1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
33 * DOC: memblock overview
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmap`` - describes the actual physical memory regardless of
48 * the possible restrictions; the ``physmap`` type is only available
49 * on some architectures.
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The memory types are nicely wrapped with
56 * :c:type:`struct memblock`. This structure is statically initialzed
57 * at build time. The region arrays for the "memory" and "reserved"
58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
60 * The memblock_allow_resize() enables automatic resizing of the region
61 * arrays during addition of new regions. This feature should be used
62 * with care so that memory allocated for the region array will not
63 * overlap with areas that should be reserved, for example initrd.
65 * The early architecture setup should tell memblock what the physical
66 * memory layout is by using memblock_add() or memblock_add_node()
67 * functions. The first function does not assign the region to a NUMA
68 * node and it is appropriate for UMA systems. Yet, it is possible to
69 * use it on NUMA systems as well and assign the region to a NUMA node
70 * later in the setup process using memblock_set_node(). The
71 * memblock_add_node() performs such an assignment directly.
73 * Once memblock is setup the memory can be allocated using one of the
76 * * memblock_phys_alloc*() - these functions return the **physical**
77 * address of the allocated memory
78 * * memblock_alloc*() - these functions return the **virtual** address
79 * of the allocated memory.
81 * Note, that both API variants use implict assumptions about allowed
82 * memory ranges and the fallback methods. Consult the documentation
83 * of memblock_alloc_internal() and memblock_alloc_range_nid()
84 * functions for more elaborate description.
86 * As the system boot progresses, the architecture specific mem_init()
87 * function frees all the memory to the buddy page allocator.
89 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
90 * memblock data structures will be discarded after the system
91 * initialization completes.
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 struct pglist_data __refdata contig_page_data
;
96 EXPORT_SYMBOL(contig_page_data
);
99 unsigned long max_low_pfn
;
100 unsigned long min_low_pfn
;
101 unsigned long max_pfn
;
102 unsigned long long max_possible_pfn
;
104 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
105 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_RESERVED_REGIONS
] __initdata_memblock
;
106 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
107 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
110 struct memblock memblock __initdata_memblock
= {
111 .memory
.regions
= memblock_memory_init_regions
,
112 .memory
.cnt
= 1, /* empty dummy entry */
113 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
114 .memory
.name
= "memory",
116 .reserved
.regions
= memblock_reserved_init_regions
,
117 .reserved
.cnt
= 1, /* empty dummy entry */
118 .reserved
.max
= INIT_MEMBLOCK_RESERVED_REGIONS
,
119 .reserved
.name
= "reserved",
121 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
122 .physmem
.regions
= memblock_physmem_init_regions
,
123 .physmem
.cnt
= 1, /* empty dummy entry */
124 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
125 .physmem
.name
= "physmem",
129 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
132 int memblock_debug __initdata_memblock
;
133 static bool system_has_some_mirror __initdata_memblock
= false;
134 static int memblock_can_resize __initdata_memblock
;
135 static int memblock_memory_in_slab __initdata_memblock
= 0;
136 static int memblock_reserved_in_slab __initdata_memblock
= 0;
138 static enum memblock_flags __init_memblock
choose_memblock_flags(void)
140 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
143 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
144 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
146 return *size
= min(*size
, PHYS_ADDR_MAX
- base
);
150 * Address comparison utilities
152 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
153 phys_addr_t base2
, phys_addr_t size2
)
155 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
158 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
159 phys_addr_t base
, phys_addr_t size
)
163 for (i
= 0; i
< type
->cnt
; i
++)
164 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
165 type
->regions
[i
].size
))
167 return i
< type
->cnt
;
171 * __memblock_find_range_bottom_up - find free area utility in bottom-up
172 * @start: start of candidate range
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
174 * %MEMBLOCK_ALLOC_ACCESSIBLE
175 * @size: size of free area to find
176 * @align: alignment of free area to find
177 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
178 * @flags: pick from blocks based on memory attributes
180 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
183 * Found address on success, 0 on failure.
185 static phys_addr_t __init_memblock
186 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
187 phys_addr_t size
, phys_addr_t align
, int nid
,
188 enum memblock_flags flags
)
190 phys_addr_t this_start
, this_end
, cand
;
193 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
194 this_start
= clamp(this_start
, start
, end
);
195 this_end
= clamp(this_end
, start
, end
);
197 cand
= round_up(this_start
, align
);
198 if (cand
< this_end
&& this_end
- cand
>= size
)
206 * __memblock_find_range_top_down - find free area utility, in top-down
207 * @start: start of candidate range
208 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
209 * %MEMBLOCK_ALLOC_ACCESSIBLE
210 * @size: size of free area to find
211 * @align: alignment of free area to find
212 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
213 * @flags: pick from blocks based on memory attributes
215 * Utility called from memblock_find_in_range_node(), find free area top-down.
218 * Found address on success, 0 on failure.
220 static phys_addr_t __init_memblock
221 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
222 phys_addr_t size
, phys_addr_t align
, int nid
,
223 enum memblock_flags flags
)
225 phys_addr_t this_start
, this_end
, cand
;
228 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
230 this_start
= clamp(this_start
, start
, end
);
231 this_end
= clamp(this_end
, start
, end
);
236 cand
= round_down(this_end
- size
, align
);
237 if (cand
>= this_start
)
245 * memblock_find_in_range_node - find free area in given range and node
246 * @size: size of free area to find
247 * @align: alignment of free area to find
248 * @start: start of candidate range
249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
250 * %MEMBLOCK_ALLOC_ACCESSIBLE
251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
252 * @flags: pick from blocks based on memory attributes
254 * Find @size free area aligned to @align in the specified range and node.
