ARM: dts: exynos: Adjust buck[78] regulators to supported values on Arndale Octa
[linux/fpc-iii.git] / mm / memblock.c
blob6bbad46f4d2cb33b6bb0cd9514277da46d918738
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
24 #include <asm/sections.h>
25 #include <linux/io.h>
27 #include "internal.h"
29 #define INIT_MEMBLOCK_REGIONS 128
30 #define INIT_PHYSMEM_REGIONS 4
32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
33 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
36 /**
37 * DOC: memblock overview
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmap`` - describes the actual physical memory regardless of
52 * the possible restrictions; the ``physmap`` type is only available
53 * on some architectures.
55 * Each region is represented by :c:type:`struct memblock_region` that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the :c:type:`struct
58 * memblock_type` which contains an array of memory regions along with
59 * the allocator metadata. The memory types are nicely wrapped with
60 * :c:type:`struct memblock`. This structure is statically initialzed
61 * at build time. The region arrays for the "memory" and "reserved"
62 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
63 * "physmap" type to %INIT_PHYSMEM_REGIONS.
64 * The :c:func:`memblock_allow_resize` enables automatic resizing of
65 * the region arrays during addition of new regions. This feature
66 * should be used with care so that memory allocated for the region
67 * array will not overlap with areas that should be reserved, for
68 * example initrd.
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using :c:func:`memblock_add` or
72 * :c:func:`memblock_add_node` functions. The first function does not
73 * assign the region to a NUMA node and it is appropriate for UMA
74 * systems. Yet, it is possible to use it on NUMA systems as well and
75 * assign the region to a NUMA node later in the setup process using
76 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
77 * performs such an assignment directly.
79 * Once memblock is setup the memory can be allocated using one of the
80 * API variants:
82 * * :c:func:`memblock_phys_alloc*` - these functions return the
83 * **physical** address of the allocated memory
84 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
85 * address of the allocated memory.
87 * Note, that both API variants use implict assumptions about allowed
88 * memory ranges and the fallback methods. Consult the documentation
89 * of :c:func:`memblock_alloc_internal` and
90 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
91 * description.
93 * As the system boot progresses, the architecture specific
94 * :c:func:`mem_init` function frees all the memory to the buddy page
95 * allocator.
97 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
98 * memblock data structures will be discarded after the system
99 * initialization compltes.
102 #ifndef CONFIG_NEED_MULTIPLE_NODES
103 struct pglist_data __refdata contig_page_data;
104 EXPORT_SYMBOL(contig_page_data);
105 #endif
107 unsigned long max_low_pfn;
108 unsigned long min_low_pfn;
109 unsigned long max_pfn;
110 unsigned long long max_possible_pfn;
112 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
113 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
114 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
115 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
116 #endif
118 struct memblock memblock __initdata_memblock = {
119 .memory.regions = memblock_memory_init_regions,
120 .memory.cnt = 1, /* empty dummy entry */
121 .memory.max = INIT_MEMBLOCK_REGIONS,
122 .memory.name = "memory",
124 .reserved.regions = memblock_reserved_init_regions,
125 .reserved.cnt = 1, /* empty dummy entry */
126 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
127 .reserved.name = "reserved",
129 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
130 .physmem.regions = memblock_physmem_init_regions,
131 .physmem.cnt = 1, /* empty dummy entry */
132 .physmem.max = INIT_PHYSMEM_REGIONS,
133 .physmem.name = "physmem",
134 #endif
136 .bottom_up = false,
137 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
140 int memblock_debug __initdata_memblock;
141 static bool system_has_some_mirror __initdata_memblock = false;
142 static int memblock_can_resize __initdata_memblock;
143 static int memblock_memory_in_slab __initdata_memblock = 0;
144 static int memblock_reserved_in_slab __initdata_memblock = 0;
146 static enum memblock_flags __init_memblock choose_memblock_flags(void)
148 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
151 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
152 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
154 return *size = min(*size, PHYS_ADDR_MAX - base);
158 * Address comparison utilities
160 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
161 phys_addr_t base2, phys_addr_t size2)
163 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
166 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
167 phys_addr_t base, phys_addr_t size)
169 unsigned long i;
171 for (i = 0; i < type->cnt; i++)
172 if (memblock_addrs_overlap(base, size, type->regions[i].base,
173 type->regions[i].size))
174 break;
175 return i < type->cnt;
179 * __memblock_find_range_bottom_up - find free area utility in bottom-up
180 * @start: start of candidate range
181 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
182 * %MEMBLOCK_ALLOC_ACCESSIBLE
183 * @size: size of free area to find
184 * @align: alignment of free area to find
185 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
186 * @flags: pick from blocks based on memory attributes
188 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
190 * Return:
191 * Found address on success, 0 on failure.
193 static phys_addr_t __init_memblock
194 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
195 phys_addr_t size, phys_addr_t align, int nid,
196 enum memblock_flags flags)
198 phys_addr_t this_start, this_end, cand;
199 u64 i;
201 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
202 this_start = clamp(this_start, start, end);
203 this_end = clamp(this_end, start, end);
205 cand = round_up(this_start, align);
206 if (cand < this_end && this_end - cand >= size)
207 return cand;
210 return 0;
214 * __memblock_find_range_top_down - find free area utility, in top-down
215 * @start: start of candidate range
216 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
217 * %MEMBLOCK_ALLOC_ACCESSIBLE
218 * @size: size of free area to find
219 * @align: alignment of free area to find
220 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
221 * @flags: pick from blocks based on memory attributes
223 * Utility called from memblock_find_in_range_node(), find free area top-down.
225 * Return:
226 * Found address on success, 0 on failure.
