*addr
= page_address(page
);
653 print_tracking(s
, p
);
655 print_page_info(page
);
657 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
658 p
, p
- addr
, get_freepointer(s
, p
));
660 if (s
->flags
& SLAB_RED_ZONE
)
661 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
663 else if (p
> addr
+ 16)
664 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
666 print_section(KERN_ERR
, "Object ", p
,
667 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
668 if (s
->flags
& SLAB_RED_ZONE
)
669 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
670 s
->inuse
- s
->object_size
);
673 off
= s
->offset
+ sizeof(void *);
677 if (s
->flags
& SLAB_STORE_USER
)
678 off
+= 2 * sizeof(struct track
);
680 off
+= kasan_metadata_size(s
);
682 if (off
!= size_from_object(s
))
683 /* Beginning of the filler is the free pointer */
684 print_section(KERN_ERR
, "Padding ", p
+ off
,
685 size_from_object(s
) - off
);
690 void object_err(struct kmem_cache
*s
, struct page
*page
,
691 u8
*object
, char *reason
)
693 slab_bug(s
, "%s", reason
);
694 print_trailer(s
, page
, object
);
697 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
698 const char *fmt
, ...)
704 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
706 slab_bug(s
, "%s", buf
);
707 print_page_info(page
);
711 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
715 if (s
->flags
& SLAB_RED_ZONE
)
716 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
718 if (s
->flags
& __OBJECT_POISON
) {
719 memset(p
, POISON_FREE
, s
->object_size
- 1);
720 p
[s
->object_size
- 1] = POISON_END
;
723 if (s
->flags
& SLAB_RED_ZONE
)
724 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
727 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
728 void *from
, void *to
)
730 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
731 memset(from
, data
, to
- from
);
734 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
735 u8
*object
, char *what
,
736 u8
*start
, unsigned int value
, unsigned int bytes
)
741 metadata_access_enable();
742 fault
= memchr_inv(start
, value
, bytes
);
743 metadata_access_disable();
748 while (end
> fault
&& end
[-1] == value
)
751 slab_bug(s
, "%s overwritten", what
);
752 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
753 fault
, end
- 1, fault
[0], value
);
754 print_trailer(s
, page
, object
);
756 restore_bytes(s
, what
, value
, fault
, end
);
764 * Bytes of the object to be managed.
765 * If the freepointer may overlay the object then the free
766 * pointer is the first word of the object.
768 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
771 * object + s->object_size
772 * Padding to reach word boundary. This is also used for Redzoning.
773 * Padding is extended by another word if Redzoning is enabled and
774 * object_size == inuse.
776 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
777 * 0xcc (RED_ACTIVE) for objects in use.
780 * Meta data starts here.
782 * A. Free pointer (if we cannot overwrite object on free)
783 * B. Tracking data for SLAB_STORE_USER
784 * C. Padding to reach required alignment boundary or at mininum
785 * one word if debugging is on to be able to detect writes
786 * before the word boundary.
788 * Padding is done using 0x5a (POISON_INUSE)
791 * Nothing is used beyond s->size.
793 * If slabcaches are merged then the object_size and inuse boundaries are mostly
794 * ignored. And therefore no slab options that rely on these boundaries
795 * may be used with merged slabcaches.
798 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
800 unsigned long off
= s
->inuse
; /* The end of info */
803 /* Freepointer is placed after the object. */
804 off
+= sizeof(void *);
806 if (s
->flags
& SLAB_STORE_USER
)
807 /* We also have user information there */
808 off
+= 2 * sizeof(struct track
);
810 off
+= kasan_metadata_size(s
);
812 if (size_from_object(s
) == off
)
815 return check_bytes_and_report(s
, page
, p
, "Object padding",
816 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
819 /* Check the pad bytes at the end of a slab page */
820 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
829 if (!(s
->flags
& SLAB_POISON
))
832 start
= page_address(page
);
833 length
= PAGE_SIZE
<< compound_order(page
);
834 end
= start
+ length
;
835 remainder
= length
% s
->size
;
839 pad
= end
- remainder
;
840 metadata_access_enable();
841 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
842 metadata_access_disable();
845 while (end
> fault
&& end
[-1] == POISON_INUSE
)
848 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
849 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
851 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
855 static int check_object(struct kmem_cache
*s
, struct page
*page
,
856 void *object
, u8 val
)
859 u8
*endobject
= object
+ s
->object_size
;
861 if (s
->flags
& SLAB_RED_ZONE
) {
862 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
863 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
866 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
867 endobject
, val
, s
->inuse
- s
->object_size
))
870 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
871 check_bytes_and_report(s
, page
, p
, "Alignment padding",
872 endobject
, POISON_INUSE
,
873 s
->inuse
- s
->object_size
);
877 if (s
->flags
& SLAB_POISON
) {
878 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
879 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
880 POISON_FREE
, s
->object_size
- 1) ||
881 !check_bytes_and_report(s
, page
, p
, "Poison",
882 p
+ s
->object_size
- 1, POISON_END
, 1)))
885 * check_pad_bytes cleans up on its own.
887 check_pad_bytes(s
, page
, p
);
890 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
892 * Object and freepointer overlap. Cannot check
893 * freepointer while object is allocated.
897 /* Check free pointer validity */
898 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
899 object_err(s
, page
, p
, "Freepointer corrupt");
901 * No choice but to zap it and thus lose the remainder
902 * of the free objects in this slab. May cause
903 * another error because the object count is now wrong.
905 set_freepointer(s
, p
, NULL
);
911 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
915 VM_BUG_ON(!irqs_disabled());
917 if (!PageSlab(page
)) {
918 slab_err(s
, page
, "Not a valid slab page");
922 maxobj
= order_objects(compound_order(page
), s
->size
);
923 if (page
->objects
> maxobj
) {
924 slab_err(s
, page
, "objects %u > max %u",
925 page
->objects
, maxobj
);
928 if (page
->inuse
> page
->objects
) {
929 slab_err(s
, page
, "inuse %u > max %u",
930 page
->inuse
, page
->objects
);
933 /* Slab_pad_check fixes things up after itself */
934 slab_pad_check(s
, page
);
939 * Determine if a certain object on a page is on the freelist. Must hold the
940 * slab lock to guarantee that the chains are in a consistent state.
942 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
950 while (fp
&& nr
<= page
->objects
) {
953 if (!check_valid_pointer(s
, page
, fp
)) {
955 object_err(s
, page
, object
,
956 "Freechain corrupt");
957 set_freepointer(s
, object
, NULL
);
959 slab_err(s
, page
, "Freepointer corrupt");
960 page
->freelist
= NULL
;
961 page
->inuse
= page
->objects
;
962 slab_fix(s
, "Freelist cleared");
968 fp
= get_freepointer(s
, object
);
972 max_objects
= order_objects(compound_order(page
), s
->size
);
973 if (max_objects
> MAX_OBJS_PER_PAGE
)
974 max_objects
= MAX_OBJS_PER_PAGE
;
976 if (page
->objects
!= max_objects
) {
977 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
978 page
->objects
, max_objects
);
979 page
->objects
= max_objects
;
980 slab_fix(s
, "Number of objects adjusted.");
982 if (page
->inuse
!= page
->objects
- nr
) {
983 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
984 page
->inuse
, page
->objects
- nr
);
985 page
->inuse
= page
->objects
- nr
;
986 slab_fix(s
, "Object count adjusted.");
988 return search
== NULL
;
991 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
994 if (s
->flags
& SLAB_TRACE
) {
995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
997 alloc
? "alloc" : "free",
1002 print_section(KERN_INFO
, "Object ", (void *)object
,
1010 * Tracking of fully allocated slabs for debugging purposes.
1012 static void add_full(struct kmem_cache
*s
,
1013 struct kmem_cache_node
*n
, struct page
*page
)
1015 if (!(s
->flags
& SLAB_STORE_USER
))
1018 lockdep_assert_held(&n
->list_lock
);
1019 list_add(&page
->lru
, &n
->full
);
1022 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1024 if (!(s
->flags
& SLAB_STORE_USER
))
1027 lockdep_assert_held(&n
->list_lock
);
1028 list_del(&page
->lru
);
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1034 struct kmem_cache_node
*n
= get_node(s
, node
);
1036 return atomic_long_read(&n
->nr_slabs
);
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1041 return atomic_long_read(&n
->nr_slabs
);
1044 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1046 struct kmem_cache_node
*n
= get_node(s
, node
);
1049 * May be called early in order to allocate a slab for the
1050 * kmem_cache_node structure. Solve the chicken-egg
1051 * dilemma by deferring the increment of the count during
1052 * bootstrap (see early_kmem_cache_node_alloc).
1055 atomic_long_inc(&n
->nr_slabs
);
1056 atomic_long_add(objects
, &n
->total_objects
);
1059 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1061 struct kmem_cache_node
*n
= get_node(s
, node
);
1063 atomic_long_dec(&n
->nr_slabs
);
1064 atomic_long_sub(objects
, &n
->total_objects
);
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1071 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1074 init_object(s
, object
, SLUB_RED_INACTIVE
);
1075 init_tracking(s
, object
);
1078 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1080 void *object
, unsigned long addr
)
1082 if (!check_slab(s
, page
))
1085 if (!check_valid_pointer(s
, page
, object
)) {
1086 object_err(s
, page
, object
, "Freelist Pointer check fails");
1090 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1096 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1098 void *object
, unsigned long addr
)
1100 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1101 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1105 /* Success perform special debug activities for allocs */
1106 if (s
->flags
& SLAB_STORE_USER
)
1107 set_track(s
, object
, TRACK_ALLOC
, addr
);
1108 trace(s
, page
, object
, 1);
1109 init_object(s
, object
, SLUB_RED_ACTIVE
);
1113 if (PageSlab(page
)) {
1115 * If this is a slab page then lets do the best we can
1116 * to avoid issues in the future. Marking all objects
1117 * as used avoids touching the remaining objects.
1119 slab_fix(s
, "Marking all objects used");
1120 page
->inuse
= page
->objects
;
1121 page
->freelist
= NULL
;
1126 static inline int free_consistency_checks(struct kmem_cache
*s
,
1127 struct page
*page
, void *object
, unsigned long addr
)
1129 if (!check_valid_pointer(s
, page
, object
)) {
1130 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1134 if (on_freelist(s
, page
, object
)) {
1135 object_err(s
, page
, object
, "Object already free");
1139 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1142 if (unlikely(s
!= page
->slab_cache
)) {
1143 if (!PageSlab(page
)) {
1144 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1146 } else if (!page
->slab_cache
) {
1147 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1151 object_err(s
, page
, object
,
1152 "page slab pointer corrupt.");
1158 /* Supports checking bulk free of a constructed freelist */
1159 static noinline
int free_debug_processing(
1160 struct kmem_cache
*s
, struct page
*page
,
1161 void *head
, void *tail
, int bulk_cnt
,
1164 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1165 void *object
= head
;
1167 unsigned long uninitialized_var(flags
);
1170 spin_lock_irqsave(&n
->list_lock
, flags
);
1173 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1174 if (!check_slab(s
, page
))
1181 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1182 if (!free_consistency_checks(s
, page
, object
, addr
))
1186 if (s
->flags
& SLAB_STORE_USER
)
1187 set_track(s
, object
, TRACK_FREE
, addr
);
1188 trace(s
, page
, object
, 0);
1189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1190 init_object(s
, object
, SLUB_RED_INACTIVE
);
1192 /* Reached end of constructed freelist yet? */
1193 if (object
!= tail
) {
1194 object
= get_freepointer(s
, object
);
1200 if (cnt
!= bulk_cnt
)
1201 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1205 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1207 slab_fix(s
, "Object at 0x%p not freed", object
);
1211 static int __init
setup_slub_debug(char *str
)
1213 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1214 if (*str
++ != '=' || !*str
)
1216 * No options specified. Switch on full debugging.
1222 * No options but restriction on slabs. This means full
1223 * debugging for slabs matching a pattern.
1230 * Switch off all debugging measures.
1235 * Determine which debug features should be switched on
1237 for (; *str
&& *str
!= ','; str
++) {
1238 switch (tolower(*str
)) {
1240 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1243 slub_debug
|= SLAB_RED_ZONE
;
1246 slub_debug
|= SLAB_POISON
;
1249 slub_debug
|= SLAB_STORE_USER
;
1252 slub_debug
|= SLAB_TRACE
;
1255 slub_debug
|= SLAB_FAILSLAB
;
1259 * Avoid enabling debugging on caches if its minimum
1260 * order would increase as a result.
1262 disable_higher_order_debug
= 1;
1265 pr_err("slub_debug option '%c' unknown. skipped\n",
1272 slub_debug_slabs
= str
+ 1;
1277 __setup("slub_debug", setup_slub_debug
);
1280 * kmem_cache_flags - apply debugging options to the cache
1281 * @object_size: the size of an object without meta data
1282 * @flags: flags to set
1283 * @name: name of the cache
1284 * @ctor: constructor function
1286 * Debug option(s) are applied to @flags. In addition to the debug
1287 * option(s), if a slab name (or multiple) is specified i.e.
1288 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1289 * then only the select slabs will receive the debug option(s).