256 * When allocation direction is bottom-up, the @start should be greater
257 * than the end of the kernel image. Otherwise, it will be trimmed. The
258 * reason is that we want the bottom-up allocation just near the kernel
259 * image so it is highly likely that the allocated memory and the kernel
260 * will reside in the same node.
262 * If bottom-up allocation failed, will try to allocate memory top-down.
265 * Found address on success, 0 on failure.
267 static phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
268 phys_addr_t align
, phys_addr_t start
,
269 phys_addr_t end
, int nid
,
270 enum memblock_flags flags
)
272 phys_addr_t kernel_end
, ret
;
275 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
||
276 end
== MEMBLOCK_ALLOC_KASAN
)
277 end
= memblock
.current_limit
;
279 /* avoid allocating the first page */
280 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
281 end
= max(start
, end
);
282 kernel_end
= __pa_symbol(_end
);
285 * try bottom-up allocation only when bottom-up mode
286 * is set and @end is above the kernel image.
288 if (memblock_bottom_up() && end
> kernel_end
) {
289 phys_addr_t bottom_up_start
;
291 /* make sure we will allocate above the kernel */
292 bottom_up_start
= max(start
, kernel_end
);
294 /* ok, try bottom-up allocation first */
295 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
296 size
, align
, nid
, flags
);
301 * we always limit bottom-up allocation above the kernel,
302 * but top-down allocation doesn't have the limit, so
303 * retrying top-down allocation may succeed when bottom-up
306 * bottom-up allocation is expected to be fail very rarely,
307 * so we use WARN_ONCE() here to see the stack trace if
310 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
),
311 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
314 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
319 * memblock_find_in_range - find free area in given range
320 * @start: start of candidate range
321 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
322 * %MEMBLOCK_ALLOC_ACCESSIBLE
323 * @size: size of free area to find
324 * @align: alignment of free area to find
326 * Find @size free area aligned to @align in the specified range.
329 * Found address on success, 0 on failure.
331 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
332 phys_addr_t end
, phys_addr_t size
,
336 enum memblock_flags flags
= choose_memblock_flags();
339 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
340 NUMA_NO_NODE
, flags
);
342 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
343 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
345 flags
&= ~MEMBLOCK_MIRROR
;
352 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
354 type
->total_size
-= type
->regions
[r
].size
;
355 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
356 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
359 /* Special case for empty arrays */
360 if (type
->cnt
== 0) {
361 WARN_ON(type
->total_size
!= 0);
363 type
->regions
[0].base
= 0;
364 type
->regions
[0].size
= 0;
365 type
->regions
[0].flags
= 0;
366 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
370 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
372 * memblock_discard - discard memory and reserved arrays if they were allocated
374 void __init
memblock_discard(void)
376 phys_addr_t addr
, size
;
378 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
379 addr
= __pa(memblock
.reserved
.regions
);
380 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
381 memblock
.reserved
.max
);
382 __memblock_free_late(addr
, size
);
385 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
386 addr
= __pa(memblock
.memory
.regions
);
387 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
388 memblock
.memory
.max
);
389 __memblock_free_late(addr
, size
);
395 * memblock_double_array - double the size of the memblock regions array
396 * @type: memblock type of the regions array being doubled
397 * @new_area_start: starting address of memory range to avoid overlap with
398 * @new_area_size: size of memory range to avoid overlap with
400 * Double the size of the @type regions array. If memblock is being used to
401 * allocate memory for a new reserved regions array and there is a previously
402 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
403 * waiting to be reserved, ensure the memory used by the new array does
407 * 0 on success, -1 on failure.
409 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
410 phys_addr_t new_area_start
,
411 phys_addr_t new_area_size
)
413 struct memblock_region
*new_array
, *old_array
;
414 phys_addr_t old_alloc_size
, new_alloc_size
;
415 phys_addr_t old_size
, new_size
, addr
, new_end
;
416 int use_slab
= slab_is_available();
419 /* We don't allow resizing until we know about the reserved regions
420 * of memory that aren't suitable for allocation
422 if (!memblock_can_resize
)
425 /* Calculate new doubled size */
426 old_size
= type
->max
* sizeof(struct memblock_region
);
427 new_size
= old_size
<< 1;
429 * We need to allocated new one align to PAGE_SIZE,
430 * so we can free them completely later.
432 old_alloc_size
= PAGE_ALIGN(old_size
);
433 new_alloc_size
= PAGE_ALIGN(new_size
);
435 /* Retrieve the slab flag */
436 if (type
== &memblock
.memory
)
437 in_slab
= &memblock_memory_in_slab
;
439 in_slab
= &memblock_reserved_in_slab
;
441 /* Try to find some space for it */
443 new_array
= kmalloc(new_size
, GFP_KERNEL
);
444 addr
= new_array
? __pa(new_array
) : 0;
446 /* only exclude range when trying to double reserved.regions */
447 if (type
!= &memblock
.reserved
)
448 new_area_start
= new_area_size
= 0;
450 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
451 memblock
.current_limit
,
452 new_alloc_size
, PAGE_SIZE
);
453 if (!addr
&& new_area_size
)
454 addr
= memblock_find_in_range(0,
455 min(new_area_start
, memblock
.current_limit
),
456 new_alloc_size
, PAGE_SIZE
);
458 new_array
= addr
? __va(addr
) : NULL
;
461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
462 type
->name
, type
->max
, type
->max
* 2);
466 new_end
= addr
+ new_size
- 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type
->name
, type
->max
* 2, &addr
, &new_end
);
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
475 memcpy(new_array
, type
->regions
, old_size
);
476 memset(new_array
+ type
->max
, 0, old_size
);
477 old_array
= type
->regions
;
478 type
->regions
= new_array
;
481 /* Free old array. We needn't free it if the array is the static one */
484 else if (old_array
!= memblock_memory_init_regions
&&
485 old_array
!= memblock_reserved_init_regions
)
486 memblock_free(__pa(old_array
), old_alloc_size
);
489 * Reserve the new array if that comes from the memblock. Otherwise, we
493 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
495 /* Update slab flag */
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
505 * Scan @type and merge neighboring compatible regions.