228 static phys_addr_t __init_memblock
229 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
230 phys_addr_t size, phys_addr_t align, int nid,
231 enum memblock_flags flags)
233 phys_addr_t this_start, this_end, cand;
234 u64 i;
236 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
237 NULL) {
238 this_start = clamp(this_start, start, end);
239 this_end = clamp(this_end, start, end);
241 if (this_end < size)
242 continue;
244 cand = round_down(this_end - size, align);
245 if (cand >= this_start)
246 return cand;
249 return 0;
253 * memblock_find_in_range_node - find free area in given range and node
254 * @size: size of free area to find
255 * @align: alignment of free area to find
256 * @start: start of candidate range
257 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
258 * %MEMBLOCK_ALLOC_ACCESSIBLE
259 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
260 * @flags: pick from blocks based on memory attributes
262 * Find @size free area aligned to @align in the specified range and node.
264 * When allocation direction is bottom-up, the @start should be greater
265 * than the end of the kernel image. Otherwise, it will be trimmed. The
266 * reason is that we want the bottom-up allocation just near the kernel
267 * image so it is highly likely that the allocated memory and the kernel
268 * will reside in the same node.
270 * If bottom-up allocation failed, will try to allocate memory top-down.
272 * Return:
273 * Found address on success, 0 on failure.
275 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
276 phys_addr_t align, phys_addr_t start,
277 phys_addr_t end, int nid,
278 enum memblock_flags flags)
280 phys_addr_t kernel_end, ret;
282 /* pump up @end */
283 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
284 end == MEMBLOCK_ALLOC_KASAN)
285 end = memblock.current_limit;
287 /* avoid allocating the first page */
288 start = max_t(phys_addr_t, start, PAGE_SIZE);
289 end = max(start, end);
290 kernel_end = __pa_symbol(_end);
293 * try bottom-up allocation only when bottom-up mode
294 * is set and @end is above the kernel image.
296 if (memblock_bottom_up() && end > kernel_end) {
297 phys_addr_t bottom_up_start;
299 /* make sure we will allocate above the kernel */
300 bottom_up_start = max(start, kernel_end);
302 /* ok, try bottom-up allocation first */
303 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
304 size, align, nid, flags);
305 if (ret)
306 return ret;
309 * we always limit bottom-up allocation above the kernel,
310 * but top-down allocation doesn't have the limit, so
311 * retrying top-down allocation may succeed when bottom-up
312 * allocation failed.
314 * bottom-up allocation is expected to be fail very rarely,
315 * so we use WARN_ONCE() here to see the stack trace if
316 * fail happens.
318 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
319 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
322 return __memblock_find_range_top_down(start, end, size, align, nid,
323 flags);
327 * memblock_find_in_range - find free area in given range
328 * @start: start of candidate range
329 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
330 * %MEMBLOCK_ALLOC_ACCESSIBLE
331 * @size: size of free area to find
332 * @align: alignment of free area to find
334 * Find @size free area aligned to @align in the specified range.
336 * Return:
337 * Found address on success, 0 on failure.
339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
340 phys_addr_t end, phys_addr_t size,
341 phys_addr_t align)
343 phys_addr_t ret;
344 enum memblock_flags flags = choose_memblock_flags();
346 again:
347 ret = memblock_find_in_range_node(size, align, start, end,
348 NUMA_NO_NODE, flags);
350 if (!ret && (flags & MEMBLOCK_MIRROR)) {
351 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
352 &size);
353 flags &= ~MEMBLOCK_MIRROR;
354 goto again;
357 return ret;
360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
362 type->total_size -= type->regions[r].size;
363 memmove(&type->regions[r], &type->regions[r + 1],
364 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
365 type->cnt--;
367 /* Special case for empty arrays */
368 if (type->cnt == 0) {
369 WARN_ON(type->total_size != 0);
370 type->cnt = 1;
371 type->regions[0].base = 0;
372 type->regions[0].size = 0;
373 type->regions[0].flags = 0;
374 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
378 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
380 * memblock_discard - discard memory and reserved arrays if they were allocated
382 void __init memblock_discard(void)
384 phys_addr_t addr, size;
386 if (memblock.reserved.regions != memblock_reserved_init_regions) {
387 addr = __pa(memblock.reserved.regions);
388 size = PAGE_ALIGN(sizeof(struct memblock_region) *
389 memblock.reserved.max);
390 __memblock_free_late(addr, size);
393 if (memblock.memory.regions != memblock_memory_init_regions) {
394 addr = __pa(memblock.memory.regions);
395 size = PAGE_ALIGN(sizeof(struct memblock_region) *
396 memblock.memory.max);
397 __memblock_free_late(addr, size);
400 #endif
403 * memblock_double_array - double the size of the memblock regions array
404 * @type: memblock type of the regions array being doubled
405 * @new_area_start: starting address of memory range to avoid overlap with
406 * @new_area_size: size of memory range to avoid overlap with
408 * Double the size of the @type regions array. If memblock is being used to
409 * allocate memory for a new reserved regions array and there is a previously
410 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
411 * waiting to be reserved, ensure the memory used by the new array does
412 * not overlap.
414 * Return:
415 * 0 on success, -1 on failure.
417 static int __init_memblock memblock_double_array(struct memblock_type *type,
418 phys_addr_t new_area_start,
419 phys_addr_t new_area_size)
421 struct memblock_region *new_array, *old_array;
422 phys_addr_t old_alloc_size, new_alloc_size;
423 phys_addr_t old_size, new_size, addr, new_end;
424 int use_slab = slab_is_available();
425 int *in_slab;
427 /* We don't allow resizing until we know about the reserved regions
428 * of memory that aren't suitable for allocation
430 if (!memblock_can_resize)
431 return -1;
433 /* Calculate new doubled size */
434 old_size = type->max * sizeof(struct memblock_region);
435 new_size = old_size << 1;
437 * We need to allocated new one align to PAGE_SIZE,
438 * so we can free them completely later.