1291 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1292 slab_flags_t flags
, const char *name
,
1293 void (*ctor
)(void *))
1298 /* If slub_debug = 0, it folds into the if conditional. */
1299 if (!slub_debug_slabs
)
1300 return flags
| slub_debug
;
1303 iter
= slub_debug_slabs
;
1308 end
= strchr(iter
, ',');
1310 end
= iter
+ strlen(iter
);
1312 glob
= strnchr(iter
, end
- iter
, '*');
1314 cmplen
= glob
- iter
;
1316 cmplen
= max_t(size_t, len
, (end
- iter
));
1318 if (!strncmp(name
, iter
, cmplen
)) {
1319 flags
|= slub_debug
;
1330 #else /* !CONFIG_SLUB_DEBUG */
1331 static inline void setup_object_debug(struct kmem_cache
*s
,
1332 struct page
*page
, void *object
) {}
1334 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1335 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1337 static inline int free_debug_processing(
1338 struct kmem_cache
*s
, struct page
*page
,
1339 void *head
, void *tail
, int bulk_cnt
,
1340 unsigned long addr
) { return 0; }
1342 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1344 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1345 void *object
, u8 val
) { return 1; }
1346 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1347 struct page
*page
) {}
1348 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1349 struct page
*page
) {}
1350 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1351 slab_flags_t flags
, const char *name
,
1352 void (*ctor
)(void *))
1356 #define slub_debug 0
1358 #define disable_higher_order_debug 0
1360 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1362 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1364 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1366 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1369 #endif /* CONFIG_SLUB_DEBUG */
1372 * Hooks for other subsystems that check memory allocations. In a typical
1373 * production configuration these hooks all should produce no code at all.
1375 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1377 kmemleak_alloc(ptr
, size
, 1, flags
);
1378 kasan_kmalloc_large(ptr
, size
, flags
);
1381 static __always_inline
void kfree_hook(void *x
)
1384 kasan_kfree_large(x
, _RET_IP_
);
1387 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1389 kmemleak_free_recursive(x
, s
->flags
);
1392 * Trouble is that we may no longer disable interrupts in the fast path
1393 * So in order to make the debug calls that expect irqs to be
1394 * disabled we need to disable interrupts temporarily.
1396 #ifdef CONFIG_LOCKDEP
1398 unsigned long flags
;
1400 local_irq_save(flags
);
1401 debug_check_no_locks_freed(x
, s
->object_size
);
1402 local_irq_restore(flags
);
1405 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1406 debug_check_no_obj_freed(x
, s
->object_size
);
1408 /* KASAN might put x into memory quarantine, delaying its reuse */
1409 return kasan_slab_free(s
, x
, _RET_IP_
);
1412 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1413 void **head
, void **tail
)
1416 * Compiler cannot detect this function can be removed if slab_free_hook()
1417 * evaluates to nothing. Thus, catch all relevant config debug options here.
1419 #if defined(CONFIG_LOCKDEP) || \
1420 defined(CONFIG_DEBUG_KMEMLEAK) || \
1421 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1422 defined(CONFIG_KASAN)
1426 void *old_tail
= *tail
? *tail
: *head
;
1428 /* Head and tail of the reconstructed freelist */
1434 next
= get_freepointer(s
, object
);
1435 /* If object's reuse doesn't have to be delayed */
1436 if (!slab_free_hook(s
, object
)) {
1437 /* Move object to the new freelist */
1438 set_freepointer(s
, object
, *head
);
1443 } while (object
!= old_tail
);
1448 return *head
!= NULL
;
1454 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1457 setup_object_debug(s
, page
, object
);
1458 kasan_init_slab_obj(s
, object
);
1459 if (unlikely(s
->ctor
)) {
1460 kasan_unpoison_object_data(s
, object
);
1462 kasan_poison_object_data(s
, object
);
1467 * Slab allocation and freeing
1469 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1470 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1473 unsigned int order
= oo_order(oo
);
1475 if (node
== NUMA_NO_NODE
)
1476 page
= alloc_pages(flags
, order
);
1478 page
= __alloc_pages_node(node
, flags
, order
);
1480 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1481 __free_pages(page
, order
);
1488 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1489 /* Pre-initialize the random sequence cache */
1490 static int init_cache_random_seq(struct kmem_cache
*s
)
1492 unsigned int count
= oo_objects(s
->oo
);
1495 /* Bailout if already initialised */
1499 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1501 pr_err("SLUB: Unable to initialize free list for %s\n",
1506 /* Transform to an offset on the set of pages */
1507 if (s
->random_seq
) {
1510 for (i
= 0; i
< count
; i
++)
1511 s
->random_seq
[i
] *= s
->size
;
1516 /* Initialize each random sequence freelist per cache */
1517 static void __init
init_freelist_randomization(void)
1519 struct kmem_cache
*s
;
1521 mutex_lock(&slab_mutex
);
1523 list_for_each_entry(s
, &slab_caches
, list
)
1524 init_cache_random_seq(s
);
1526 mutex_unlock(&slab_mutex
);
1529 /* Get the next entry on the pre-computed freelist randomized */
1530 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1531 unsigned long *pos
, void *start
,
1532 unsigned long page_limit
,
1533 unsigned long freelist_count
)
1538 * If the target page allocation failed, the number of objects on the
1539 * page might be smaller than the usual size defined by the cache.
1542 idx
= s
->random_seq
[*pos
];
1544 if (*pos
>= freelist_count
)
1546 } while (unlikely(idx
>= page_limit
));
1548 return (char *)start
+ idx
;
1551 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1552 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1557 unsigned long idx
, pos
, page_limit
, freelist_count
;
1559 if (page
->objects
< 2 || !s
->random_seq
)
1562 freelist_count
= oo_objects(s
->oo
);
1563 pos
= get_random_int() % freelist_count
;
1565 page_limit
= page
->objects
* s
->size
;
1566 start
= fixup_red_left(s
, page_address(page
));
1568 /* First entry is used as the base of the freelist */
1569 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1571 page
->freelist
= cur
;
1573 for (idx
= 1; idx
< page
->objects
; idx
++) {
1574 setup_object(s
, page
, cur
);
1575 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1577 set_freepointer(s
, cur
, next
);
1580 setup_object(s
, page
, cur
);
1581 set_freepointer(s
, cur
, NULL
);
1586 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1590 static inline void init_freelist_randomization(void) { }
1591 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1595 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1597 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1600 struct kmem_cache_order_objects oo
= s
->oo
;
1606 flags
&= gfp_allowed_mask
;
1608 if (gfpflags_allow_blocking(flags
))
1611 flags
|= s
->allocflags
;
1614 * Let the initial higher-order allocation fail under memory pressure
1615 * so we fall-back to the minimum order allocation.
1617 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1618 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1619 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1621 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1622 if (unlikely(!page
)) {
1626 * Allocation may have failed due to fragmentation.
1627 * Try a lower order alloc if possible
1629 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1630 if (unlikely(!page
))
1632 stat(s
, ORDER_FALLBACK
);
1635 page
->objects
= oo_objects(oo
);
1637 order
= compound_order(page
);
1638 page
->slab_cache
= s
;
1639 __SetPageSlab(page
);
1640 if (page_is_pfmemalloc(page
))
1641 SetPageSlabPfmemalloc(page
);
1643 start
= page_address(page
);
1645 if (unlikely(s
->flags
& SLAB_POISON
))
1646 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1648 kasan_poison_slab(page
);
1650 shuffle
= shuffle_freelist(s
, page
);
1653 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1654 setup_object(s
, page
, p
);
1655 if (likely(idx
< page
->objects
))
1656 set_freepointer(s
, p
, p
+ s
->size
);
1658 set_freepointer(s
, p
, NULL
);
1660 page
->freelist
= fixup_red_left(s
, start
);
1663 page
->inuse
= page
->objects
;
1667 if (gfpflags_allow_blocking(flags
))
1668 local_irq_disable();
1672 mod_lruvec_page_state(page
,
1673 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1674 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1677 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1682 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1684 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1685 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1686 flags
&= ~GFP_SLAB_BUG_MASK
;
1687 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1688 invalid_mask
, &invalid_mask
, flags
, &flags
);
1692 return allocate_slab(s
,
1693 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1696 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1698 int order
= compound_order(page
);
1699 int pages
= 1 << order
;
1701 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1704 slab_pad_check(s
, page
);
1705 for_each_object(p
, s
, page_address(page
),
1707 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1710 mod_lruvec_page_state(page
,
1711 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1712 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1715 __ClearPageSlabPfmemalloc(page
);
1716 __ClearPageSlab(page
);
1718 page
->mapping
= NULL
;
1719 if (current
->reclaim_state
)
1720 current
->reclaim_state
->reclaimed_slab
+= pages
;
1721 memcg_uncharge_slab(page
, order
, s
);
1722 __free_pages(page
, order
);
1725 static void rcu_free_slab(struct rcu_head
*h
)
1727 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1729 __free_slab(page
->slab_cache
, page
);
1732 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1734 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1735 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1737 __free_slab(s
, page
);
1740 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1742 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1747 * Management of partially allocated slabs.
1750 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1753 if (tail
== DEACTIVATE_TO_TAIL
)
1754 list_add_tail(&page
->lru
, &n
->partial
);
1756 list_add(&page
->lru
, &n
->partial
);
1759 static inline void add_partial(struct kmem_cache_node
*n
,
1760 struct page
*page
, int tail
)
1762 lockdep_assert_held(&n
->list_lock
);
1763 __add_partial(n
, page
, tail
);
1766 static inline void remove_partial(struct kmem_cache_node
*n
,
1769 lockdep_assert_held(&n
->list_lock
);
1770 list_del(&page
->lru
);
1775 * Remove slab from the partial list, freeze it and
1776 * return the pointer to the freelist.
1778 * Returns a list of objects or NULL if it fails.
1780 static inline void *acquire_slab(struct kmem_cache
*s
,
1781 struct kmem_cache_node
*n
, struct page
*page
,
1782 int mode
, int *objects
)
1785 unsigned long counters
;
1788 lockdep_assert_held(&n
->list_lock
);
1791 * Zap the freelist and set the frozen bit.
1792 * The old freelist is the list of objects for the
1793 * per cpu allocation list.
1795 freelist
= page
->freelist
;
1796 counters
= page
->counters
;
1797 new.counters
= counters
;
1798 *objects
= new.objects
- new.inuse
;
1800 new.inuse
= page
->objects
;
1801 new.freelist
= NULL
;
1803 new.freelist
= freelist
;
1806 VM_BUG_ON(new.frozen
);
1809 if (!__cmpxchg_double_slab(s
, page
,
1811 new.freelist
, new.counters
,
1815 remove_partial(n
, page
);
1820 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1821 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1824 * Try to allocate a partial slab from a specific node.
1826 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1827 struct kmem_cache_cpu
*c
, gfp_t flags
)
1829 struct page
*page
, *page2
;
1830 void *object
= NULL
;
1831 unsigned int available
= 0;
1835 * Racy check. If we mistakenly see no partial slabs then we
1836 * just allocate an empty slab. If we mistakenly try to get a
1837 * partial slab and there is none available then get_partials()
1840 if (!n
|| !n
->nr_partial
)
1843 spin_lock(&n
->list_lock
);
1844 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1847 if (!pfmemalloc_match(page
, flags
))
1850 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1854 available
+= objects
;
1857 stat(s
, ALLOC_FROM_PARTIAL
);
1860 put_cpu_partial(s
, page
, 0);
1861 stat(s
, CPU_PARTIAL_NODE
);
1863 if (!kmem_cache_has_cpu_partial(s
)
1864 || available
> slub_cpu_partial(s
) / 2)
1868 spin_unlock(&n
->list_lock
);
1873 * Get a page from somewhere. Search in increasing NUMA distances.
1875 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1876 struct kmem_cache_cpu
*c
)
1879 struct zonelist
*zonelist
;
1882 enum zone_type high_zoneidx
= gfp_zone(flags
);
1884 unsigned int cpuset_mems_cookie
;
1887 * The defrag ratio allows a configuration of the tradeoffs between
1888 * inter node defragmentation and node local allocations. A lower
1889 * defrag_ratio increases the tendency to do local allocations
1890 * instead of attempting to obtain partial slabs from other nodes.
1892 * If the defrag_ratio is set to 0 then kmalloc() always
1893 * returns node local objects. If the ratio is higher then kmalloc()
1894 * may return off node objects because partial slabs are obtained
1895 * from other nodes and filled up.
1897 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1898 * (which makes defrag_ratio = 1000) then every (well almost)
1899 * allocation will first attempt to defrag slab caches on other nodes.
1900 * This means scanning over all nodes to look for partial slabs which
1901 * may be expensive if we do it every time we are trying to find a slab
1902 * with available objects.
1904 if (!s
->remote_node_defrag_ratio
||
1905 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1909 cpuset_mems_cookie
= read_mems_allowed_begin();
1910 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1911 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1912 struct kmem_cache_node
*n
;
1914 n
= get_node(s
, zone_to_nid(zone
));
1916 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1917 n
->nr_partial
> s
->min_partial
) {
1918 object
= get_partial_node(s
, n
, c
, flags
);
1921 * Don't check read_mems_allowed_retry()
1922 * here - if mems_allowed was updated in
1923 * parallel, that was a harmless race
1924 * between allocation and the cpuset
1931 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1937 * Get a partial page, lock it and return it.
1939 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1940 struct kmem_cache_cpu
*c
)
1943 int searchnode
= node
;
1945 if (node
== NUMA_NO_NODE
)
1946 searchnode
= numa_mem_id();
1947 else if (!node_present_pages(node
))
1948 searchnode
= node_to_mem_node(node
);
1950 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1951 if (object
|| node
!= NUMA_NO_NODE
)
1954 return get_any_partial(s
, flags
, c
);
1957 #ifdef CONFIG_PREEMPT
1959 * Calculate the next globally unique transaction for disambiguiation
1960 * during cmpxchg. The transactions start with the cpu number and are then
1961 * incremented by CONFIG_NR_CPUS.