507 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
511 /* cnt never goes below 1 */
512 while (i
< type
->cnt
- 1) {
513 struct memblock_region
*this = &type
->regions
[i
];
514 struct memblock_region
*next
= &type
->regions
[i
+ 1];
516 if (this->base
+ this->size
!= next
->base
||
517 memblock_get_region_node(this) !=
518 memblock_get_region_node(next
) ||
519 this->flags
!= next
->flags
) {
520 BUG_ON(this->base
+ this->size
> next
->base
);
525 this->size
+= next
->size
;
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
533 * memblock_insert_region - insert new memblock region
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
539 * @flags: flags of the new region
541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
542 * @type must already have extra room to accommodate the new region.
544 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
545 int idx
, phys_addr_t base
,
548 enum memblock_flags flags
)
550 struct memblock_region
*rgn
= &type
->regions
[idx
];
552 BUG_ON(type
->cnt
>= type
->max
);
553 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
557 memblock_set_region_node(rgn
, nid
);
559 type
->total_size
+= size
;
563 * memblock_add_range - add new memblock region
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
567 * @nid: nid of the new region
568 * @flags: flags of the new region
570 * Add new memblock region [@base, @base + @size) into @type. The new region
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
576 * 0 on success, -errno on failure.
578 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
579 phys_addr_t base
, phys_addr_t size
,
580 int nid
, enum memblock_flags flags
)
583 phys_addr_t obase
= base
;
584 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
586 struct memblock_region
*rgn
;
591 /* special case for empty array */
592 if (type
->regions
[0].size
== 0) {
593 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
594 type
->regions
[0].base
= base
;
595 type
->regions
[0].size
= size
;
596 type
->regions
[0].flags
= flags
;
597 memblock_set_region_node(&type
->regions
[0], nid
);
598 type
->total_size
= size
;
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
605 * to accommodate the new area. The second actually inserts them.
610 for_each_memblock_type(idx
, type
, rgn
) {
611 phys_addr_t rbase
= rgn
->base
;
612 phys_addr_t rend
= rbase
+ rgn
->size
;
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid
!= memblock_get_region_node(rgn
));
626 WARN_ON(flags
!= rgn
->flags
);
629 memblock_insert_region(type
, idx
++, base
,
633 /* area below @rend is dealt with, forget about it */
634 base
= min(rend
, end
);
637 /* insert the remaining portion */
641 memblock_insert_region(type
, idx
, base
, end
- base
,
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
653 while (type
->cnt
+ nr_new
> type
->max
)
654 if (memblock_double_array(type
, obase
, size
) < 0)
659 memblock_merge_regions(type
);
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
674 * 0 on success, -errno on failure.
676 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
679 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
691 * 0 on success, -errno on failure.
693 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
695 phys_addr_t end
= base
+ size
- 1;
697 memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
698 &base
, &end
, (void *)_RET_IP_
);
700 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
711 * Walk @type and ensure that regions don't cross the boundaries defined by
712 * [@base, @base + @size). Crossing regions are split at the boundaries,
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
717 * 0 on success, -errno on failure.
719 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
720 phys_addr_t base
, phys_addr_t size
,
721 int *start_rgn
, int *end_rgn
)
723 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
725 struct memblock_region
*rgn
;
727 *start_rgn
= *end_rgn
= 0;
732 /* we'll create at most two more regions */
733 while (type
->cnt
+ 2 > type
->max
)
734 if (memblock_double_array(type
, base
, size
) < 0)
737 for_each_memblock_type(idx
, type
, rgn
) {
738 phys_addr_t rbase
= rgn
->base
;
739 phys_addr_t rend
= rbase
+ rgn
->size
;
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
752 rgn
->size
-= base
- rbase
;
753 type
->total_size
-= base
- rbase
;
754 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
755 memblock_get_region_node(rgn
),
757 } else if (rend
> end
) {
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
763 rgn
->size
-= end
- rbase
;
764 type
->total_size
-= end
- rbase
;
765 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
766 memblock_get_region_node(rgn
),
769 /* @rgn is fully contained, record it */
779 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
780 phys_addr_t base
, phys_addr_t size
)
782 int start_rgn
, end_rgn
;
785 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
789 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
790 memblock_remove_region(type
, i
);
794 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
796 phys_addr_t end
= base
+ size
- 1;
798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 &base
, &end
, (void *)_RET_IP_
);
801 return memblock_remove_range(&memblock
.memory
, base
, size
);
805 * memblock_free - free boot memory block
806 * @base: phys starting address of the boot memory block
807 * @size: size of the boot memory block in bytes
809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
810 * The freeing memory will not be released to the buddy allocator.
812 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
814 phys_addr_t end
= base
+ size
- 1;
816 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n",
817 &base
, &end
, (void *)_RET_IP_
);
819 kmemleak_free_part_phys(base
, size
);
820 return memblock_remove_range(&memblock
.reserved
, base
, size
);
823 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
825 phys_addr_t end
= base
+ size
- 1;
827 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
828 &base
, &end
, (void *)_RET_IP_
);
830 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
834 * memblock_setclr_flag - set or clear flag for a memory region
835 * @base: base address of the region
836 * @size: size of the region
837 * @set: set or clear the flag
838 * @flag: the flag to udpate
840 * This function isolates region [@base, @base + @size), and sets/clears flag
842 * Return: 0 on success, -errno on failure.