440 old_alloc_size = PAGE_ALIGN(old_size);
441 new_alloc_size = PAGE_ALIGN(new_size);
443 /* Retrieve the slab flag */
444 if (type == &memblock.memory)
445 in_slab = &memblock_memory_in_slab;
446 else
447 in_slab = &memblock_reserved_in_slab;
449 /* Try to find some space for it */
450 if (use_slab) {
451 new_array = kmalloc(new_size, GFP_KERNEL);
452 addr = new_array ? __pa(new_array) : 0;
453 } else {
454 /* only exclude range when trying to double reserved.regions */
455 if (type != &memblock.reserved)
456 new_area_start = new_area_size = 0;
458 addr = memblock_find_in_range(new_area_start + new_area_size,
459 memblock.current_limit,
460 new_alloc_size, PAGE_SIZE);
461 if (!addr && new_area_size)
462 addr = memblock_find_in_range(0,
463 min(new_area_start, memblock.current_limit),
464 new_alloc_size, PAGE_SIZE);
466 new_array = addr ? __va(addr) : NULL;
468 if (!addr) {
469 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
470 type->name, type->max, type->max * 2);
471 return -1;
474 new_end = addr + new_size - 1;
475 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
476 type->name, type->max * 2, &addr, &new_end);
479 * Found space, we now need to move the array over before we add the
480 * reserved region since it may be our reserved array itself that is
481 * full.
483 memcpy(new_array, type->regions, old_size);
484 memset(new_array + type->max, 0, old_size);
485 old_array = type->regions;
486 type->regions = new_array;
487 type->max <<= 1;
489 /* Free old array. We needn't free it if the array is the static one */
490 if (*in_slab)
491 kfree(old_array);
492 else if (old_array != memblock_memory_init_regions &&
493 old_array != memblock_reserved_init_regions)
494 memblock_free(__pa(old_array), old_alloc_size);
497 * Reserve the new array if that comes from the memblock. Otherwise, we
498 * needn't do it
500 if (!use_slab)
501 BUG_ON(memblock_reserve(addr, new_alloc_size));
503 /* Update slab flag */
504 *in_slab = use_slab;
506 return 0;
510 * memblock_merge_regions - merge neighboring compatible regions
511 * @type: memblock type to scan
513 * Scan @type and merge neighboring compatible regions.
515 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
517 int i = 0;
519 /* cnt never goes below 1 */
520 while (i < type->cnt - 1) {
521 struct memblock_region *this = &type->regions[i];
522 struct memblock_region *next = &type->regions[i + 1];
524 if (this->base + this->size != next->base ||
525 memblock_get_region_node(this) !=
526 memblock_get_region_node(next) ||
527 this->flags != next->flags) {
528 BUG_ON(this->base + this->size > next->base);
529 i++;
530 continue;
533 this->size += next->size;
534 /* move forward from next + 1, index of which is i + 2 */
535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 type->cnt--;
541 * memblock_insert_region - insert new memblock region
542 * @type: memblock type to insert into
543 * @idx: index for the insertion point
544 * @base: base address of the new region
545 * @size: size of the new region
546 * @nid: node id of the new region
547 * @flags: flags of the new region
549 * Insert new memblock region [@base, @base + @size) into @type at @idx.
550 * @type must already have extra room to accommodate the new region.
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 int idx, phys_addr_t base,
554 phys_addr_t size,
555 int nid,
556 enum memblock_flags flags)
558 struct memblock_region *rgn = &type->regions[idx];
560 BUG_ON(type->cnt >= type->max);
561 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
562 rgn->base = base;
563 rgn->size = size;
564 rgn->flags = flags;
565 memblock_set_region_node(rgn, nid);
566 type->cnt++;
567 type->total_size += size;
571 * memblock_add_range - add new memblock region
572 * @type: memblock type to add new region into
573 * @base: base address of the new region
574 * @size: size of the new region
575 * @nid: nid of the new region
576 * @flags: flags of the new region
578 * Add new memblock region [@base, @base + @size) into @type. The new region
579 * is allowed to overlap with existing ones - overlaps don't affect already
580 * existing regions. @type is guaranteed to be minimal (all neighbouring
581 * compatible regions are merged) after the addition.
583 * Return:
584 * 0 on success, -errno on failure.
586 int __init_memblock memblock_add_range(struct memblock_type *type,
587 phys_addr_t base, phys_addr_t size,
588 int nid, enum memblock_flags flags)
590 bool insert = false;
591 phys_addr_t obase = base;
592 phys_addr_t end = base + memblock_cap_size(base, &size);
593 int idx, nr_new;
594 struct memblock_region *rgn;
596 if (!size)
597 return 0;
599 /* special case for empty array */
600 if (type->regions[0].size == 0) {
601 WARN_ON(type->cnt != 1 || type->total_size);
602 type->regions[0].base = base;
603 type->regions[0].size = size;
604 type->regions[0].flags = flags;
605 memblock_set_region_node(&type->regions[0], nid);
606 type->total_size = size;
607 return 0;
609 repeat:
611 * The following is executed twice. Once with %false @insert and
612 * then with %true. The first counts the number of regions needed
613 * to accommodate the new area. The second actually inserts them.
615 base = obase;
616 nr_new = 0;
618 for_each_memblock_type(idx, type, rgn) {
619 phys_addr_t rbase = rgn->base;
620 phys_addr_t rend = rbase + rgn->size;
622 if (rbase >= end)
623 break;
624 if (rend <= base)
625 continue;
627 * @rgn overlaps. If it separates the lower part of new
628 * area, insert that portion.