1963 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1966 * No preemption supported therefore also no need to check for
1972 static inline unsigned long next_tid(unsigned long tid
)
1974 return tid
+ TID_STEP
;
1977 static inline unsigned int tid_to_cpu(unsigned long tid
)
1979 return tid
% TID_STEP
;
1982 static inline unsigned long tid_to_event(unsigned long tid
)
1984 return tid
/ TID_STEP
;
1987 static inline unsigned int init_tid(int cpu
)
1992 static inline void note_cmpxchg_failure(const char *n
,
1993 const struct kmem_cache
*s
, unsigned long tid
)
1995 #ifdef SLUB_DEBUG_CMPXCHG
1996 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1998 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2000 #ifdef CONFIG_PREEMPT
2001 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2002 pr_warn("due to cpu change %d -> %d\n",
2003 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2006 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2007 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2008 tid_to_event(tid
), tid_to_event(actual_tid
));
2010 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2011 actual_tid
, tid
, next_tid(tid
));
2013 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2016 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2020 for_each_possible_cpu(cpu
)
2021 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2025 * Remove the cpu slab
2027 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2028 void *freelist
, struct kmem_cache_cpu
*c
)
2030 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2031 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2033 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2035 int tail
= DEACTIVATE_TO_HEAD
;
2039 if (page
->freelist
) {
2040 stat(s
, DEACTIVATE_REMOTE_FREES
);
2041 tail
= DEACTIVATE_TO_TAIL
;
2045 * Stage one: Free all available per cpu objects back
2046 * to the page freelist while it is still frozen. Leave the
2049 * There is no need to take the list->lock because the page
2052 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2054 unsigned long counters
;
2057 prior
= page
->freelist
;
2058 counters
= page
->counters
;
2059 set_freepointer(s
, freelist
, prior
);
2060 new.counters
= counters
;
2062 VM_BUG_ON(!new.frozen
);
2064 } while (!__cmpxchg_double_slab(s
, page
,
2066 freelist
, new.counters
,
2067 "drain percpu freelist"));
2069 freelist
= nextfree
;
2073 * Stage two: Ensure that the page is unfrozen while the
2074 * list presence reflects the actual number of objects
2077 * We setup the list membership and then perform a cmpxchg
2078 * with the count. If there is a mismatch then the page
2079 * is not unfrozen but the page is on the wrong list.
2081 * Then we restart the process which may have to remove
2082 * the page from the list that we just put it on again
2083 * because the number of objects in the slab may have
2088 old
.freelist
= page
->freelist
;
2089 old
.counters
= page
->counters
;
2090 VM_BUG_ON(!old
.frozen
);
2092 /* Determine target state of the slab */
2093 new.counters
= old
.counters
;
2096 set_freepointer(s
, freelist
, old
.freelist
);
2097 new.freelist
= freelist
;
2099 new.freelist
= old
.freelist
;
2103 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2105 else if (new.freelist
) {
2110 * Taking the spinlock removes the possiblity
2111 * that acquire_slab() will see a slab page that
2114 spin_lock(&n
->list_lock
);
2118 if (kmem_cache_debug(s
) && !lock
) {
2121 * This also ensures that the scanning of full
2122 * slabs from diagnostic functions will not see
2125 spin_lock(&n
->list_lock
);
2133 remove_partial(n
, page
);
2135 else if (l
== M_FULL
)
2137 remove_full(s
, n
, page
);
2139 if (m
== M_PARTIAL
) {
2141 add_partial(n
, page
, tail
);
2144 } else if (m
== M_FULL
) {
2146 stat(s
, DEACTIVATE_FULL
);
2147 add_full(s
, n
, page
);
2153 if (!__cmpxchg_double_slab(s
, page
,
2154 old
.freelist
, old
.counters
,
2155 new.freelist
, new.counters
,
2160 spin_unlock(&n
->list_lock
);
2163 stat(s
, DEACTIVATE_EMPTY
);
2164 discard_slab(s
, page
);
2173 * Unfreeze all the cpu partial slabs.
2175 * This function must be called with interrupts disabled
2176 * for the cpu using c (or some other guarantee must be there
2177 * to guarantee no concurrent accesses).
2179 static void unfreeze_partials(struct kmem_cache
*s
,
2180 struct kmem_cache_cpu
*c
)
2182 #ifdef CONFIG_SLUB_CPU_PARTIAL
2183 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2184 struct page
*page
, *discard_page
= NULL
;
2186 while ((page
= c
->partial
)) {
2190 c
->partial
= page
->next
;
2192 n2
= get_node(s
, page_to_nid(page
));
2195 spin_unlock(&n
->list_lock
);
2198 spin_lock(&n
->list_lock
);
2203 old
.freelist
= page
->freelist
;
2204 old
.counters
= page
->counters
;
2205 VM_BUG_ON(!old
.frozen
);
2207 new.counters
= old
.counters
;
2208 new.freelist
= old
.freelist
;
2212 } while (!__cmpxchg_double_slab(s
, page
,
2213 old
.freelist
, old
.counters
,
2214 new.freelist
, new.counters
,
2215 "unfreezing slab"));
2217 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2218 page
->next
= discard_page
;
2219 discard_page
= page
;
2221 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2222 stat(s
, FREE_ADD_PARTIAL
);
2227 spin_unlock(&n
->list_lock
);
2229 while (discard_page
) {
2230 page
= discard_page
;
2231 discard_page
= discard_page
->next
;
2233 stat(s
, DEACTIVATE_EMPTY
);
2234 discard_slab(s
, page
);
2241 * Put a page that was just frozen (in __slab_free) into a partial page
2242 * slot if available.
2244 * If we did not find a slot then simply move all the partials to the
2245 * per node partial list.
2247 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2249 #ifdef CONFIG_SLUB_CPU_PARTIAL
2250 struct page
*oldpage
;
2258 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2261 pobjects
= oldpage
->pobjects
;
2262 pages
= oldpage
->pages
;
2263 if (drain
&& pobjects
> s
->cpu_partial
) {
2264 unsigned long flags
;
2266 * partial array is full. Move the existing
2267 * set to the per node partial list.
2269 local_irq_save(flags
);
2270 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2271 local_irq_restore(flags
);
2275 stat(s
, CPU_PARTIAL_DRAIN
);
2280 pobjects
+= page
->objects
- page
->inuse
;
2282 page
->pages
= pages
;
2283 page
->pobjects
= pobjects
;
2284 page
->next
= oldpage
;
2286 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2288 if (unlikely(!s
->cpu_partial
)) {
2289 unsigned long flags
;
2291 local_irq_save(flags
);
2292 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2293 local_irq_restore(flags
);
2299 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2301 stat(s
, CPUSLAB_FLUSH
);
2302 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2304 c
->tid
= next_tid(c
->tid
);
2310 * Called from IPI handler with interrupts disabled.
2312 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2314 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2320 unfreeze_partials(s
, c
);
2324 static void flush_cpu_slab(void *d
)
2326 struct kmem_cache
*s
= d
;
2328 __flush_cpu_slab(s
, smp_processor_id());
2331 static bool has_cpu_slab(int cpu
, void *info
)
2333 struct kmem_cache
*s
= info
;
2334 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2336 return c
->page
|| slub_percpu_partial(c
);
2339 static void flush_all(struct kmem_cache
*s
)
2341 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2345 * Use the cpu notifier to insure that the cpu slabs are flushed when
2348 static int slub_cpu_dead(unsigned int cpu
)
2350 struct kmem_cache
*s
;
2351 unsigned long flags
;
2353 mutex_lock(&slab_mutex
);
2354 list_for_each_entry(s
, &slab_caches
, list
) {
2355 local_irq_save(flags
);
2356 __flush_cpu_slab(s
, cpu
);
2357 local_irq_restore(flags
);
2359 mutex_unlock(&slab_mutex
);
2364 * Check if the objects in a per cpu structure fit numa
2365 * locality expectations.
2367 static inline int node_match(struct page
*page
, int node
)
2370 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2376 #ifdef CONFIG_SLUB_DEBUG
2377 static int count_free(struct page
*page
)
2379 return page
->objects
- page
->inuse
;
2382 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2384 return atomic_long_read(&n
->total_objects
);
2386 #endif /* CONFIG_SLUB_DEBUG */
2388 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2389 static unsigned long count_partial(struct kmem_cache_node
*n
,
2390 int (*get_count
)(struct page
*))
2392 unsigned long flags
;
2393 unsigned long x
= 0;
2396 spin_lock_irqsave(&n
->list_lock
, flags
);
2397 list_for_each_entry(page
, &n
->partial
, lru
)
2398 x
+= get_count(page
);
2399 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2402 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2404 static noinline
void
2405 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2407 #ifdef CONFIG_SLUB_DEBUG
2408 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2409 DEFAULT_RATELIMIT_BURST
);
2411 struct kmem_cache_node
*n
;
2413 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2416 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2417 nid
, gfpflags
, &gfpflags
);
2418 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2419 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2422 if (oo_order(s
->min
) > get_order(s
->object_size
))
2423 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2426 for_each_kmem_cache_node(s
, node
, n
) {
2427 unsigned long nr_slabs
;
2428 unsigned long nr_objs
;
2429 unsigned long nr_free
;
2431 nr_free
= count_partial(n
, count_free
);
2432 nr_slabs
= node_nr_slabs(n
);
2433 nr_objs
= node_nr_objs(n
);
2435 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2436 node
, nr_slabs
, nr_objs
, nr_free
);
2441 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2442 int node
, struct kmem_cache_cpu
**pc
)
2445 struct kmem_cache_cpu
*c
= *pc
;
2448 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2450 freelist
= get_partial(s
, flags
, node
, c
);
2455 page
= new_slab(s
, flags
, node
);
2457 c
= raw_cpu_ptr(s
->cpu_slab
);
2462 * No other reference to the page yet so we can
2463 * muck around with it freely without cmpxchg
2465 freelist
= page
->freelist
;
2466 page
->freelist
= NULL
;
2468 stat(s
, ALLOC_SLAB
);
2477 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2479 if (unlikely(PageSlabPfmemalloc(page
)))
2480 return gfp_pfmemalloc_allowed(gfpflags
);
2486 * Check the page->freelist of a page and either transfer the freelist to the
2487 * per cpu freelist or deactivate the page.
2489 * The page is still frozen if the return value is not NULL.
2491 * If this function returns NULL then the page has been unfrozen.
2493 * This function must be called with interrupt disabled.
2495 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2498 unsigned long counters
;
2502 freelist
= page
->freelist
;
2503 counters
= page
->counters
;
2505 new.counters
= counters
;
2506 VM_BUG_ON(!new.frozen
);
2508 new.inuse
= page
->objects
;
2509 new.frozen
= freelist
!= NULL
;
2511 } while (!__cmpxchg_double_slab(s
, page
,
2520 * Slow path. The lockless freelist is empty or we need to perform
2523 * Processing is still very fast if new objects have been freed to the
2524 * regular freelist. In that case we simply take over the regular freelist
2525 * as the lockless freelist and zap the regular freelist.
2527 * If that is not working then we fall back to the partial lists. We take the
2528 * first element of the freelist as the object to allocate now and move the
2529 * rest of the freelist to the lockless freelist.
2531 * And if we were unable to get a new slab from the partial slab lists then
2532 * we need to allocate a new slab. This is the slowest path since it involves
2533 * a call to the page allocator and the setup of a new slab.
2535 * Version of __slab_alloc to use when we know that interrupts are
2536 * already disabled (which is the case for bulk allocation).
2538 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2539 unsigned long addr
, struct kmem_cache_cpu
*c
)
2549 if (unlikely(!node_match(page
, node
))) {
2550 int searchnode
= node
;
2552 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2553 searchnode
= node_to_mem_node(node
);
2555 if (unlikely(!node_match(page
, searchnode
))) {
2556 stat(s
, ALLOC_NODE_MISMATCH
);
2557 deactivate_slab(s
, page
, c
->freelist
, c
);
2563 * By rights, we should be searching for a slab page that was
2564 * PFMEMALLOC but right now, we are losing the pfmemalloc
2565 * information when the page leaves the per-cpu allocator
2567 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2568 deactivate_slab(s
, page
, c
->freelist
, c
);
2572 /* must check again c->freelist in case of cpu migration or IRQ */
2573 freelist
= c
->freelist
;
2577 freelist
= get_freelist(s
, page
);
2581 stat(s
, DEACTIVATE_BYPASS
);
2585 stat(s
, ALLOC_REFILL
);
2589 * freelist is pointing to the list of objects to be used.
2590 * page is pointing to the page from which the objects are obtained.
2591 * That page must be frozen for per cpu allocations to work.
2593 VM_BUG_ON(!c
->page
->frozen
);
2594 c
->freelist
= get_freepointer(s
, freelist
);
2595 c
->tid
= next_tid(c
->tid
);
2600 if (slub_percpu_partial(c
)) {
2601 page
= c
->page
= slub_percpu_partial(c
);
2602 slub_set_percpu_partial(c
, page
);
2603 stat(s
, CPU_PARTIAL_ALLOC
);
2607 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2609 if (unlikely(!freelist
)) {
2610 slab_out_of_memory(s
, gfpflags
, node
);
2615 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2618 /* Only entered in the debug case */
2619 if (kmem_cache_debug(s
) &&
2620 !alloc_debug_processing(s
, page
, freelist
, addr
))
2621 goto new_slab
; /* Slab failed checks. Next slab needed */
2623 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2628 * Another one that disabled interrupt and compensates for possible
2629 * cpu changes by refetching the per cpu area pointer.