844 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
845 phys_addr_t size
, int set
, int flag
)
847 struct memblock_type
*type
= &memblock
.memory
;
848 int i
, ret
, start_rgn
, end_rgn
;
850 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
854 for (i
= start_rgn
; i
< end_rgn
; i
++) {
855 struct memblock_region
*r
= &type
->regions
[i
];
863 memblock_merge_regions(type
);
868 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
869 * @base: the base phys addr of the region
870 * @size: the size of the region
872 * Return: 0 on success, -errno on failure.
874 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
876 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
880 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
881 * @base: the base phys addr of the region
882 * @size: the size of the region
884 * Return: 0 on success, -errno on failure.
886 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
888 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
892 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
893 * @base: the base phys addr of the region
894 * @size: the size of the region
896 * Return: 0 on success, -errno on failure.
898 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
900 system_has_some_mirror
= true;
902 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
906 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
907 * @base: the base phys addr of the region
908 * @size: the size of the region
910 * Return: 0 on success, -errno on failure.
912 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
914 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
918 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
919 * @base: the base phys addr of the region
920 * @size: the size of the region
922 * Return: 0 on success, -errno on failure.
924 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
926 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
930 * __next_reserved_mem_region - next function for for_each_reserved_region()
931 * @idx: pointer to u64 loop variable
932 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
933 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
935 * Iterate over all reserved memory regions.
937 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
938 phys_addr_t
*out_start
,
939 phys_addr_t
*out_end
)
941 struct memblock_type
*type
= &memblock
.reserved
;
943 if (*idx
< type
->cnt
) {
944 struct memblock_region
*r
= &type
->regions
[*idx
];
945 phys_addr_t base
= r
->base
;
946 phys_addr_t size
= r
->size
;
951 *out_end
= base
+ size
- 1;
957 /* signal end of iteration */
961 static bool should_skip_region(struct memblock_region
*m
, int nid
, int flags
)
963 int m_nid
= memblock_get_region_node(m
);
965 /* only memory regions are associated with nodes, check it */
966 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
969 /* skip hotpluggable memory regions if needed */
970 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
973 /* if we want mirror memory skip non-mirror memory regions */
974 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
977 /* skip nomap memory unless we were asked for it explicitly */
978 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
985 * __next_mem_range - next function for for_each_free_mem_range() etc.
986 * @idx: pointer to u64 loop variable
987 * @nid: node selector, %NUMA_NO_NODE for all nodes
988 * @flags: pick from blocks based on memory attributes
989 * @type_a: pointer to memblock_type from where the range is taken
990 * @type_b: pointer to memblock_type which excludes memory from being taken
991 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
992 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
993 * @out_nid: ptr to int for nid of the range, can be %NULL
995 * Find the first area from *@idx which matches @nid, fill the out
996 * parameters, and update *@idx for the next iteration. The lower 32bit of
997 * *@idx contains index into type_a and the upper 32bit indexes the
998 * areas before each region in type_b. For example, if type_b regions
999 * look like the following,
1001 * 0:[0-16), 1:[32-48), 2:[128-130)
1003 * The upper 32bit indexes the following regions.
1005 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1007 * As both region arrays are sorted, the function advances the two indices
1008 * in lockstep and returns each intersection.
1010 void __init_memblock
__next_mem_range(u64
*idx
, int nid
,
1011 enum memblock_flags flags
,
1012 struct memblock_type
*type_a
,
1013 struct memblock_type
*type_b
,
1014 phys_addr_t
*out_start
,
1015 phys_addr_t
*out_end
, int *out_nid
)
1017 int idx_a
= *idx
& 0xffffffff;
1018 int idx_b
= *idx
>> 32;
1020 if (WARN_ONCE(nid
== MAX_NUMNODES
,
1021 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1024 for (; idx_a
< type_a
->cnt
; idx_a
++) {
1025 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1027 phys_addr_t m_start
= m
->base
;
1028 phys_addr_t m_end
= m
->base
+ m
->size
;
1029 int m_nid
= memblock_get_region_node(m
);
1031 if (should_skip_region(m
, nid
, flags
))
1036 *out_start
= m_start
;
1042 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1046 /* scan areas before each reservation */
1047 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
1048 struct memblock_region
*r
;
1049 phys_addr_t r_start
;
1052 r
= &type_b
->regions
[idx_b
];
1053 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1054 r_end
= idx_b
< type_b
->cnt
?
1055 r
->base
: PHYS_ADDR_MAX
;
1058 * if idx_b advanced past idx_a,
1059 * break out to advance idx_a
1061 if (r_start
>= m_end
)
1063 /* if the two regions intersect, we're done */
1064 if (m_start
< r_end
) {
1067 max(m_start
, r_start
);
1069 *out_end
= min(m_end
, r_end
);
1073 * The region which ends first is
1074 * advanced for the next iteration.
1080 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1086 /* signal end of iteration */
1091 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1093 * @idx: pointer to u64 loop variable
1094 * @nid: node selector, %NUMA_NO_NODE for all nodes
1095 * @flags: pick from blocks based on memory attributes
1096 * @type_a: pointer to memblock_type from where the range is taken
1097 * @type_b: pointer to memblock_type which excludes memory from being taken
1098 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1099 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1100 * @out_nid: ptr to int for nid of the range, can be %NULL
1102 * Finds the next range from type_a which is not marked as unsuitable
1105 * Reverse of __next_mem_range().