630 if (rbase > base) {
631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
632 WARN_ON(nid != memblock_get_region_node(rgn));
633 #endif
634 WARN_ON(flags != rgn->flags);
635 nr_new++;
636 if (insert)
637 memblock_insert_region(type, idx++, base,
638 rbase - base, nid,
639 flags);
641 /* area below @rend is dealt with, forget about it */
642 base = min(rend, end);
645 /* insert the remaining portion */
646 if (base < end) {
647 nr_new++;
648 if (insert)
649 memblock_insert_region(type, idx, base, end - base,
650 nid, flags);
653 if (!nr_new)
654 return 0;
657 * If this was the first round, resize array and repeat for actual
658 * insertions; otherwise, merge and return.
660 if (!insert) {
661 while (type->cnt + nr_new > type->max)
662 if (memblock_double_array(type, obase, size) < 0)
663 return -ENOMEM;
664 insert = true;
665 goto repeat;
666 } else {
667 memblock_merge_regions(type);
668 return 0;
673 * memblock_add_node - add new memblock region within a NUMA node
674 * @base: base address of the new region
675 * @size: size of the new region
676 * @nid: nid of the new region
678 * Add new memblock region [@base, @base + @size) to the "memory"
679 * type. See memblock_add_range() description for mode details
681 * Return:
682 * 0 on success, -errno on failure.
684 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
685 int nid)
687 return memblock_add_range(&memblock.memory, base, size, nid, 0);
691 * memblock_add - add new memblock region
692 * @base: base address of the new region
693 * @size: size of the new region
695 * Add new memblock region [@base, @base + @size) to the "memory"
696 * type. See memblock_add_range() description for mode details
698 * Return:
699 * 0 on success, -errno on failure.
701 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
703 phys_addr_t end = base + size - 1;
705 memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
706 &base, &end, (void *)_RET_IP_);
708 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
712 * memblock_isolate_range - isolate given range into disjoint memblocks
713 * @type: memblock type to isolate range for
714 * @base: base of range to isolate
715 * @size: size of range to isolate
716 * @start_rgn: out parameter for the start of isolated region
717 * @end_rgn: out parameter for the end of isolated region
719 * Walk @type and ensure that regions don't cross the boundaries defined by
720 * [@base, @base + @size). Crossing regions are split at the boundaries,
721 * which may create at most two more regions. The index of the first
722 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
724 * Return:
725 * 0 on success, -errno on failure.
727 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
728 phys_addr_t base, phys_addr_t size,
729 int *start_rgn, int *end_rgn)
731 phys_addr_t end = base + memblock_cap_size(base, &size);
732 int idx;
733 struct memblock_region *rgn;
735 *start_rgn = *end_rgn = 0;
737 if (!size)
738 return 0;
740 /* we'll create at most two more regions */
741 while (type->cnt + 2 > type->max)
742 if (memblock_double_array(type, base, size) < 0)
743 return -ENOMEM;
745 for_each_memblock_type(idx, type, rgn) {
746 phys_addr_t rbase = rgn->base;
747 phys_addr_t rend = rbase + rgn->size;
749 if (rbase >= end)
750 break;
751 if (rend <= base)
752 continue;
754 if (rbase < base) {
756 * @rgn intersects from below. Split and continue
757 * to process the next region - the new top half.
759 rgn->base = base;
760 rgn->size -= base - rbase;
761 type->total_size -= base - rbase;
762 memblock_insert_region(type, idx, rbase, base - rbase,
763 memblock_get_region_node(rgn),
764 rgn->flags);
765 } else if (rend > end) {
767 * @rgn intersects from above. Split and redo the
768 * current region - the new bottom half.
770 rgn->base = end;
771 rgn->size -= end - rbase;
772 type->total_size -= end - rbase;
773 memblock_insert_region(type, idx--, rbase, end - rbase,
774 memblock_get_region_node(rgn),
775 rgn->flags);
776 } else {
777 /* @rgn is fully contained, record it */
778 if (!*end_rgn)
779 *start_rgn = idx;
780 *end_rgn = idx + 1;
784 return 0;
787 static int __init_memblock memblock_remove_range(struct memblock_type *type,
788 phys_addr_t base, phys_addr_t size)
790 int start_rgn, end_rgn;
791 int i, ret;
793 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
794 if (ret)
795 return ret;
797 for (i = end_rgn - 1; i >= start_rgn; i--)
798 memblock_remove_region(type, i);
799 return 0;
802 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
804 phys_addr_t end = base + size - 1;
806 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
807 &base, &end, (void *)_RET_IP_);
809 return memblock_remove_range(&memblock.memory, base, size);
813 * memblock_free - free boot memory block
814 * @base: phys starting address of the boot memory block
815 * @size: size of the boot memory block in bytes
817 * Free boot memory block previously allocated by memblock_alloc_xx() API.
818 * The freeing memory will not be released to the buddy allocator.
820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
822 phys_addr_t end = base + size - 1;
824 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n",
825 &base, &end, (void *)_RET_IP_);
827 kmemleak_free_part_phys(base, size);
828 return memblock_remove_range(&memblock.reserved, base, size);
831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
833 phys_addr_t end = base + size - 1;
835 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
836 &base, &end, (void *)_RET_IP_);
838 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
842 * memblock_setclr_flag - set or clear flag for a memory region
843 * @base: base address of the region
844 * @size: size of the region
845 * @set: set or clear the flag
846 * @flag: the flag to udpate
848 * This function isolates region [@base, @base + @size), and sets/clears flag
850 * Return: 0 on success, -errno on failure.