2631 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2632 unsigned long addr
, struct kmem_cache_cpu
*c
)
2635 unsigned long flags
;
2637 local_irq_save(flags
);
2638 #ifdef CONFIG_PREEMPT
2640 * We may have been preempted and rescheduled on a different
2641 * cpu before disabling interrupts. Need to reload cpu area
2644 c
= this_cpu_ptr(s
->cpu_slab
);
2647 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2648 local_irq_restore(flags
);
2653 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2654 * have the fastpath folded into their functions. So no function call
2655 * overhead for requests that can be satisfied on the fastpath.
2657 * The fastpath works by first checking if the lockless freelist can be used.
2658 * If not then __slab_alloc is called for slow processing.
2660 * Otherwise we can simply pick the next object from the lockless free list.
2662 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2663 gfp_t gfpflags
, int node
, unsigned long addr
)
2666 struct kmem_cache_cpu
*c
;
2670 s
= slab_pre_alloc_hook(s
, gfpflags
);
2675 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2676 * enabled. We may switch back and forth between cpus while
2677 * reading from one cpu area. That does not matter as long
2678 * as we end up on the original cpu again when doing the cmpxchg.
2680 * We should guarantee that tid and kmem_cache are retrieved on
2681 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2682 * to check if it is matched or not.
2685 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2686 c
= raw_cpu_ptr(s
->cpu_slab
);
2687 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2688 unlikely(tid
!= READ_ONCE(c
->tid
)));
2691 * Irqless object alloc/free algorithm used here depends on sequence
2692 * of fetching cpu_slab's data. tid should be fetched before anything
2693 * on c to guarantee that object and page associated with previous tid
2694 * won't be used with current tid. If we fetch tid first, object and
2695 * page could be one associated with next tid and our alloc/free
2696 * request will be failed. In this case, we will retry. So, no problem.
2701 * The transaction ids are globally unique per cpu and per operation on
2702 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2703 * occurs on the right processor and that there was no operation on the
2704 * linked list in between.
2707 object
= c
->freelist
;
2709 if (unlikely(!object
|| !node_match(page
, node
))) {
2710 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2711 stat(s
, ALLOC_SLOWPATH
);
2713 void *next_object
= get_freepointer_safe(s
, object
);
2716 * The cmpxchg will only match if there was no additional
2717 * operation and if we are on the right processor.
2719 * The cmpxchg does the following atomically (without lock
2721 * 1. Relocate first pointer to the current per cpu area.
2722 * 2. Verify that tid and freelist have not been changed
2723 * 3. If they were not changed replace tid and freelist
2725 * Since this is without lock semantics the protection is only
2726 * against code executing on this cpu *not* from access by
2729 if (unlikely(!this_cpu_cmpxchg_double(
2730 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2732 next_object
, next_tid(tid
)))) {
2734 note_cmpxchg_failure("slab_alloc", s
, tid
);
2737 prefetch_freepointer(s
, next_object
);
2738 stat(s
, ALLOC_FASTPATH
);
2741 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2742 memset(object
, 0, s
->object_size
);
2744 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2749 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2750 gfp_t gfpflags
, unsigned long addr
)
2752 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2755 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2757 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2759 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2764 EXPORT_SYMBOL(kmem_cache_alloc
);
2766 #ifdef CONFIG_TRACING
2767 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2769 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2770 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2771 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2774 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2778 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2780 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2782 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2783 s
->object_size
, s
->size
, gfpflags
, node
);
2787 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2789 #ifdef CONFIG_TRACING
2790 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2792 int node
, size_t size
)
2794 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2796 trace_kmalloc_node(_RET_IP_
, ret
,
2797 size
, s
->size
, gfpflags
, node
);
2799 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2802 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2807 * Slow path handling. This may still be called frequently since objects
2808 * have a longer lifetime than the cpu slabs in most processing loads.
2810 * So we still attempt to reduce cache line usage. Just take the slab
2811 * lock and free the item. If there is no additional partial page
2812 * handling required then we can return immediately.
2814 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2815 void *head
, void *tail
, int cnt
,
2822 unsigned long counters
;
2823 struct kmem_cache_node
*n
= NULL
;
2824 unsigned long uninitialized_var(flags
);
2826 stat(s
, FREE_SLOWPATH
);
2828 if (kmem_cache_debug(s
) &&
2829 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2834 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2837 prior
= page
->freelist
;
2838 counters
= page
->counters
;
2839 set_freepointer(s
, tail
, prior
);
2840 new.counters
= counters
;
2841 was_frozen
= new.frozen
;
2843 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2845 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2848 * Slab was on no list before and will be
2850 * We can defer the list move and instead
2855 } else { /* Needs to be taken off a list */
2857 n
= get_node(s
, page_to_nid(page
));
2859 * Speculatively acquire the list_lock.
2860 * If the cmpxchg does not succeed then we may
2861 * drop the list_lock without any processing.
2863 * Otherwise the list_lock will synchronize with
2864 * other processors updating the list of slabs.
2866 spin_lock_irqsave(&n
->list_lock
, flags
);
2871 } while (!cmpxchg_double_slab(s
, page
,
2879 * If we just froze the page then put it onto the
2880 * per cpu partial list.
2882 if (new.frozen
&& !was_frozen
) {
2883 put_cpu_partial(s
, page
, 1);
2884 stat(s
, CPU_PARTIAL_FREE
);
2887 * The list lock was not taken therefore no list
2888 * activity can be necessary.
2891 stat(s
, FREE_FROZEN
);
2895 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2899 * Objects left in the slab. If it was not on the partial list before
2902 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2903 if (kmem_cache_debug(s
))
2904 remove_full(s
, n
, page
);
2905 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2906 stat(s
, FREE_ADD_PARTIAL
);
2908 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2914 * Slab on the partial list.
2916 remove_partial(n
, page
);
2917 stat(s
, FREE_REMOVE_PARTIAL
);
2919 /* Slab must be on the full list */
2920 remove_full(s
, n
, page
);
2923 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2925 discard_slab(s
, page
);
2929 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2930 * can perform fastpath freeing without additional function calls.
2932 * The fastpath is only possible if we are freeing to the current cpu slab
2933 * of this processor. This typically the case if we have just allocated
2936 * If fastpath is not possible then fall back to __slab_free where we deal
2937 * with all sorts of special processing.
2939 * Bulk free of a freelist with several objects (all pointing to the
2940 * same page) possible by specifying head and tail ptr, plus objects
2941 * count (cnt). Bulk free indicated by tail pointer being set.
2943 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2944 struct page
*page
, void *head
, void *tail
,
2945 int cnt
, unsigned long addr
)
2947 void *tail_obj
= tail
? : head
;
2948 struct kmem_cache_cpu
*c
;
2952 * Determine the currently cpus per cpu slab.
2953 * The cpu may change afterward. However that does not matter since
2954 * data is retrieved via this pointer. If we are on the same cpu
2955 * during the cmpxchg then the free will succeed.
2958 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2959 c
= raw_cpu_ptr(s
->cpu_slab
);
2960 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2961 unlikely(tid
!= READ_ONCE(c
->tid
)));
2963 /* Same with comment on barrier() in slab_alloc_node() */
2966 if (likely(page
== c
->page
)) {
2967 set_freepointer(s
, tail_obj
, c
->freelist
);
2969 if (unlikely(!this_cpu_cmpxchg_double(
2970 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2972 head
, next_tid(tid
)))) {
2974 note_cmpxchg_failure("slab_free", s
, tid
);
2977 stat(s
, FREE_FASTPATH
);
2979 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2983 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2984 void *head
, void *tail
, int cnt
,
2988 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2989 * to remove objects, whose reuse must be delayed.
2991 if (slab_free_freelist_hook(s
, &head
, &tail
))
2992 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2996 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2998 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3002 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3004 s
= cache_from_obj(s
, x
);
3007 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3008 trace_kmem_cache_free(_RET_IP_
, x
);
3010 EXPORT_SYMBOL(kmem_cache_free
);
3012 struct detached_freelist
{
3017 struct kmem_cache
*s
;
3021 * This function progressively scans the array with free objects (with
3022 * a limited look ahead) and extract objects belonging to the same
3023 * page. It builds a detached freelist directly within the given
3024 * page/objects. This can happen without any need for
3025 * synchronization, because the objects are owned by running process.
3026 * The freelist is build up as a single linked list in the objects.
3027 * The idea is, that this detached freelist can then be bulk
3028 * transferred to the real freelist(s), but only requiring a single
3029 * synchronization primitive. Look ahead in the array is limited due
3030 * to performance reasons.
3033 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3034 void **p
, struct detached_freelist
*df
)
3036 size_t first_skipped_index
= 0;
3041 /* Always re-init detached_freelist */
3046 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3047 } while (!object
&& size
);
3052 page
= virt_to_head_page(object
);
3054 /* Handle kalloc'ed objects */
3055 if (unlikely(!PageSlab(page
))) {
3056 BUG_ON(!PageCompound(page
));
3058 __free_pages(page
, compound_order(page
));
3059 p
[size
] = NULL
; /* mark object processed */
3062 /* Derive kmem_cache from object */
3063 df
->s
= page
->slab_cache
;
3065 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3068 /* Start new detached freelist */
3070 set_freepointer(df
->s
, object
, NULL
);
3072 df
->freelist
= object
;
3073 p
[size
] = NULL
; /* mark object processed */
3079 continue; /* Skip processed objects */
3081 /* df->page is always set at this point */
3082 if (df
->page
== virt_to_head_page(object
)) {
3083 /* Opportunity build freelist */
3084 set_freepointer(df
->s
, object
, df
->freelist
);
3085 df
->freelist
= object
;
3087 p
[size
] = NULL
; /* mark object processed */
3092 /* Limit look ahead search */
3096 if (!first_skipped_index
)
3097 first_skipped_index
= size
+ 1;
3100 return first_skipped_index
;
3103 /* Note that interrupts must be enabled when calling this function. */
3104 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3110 struct detached_freelist df
;
3112 size
= build_detached_freelist(s
, size
, p
, &df
);
3116 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3117 } while (likely(size
));
3119 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3121 /* Note that interrupts must be enabled when calling this function. */
3122 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3125 struct kmem_cache_cpu
*c
;
3128 /* memcg and kmem_cache debug support */
3129 s
= slab_pre_alloc_hook(s
, flags
);
3133 * Drain objects in the per cpu slab, while disabling local
3134 * IRQs, which protects against PREEMPT and interrupts
3135 * handlers invoking normal fastpath.
3137 local_irq_disable();
3138 c
= this_cpu_ptr(s
->cpu_slab
);
3140 for (i
= 0; i
< size
; i
++) {
3141 void *object
= c
->freelist
;
3143 if (unlikely(!object
)) {
3145 * Invoking slow path likely have side-effect
3146 * of re-populating per CPU c->freelist
3148 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3150 if (unlikely(!p
[i
]))
3153 c
= this_cpu_ptr(s
->cpu_slab
);
3154 continue; /* goto for-loop */
3156 c
->freelist
= get_freepointer(s
, object
);
3159 c
->tid
= next_tid(c
->tid
);
3162 /* Clear memory outside IRQ disabled fastpath loop */
3163 if (unlikely(flags
& __GFP_ZERO
)) {
3166 for (j
= 0; j
< i
; j
++)
3167 memset(p
[j
], 0, s
->object_size
);
3170 /* memcg and kmem_cache debug support */
3171 slab_post_alloc_hook(s
, flags
, size
, p
);
3175 slab_post_alloc_hook(s
, flags
, i
, p
);
3176 __kmem_cache_free_bulk(s
, i
, p
);
3179 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3183 * Object placement in a slab is made very easy because we always start at
3184 * offset 0. If we tune the size of the object to the alignment then we can
3185 * get the required alignment by putting one properly sized object after
3188 * Notice that the allocation order determines the sizes of the per cpu
3189 * caches. Each processor has always one slab available for allocations.
3190 * Increasing the allocation order reduces the number of times that slabs
3191 * must be moved on and off the partial lists and is therefore a factor in
3196 * Mininum / Maximum order of slab pages. This influences locking overhead
3197 * and slab fragmentation. A higher order reduces the number of partial slabs
3198 * and increases the number of allocations possible without having to
3199 * take the list_lock.
3201 static unsigned int slub_min_order
;
3202 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3203 static unsigned int slub_min_objects
;
3206 * Calculate the order of allocation given an slab object size.
3208 * The order of allocation has significant impact on performance and other
3209 * system components. Generally order 0 allocations should be preferred since
3210 * order 0 does not cause fragmentation in the page allocator. Larger objects
3211 * be problematic to put into order 0 slabs because there may be too much
3212 * unused space left. We go to a higher order if more than 1/16th of the slab
3215 * In order to reach satisfactory performance we must ensure that a minimum
3216 * number of objects is in one slab. Otherwise we may generate too much
3217 * activity on the partial lists which requires taking the list_lock. This is
3218 * less a concern for large slabs though which are rarely used.
3220 * slub_max_order specifies the order where we begin to stop considering the
3221 * number of objects in a slab as critical. If we reach slub_max_order then
3222 * we try to keep the page order as low as possible. So we accept more waste
3223 * of space in favor of a small page order.
3225 * Higher order allocations also allow the placement of more objects in a
3226 * slab and thereby reduce object handling overhead. If the user has
3227 * requested a higher mininum order then we start with that one instead of
3228 * the smallest order which will fit the object.