1107 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
,
1108 enum memblock_flags flags
,
1109 struct memblock_type
*type_a
,
1110 struct memblock_type
*type_b
,
1111 phys_addr_t
*out_start
,
1112 phys_addr_t
*out_end
, int *out_nid
)
1114 int idx_a
= *idx
& 0xffffffff;
1115 int idx_b
= *idx
>> 32;
1117 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1120 if (*idx
== (u64
)ULLONG_MAX
) {
1121 idx_a
= type_a
->cnt
- 1;
1123 idx_b
= type_b
->cnt
;
1128 for (; idx_a
>= 0; idx_a
--) {
1129 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1131 phys_addr_t m_start
= m
->base
;
1132 phys_addr_t m_end
= m
->base
+ m
->size
;
1133 int m_nid
= memblock_get_region_node(m
);
1135 if (should_skip_region(m
, nid
, flags
))
1140 *out_start
= m_start
;
1146 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1150 /* scan areas before each reservation */
1151 for (; idx_b
>= 0; idx_b
--) {
1152 struct memblock_region
*r
;
1153 phys_addr_t r_start
;
1156 r
= &type_b
->regions
[idx_b
];
1157 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1158 r_end
= idx_b
< type_b
->cnt
?
1159 r
->base
: PHYS_ADDR_MAX
;
1161 * if idx_b advanced past idx_a,
1162 * break out to advance idx_a
1165 if (r_end
<= m_start
)
1167 /* if the two regions intersect, we're done */
1168 if (m_end
> r_start
) {
1170 *out_start
= max(m_start
, r_start
);
1172 *out_end
= min(m_end
, r_end
);
1175 if (m_start
>= r_start
)
1179 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1184 /* signal end of iteration */
1188 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1190 * Common iterator interface used to define for_each_mem_pfn_range().
1192 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1193 unsigned long *out_start_pfn
,
1194 unsigned long *out_end_pfn
, int *out_nid
)
1196 struct memblock_type
*type
= &memblock
.memory
;
1197 struct memblock_region
*r
;
1199 while (++*idx
< type
->cnt
) {
1200 r
= &type
->regions
[*idx
];
1202 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1204 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1207 if (*idx
>= type
->cnt
) {
1213 *out_start_pfn
= PFN_UP(r
->base
);
1215 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1221 * memblock_set_node - set node ID on memblock regions
1222 * @base: base of area to set node ID for
1223 * @size: size of area to set node ID for
1224 * @type: memblock type to set node ID for
1225 * @nid: node ID to set
1227 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1228 * Regions which cross the area boundaries are split as necessary.
1231 * 0 on success, -errno on failure.
1233 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1234 struct memblock_type
*type
, int nid
)
1236 int start_rgn
, end_rgn
;
1239 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1243 for (i
= start_rgn
; i
< end_rgn
; i
++)
1244 memblock_set_region_node(&type
->regions
[i
], nid
);
1246 memblock_merge_regions(type
);
1249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1252 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1254 * @idx: pointer to u64 loop variable
1255 * @zone: zone in which all of the memory blocks reside
1256 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1257 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1259 * This function is meant to be a zone/pfn specific wrapper for the
1260 * for_each_mem_range type iterators. Specifically they are used in the
1261 * deferred memory init routines and as such we were duplicating much of
1262 * this logic throughout the code. So instead of having it in multiple
1263 * locations it seemed like it would make more sense to centralize this to
1264 * one new iterator that does everything they need.
1266 void __init_memblock
1267 __next_mem_pfn_range_in_zone(u64
*idx
, struct zone
*zone
,
1268 unsigned long *out_spfn
, unsigned long *out_epfn
)
1270 int zone_nid
= zone_to_nid(zone
);
1271 phys_addr_t spa
, epa
;
1274 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1275 &memblock
.memory
, &memblock
.reserved
,
1278 while (*idx
!= U64_MAX
) {
1279 unsigned long epfn
= PFN_DOWN(epa
);
1280 unsigned long spfn
= PFN_UP(spa
);
1283 * Verify the end is at least past the start of the zone and
1284 * that we have at least one PFN to initialize.
1286 if (zone
->zone_start_pfn
< epfn
&& spfn
< epfn
) {
1287 /* if we went too far just stop searching */
1288 if (zone_end_pfn(zone
) <= spfn
) {
1294 *out_spfn
= max(zone
->zone_start_pfn
, spfn
);
1296 *out_epfn
= min(zone_end_pfn(zone
), epfn
);
1301 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1302 &memblock
.memory
, &memblock
.reserved
,
1306 /* signal end of iteration */
1308 *out_spfn
= ULONG_MAX
;
1313 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1316 * memblock_alloc_range_nid - allocate boot memory block
1317 * @size: size of memory block to be allocated in bytes
1318 * @align: alignment of the region and block's size
1319 * @start: the lower bound of the memory region to allocate (phys address)
1320 * @end: the upper bound of the memory region to allocate (phys address)
1321 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1322 * @exact_nid: control the allocation fall back to other nodes
1324 * The allocation is performed from memory region limited by
1325 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1327 * If the specified node can not hold the requested memory and @exact_nid
1328 * is false, the allocation falls back to any node in the system.
1330 * For systems with memory mirroring, the allocation is attempted first
1331 * from the regions with mirroring enabled and then retried from any
1334 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1335 * allocated boot memory block, so that it is never reported as leaks.
1338 * Physical address of allocated memory block on success, %0 on failure.