852 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
853 phys_addr_t size, int set, int flag)
855 struct memblock_type *type = &memblock.memory;
856 int i, ret, start_rgn, end_rgn;
858 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
859 if (ret)
860 return ret;
862 for (i = start_rgn; i < end_rgn; i++) {
863 struct memblock_region *r = &type->regions[i];
865 if (set)
866 r->flags |= flag;
867 else
868 r->flags &= ~flag;
871 memblock_merge_regions(type);
872 return 0;
876 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
877 * @base: the base phys addr of the region
878 * @size: the size of the region
880 * Return: 0 on success, -errno on failure.
882 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
884 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
888 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
889 * @base: the base phys addr of the region
890 * @size: the size of the region
892 * Return: 0 on success, -errno on failure.
894 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
896 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
900 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
901 * @base: the base phys addr of the region
902 * @size: the size of the region
904 * Return: 0 on success, -errno on failure.
906 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
908 system_has_some_mirror = true;
910 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
914 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
915 * @base: the base phys addr of the region
916 * @size: the size of the region
918 * Return: 0 on success, -errno on failure.
920 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
922 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
926 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
927 * @base: the base phys addr of the region
928 * @size: the size of the region
930 * Return: 0 on success, -errno on failure.
932 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
934 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
938 * __next_reserved_mem_region - next function for for_each_reserved_region()
939 * @idx: pointer to u64 loop variable
940 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
941 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
943 * Iterate over all reserved memory regions.
945 void __init_memblock __next_reserved_mem_region(u64 *idx,
946 phys_addr_t *out_start,
947 phys_addr_t *out_end)
949 struct memblock_type *type = &memblock.reserved;
951 if (*idx < type->cnt) {
952 struct memblock_region *r = &type->regions[*idx];
953 phys_addr_t base = r->base;
954 phys_addr_t size = r->size;
956 if (out_start)
957 *out_start = base;
958 if (out_end)
959 *out_end = base + size - 1;
961 *idx += 1;
962 return;
965 /* signal end of iteration */
966 *idx = ULLONG_MAX;
969 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
971 int m_nid = memblock_get_region_node(m);
973 /* only memory regions are associated with nodes, check it */
974 if (nid != NUMA_NO_NODE && nid != m_nid)
975 return true;
977 /* skip hotpluggable memory regions if needed */
978 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
979 return true;
981 /* if we want mirror memory skip non-mirror memory regions */
982 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
983 return true;
985 /* skip nomap memory unless we were asked for it explicitly */
986 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
987 return true;
989 return false;
993 * __next_mem_range - next function for for_each_free_mem_range() etc.
994 * @idx: pointer to u64 loop variable
995 * @nid: node selector, %NUMA_NO_NODE for all nodes
996 * @flags: pick from blocks based on memory attributes
997 * @type_a: pointer to memblock_type from where the range is taken
998 * @type_b: pointer to memblock_type which excludes memory from being taken
999 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1000 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1001 * @out_nid: ptr to int for nid of the range, can be %NULL
1003 * Find the first area from *@idx which matches @nid, fill the out
1004 * parameters, and update *@idx for the next iteration. The lower 32bit of
1005 * *@idx contains index into type_a and the upper 32bit indexes the
1006 * areas before each region in type_b. For example, if type_b regions
1007 * look like the following,
1009 * 0:[0-16), 1:[32-48), 2:[128-130)
1011 * The upper 32bit indexes the following regions.
1013 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1015 * As both region arrays are sorted, the function advances the two indices
1016 * in lockstep and returns each intersection.
1018 void __init_memblock __next_mem_range(u64 *idx, int nid,
1019 enum memblock_flags flags,
1020 struct memblock_type *type_a,
1021 struct memblock_type *type_b,
1022 phys_addr_t *out_start,
1023 phys_addr_t *out_end, int *out_nid)
1025 int idx_a = *idx & 0xffffffff;
1026 int idx_b = *idx >> 32;
1028 if (WARN_ONCE(nid == MAX_NUMNODES,
1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1030 nid = NUMA_NO_NODE;
1032 for (; idx_a < type_a->cnt; idx_a++) {
1033 struct memblock_region *m = &type_a->regions[idx_a];
1035 phys_addr_t m_start = m->base;
1036 phys_addr_t m_end = m->base + m->size;
1037 int m_nid = memblock_get_region_node(m);
1039 if (should_skip_region(m, nid, flags))
1040 continue;
1042 if (!type_b) {
1043 if (out_start)
1044 *out_start = m_start;
1045 if (out_end)
1046 *out_end = m_end;
1047 if (out_nid)
1048 *out_nid = m_nid;
1049 idx_a++;
1050 *idx = (u32)idx_a | (u64)idx_b << 32;
1051 return;
1054 /* scan areas before each reservation */
1055 for (; idx_b < type_b->cnt + 1; idx_b++) {
1056 struct memblock_region *r;
1057 phys_addr_t r_start;
1058 phys_addr_t r_end;
1060 r = &type_b->regions[idx_b];
1061 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1062 r_end = idx_b < type_b->cnt ?
1063 r->base : PHYS_ADDR_MAX;
1066 * if idx_b advanced past idx_a,
1067 * break out to advance idx_a
1069 if (r_start >= m_end)
1070 break;
1071 /* if the two regions intersect, we're done */
1072 if (m_start < r_end) {
1073 if (out_start)
1074 *out_start =
1075 max(m_start, r_start);
1076 if (out_end)
1077 *out_end = min(m_end, r_end);
1078 if (out_nid)
1079 *out_nid = m_nid;
1081 * The region which ends first is
1082 * advanced for the next iteration.