3230 static inline unsigned int slab_order(unsigned int size
,
3231 unsigned int min_objects
, unsigned int max_order
,
3232 unsigned int fract_leftover
)
3234 unsigned int min_order
= slub_min_order
;
3237 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3238 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3240 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3241 order
<= max_order
; order
++) {
3243 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3246 rem
= slab_size
% size
;
3248 if (rem
<= slab_size
/ fract_leftover
)
3255 static inline int calculate_order(unsigned int size
)
3258 unsigned int min_objects
;
3259 unsigned int max_objects
;
3262 * Attempt to find best configuration for a slab. This
3263 * works by first attempting to generate a layout with
3264 * the best configuration and backing off gradually.
3266 * First we increase the acceptable waste in a slab. Then
3267 * we reduce the minimum objects required in a slab.
3269 min_objects
= slub_min_objects
;
3271 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3272 max_objects
= order_objects(slub_max_order
, size
);
3273 min_objects
= min(min_objects
, max_objects
);
3275 while (min_objects
> 1) {
3276 unsigned int fraction
;
3279 while (fraction
>= 4) {
3280 order
= slab_order(size
, min_objects
,
3281 slub_max_order
, fraction
);
3282 if (order
<= slub_max_order
)
3290 * We were unable to place multiple objects in a slab. Now
3291 * lets see if we can place a single object there.
3293 order
= slab_order(size
, 1, slub_max_order
, 1);
3294 if (order
<= slub_max_order
)
3298 * Doh this slab cannot be placed using slub_max_order.
3300 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3301 if (order
< MAX_ORDER
)
3307 init_kmem_cache_node(struct kmem_cache_node
*n
)
3310 spin_lock_init(&n
->list_lock
);
3311 INIT_LIST_HEAD(&n
->partial
);
3312 #ifdef CONFIG_SLUB_DEBUG
3313 atomic_long_set(&n
->nr_slabs
, 0);
3314 atomic_long_set(&n
->total_objects
, 0);
3315 INIT_LIST_HEAD(&n
->full
);
3319 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3321 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3322 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3325 * Must align to double word boundary for the double cmpxchg
3326 * instructions to work; see __pcpu_double_call_return_bool().
3328 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3329 2 * sizeof(void *));
3334 init_kmem_cache_cpus(s
);
3339 static struct kmem_cache
*kmem_cache_node
;
3342 * No kmalloc_node yet so do it by hand. We know that this is the first
3343 * slab on the node for this slabcache. There are no concurrent accesses
3346 * Note that this function only works on the kmem_cache_node
3347 * when allocating for the kmem_cache_node. This is used for bootstrapping
3348 * memory on a fresh node that has no slab structures yet.
3350 static void early_kmem_cache_node_alloc(int node
)
3353 struct kmem_cache_node
*n
;
3355 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3357 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3360 if (page_to_nid(page
) != node
) {
3361 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3362 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3367 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3370 kmem_cache_node
->node
[node
] = n
;
3371 #ifdef CONFIG_SLUB_DEBUG
3372 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3373 init_tracking(kmem_cache_node
, n
);
3375 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3377 init_kmem_cache_node(n
);
3378 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3381 * No locks need to be taken here as it has just been
3382 * initialized and there is no concurrent access.
3384 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3387 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3390 struct kmem_cache_node
*n
;
3392 for_each_kmem_cache_node(s
, node
, n
) {
3393 s
->node
[node
] = NULL
;
3394 kmem_cache_free(kmem_cache_node
, n
);
3398 void __kmem_cache_release(struct kmem_cache
*s
)
3400 cache_random_seq_destroy(s
);
3401 free_percpu(s
->cpu_slab
);
3402 free_kmem_cache_nodes(s
);
3405 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3409 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3410 struct kmem_cache_node
*n
;
3412 if (slab_state
== DOWN
) {
3413 early_kmem_cache_node_alloc(node
);
3416 n
= kmem_cache_alloc_node(kmem_cache_node
,
3420 free_kmem_cache_nodes(s
);
3424 init_kmem_cache_node(n
);
3430 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3432 if (min
< MIN_PARTIAL
)
3434 else if (min
> MAX_PARTIAL
)
3436 s
->min_partial
= min
;
3439 static void set_cpu_partial(struct kmem_cache
*s
)
3441 #ifdef CONFIG_SLUB_CPU_PARTIAL
3443 * cpu_partial determined the maximum number of objects kept in the
3444 * per cpu partial lists of a processor.
3446 * Per cpu partial lists mainly contain slabs that just have one
3447 * object freed. If they are used for allocation then they can be
3448 * filled up again with minimal effort. The slab will never hit the
3449 * per node partial lists and therefore no locking will be required.
3451 * This setting also determines
3453 * A) The number of objects from per cpu partial slabs dumped to the
3454 * per node list when we reach the limit.
3455 * B) The number of objects in cpu partial slabs to extract from the
3456 * per node list when we run out of per cpu objects. We only fetch
3457 * 50% to keep some capacity around for frees.
3459 if (!kmem_cache_has_cpu_partial(s
))
3461 else if (s
->size
>= PAGE_SIZE
)
3463 else if (s
->size
>= 1024)
3465 else if (s
->size
>= 256)
3466 s
->cpu_partial
= 13;
3468 s
->cpu_partial
= 30;
3473 * calculate_sizes() determines the order and the distribution of data within
3476 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3478 slab_flags_t flags
= s
->flags
;
3479 unsigned int size
= s
->object_size
;
3483 * Round up object size to the next word boundary. We can only
3484 * place the free pointer at word boundaries and this determines
3485 * the possible location of the free pointer.
3487 size
= ALIGN(size
, sizeof(void *));
3489 #ifdef CONFIG_SLUB_DEBUG
3491 * Determine if we can poison the object itself. If the user of
3492 * the slab may touch the object after free or before allocation
3493 * then we should never poison the object itself.
3495 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3497 s
->flags
|= __OBJECT_POISON
;
3499 s
->flags
&= ~__OBJECT_POISON
;
3503 * If we are Redzoning then check if there is some space between the
3504 * end of the object and the free pointer. If not then add an
3505 * additional word to have some bytes to store Redzone information.
3507 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3508 size
+= sizeof(void *);
3512 * With that we have determined the number of bytes in actual use
3513 * by the object. This is the potential offset to the free pointer.
3517 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3520 * Relocate free pointer after the object if it is not
3521 * permitted to overwrite the first word of the object on
3524 * This is the case if we do RCU, have a constructor or
3525 * destructor or are poisoning the objects.
3528 size
+= sizeof(void *);
3531 #ifdef CONFIG_SLUB_DEBUG
3532 if (flags
& SLAB_STORE_USER
)
3534 * Need to store information about allocs and frees after
3537 size
+= 2 * sizeof(struct track
);
3540 kasan_cache_create(s
, &size
, &s
->flags
);
3541 #ifdef CONFIG_SLUB_DEBUG
3542 if (flags
& SLAB_RED_ZONE
) {
3544 * Add some empty padding so that we can catch
3545 * overwrites from earlier objects rather than let
3546 * tracking information or the free pointer be
3547 * corrupted if a user writes before the start
3550 size
+= sizeof(void *);
3552 s
->red_left_pad
= sizeof(void *);
3553 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3554 size
+= s
->red_left_pad
;
3559 * SLUB stores one object immediately after another beginning from
3560 * offset 0. In order to align the objects we have to simply size
3561 * each object to conform to the alignment.
3563 size
= ALIGN(size
, s
->align
);
3565 if (forced_order
>= 0)
3566 order
= forced_order
;
3568 order
= calculate_order(size
);
3575 s
->allocflags
|= __GFP_COMP
;
3577 if (s
->flags
& SLAB_CACHE_DMA
)
3578 s
->allocflags
|= GFP_DMA
;
3580 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3581 s
->allocflags
|= __GFP_RECLAIMABLE
;
3584 * Determine the number of objects per slab
3586 s
->oo
= oo_make(order
, size
);
3587 s
->min
= oo_make(get_order(size
), size
);
3588 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3591 return !!oo_objects(s
->oo
);
3594 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3596 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3597 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3598 s
->random
= get_random_long();
3601 if (!calculate_sizes(s
, -1))
3603 if (disable_higher_order_debug
) {
3605 * Disable debugging flags that store metadata if the min slab
3608 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3609 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3611 if (!calculate_sizes(s
, -1))
3616 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3617 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3618 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3619 /* Enable fast mode */
3620 s
->flags
|= __CMPXCHG_DOUBLE
;
3624 * The larger the object size is, the more pages we want on the partial
3625 * list to avoid pounding the page allocator excessively.
3627 set_min_partial(s
, ilog2(s
->size
) / 2);
3632 s
->remote_node_defrag_ratio
= 1000;
3635 /* Initialize the pre-computed randomized freelist if slab is up */
3636 if (slab_state
>= UP
) {
3637 if (init_cache_random_seq(s
))
3641 if (!init_kmem_cache_nodes(s
))
3644 if (alloc_kmem_cache_cpus(s
))
3647 free_kmem_cache_nodes(s
);
3649 if (flags
& SLAB_PANIC
)
3650 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3651 s
->name
, s
->size
, s
->size
,
3652 oo_order(s
->oo
), s
->offset
, (unsigned long)flags
);
3656 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3659 #ifdef CONFIG_SLUB_DEBUG
3660 void *addr
= page_address(page
);
3662 unsigned long *map
= bitmap_zalloc(page
->objects
, GFP_ATOMIC
);
3665 slab_err(s
, page
, text
, s
->name
);
3668 get_map(s
, page
, map
);
3669 for_each_object(p
, s
, addr
, page
->objects
) {
3671 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3672 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3673 print_tracking(s
, p
);
3682 * Attempt to free all partial slabs on a node.
3683 * This is called from __kmem_cache_shutdown(). We must take list_lock
3684 * because sysfs file might still access partial list after the shutdowning.
3686 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3689 struct page
*page
, *h
;
3691 BUG_ON(irqs_disabled());
3692 spin_lock_irq(&n
->list_lock
);
3693 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3695 remove_partial(n
, page
);
3696 list_add(&page
->lru
, &discard
);
3698 list_slab_objects(s
, page
,
3699 "Objects remaining in %s on __kmem_cache_shutdown()");
3702 spin_unlock_irq(&n
->list_lock
);
3704 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3705 discard_slab(s
, page
);
3708 bool __kmem_cache_empty(struct kmem_cache
*s
)
3711 struct kmem_cache_node
*n
;
3713 for_each_kmem_cache_node(s
, node
, n
)
3714 if (n
->nr_partial
|| slabs_node(s
, node
))
3720 * Release all resources used by a slab cache.
3722 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3725 struct kmem_cache_node
*n
;
3728 /* Attempt to free all objects */
3729 for_each_kmem_cache_node(s
, node
, n
) {
3731 if (n
->nr_partial
|| slabs_node(s
, node
))
3734 sysfs_slab_remove(s
);
3738 /********************************************************************
3740 *******************************************************************/
3742 static int __init
setup_slub_min_order(char *str
)
3744 get_option(&str
, (int *)&slub_min_order
);
3749 __setup("slub_min_order=", setup_slub_min_order
);
3751 static int __init
setup_slub_max_order(char *str
)
3753 get_option(&str
, (int *)&slub_max_order
);
3754 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3759 __setup("slub_max_order=", setup_slub_max_order
);
3761 static int __init
setup_slub_min_objects(char *str
)
3763 get_option(&str
, (int *)&slub_min_objects
);
3768 __setup("slub_min_objects=", setup_slub_min_objects
);
3770 void *__kmalloc(size_t size
, gfp_t flags
)
3772 struct kmem_cache
*s
;
3775 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3776 return kmalloc_large(size
, flags
);
3778 s
= kmalloc_slab(size
, flags
);
3780 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3783 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3785 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3787 kasan_kmalloc(s
, ret
, size
, flags
);
3791 EXPORT_SYMBOL(__kmalloc
);
3794 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3799 flags
|= __GFP_COMP
;
3800 page
= alloc_pages_node(node
, flags
, get_order(size
));
3802 ptr
= page_address(page
);
3804 kmalloc_large_node_hook(ptr
, size
, flags
);
3808 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3810 struct kmem_cache
*s
;
3813 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3814 ret
= kmalloc_large_node(size
, flags
, node
);
3816 trace_kmalloc_node(_RET_IP_
, ret
,
3817 size
, PAGE_SIZE
<< get_order(size
),
3823 s
= kmalloc_slab(size
, flags
);
3825 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3828 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3830 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3832 kasan_kmalloc(s
, ret
, size
, flags
);
3836 EXPORT_SYMBOL(__kmalloc_node
);
3839 #ifdef CONFIG_HARDENED_USERCOPY
3841 * Rejects incorrectly sized objects and objects that are to be copied
3842 * to/from userspace but do not fall entirely within the containing slab
3843 * cache's usercopy region.
3845 * Returns NULL if check passes, otherwise const char * to name of cache
3846 * to indicate an error.