1340 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1341 phys_addr_t align
, phys_addr_t start
,
1342 phys_addr_t end
, int nid
,
1345 enum memblock_flags flags
= choose_memblock_flags();
1348 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1352 /* Can't use WARNs this early in boot on powerpc */
1354 align
= SMP_CACHE_BYTES
;
1358 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1360 if (found
&& !memblock_reserve(found
, size
))
1363 if (nid
!= NUMA_NO_NODE
&& !exact_nid
) {
1364 found
= memblock_find_in_range_node(size
, align
, start
,
1367 if (found
&& !memblock_reserve(found
, size
))
1371 if (flags
& MEMBLOCK_MIRROR
) {
1372 flags
&= ~MEMBLOCK_MIRROR
;
1373 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1381 /* Skip kmemleak for kasan_init() due to high volume. */
1382 if (end
!= MEMBLOCK_ALLOC_KASAN
)
1384 * The min_count is set to 0 so that memblock allocated
1385 * blocks are never reported as leaks. This is because many
1386 * of these blocks are only referred via the physical
1387 * address which is not looked up by kmemleak.
1389 kmemleak_alloc_phys(found
, size
, 0, 0);
1395 * memblock_phys_alloc_range - allocate a memory block inside specified range
1396 * @size: size of memory block to be allocated in bytes
1397 * @align: alignment of the region and block's size
1398 * @start: the lower bound of the memory region to allocate (physical address)
1399 * @end: the upper bound of the memory region to allocate (physical address)
1401 * Allocate @size bytes in the between @start and @end.
1403 * Return: physical address of the allocated memory block on success,
1406 phys_addr_t __init
memblock_phys_alloc_range(phys_addr_t size
,
1411 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1416 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1417 * @size: size of memory block to be allocated in bytes
1418 * @align: alignment of the region and block's size
1419 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 * Allocates memory block from the specified NUMA node. If the node
1422 * has no available memory, attempts to allocated from any node in the
1425 * Return: physical address of the allocated memory block on success,
1428 phys_addr_t __init
memblock_phys_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1430 return memblock_alloc_range_nid(size
, align
, 0,
1431 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
, false);
1435 * memblock_alloc_internal - allocate boot memory block
1436 * @size: size of memory block to be allocated in bytes
1437 * @align: alignment of the region and block's size
1438 * @min_addr: the lower bound of the memory region to allocate (phys address)
1439 * @max_addr: the upper bound of the memory region to allocate (phys address)
1440 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1441 * @exact_nid: control the allocation fall back to other nodes
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
1452 * Virtual address of allocated memory block on success, NULL on failure.
1454 static void * __init
memblock_alloc_internal(
1455 phys_addr_t size
, phys_addr_t align
,
1456 phys_addr_t min_addr
, phys_addr_t max_addr
,
1457 int nid
, bool exact_nid
)
1462 * Detect any accidental use of these APIs after slab is ready, as at
1463 * this moment memblock may be deinitialized already and its
1464 * internal data may be destroyed (after execution of memblock_free_all)
1466 if (WARN_ON_ONCE(slab_is_available()))
1467 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1469 if (max_addr
> memblock
.current_limit
)
1470 max_addr
= memblock
.current_limit
;
1472 alloc
= memblock_alloc_range_nid(size
, align
, min_addr
, max_addr
, nid
,
1475 /* retry allocation without lower limit */
1476 if (!alloc
&& min_addr
)
1477 alloc
= memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
,
1483 return phys_to_virt(alloc
);
1487 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1488 * without zeroing memory
1489 * @size: size of memory block to be allocated in bytes
1490 * @align: alignment of the region and block's size
1491 * @min_addr: the lower bound of the memory region from where the allocation
1492 * is preferred (phys address)
1493 * @max_addr: the upper bound of the memory region from where the allocation
1494 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1495 * allocate only from memory limited by memblock.current_limit value
1496 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1498 * Public function, provides additional debug information (including caller
1499 * info), if enabled. Does not zero allocated memory.
1502 * Virtual address of allocated memory block on success, NULL on failure.
1504 void * __init
memblock_alloc_exact_nid_raw(
1505 phys_addr_t size
, phys_addr_t align
,
1506 phys_addr_t min_addr
, phys_addr_t max_addr
,
1511 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1512 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1513 &max_addr
, (void *)_RET_IP_
);
1515 ptr
= memblock_alloc_internal(size
, align
,
1516 min_addr
, max_addr
, nid
, true);
1517 if (ptr
&& size
> 0)
1518 page_init_poison(ptr
, size
);
1524 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1525 * memory and without panicking
1526 * @size: size of memory block to be allocated in bytes
1527 * @align: alignment of the region and block's size
1528 * @min_addr: the lower bound of the memory region from where the allocation
1529 * is preferred (phys address)
1530 * @max_addr: the upper bound of the memory region from where the allocation
1531 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1532 * allocate only from memory limited by memblock.current_limit value
1533 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 * Public function, provides additional debug information (including caller
1536 * info), if enabled. Does not zero allocated memory, does not panic if request
1537 * cannot be satisfied.
1540 * Virtual address of allocated memory block on success, NULL on failure.