1084 if (m_end <= r_end)
1085 idx_a++;
1086 else
1087 idx_b++;
1088 *idx = (u32)idx_a | (u64)idx_b << 32;
1089 return;
1094 /* signal end of iteration */
1095 *idx = ULLONG_MAX;
1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1101 * @idx: pointer to u64 loop variable
1102 * @nid: node selector, %NUMA_NO_NODE for all nodes
1103 * @flags: pick from blocks based on memory attributes
1104 * @type_a: pointer to memblock_type from where the range is taken
1105 * @type_b: pointer to memblock_type which excludes memory from being taken
1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108 * @out_nid: ptr to int for nid of the range, can be %NULL
1110 * Finds the next range from type_a which is not marked as unsuitable
1111 * in type_b.
1113 * Reverse of __next_mem_range().
1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1116 enum memblock_flags flags,
1117 struct memblock_type *type_a,
1118 struct memblock_type *type_b,
1119 phys_addr_t *out_start,
1120 phys_addr_t *out_end, int *out_nid)
1122 int idx_a = *idx & 0xffffffff;
1123 int idx_b = *idx >> 32;
1125 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1126 nid = NUMA_NO_NODE;
1128 if (*idx == (u64)ULLONG_MAX) {
1129 idx_a = type_a->cnt - 1;
1130 if (type_b != NULL)
1131 idx_b = type_b->cnt;
1132 else
1133 idx_b = 0;
1136 for (; idx_a >= 0; idx_a--) {
1137 struct memblock_region *m = &type_a->regions[idx_a];
1139 phys_addr_t m_start = m->base;
1140 phys_addr_t m_end = m->base + m->size;
1141 int m_nid = memblock_get_region_node(m);
1143 if (should_skip_region(m, nid, flags))
1144 continue;
1146 if (!type_b) {
1147 if (out_start)
1148 *out_start = m_start;
1149 if (out_end)
1150 *out_end = m_end;
1151 if (out_nid)
1152 *out_nid = m_nid;
1153 idx_a--;
1154 *idx = (u32)idx_a | (u64)idx_b << 32;
1155 return;
1158 /* scan areas before each reservation */
1159 for (; idx_b >= 0; idx_b--) {
1160 struct memblock_region *r;
1161 phys_addr_t r_start;
1162 phys_addr_t r_end;
1164 r = &type_b->regions[idx_b];
1165 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1166 r_end = idx_b < type_b->cnt ?
1167 r->base : PHYS_ADDR_MAX;
1169 * if idx_b advanced past idx_a,
1170 * break out to advance idx_a
1173 if (r_end <= m_start)
1174 break;
1175 /* if the two regions intersect, we're done */
1176 if (m_end > r_start) {
1177 if (out_start)
1178 *out_start = max(m_start, r_start);
1179 if (out_end)
1180 *out_end = min(m_end, r_end);
1181 if (out_nid)
1182 *out_nid = m_nid;
1183 if (m_start >= r_start)
1184 idx_a--;
1185 else
1186 idx_b--;
1187 *idx = (u32)idx_a | (u64)idx_b << 32;
1188 return;
1192 /* signal end of iteration */
1193 *idx = ULLONG_MAX;
1196 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1198 * Common iterator interface used to define for_each_mem_pfn_range().
1200 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1201 unsigned long *out_start_pfn,
1202 unsigned long *out_end_pfn, int *out_nid)
1204 struct memblock_type *type = &memblock.memory;
1205 struct memblock_region *r;
1207 while (++*idx < type->cnt) {
1208 r = &type->regions[*idx];
1210 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1211 continue;
1212 if (nid == MAX_NUMNODES || nid == r->nid)
1213 break;
1215 if (*idx >= type->cnt) {
1216 *idx = -1;
1217 return;
1220 if (out_start_pfn)
1221 *out_start_pfn = PFN_UP(r->base);
1222 if (out_end_pfn)
1223 *out_end_pfn = PFN_DOWN(r->base + r->size);
1224 if (out_nid)
1225 *out_nid = r->nid;
1229 * memblock_set_node - set node ID on memblock regions
1230 * @base: base of area to set node ID for
1231 * @size: size of area to set node ID for
1232 * @type: memblock type to set node ID for
1233 * @nid: node ID to set
1235 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1236 * Regions which cross the area boundaries are split as necessary.
1238 * Return:
1239 * 0 on success, -errno on failure.
1241 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1242 struct memblock_type *type, int nid)
1244 int start_rgn, end_rgn;
1245 int i, ret;
1247 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1248 if (ret)
1249 return ret;
1251 for (i = start_rgn; i < end_rgn; i++)
1252 memblock_set_region_node(&type->regions[i], nid);
1254 memblock_merge_regions(type);
1255 return 0;
1257 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1258 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1260 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1262 * @idx: pointer to u64 loop variable
1263 * @zone: zone in which all of the memory blocks reside
1264 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1265 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1267 * This function is meant to be a zone/pfn specific wrapper for the
1268 * for_each_mem_range type iterators. Specifically they are used in the
1269 * deferred memory init routines and as such we were duplicating much of
1270 * this logic throughout the code. So instead of having it in multiple
1271 * locations it seemed like it would make more sense to centralize this to
1272 * one new iterator that does everything they need.
1274 void __init_memblock
1275 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1276 unsigned long *out_spfn, unsigned long *out_epfn)
1278 int zone_nid = zone_to_nid(zone);
1279 phys_addr_t spa, epa;
1280 int nid;
1282 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1283 &memblock.memory, &memblock.reserved,
1284 &spa, &epa, &nid);
1286 while (*idx != U64_MAX) {
1287 unsigned long epfn = PFN_DOWN(epa);
1288 unsigned long spfn = PFN_UP(spa);
1291 * Verify the end is at least past the start of the zone and
1292 * that we have at least one PFN to initialize.