3848 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3851 struct kmem_cache
*s
;
3852 unsigned int offset
;
3855 /* Find object and usable object size. */
3856 s
= page
->slab_cache
;
3858 /* Reject impossible pointers. */
3859 if (ptr
< page_address(page
))
3860 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3863 /* Find offset within object. */
3864 offset
= (ptr
- page_address(page
)) % s
->size
;
3866 /* Adjust for redzone and reject if within the redzone. */
3867 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3868 if (offset
< s
->red_left_pad
)
3869 usercopy_abort("SLUB object in left red zone",
3870 s
->name
, to_user
, offset
, n
);
3871 offset
-= s
->red_left_pad
;
3874 /* Allow address range falling entirely within usercopy region. */
3875 if (offset
>= s
->useroffset
&&
3876 offset
- s
->useroffset
<= s
->usersize
&&
3877 n
<= s
->useroffset
- offset
+ s
->usersize
)
3881 * If the copy is still within the allocated object, produce
3882 * a warning instead of rejecting the copy. This is intended
3883 * to be a temporary method to find any missing usercopy
3886 object_size
= slab_ksize(s
);
3887 if (usercopy_fallback
&&
3888 offset
<= object_size
&& n
<= object_size
- offset
) {
3889 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3893 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3895 #endif /* CONFIG_HARDENED_USERCOPY */
3897 static size_t __ksize(const void *object
)
3901 if (unlikely(object
== ZERO_SIZE_PTR
))
3904 page
= virt_to_head_page(object
);
3906 if (unlikely(!PageSlab(page
))) {
3907 WARN_ON(!PageCompound(page
));
3908 return PAGE_SIZE
<< compound_order(page
);
3911 return slab_ksize(page
->slab_cache
);
3914 size_t ksize(const void *object
)
3916 size_t size
= __ksize(object
);
3917 /* We assume that ksize callers could use whole allocated area,
3918 * so we need to unpoison this area.
3920 kasan_unpoison_shadow(object
, size
);
3923 EXPORT_SYMBOL(ksize
);
3925 void kfree(const void *x
)
3928 void *object
= (void *)x
;
3930 trace_kfree(_RET_IP_
, x
);
3932 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3935 page
= virt_to_head_page(x
);
3936 if (unlikely(!PageSlab(page
))) {
3937 BUG_ON(!PageCompound(page
));
3939 __free_pages(page
, compound_order(page
));
3942 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3944 EXPORT_SYMBOL(kfree
);
3946 #define SHRINK_PROMOTE_MAX 32
3949 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3950 * up most to the head of the partial lists. New allocations will then
3951 * fill those up and thus they can be removed from the partial lists.
3953 * The slabs with the least items are placed last. This results in them
3954 * being allocated from last increasing the chance that the last objects
3955 * are freed in them.
3957 int __kmem_cache_shrink(struct kmem_cache
*s
)
3961 struct kmem_cache_node
*n
;
3964 struct list_head discard
;
3965 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3966 unsigned long flags
;
3970 for_each_kmem_cache_node(s
, node
, n
) {
3971 INIT_LIST_HEAD(&discard
);
3972 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3973 INIT_LIST_HEAD(promote
+ i
);
3975 spin_lock_irqsave(&n
->list_lock
, flags
);
3978 * Build lists of slabs to discard or promote.
3980 * Note that concurrent frees may occur while we hold the
3981 * list_lock. page->inuse here is the upper limit.
3983 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3984 int free
= page
->objects
- page
->inuse
;
3986 /* Do not reread page->inuse */
3989 /* We do not keep full slabs on the list */
3992 if (free
== page
->objects
) {
3993 list_move(&page
->lru
, &discard
);
3995 } else if (free
<= SHRINK_PROMOTE_MAX
)
3996 list_move(&page
->lru
, promote
+ free
- 1);
4000 * Promote the slabs filled up most to the head of the
4003 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4004 list_splice(promote
+ i
, &n
->partial
);
4006 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4008 /* Release empty slabs */
4009 list_for_each_entry_safe(page
, t
, &discard
, lru
)
4010 discard_slab(s
, page
);
4012 if (slabs_node(s
, node
))
4020 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
4023 * Called with all the locks held after a sched RCU grace period.
4024 * Even if @s becomes empty after shrinking, we can't know that @s
4025 * doesn't have allocations already in-flight and thus can't
4026 * destroy @s until the associated memcg is released.
4028 * However, let's remove the sysfs files for empty caches here.
4029 * Each cache has a lot of interface files which aren't
4030 * particularly useful for empty draining caches; otherwise, we can
4031 * easily end up with millions of unnecessary sysfs files on
4032 * systems which have a lot of memory and transient cgroups.
4034 if (!__kmem_cache_shrink(s
))
4035 sysfs_slab_remove(s
);
4038 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4041 * Disable empty slabs caching. Used to avoid pinning offline
4042 * memory cgroups by kmem pages that can be freed.
4044 slub_set_cpu_partial(s
, 0);
4048 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4049 * we have to make sure the change is visible before shrinking.
4051 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4055 static int slab_mem_going_offline_callback(void *arg
)
4057 struct kmem_cache
*s
;
4059 mutex_lock(&slab_mutex
);
4060 list_for_each_entry(s
, &slab_caches
, list
)
4061 __kmem_cache_shrink(s
);
4062 mutex_unlock(&slab_mutex
);
4067 static void slab_mem_offline_callback(void *arg
)
4069 struct kmem_cache_node
*n
;
4070 struct kmem_cache
*s
;
4071 struct memory_notify
*marg
= arg
;
4074 offline_node
= marg
->status_change_nid_normal
;
4077 * If the node still has available memory. we need kmem_cache_node
4080 if (offline_node
< 0)
4083 mutex_lock(&slab_mutex
);
4084 list_for_each_entry(s
, &slab_caches
, list
) {
4085 n
= get_node(s
, offline_node
);
4088 * if n->nr_slabs > 0, slabs still exist on the node
4089 * that is going down. We were unable to free them,
4090 * and offline_pages() function shouldn't call this
4091 * callback. So, we must fail.
4093 BUG_ON(slabs_node(s
, offline_node
));
4095 s
->node
[offline_node
] = NULL
;
4096 kmem_cache_free(kmem_cache_node
, n
);
4099 mutex_unlock(&slab_mutex
);
4102 static int slab_mem_going_online_callback(void *arg
)
4104 struct kmem_cache_node
*n
;
4105 struct kmem_cache
*s
;
4106 struct memory_notify
*marg
= arg
;
4107 int nid
= marg
->status_change_nid_normal
;
4111 * If the node's memory is already available, then kmem_cache_node is
4112 * already created. Nothing to do.
4118 * We are bringing a node online. No memory is available yet. We must
4119 * allocate a kmem_cache_node structure in order to bring the node
4122 mutex_lock(&slab_mutex
);
4123 list_for_each_entry(s
, &slab_caches
, list
) {
4125 * XXX: kmem_cache_alloc_node will fallback to other nodes
4126 * since memory is not yet available from the node that
4129 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4134 init_kmem_cache_node(n
);
4138 mutex_unlock(&slab_mutex
);
4142 static int slab_memory_callback(struct notifier_block
*self
,
4143 unsigned long action
, void *arg
)
4148 case MEM_GOING_ONLINE
:
4149 ret
= slab_mem_going_online_callback(arg
);
4151 case MEM_GOING_OFFLINE
:
4152 ret
= slab_mem_going_offline_callback(arg
);
4155 case MEM_CANCEL_ONLINE
:
4156 slab_mem_offline_callback(arg
);
4159 case MEM_CANCEL_OFFLINE
:
4163 ret
= notifier_from_errno(ret
);
4169 static struct notifier_block slab_memory_callback_nb
= {
4170 .notifier_call
= slab_memory_callback
,
4171 .priority
= SLAB_CALLBACK_PRI
,
4174 /********************************************************************
4175 * Basic setup of slabs
4176 *******************************************************************/
4179 * Used for early kmem_cache structures that were allocated using
4180 * the page allocator. Allocate them properly then fix up the pointers
4181 * that may be pointing to the wrong kmem_cache structure.
4184 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4187 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4188 struct kmem_cache_node
*n
;
4190 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4193 * This runs very early, and only the boot processor is supposed to be
4194 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4197 __flush_cpu_slab(s
, smp_processor_id());
4198 for_each_kmem_cache_node(s
, node
, n
) {
4201 list_for_each_entry(p
, &n
->partial
, lru
)
4204 #ifdef CONFIG_SLUB_DEBUG
4205 list_for_each_entry(p
, &n
->full
, lru
)
4209 slab_init_memcg_params(s
);
4210 list_add(&s
->list
, &slab_caches
);
4211 memcg_link_cache(s
);
4215 void __init
kmem_cache_init(void)
4217 static __initdata
struct kmem_cache boot_kmem_cache
,
4218 boot_kmem_cache_node
;
4220 if (debug_guardpage_minorder())
4223 kmem_cache_node
= &boot_kmem_cache_node
;
4224 kmem_cache
= &boot_kmem_cache
;
4226 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4227 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4229 register_hotmemory_notifier(&slab_memory_callback_nb
);
4231 /* Able to allocate the per node structures */
4232 slab_state
= PARTIAL
;
4234 create_boot_cache(kmem_cache
, "kmem_cache",
4235 offsetof(struct kmem_cache
, node
) +
4236 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4237 SLAB_HWCACHE_ALIGN
, 0, 0);
4239 kmem_cache
= bootstrap(&boot_kmem_cache
);
4240 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4242 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4243 setup_kmalloc_cache_index_table();
4244 create_kmalloc_caches(0);
4246 /* Setup random freelists for each cache */
4247 init_freelist_randomization();
4249 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4252 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4254 slub_min_order
, slub_max_order
, slub_min_objects
,
4255 nr_cpu_ids
, nr_node_ids
);
4258 void __init
kmem_cache_init_late(void)
4263 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4264 slab_flags_t flags
, void (*ctor
)(void *))
4266 struct kmem_cache
*s
, *c
;
4268 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4273 * Adjust the object sizes so that we clear
4274 * the complete object on kzalloc.
4276 s
->object_size
= max(s
->object_size
, size
);
4277 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4279 for_each_memcg_cache(c
, s
) {
4280 c
->object_size
= s
->object_size
;
4281 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4284 if (sysfs_slab_alias(s
, name
)) {
4293 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4297 err
= kmem_cache_open(s
, flags
);
4301 /* Mutex is not taken during early boot */
4302 if (slab_state
<= UP
)
4305 memcg_propagate_slab_attrs(s
);
4306 err
= sysfs_slab_add(s
);
4308 __kmem_cache_release(s
);
4313 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4315 struct kmem_cache
*s
;
4318 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4319 return kmalloc_large(size
, gfpflags
);
4321 s
= kmalloc_slab(size
, gfpflags
);
4323 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4326 ret
= slab_alloc(s
, gfpflags
, caller
);
4328 /* Honor the call site pointer we received. */
4329 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4335 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4336 int node
, unsigned long caller
)
4338 struct kmem_cache
*s
;
4341 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4342 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4344 trace_kmalloc_node(caller
, ret
,
4345 size
, PAGE_SIZE
<< get_order(size
),
4351 s
= kmalloc_slab(size
, gfpflags
);
4353 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4356 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4358 /* Honor the call site pointer we received. */
4359 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4366 static int count_inuse(struct page
*page
)
4371 static int count_total(struct page
*page
)
4373 return page
->objects
;
4377 #ifdef CONFIG_SLUB_DEBUG
4378 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4382 void *addr
= page_address(page
);
4384 if (!check_slab(s
, page
) ||
4385 !on_freelist(s
, page
, NULL
))
4388 /* Now we know that a valid freelist exists */
4389 bitmap_zero(map
, page
->objects
);
4391 get_map(s
, page
, map
);
4392 for_each_object(p
, s
, addr
, page
->objects
) {
4393 if (test_bit(slab_index(p
, s
, addr
), map
))
4394 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4398 for_each_object(p
, s
, addr
, page
->objects
)
4399 if (!test_bit(slab_index(p
, s
, addr
), map
))
4400 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4405 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4409 validate_slab(s
, page
, map
);
4413 static int validate_slab_node(struct kmem_cache
*s
,
4414 struct kmem_cache_node
*n
, unsigned long *map
)
4416 unsigned long count
= 0;
4418 unsigned long flags
;
4420 spin_lock_irqsave(&n
->list_lock
, flags
);
4422 list_for_each_entry(page
, &n
->partial
, lru
) {
4423 validate_slab_slab(s
, page
, map
);
4426 if (count
!= n
->nr_partial
)
4427 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4428 s
->name
, count
, n
->nr_partial
);
4430 if (!(s
->flags
& SLAB_STORE_USER
))
4433 list_for_each_entry(page
, &n
->full
, lru
) {
4434 validate_slab_slab(s
, page
, map
);
4437 if (count
!= atomic_long_read(&n
->nr_slabs
))
4438 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4439 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4442 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4446 static long validate_slab_cache(struct kmem_cache
*s
)
4449 unsigned long count
= 0;
4450 struct kmem_cache_node
*n
;
4451 unsigned long *map
= bitmap_alloc(oo_objects(s
->max
), GFP_KERNEL
);
4457 for_each_kmem_cache_node(s
, node
, n
)
4458 count
+= validate_slab_node(s
, n
, map
);
4463 * Generate lists of code addresses where slabcache objects are allocated
4468 unsigned long count
;
4475 DECLARE_BITMAP(cpus
, NR_CPUS
);
4481 unsigned long count
;
4482 struct location
*loc
;
4485 static void free_loc_track(struct loc_track
*t
)
4488 free_pages((unsigned long)t
->loc
,
4489 get_order(sizeof(struct location
) * t
->max
));
4492 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4497 order
= get_order(sizeof(struct location
) * max
);
4499 l
= (void *)__get_free_pages(flags
, order
);
4504 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4512 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4513 const struct track
*track
)
4515 long start
, end
, pos
;
4517 unsigned long caddr
;
4518 unsigned long age
= jiffies
- track
->when
;
4524 pos
= start
+ (end
- start
+ 1) / 2;
4527 * There is nothing at "end". If we end up there
4528 * we need to add something to before end.