1542 void * __init
memblock_alloc_try_nid_raw(
1543 phys_addr_t size
, phys_addr_t align
,
1544 phys_addr_t min_addr
, phys_addr_t max_addr
,
1549 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1550 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1551 &max_addr
, (void *)_RET_IP_
);
1553 ptr
= memblock_alloc_internal(size
, align
,
1554 min_addr
, max_addr
, nid
, false);
1555 if (ptr
&& size
> 0)
1556 page_init_poison(ptr
, size
);
1562 * memblock_alloc_try_nid - allocate boot memory block
1563 * @size: size of memory block to be allocated in bytes
1564 * @align: alignment of the region and block's size
1565 * @min_addr: the lower bound of the memory region from where the allocation
1566 * is preferred (phys address)
1567 * @max_addr: the upper bound of the memory region from where the allocation
1568 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1569 * allocate only from memory limited by memblock.current_limit value
1570 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1572 * Public function, provides additional debug information (including caller
1573 * info), if enabled. This function zeroes the allocated memory.
1576 * Virtual address of allocated memory block on success, NULL on failure.
1578 void * __init
memblock_alloc_try_nid(
1579 phys_addr_t size
, phys_addr_t align
,
1580 phys_addr_t min_addr
, phys_addr_t max_addr
,
1585 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1586 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1587 &max_addr
, (void *)_RET_IP_
);
1588 ptr
= memblock_alloc_internal(size
, align
,
1589 min_addr
, max_addr
, nid
, false);
1591 memset(ptr
, 0, size
);
1597 * __memblock_free_late - free pages directly to buddy allocator
1598 * @base: phys starting address of the boot memory block
1599 * @size: size of the boot memory block in bytes
1601 * This is only useful when the memblock allocator has already been torn
1602 * down, but we are still initializing the system. Pages are released directly
1603 * to the buddy allocator.
1605 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1607 phys_addr_t cursor
, end
;
1609 end
= base
+ size
- 1;
1610 memblock_dbg("%s: [%pa-%pa] %pS\n",
1611 __func__
, &base
, &end
, (void *)_RET_IP_
);
1612 kmemleak_free_part_phys(base
, size
);
1613 cursor
= PFN_UP(base
);
1614 end
= PFN_DOWN(base
+ size
);
1616 for (; cursor
< end
; cursor
++) {
1617 memblock_free_pages(pfn_to_page(cursor
), cursor
, 0);
1618 totalram_pages_inc();
1623 * Remaining API functions
1626 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1628 return memblock
.memory
.total_size
;
1631 phys_addr_t __init_memblock
memblock_reserved_size(void)
1633 return memblock
.reserved
.total_size
;
1636 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1638 unsigned long pages
= 0;
1639 struct memblock_region
*r
;
1640 unsigned long start_pfn
, end_pfn
;
1642 for_each_memblock(memory
, r
) {
1643 start_pfn
= memblock_region_memory_base_pfn(r
);
1644 end_pfn
= memblock_region_memory_end_pfn(r
);
1645 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1646 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1647 pages
+= end_pfn
- start_pfn
;
1650 return PFN_PHYS(pages
);
1653 /* lowest address */
1654 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1656 return memblock
.memory
.regions
[0].base
;
1659 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1661 int idx
= memblock
.memory
.cnt
- 1;
1663 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1666 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1668 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1669 struct memblock_region
*r
;
1672 * translate the memory @limit size into the max address within one of
1673 * the memory memblock regions, if the @limit exceeds the total size
1674 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1676 for_each_memblock(memory
, r
) {
1677 if (limit
<= r
->size
) {
1678 max_addr
= r
->base
+ limit
;
1687 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1689 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1694 max_addr
= __find_max_addr(limit
);
1696 /* @limit exceeds the total size of the memory, do nothing */
1697 if (max_addr
== PHYS_ADDR_MAX
)
1700 /* truncate both memory and reserved regions */
1701 memblock_remove_range(&memblock
.memory
, max_addr
,
1703 memblock_remove_range(&memblock
.reserved
, max_addr
,
1707 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1709 int start_rgn
, end_rgn
;
1715 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1716 &start_rgn
, &end_rgn
);
1720 /* remove all the MAP regions */
1721 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1722 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1723 memblock_remove_region(&memblock
.memory
, i
);
1725 for (i
= start_rgn
- 1; i
>= 0; i
--)
1726 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1727 memblock_remove_region(&memblock
.memory
, i
);
1729 /* truncate the reserved regions */
1730 memblock_remove_range(&memblock
.reserved
, 0, base
);
1731 memblock_remove_range(&memblock
.reserved
,
1732 base
+ size
, PHYS_ADDR_MAX
);
1735 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1737 phys_addr_t max_addr
;
1742 max_addr
= __find_max_addr(limit
);
1744 /* @limit exceeds the total size of the memory, do nothing */
1745 if (max_addr
== PHYS_ADDR_MAX
)
1748 memblock_cap_memory_range(0, max_addr
);
1751 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1753 unsigned int left
= 0, right
= type
->cnt
;
1756 unsigned int mid
= (right
+ left
) / 2;
1758 if (addr
< type
->regions
[mid
].base
)
1760 else if (addr
>= (type
->regions
[mid
].base
+
1761 type
->regions
[mid
].size
))
1765 } while (left
< right
);
1769 bool __init_memblock
memblock_is_reserved(phys_addr_t addr
)
1771 return memblock_search(&memblock
.reserved
, addr
) != -1;
1774 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1776 return memblock_search(&memblock
.memory
, addr
) != -1;
1779 bool __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1781 int i
= memblock_search(&memblock
.memory
, addr
);
1785 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1788 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1789 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1790 unsigned long *start_pfn
, unsigned long *end_pfn
)
1792 struct memblock_type
*type
= &memblock
.memory
;
1793 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1798 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1799 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1801 return type
->regions
[mid
].nid
;
1806 * memblock_is_region_memory - check if a region is a subset of memory
1807 * @base: base of region to check
1808 * @size: size of region to check
1810 * Check if the region [@base, @base + @size) is a subset of a memory block.