1294 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1295 /* if we went too far just stop searching */
1296 if (zone_end_pfn(zone) <= spfn) {
1297 *idx = U64_MAX;
1298 break;
1301 if (out_spfn)
1302 *out_spfn = max(zone->zone_start_pfn, spfn);
1303 if (out_epfn)
1304 *out_epfn = min(zone_end_pfn(zone), epfn);
1306 return;
1309 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1310 &memblock.memory, &memblock.reserved,
1311 &spa, &epa, &nid);
1314 /* signal end of iteration */
1315 if (out_spfn)
1316 *out_spfn = ULONG_MAX;
1317 if (out_epfn)
1318 *out_epfn = 0;
1321 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1324 * memblock_alloc_range_nid - allocate boot memory block
1325 * @size: size of memory block to be allocated in bytes
1326 * @align: alignment of the region and block's size
1327 * @start: the lower bound of the memory region to allocate (phys address)
1328 * @end: the upper bound of the memory region to allocate (phys address)
1329 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1331 * The allocation is performed from memory region limited by
1332 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1334 * If the specified node can not hold the requested memory the
1335 * allocation falls back to any node in the system
1337 * For systems with memory mirroring, the allocation is attempted first
1338 * from the regions with mirroring enabled and then retried from any
1339 * memory region.
1341 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1342 * allocated boot memory block, so that it is never reported as leaks.
1344 * Return:
1345 * Physical address of allocated memory block on success, %0 on failure.
1347 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1348 phys_addr_t align, phys_addr_t start,
1349 phys_addr_t end, int nid)
1351 enum memblock_flags flags = choose_memblock_flags();
1352 phys_addr_t found;
1354 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1355 nid = NUMA_NO_NODE;
1357 if (!align) {
1358 /* Can't use WARNs this early in boot on powerpc */
1359 dump_stack();
1360 align = SMP_CACHE_BYTES;
1363 if (end > memblock.current_limit)
1364 end = memblock.current_limit;
1366 again:
1367 found = memblock_find_in_range_node(size, align, start, end, nid,
1368 flags);
1369 if (found && !memblock_reserve(found, size))
1370 goto done;
1372 if (nid != NUMA_NO_NODE) {
1373 found = memblock_find_in_range_node(size, align, start,
1374 end, NUMA_NO_NODE,
1375 flags);
1376 if (found && !memblock_reserve(found, size))
1377 goto done;
1380 if (flags & MEMBLOCK_MIRROR) {
1381 flags &= ~MEMBLOCK_MIRROR;
1382 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1383 &size);
1384 goto again;
1387 return 0;
1389 done:
1390 /* Skip kmemleak for kasan_init() due to high volume. */
1391 if (end != MEMBLOCK_ALLOC_KASAN)
1393 * The min_count is set to 0 so that memblock allocated
1394 * blocks are never reported as leaks. This is because many
1395 * of these blocks are only referred via the physical
1396 * address which is not looked up by kmemleak.
1398 kmemleak_alloc_phys(found, size, 0, 0);
1400 return found;
1404 * memblock_phys_alloc_range - allocate a memory block inside specified range
1405 * @size: size of memory block to be allocated in bytes
1406 * @align: alignment of the region and block's size
1407 * @start: the lower bound of the memory region to allocate (physical address)
1408 * @end: the upper bound of the memory region to allocate (physical address)
1410 * Allocate @size bytes in the between @start and @end.
1412 * Return: physical address of the allocated memory block on success,
1413 * %0 on failure.
1415 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1416 phys_addr_t align,
1417 phys_addr_t start,
1418 phys_addr_t end)
1420 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1424 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1425 * @size: size of memory block to be allocated in bytes
1426 * @align: alignment of the region and block's size
1427 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1429 * Allocates memory block from the specified NUMA node. If the node
1430 * has no available memory, attempts to allocated from any node in the
1431 * system.
1433 * Return: physical address of the allocated memory block on success,
1434 * %0 on failure.
1436 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1438 return memblock_alloc_range_nid(size, align, 0,
1439 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1443 * memblock_alloc_internal - allocate boot memory block
1444 * @size: size of memory block to be allocated in bytes
1445 * @align: alignment of the region and block's size
1446 * @min_addr: the lower bound of the memory region to allocate (phys address)
1447 * @max_addr: the upper bound of the memory region to allocate (phys address)
1448 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1450 * Allocates memory block using memblock_alloc_range_nid() and
1451 * converts the returned physical address to virtual.
1453 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1454 * will fall back to memory below @min_addr. Other constraints, such
1455 * as node and mirrored memory will be handled again in
1456 * memblock_alloc_range_nid().
1458 * Return:
1459 * Virtual address of allocated memory block on success, NULL on failure.
1461 static void * __init memblock_alloc_internal(
1462 phys_addr_t size, phys_addr_t align,
1463 phys_addr_t min_addr, phys_addr_t max_addr,
1464 int nid)
1466 phys_addr_t alloc;
1469 * Detect any accidental use of these APIs after slab is ready, as at
1470 * this moment memblock may be deinitialized already and its
1471 * internal data may be destroyed (after execution of memblock_free_all)
1473 if (WARN_ON_ONCE(slab_is_available()))
1474 return kzalloc_node(size, GFP_NOWAIT, nid);
1476 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1478 /* retry allocation without lower limit */
1479 if (!alloc && min_addr)
1480 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1482 if (!alloc)
1483 return NULL;
1485 return phys_to_virt(alloc);
1489 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1490 * memory and without panicking
1491 * @size: size of memory block to be allocated in bytes
1492 * @align: alignment of the region and block's size
1493 * @min_addr: the lower bound of the memory region from where the allocation
1494 * is preferred (phys address)
1495 * @max_addr: the upper bound of the memory region from where the allocation
1496 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1497 * allocate only from memory limited by memblock.current_limit value
1498 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1500 * Public function, provides additional debug information (including caller
1501 * info), if enabled. Does not zero allocated memory, does not panic if request
1502 * cannot be satisfied.