4533 caddr
= t
->loc
[pos
].addr
;
4534 if (track
->addr
== caddr
) {
4540 if (age
< l
->min_time
)
4542 if (age
> l
->max_time
)
4545 if (track
->pid
< l
->min_pid
)
4546 l
->min_pid
= track
->pid
;
4547 if (track
->pid
> l
->max_pid
)
4548 l
->max_pid
= track
->pid
;
4550 cpumask_set_cpu(track
->cpu
,
4551 to_cpumask(l
->cpus
));
4553 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4557 if (track
->addr
< caddr
)
4564 * Not found. Insert new tracking element.
4566 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4572 (t
->count
- pos
) * sizeof(struct location
));
4575 l
->addr
= track
->addr
;
4579 l
->min_pid
= track
->pid
;
4580 l
->max_pid
= track
->pid
;
4581 cpumask_clear(to_cpumask(l
->cpus
));
4582 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4583 nodes_clear(l
->nodes
);
4584 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4588 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4589 struct page
*page
, enum track_item alloc
,
4592 void *addr
= page_address(page
);
4595 bitmap_zero(map
, page
->objects
);
4596 get_map(s
, page
, map
);
4598 for_each_object(p
, s
, addr
, page
->objects
)
4599 if (!test_bit(slab_index(p
, s
, addr
), map
))
4600 add_location(t
, s
, get_track(s
, p
, alloc
));
4603 static int list_locations(struct kmem_cache
*s
, char *buf
,
4604 enum track_item alloc
)
4608 struct loc_track t
= { 0, 0, NULL
};
4610 struct kmem_cache_node
*n
;
4611 unsigned long *map
= bitmap_alloc(oo_objects(s
->max
), GFP_KERNEL
);
4613 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4616 return sprintf(buf
, "Out of memory\n");
4618 /* Push back cpu slabs */
4621 for_each_kmem_cache_node(s
, node
, n
) {
4622 unsigned long flags
;
4625 if (!atomic_long_read(&n
->nr_slabs
))
4628 spin_lock_irqsave(&n
->list_lock
, flags
);
4629 list_for_each_entry(page
, &n
->partial
, lru
)
4630 process_slab(&t
, s
, page
, alloc
, map
);
4631 list_for_each_entry(page
, &n
->full
, lru
)
4632 process_slab(&t
, s
, page
, alloc
, map
);
4633 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4636 for (i
= 0; i
< t
.count
; i
++) {
4637 struct location
*l
= &t
.loc
[i
];
4639 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4641 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4644 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4646 len
+= sprintf(buf
+ len
, "<not-available>");
4648 if (l
->sum_time
!= l
->min_time
) {
4649 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4651 (long)div_u64(l
->sum_time
, l
->count
),
4654 len
+= sprintf(buf
+ len
, " age=%ld",
4657 if (l
->min_pid
!= l
->max_pid
)
4658 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4659 l
->min_pid
, l
->max_pid
);
4661 len
+= sprintf(buf
+ len
, " pid=%ld",
4664 if (num_online_cpus() > 1 &&
4665 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4666 len
< PAGE_SIZE
- 60)
4667 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4669 cpumask_pr_args(to_cpumask(l
->cpus
)));
4671 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4672 len
< PAGE_SIZE
- 60)
4673 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4675 nodemask_pr_args(&l
->nodes
));
4677 len
+= sprintf(buf
+ len
, "\n");
4683 len
+= sprintf(buf
, "No data\n");
4688 #ifdef SLUB_RESILIENCY_TEST
4689 static void __init
resiliency_test(void)
4692 int type
= KMALLOC_NORMAL
;
4694 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4696 pr_err("SLUB resiliency testing\n");
4697 pr_err("-----------------------\n");
4698 pr_err("A. Corruption after allocation\n");
4700 p
= kzalloc(16, GFP_KERNEL
);
4702 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4705 validate_slab_cache(kmalloc_caches
[type
][4]);
4707 /* Hmmm... The next two are dangerous */
4708 p
= kzalloc(32, GFP_KERNEL
);
4709 p
[32 + sizeof(void *)] = 0x34;
4710 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4712 pr_err("If allocated object is overwritten then not detectable\n\n");
4714 validate_slab_cache(kmalloc_caches
[type
][5]);
4715 p
= kzalloc(64, GFP_KERNEL
);
4716 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4718 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4720 pr_err("If allocated object is overwritten then not detectable\n\n");
4721 validate_slab_cache(kmalloc_caches
[type
][6]);
4723 pr_err("\nB. Corruption after free\n");
4724 p
= kzalloc(128, GFP_KERNEL
);
4727 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4728 validate_slab_cache(kmalloc_caches
[type
][7]);
4730 p
= kzalloc(256, GFP_KERNEL
);
4733 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4734 validate_slab_cache(kmalloc_caches
[type
][8]);
4736 p
= kzalloc(512, GFP_KERNEL
);
4739 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4740 validate_slab_cache(kmalloc_caches
[type
][9]);
4744 static void resiliency_test(void) {};
4749 enum slab_stat_type
{
4750 SL_ALL
, /* All slabs */
4751 SL_PARTIAL
, /* Only partially allocated slabs */
4752 SL_CPU
, /* Only slabs used for cpu caches */
4753 SL_OBJECTS
, /* Determine allocated objects not slabs */
4754 SL_TOTAL
/* Determine object capacity not slabs */
4757 #define SO_ALL (1 << SL_ALL)
4758 #define SO_PARTIAL (1 << SL_PARTIAL)
4759 #define SO_CPU (1 << SL_CPU)
4760 #define SO_OBJECTS (1 << SL_OBJECTS)
4761 #define SO_TOTAL (1 << SL_TOTAL)
4764 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4766 static int __init
setup_slub_memcg_sysfs(char *str
)
4770 if (get_option(&str
, &v
) > 0)
4771 memcg_sysfs_enabled
= v
;
4776 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4779 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4780 char *buf
, unsigned long flags
)
4782 unsigned long total
= 0;
4785 unsigned long *nodes
;
4787 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4791 if (flags
& SO_CPU
) {
4794 for_each_possible_cpu(cpu
) {
4795 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4800 page
= READ_ONCE(c
->page
);
4804 node
= page_to_nid(page
);
4805 if (flags
& SO_TOTAL
)
4807 else if (flags
& SO_OBJECTS
)
4815 page
= slub_percpu_partial_read_once(c
);
4817 node
= page_to_nid(page
);
4818 if (flags
& SO_TOTAL
)
4820 else if (flags
& SO_OBJECTS
)
4831 #ifdef CONFIG_SLUB_DEBUG
4832 if (flags
& SO_ALL
) {
4833 struct kmem_cache_node
*n
;
4835 for_each_kmem_cache_node(s
, node
, n
) {
4837 if (flags
& SO_TOTAL
)
4838 x
= atomic_long_read(&n
->total_objects
);
4839 else if (flags
& SO_OBJECTS
)
4840 x
= atomic_long_read(&n
->total_objects
) -
4841 count_partial(n
, count_free
);
4843 x
= atomic_long_read(&n
->nr_slabs
);
4850 if (flags
& SO_PARTIAL
) {
4851 struct kmem_cache_node
*n
;
4853 for_each_kmem_cache_node(s
, node
, n
) {
4854 if (flags
& SO_TOTAL
)
4855 x
= count_partial(n
, count_total
);
4856 else if (flags
& SO_OBJECTS
)
4857 x
= count_partial(n
, count_inuse
);
4864 x
= sprintf(buf
, "%lu", total
);
4866 for (node
= 0; node
< nr_node_ids
; node
++)
4868 x
+= sprintf(buf
+ x
, " N%d=%lu",
4873 return x
+ sprintf(buf
+ x
, "\n");
4876 #ifdef CONFIG_SLUB_DEBUG
4877 static int any_slab_objects(struct kmem_cache
*s
)
4880 struct kmem_cache_node
*n
;
4882 for_each_kmem_cache_node(s
, node
, n
)
4883 if (atomic_long_read(&n
->total_objects
))
4890 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4891 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4893 struct slab_attribute
{
4894 struct attribute attr
;
4895 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4896 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4899 #define SLAB_ATTR_RO(_name) \
4900 static struct slab_attribute _name##_attr = \
4901 __ATTR(_name, 0400, _name##_show, NULL)
4903 #define SLAB_ATTR(_name) \
4904 static struct slab_attribute _name##_attr = \
4905 __ATTR(_name, 0600, _name##_show, _name##_store)
4907 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4909 return sprintf(buf
, "%u\n", s
->size
);
4911 SLAB_ATTR_RO(slab_size
);
4913 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4915 return sprintf(buf
, "%u\n", s
->align
);
4917 SLAB_ATTR_RO(align
);
4919 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4921 return sprintf(buf
, "%u\n", s
->object_size
);
4923 SLAB_ATTR_RO(object_size
);
4925 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4927 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4929 SLAB_ATTR_RO(objs_per_slab
);
4931 static ssize_t
order_store(struct kmem_cache
*s
,
4932 const char *buf
, size_t length
)
4937 err
= kstrtouint(buf
, 10, &order
);
4941 if (order
> slub_max_order
|| order
< slub_min_order
)
4944 calculate_sizes(s
, order
);
4948 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4950 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
4954 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4956 return sprintf(buf
, "%lu\n", s
->min_partial
);
4959 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4965 err
= kstrtoul(buf
, 10, &min
);
4969 set_min_partial(s
, min
);
4972 SLAB_ATTR(min_partial
);
4974 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4976 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4979 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4982 unsigned int objects
;
4985 err
= kstrtouint(buf
, 10, &objects
);
4988 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4991 slub_set_cpu_partial(s
, objects
);
4995 SLAB_ATTR(cpu_partial
);
4997 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5001 return sprintf(buf
, "%pS\n", s
->ctor
);
5005 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5007 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5009 SLAB_ATTR_RO(aliases
);
5011 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5013 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5015 SLAB_ATTR_RO(partial
);
5017 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5019 return show_slab_objects(s
, buf
, SO_CPU
);
5021 SLAB_ATTR_RO(cpu_slabs
);
5023 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5025 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5027 SLAB_ATTR_RO(objects
);
5029 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5031 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5033 SLAB_ATTR_RO(objects_partial
);
5035 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5042 for_each_online_cpu(cpu
) {
5045 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5048 pages
+= page
->pages
;
5049 objects
+= page
->pobjects
;
5053 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5056 for_each_online_cpu(cpu
) {
5059 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5061 if (page
&& len
< PAGE_SIZE
- 20)
5062 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5063 page
->pobjects
, page
->pages
);
5066 return len
+ sprintf(buf
+ len
, "\n");
5068 SLAB_ATTR_RO(slabs_cpu_partial
);
5070 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5072 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5075 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5076 const char *buf
, size_t length
)
5078 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5080 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5083 SLAB_ATTR(reclaim_account
);
5085 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5087 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5089 SLAB_ATTR_RO(hwcache_align
);
5091 #ifdef CONFIG_ZONE_DMA
5092 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5094 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5096 SLAB_ATTR_RO(cache_dma
);
5099 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5101 return sprintf(buf
, "%u\n", s
->usersize
);
5103 SLAB_ATTR_RO(usersize
);
5105 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5107 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5109 SLAB_ATTR_RO(destroy_by_rcu
);
5111 #ifdef CONFIG_SLUB_DEBUG
5112 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5114 return show_slab_objects(s
, buf
, SO_ALL
);
5116 SLAB_ATTR_RO(slabs
);
5118 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5120 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5122 SLAB_ATTR_RO(total_objects
);
5124 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5126 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5129 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5130 const char *buf
, size_t length
)
5132 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5133 if (buf
[0] == '1') {
5134 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5135 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5139 SLAB_ATTR(sanity_checks
);
5141 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5143 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5146 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5150 * Tracing a merged cache is going to give confusing results
5151 * as well as cause other issues like converting a mergeable
5152 * cache into an umergeable one.