1813 * 0 if false, non-zero if true
1815 bool __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1817 int idx
= memblock_search(&memblock
.memory
, base
);
1818 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1822 return (memblock
.memory
.regions
[idx
].base
+
1823 memblock
.memory
.regions
[idx
].size
) >= end
;
1827 * memblock_is_region_reserved - check if a region intersects reserved memory
1828 * @base: base of region to check
1829 * @size: size of region to check
1831 * Check if the region [@base, @base + @size) intersects a reserved
1835 * True if they intersect, false if not.
1837 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1839 memblock_cap_size(base
, &size
);
1840 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1843 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1845 phys_addr_t start
, end
, orig_start
, orig_end
;
1846 struct memblock_region
*r
;
1848 for_each_memblock(memory
, r
) {
1849 orig_start
= r
->base
;
1850 orig_end
= r
->base
+ r
->size
;
1851 start
= round_up(orig_start
, align
);
1852 end
= round_down(orig_end
, align
);
1854 if (start
== orig_start
&& end
== orig_end
)
1859 r
->size
= end
- start
;
1861 memblock_remove_region(&memblock
.memory
,
1862 r
- memblock
.memory
.regions
);
1868 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1870 memblock
.current_limit
= limit
;
1873 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1875 return memblock
.current_limit
;
1878 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1880 phys_addr_t base
, end
, size
;
1881 enum memblock_flags flags
;
1883 struct memblock_region
*rgn
;
1885 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1887 for_each_memblock_type(idx
, type
, rgn
) {
1888 char nid_buf
[32] = "";
1892 end
= base
+ size
- 1;
1894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1895 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1896 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1897 memblock_get_region_node(rgn
));
1899 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1900 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1904 void __init_memblock
__memblock_dump_all(void)
1906 pr_info("MEMBLOCK configuration:\n");
1907 pr_info(" memory size = %pa reserved size = %pa\n",
1908 &memblock
.memory
.total_size
,
1909 &memblock
.reserved
.total_size
);
1911 memblock_dump(&memblock
.memory
);
1912 memblock_dump(&memblock
.reserved
);
1913 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1914 memblock_dump(&memblock
.physmem
);
1918 void __init
memblock_allow_resize(void)
1920 memblock_can_resize
= 1;
1923 static int __init
early_memblock(char *p
)
1925 if (p
&& strstr(p
, "debug"))
1929 early_param("memblock", early_memblock
);
1931 static void __init
__free_pages_memory(unsigned long start
, unsigned long end
)
1935 while (start
< end
) {
1936 order
= min(MAX_ORDER
- 1UL, __ffs(start
));
1938 while (start
+ (1UL << order
) > end
)
1941 memblock_free_pages(pfn_to_page(start
), start
, order
);
1943 start
+= (1UL << order
);
1947 static unsigned long __init
__free_memory_core(phys_addr_t start
,
1950 unsigned long start_pfn
= PFN_UP(start
);
1951 unsigned long end_pfn
= min_t(unsigned long,
1952 PFN_DOWN(end
), max_low_pfn
);
1954 if (start_pfn
>= end_pfn
)
1957 __free_pages_memory(start_pfn
, end_pfn
);
1959 return end_pfn
- start_pfn
;
1962 static unsigned long __init
free_low_memory_core_early(void)
1964 unsigned long count
= 0;
1965 phys_addr_t start
, end
;
1968 memblock_clear_hotplug(0, -1);
1970 for_each_reserved_mem_region(i
, &start
, &end
)
1971 reserve_bootmem_region(start
, end
);
1974 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1975 * because in some case like Node0 doesn't have RAM installed
1976 * low ram will be on Node1
1978 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
,
1980 count
+= __free_memory_core(start
, end
);
1985 static int reset_managed_pages_done __initdata
;
1987 void reset_node_managed_pages(pg_data_t
*pgdat
)
1991 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
1992 atomic_long_set(&z
->managed_pages
, 0);
1995 void __init
reset_all_zones_managed_pages(void)
1997 struct pglist_data
*pgdat
;
1999 if (reset_managed_pages_done
)
2002 for_each_online_pgdat(pgdat
)
2003 reset_node_managed_pages(pgdat
);
2005 reset_managed_pages_done
= 1;
2009 * memblock_free_all - release free pages to the buddy allocator
2011 * Return: the number of pages actually released.
2013 unsigned long __init
memblock_free_all(void)
2015 unsigned long pages
;
2017 reset_all_zones_managed_pages();
2019 pages
= free_low_memory_core_early();
2020 totalram_pages_add(pages
);
2025 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2027 static int memblock_debug_show(struct seq_file
*m
, void *private)
2029 struct memblock_type
*type
= m
->private;
2030 struct memblock_region
*reg
;
2034 for (i
= 0; i
< type
->cnt
; i
++) {
2035 reg
= &type
->regions
[i
];
2036 end
= reg
->base
+ reg
->size
- 1;
2038 seq_printf(m
, "%4d: ", i
);
2039 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
2043 DEFINE_SHOW_ATTRIBUTE(memblock_debug
);
2045 static int __init
memblock_init_debugfs(void)
2047 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
2049 debugfs_create_file("memory", 0444, root
,
2050 &memblock
.memory
, &memblock_debug_fops
);
2051 debugfs_create_file("reserved", 0444, root
,
2052 &memblock
.reserved
, &memblock_debug_fops
);
2053 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2054 debugfs_create_file("physmem", 0444, root
,
2055 &memblock
.physmem
, &memblock_debug_fops
);
2060 __initcall(memblock_init_debugfs
);
2062 #endif /* CONFIG_DEBUG_FS */