5154 if (s
->refcount
> 1)
5157 s
->flags
&= ~SLAB_TRACE
;
5158 if (buf
[0] == '1') {
5159 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5160 s
->flags
|= SLAB_TRACE
;
5166 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5168 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5171 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5172 const char *buf
, size_t length
)
5174 if (any_slab_objects(s
))
5177 s
->flags
&= ~SLAB_RED_ZONE
;
5178 if (buf
[0] == '1') {
5179 s
->flags
|= SLAB_RED_ZONE
;
5181 calculate_sizes(s
, -1);
5184 SLAB_ATTR(red_zone
);
5186 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5188 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5191 static ssize_t
poison_store(struct kmem_cache
*s
,
5192 const char *buf
, size_t length
)
5194 if (any_slab_objects(s
))
5197 s
->flags
&= ~SLAB_POISON
;
5198 if (buf
[0] == '1') {
5199 s
->flags
|= SLAB_POISON
;
5201 calculate_sizes(s
, -1);
5206 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5208 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5211 static ssize_t
store_user_store(struct kmem_cache
*s
,
5212 const char *buf
, size_t length
)
5214 if (any_slab_objects(s
))
5217 s
->flags
&= ~SLAB_STORE_USER
;
5218 if (buf
[0] == '1') {
5219 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5220 s
->flags
|= SLAB_STORE_USER
;
5222 calculate_sizes(s
, -1);
5225 SLAB_ATTR(store_user
);
5227 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5232 static ssize_t
validate_store(struct kmem_cache
*s
,
5233 const char *buf
, size_t length
)
5237 if (buf
[0] == '1') {
5238 ret
= validate_slab_cache(s
);
5244 SLAB_ATTR(validate
);
5246 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5248 if (!(s
->flags
& SLAB_STORE_USER
))
5250 return list_locations(s
, buf
, TRACK_ALLOC
);
5252 SLAB_ATTR_RO(alloc_calls
);
5254 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5256 if (!(s
->flags
& SLAB_STORE_USER
))
5258 return list_locations(s
, buf
, TRACK_FREE
);
5260 SLAB_ATTR_RO(free_calls
);
5261 #endif /* CONFIG_SLUB_DEBUG */
5263 #ifdef CONFIG_FAILSLAB
5264 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5266 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5269 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5272 if (s
->refcount
> 1)
5275 s
->flags
&= ~SLAB_FAILSLAB
;
5277 s
->flags
|= SLAB_FAILSLAB
;
5280 SLAB_ATTR(failslab
);
5283 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5288 static ssize_t
shrink_store(struct kmem_cache
*s
,
5289 const char *buf
, size_t length
)
5292 kmem_cache_shrink(s
);
5300 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5302 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5305 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5306 const char *buf
, size_t length
)
5311 err
= kstrtouint(buf
, 10, &ratio
);
5317 s
->remote_node_defrag_ratio
= ratio
* 10;
5321 SLAB_ATTR(remote_node_defrag_ratio
);
5324 #ifdef CONFIG_SLUB_STATS
5325 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5327 unsigned long sum
= 0;
5330 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5335 for_each_online_cpu(cpu
) {
5336 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5342 len
= sprintf(buf
, "%lu", sum
);
5345 for_each_online_cpu(cpu
) {
5346 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5347 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5351 return len
+ sprintf(buf
+ len
, "\n");
5354 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5358 for_each_online_cpu(cpu
)
5359 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5362 #define STAT_ATTR(si, text) \
5363 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5365 return show_stat(s, buf, si); \
5367 static ssize_t text##_store(struct kmem_cache *s, \
5368 const char *buf, size_t length) \
5370 if (buf[0] != '0') \
5372 clear_stat(s, si); \
5377 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5378 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5379 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5380 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5381 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5382 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5383 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5384 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5385 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5386 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5387 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5388 STAT_ATTR(FREE_SLAB
, free_slab
);
5389 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5390 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5391 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5392 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5393 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5394 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5395 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5396 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5397 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5398 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5399 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5400 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5401 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5402 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5405 static struct attribute
*slab_attrs
[] = {
5406 &slab_size_attr
.attr
,
5407 &object_size_attr
.attr
,
5408 &objs_per_slab_attr
.attr
,
5410 &min_partial_attr
.attr
,
5411 &cpu_partial_attr
.attr
,
5413 &objects_partial_attr
.attr
,
5415 &cpu_slabs_attr
.attr
,
5419 &hwcache_align_attr
.attr
,
5420 &reclaim_account_attr
.attr
,
5421 &destroy_by_rcu_attr
.attr
,
5423 &slabs_cpu_partial_attr
.attr
,
5424 #ifdef CONFIG_SLUB_DEBUG
5425 &total_objects_attr
.attr
,
5427 &sanity_checks_attr
.attr
,
5429 &red_zone_attr
.attr
,
5431 &store_user_attr
.attr
,
5432 &validate_attr
.attr
,
5433 &alloc_calls_attr
.attr
,
5434 &free_calls_attr
.attr
,
5436 #ifdef CONFIG_ZONE_DMA
5437 &cache_dma_attr
.attr
,
5440 &remote_node_defrag_ratio_attr
.attr
,
5442 #ifdef CONFIG_SLUB_STATS
5443 &alloc_fastpath_attr
.attr
,
5444 &alloc_slowpath_attr
.attr
,
5445 &free_fastpath_attr
.attr
,
5446 &free_slowpath_attr
.attr
,
5447 &free_frozen_attr
.attr
,
5448 &free_add_partial_attr
.attr
,
5449 &free_remove_partial_attr
.attr
,
5450 &alloc_from_partial_attr
.attr
,
5451 &alloc_slab_attr
.attr
,
5452 &alloc_refill_attr
.attr
,
5453 &alloc_node_mismatch_attr
.attr
,
5454 &free_slab_attr
.attr
,
5455 &cpuslab_flush_attr
.attr
,
5456 &deactivate_full_attr
.attr
,
5457 &deactivate_empty_attr
.attr
,
5458 &deactivate_to_head_attr
.attr
,
5459 &deactivate_to_tail_attr
.attr
,
5460 &deactivate_remote_frees_attr
.attr
,
5461 &deactivate_bypass_attr
.attr
,
5462 &order_fallback_attr
.attr
,
5463 &cmpxchg_double_fail_attr
.attr
,
5464 &cmpxchg_double_cpu_fail_attr
.attr
,
5465 &cpu_partial_alloc_attr
.attr
,
5466 &cpu_partial_free_attr
.attr
,
5467 &cpu_partial_node_attr
.attr
,
5468 &cpu_partial_drain_attr
.attr
,
5470 #ifdef CONFIG_FAILSLAB
5471 &failslab_attr
.attr
,
5473 &usersize_attr
.attr
,
5478 static const struct attribute_group slab_attr_group
= {
5479 .attrs
= slab_attrs
,
5482 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5483 struct attribute
*attr
,
5486 struct slab_attribute
*attribute
;
5487 struct kmem_cache
*s
;
5490 attribute
= to_slab_attr(attr
);
5493 if (!attribute
->show
)
5496 err
= attribute
->show(s
, buf
);
5501 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5502 struct attribute
*attr
,
5503 const char *buf
, size_t len
)
5505 struct slab_attribute
*attribute
;
5506 struct kmem_cache
*s
;
5509 attribute
= to_slab_attr(attr
);
5512 if (!attribute
->store
)
5515 err
= attribute
->store(s
, buf
, len
);
5517 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5518 struct kmem_cache
*c
;
5520 mutex_lock(&slab_mutex
);
5521 if (s
->max_attr_size
< len
)
5522 s
->max_attr_size
= len
;
5525 * This is a best effort propagation, so this function's return
5526 * value will be determined by the parent cache only. This is
5527 * basically because not all attributes will have a well
5528 * defined semantics for rollbacks - most of the actions will
5529 * have permanent effects.
5531 * Returning the error value of any of the children that fail
5532 * is not 100 % defined, in the sense that users seeing the
5533 * error code won't be able to know anything about the state of
5536 * Only returning the error code for the parent cache at least
5537 * has well defined semantics. The cache being written to
5538 * directly either failed or succeeded, in which case we loop
5539 * through the descendants with best-effort propagation.
5541 for_each_memcg_cache(c
, s
)
5542 attribute
->store(c
, buf
, len
);
5543 mutex_unlock(&slab_mutex
);
5549 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5553 char *buffer
= NULL
;
5554 struct kmem_cache
*root_cache
;
5556 if (is_root_cache(s
))
5559 root_cache
= s
->memcg_params
.root_cache
;
5562 * This mean this cache had no attribute written. Therefore, no point
5563 * in copying default values around
5565 if (!root_cache
->max_attr_size
)
5568 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5571 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5574 if (!attr
|| !attr
->store
|| !attr
->show
)
5578 * It is really bad that we have to allocate here, so we will
5579 * do it only as a fallback. If we actually allocate, though,
5580 * we can just use the allocated buffer until the end.
5582 * Most of the slub attributes will tend to be very small in
5583 * size, but sysfs allows buffers up to a page, so they can
5584 * theoretically happen.
5588 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5591 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5592 if (WARN_ON(!buffer
))
5597 len
= attr
->show(root_cache
, buf
);
5599 attr
->store(s
, buf
, len
);
5603 free_page((unsigned long)buffer
);
5607 static void kmem_cache_release(struct kobject
*k
)
5609 slab_kmem_cache_release(to_slab(k
));
5612 static const struct sysfs_ops slab_sysfs_ops
= {
5613 .show
= slab_attr_show
,
5614 .store
= slab_attr_store
,
5617 static struct kobj_type slab_ktype
= {
5618 .sysfs_ops
= &slab_sysfs_ops
,
5619 .release
= kmem_cache_release
,
5622 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5624 struct kobj_type
*ktype
= get_ktype(kobj
);
5626 if (ktype
== &slab_ktype
)
5631 static const struct kset_uevent_ops slab_uevent_ops
= {
5632 .filter
= uevent_filter
,
5635 static struct kset
*slab_kset
;
5637 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5640 if (!is_root_cache(s
))
5641 return s
->memcg_params
.root_cache
->memcg_kset
;
5646 #define ID_STR_LENGTH 64
5648 /* Create a unique string id for a slab cache:
5650 * Format :[flags-]size
5652 static char *create_unique_id(struct kmem_cache
*s
)
5654 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5661 * First flags affecting slabcache operations. We will only
5662 * get here for aliasable slabs so we do not need to support
5663 * too many flags. The flags here must cover all flags that
5664 * are matched during merging to guarantee that the id is
5667 if (s
->flags
& SLAB_CACHE_DMA
)
5669 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5671 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5673 if (s
->flags
& SLAB_ACCOUNT
)
5677 p
+= sprintf(p
, "%07u", s
->size
);
5679 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5683 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5685 struct kmem_cache
*s
=
5686 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5688 if (!s
->kobj
.state_in_sysfs
)
5690 * For a memcg cache, this may be called during
5691 * deactivation and again on shutdown. Remove only once.
5692 * A cache is never shut down before deactivation is
5693 * complete, so no need to worry about synchronization.
5698 kset_unregister(s
->memcg_kset
);
5700 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5702 kobject_put(&s
->kobj
);
5705 static int sysfs_slab_add(struct kmem_cache
*s
)
5709 struct kset
*kset
= cache_kset(s
);
5710 int unmergeable
= slab_unmergeable(s
);
5712 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5715 kobject_init(&s
->kobj
, &slab_ktype
);
5719 if (!unmergeable
&& disable_higher_order_debug
&&
5720 (slub_debug
& DEBUG_METADATA_FLAGS
))
5725 * Slabcache can never be merged so we can use the name proper.
5726 * This is typically the case for debug situations. In that
5727 * case we can catch duplicate names easily.
5729 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5733 * Create a unique name for the slab as a target
5736 name
= create_unique_id(s
);
5739 s
->kobj
.kset
= kset
;
5740 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5744 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5749 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5750 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5751 if (!s
->memcg_kset
) {
5758 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5760 /* Setup first alias */
5761 sysfs_slab_alias(s
, s
->name
);
5768 kobject_del(&s
->kobj
);
5772 static void sysfs_slab_remove(struct kmem_cache
*s
)
5774 if (slab_state
< FULL
)
5776 * Sysfs has not been setup yet so no need to remove the
5781 kobject_get(&s
->kobj
);
5782 schedule_work(&s
->kobj_remove_work
);
5785 void sysfs_slab_unlink(struct kmem_cache
*s
)
5787 if (slab_state
>= FULL
)
5788 kobject_del(&s
->kobj
);
5791 void sysfs_slab_release(struct kmem_cache
*s
)
5793 if (slab_state
>= FULL
)
5794 kobject_put(&s
->kobj
);
5798 * Need to buffer aliases during bootup until sysfs becomes
5799 * available lest we lose that information.
5801 struct saved_alias
{
5802 struct kmem_cache
*s
;
5804 struct saved_alias
*next
;
5807 static struct saved_alias
*alias_list
;
5809 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5811 struct saved_alias
*al
;
5813 if (slab_state
== FULL
) {
5815 * If we have a leftover link then remove it.
5817 sysfs_remove_link(&slab_kset
->kobj
, name
);
5818 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5821 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5827 al
->next
= alias_list
;
5832 static int __init
slab_sysfs_init(void)
5834 struct kmem_cache
*s
;
5837 mutex_lock(&slab_mutex
);
5839 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5841 mutex_unlock(&slab_mutex
);
5842 pr_err("Cannot register slab subsystem.\n");
5848 list_for_each_entry(s
, &slab_caches
, list
) {
5849 err
= sysfs_slab_add(s
);
5851 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5855 while (alias_list
) {
5856 struct saved_alias
*al
= alias_list
;
5858 alias_list
= alias_list
->next
;
5859 err
= sysfs_slab_alias(al
->s
, al
->name
);
5861 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5866 mutex_unlock(&slab_mutex
);
5871 __initcall(slab_sysfs_init
);
5872 #endif /* CONFIG_SYSFS */
5875 * The /proc/slabinfo ABI
5877 #ifdef CONFIG_SLUB_DEBUG
5878 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5880 unsigned long nr_slabs
= 0;
5881 unsigned long nr_objs
= 0;
5882 unsigned long nr_free
= 0;
5884 struct kmem_cache_node
*n
;
5886 for_each_kmem_cache_node(s
, node
, n
) {
5887 nr_slabs
+= node_nr_slabs(n
);
5888 nr_objs
+= node_nr_objs(n
);
5889 nr_free
+= count_partial(n
, count_free
);
5892 sinfo
->active_objs
= nr_objs
- nr_free
;
5893 sinfo
->num_objs
= nr_objs
;
5894 sinfo
->active_slabs
= nr_slabs
;
5895 sinfo
->num_slabs
= nr_slabs
;
5896 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5897 sinfo
->cache_order
= oo_order(s
->oo
);
5900 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5904 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5905 size_t count
, loff_t
*ppos
)
5909 #endif /* CONFIG_SLUB_DEBUG */