1504 * Return:
1505 * Virtual address of allocated memory block on success, NULL on failure.
1507 void * __init memblock_alloc_try_nid_raw(
1508 phys_addr_t size, phys_addr_t align,
1509 phys_addr_t min_addr, phys_addr_t max_addr,
1510 int nid)
1512 void *ptr;
1514 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1515 __func__, (u64)size, (u64)align, nid, &min_addr,
1516 &max_addr, (void *)_RET_IP_);
1518 ptr = memblock_alloc_internal(size, align,
1519 min_addr, max_addr, nid);
1520 if (ptr && size > 0)
1521 page_init_poison(ptr, size);
1523 return ptr;
1527 * memblock_alloc_try_nid - allocate boot memory block
1528 * @size: size of memory block to be allocated in bytes
1529 * @align: alignment of the region and block's size
1530 * @min_addr: the lower bound of the memory region from where the allocation
1531 * is preferred (phys address)
1532 * @max_addr: the upper bound of the memory region from where the allocation
1533 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1534 * allocate only from memory limited by memblock.current_limit value
1535 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 * Public function, provides additional debug information (including caller
1538 * info), if enabled. This function zeroes the allocated memory.
1540 * Return:
1541 * Virtual address of allocated memory block on success, NULL on failure.
1543 void * __init memblock_alloc_try_nid(
1544 phys_addr_t size, phys_addr_t align,
1545 phys_addr_t min_addr, phys_addr_t max_addr,
1546 int nid)
1548 void *ptr;
1550 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1551 __func__, (u64)size, (u64)align, nid, &min_addr,
1552 &max_addr, (void *)_RET_IP_);
1553 ptr = memblock_alloc_internal(size, align,
1554 min_addr, max_addr, nid);
1555 if (ptr)
1556 memset(ptr, 0, size);
1558 return ptr;
1562 * __memblock_free_late - free pages directly to buddy allocator
1563 * @base: phys starting address of the boot memory block
1564 * @size: size of the boot memory block in bytes
1566 * This is only useful when the memblock allocator has already been torn
1567 * down, but we are still initializing the system. Pages are released directly
1568 * to the buddy allocator.
1570 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1572 phys_addr_t cursor, end;
1574 end = base + size - 1;
1575 memblock_dbg("%s: [%pa-%pa] %pS\n",
1576 __func__, &base, &end, (void *)_RET_IP_);
1577 kmemleak_free_part_phys(base, size);
1578 cursor = PFN_UP(base);
1579 end = PFN_DOWN(base + size);
1581 for (; cursor < end; cursor++) {
1582 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1583 totalram_pages_inc();
1588 * Remaining API functions
1591 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1593 return memblock.memory.total_size;
1596 phys_addr_t __init_memblock memblock_reserved_size(void)
1598 return memblock.reserved.total_size;
1601 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1603 unsigned long pages = 0;
1604 struct memblock_region *r;
1605 unsigned long start_pfn, end_pfn;
1607 for_each_memblock(memory, r) {
1608 start_pfn = memblock_region_memory_base_pfn(r);
1609 end_pfn = memblock_region_memory_end_pfn(r);
1610 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1611 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1612 pages += end_pfn - start_pfn;
1615 return PFN_PHYS(pages);
1618 /* lowest address */
1619 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1621 return memblock.memory.regions[0].base;
1624 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1626 int idx = memblock.memory.cnt - 1;
1628 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1631 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1633 phys_addr_t max_addr = PHYS_ADDR_MAX;
1634 struct memblock_region *r;
1637 * translate the memory @limit size into the max address within one of
1638 * the memory memblock regions, if the @limit exceeds the total size
1639 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1641 for_each_memblock(memory, r) {
1642 if (limit <= r->size) {
1643 max_addr = r->base + limit;
1644 break;
1646 limit -= r->size;
1649 return max_addr;
1652 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1654 phys_addr_t max_addr = PHYS_ADDR_MAX;
1656 if (!limit)
1657 return;
1659 max_addr = __find_max_addr(limit);
1661 /* @limit exceeds the total size of the memory, do nothing */
1662 if (max_addr == PHYS_ADDR_MAX)
1663 return;
1665 /* truncate both memory and reserved regions */
1666 memblock_remove_range(&memblock.memory, max_addr,
1667 PHYS_ADDR_MAX);
1668 memblock_remove_range(&memblock.reserved, max_addr,
1669 PHYS_ADDR_MAX);
1672 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1674 int start_rgn, end_rgn;
1675 int i, ret;
1677 if (!size)
1678 return;
1680 ret = memblock_isolate_range(&memblock.memory, base, size,
1681 &start_rgn, &end_rgn);
1682 if (ret)
1683 return;
1685 /* remove all the MAP regions */
1686 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1687 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 memblock_remove_region(&memblock.memory, i);
1690 for (i = start_rgn - 1; i >= 0; i--)
1691 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1692 memblock_remove_region(&memblock.memory, i);
1694 /* truncate the reserved regions */
1695 memblock_remove_range(&memblock.reserved, 0, base);
1696 memblock_remove_range(&memblock.reserved,
1697 base + size, PHYS_ADDR_MAX);
1700 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1702 phys_addr_t max_addr;
1704 if (!limit)
1705 return;
1707 max_addr = __find_max_addr(limit);
1709 /* @limit exceeds the total size of the memory, do nothing */
1710 if (max_addr == PHYS_ADDR_MAX)
1711 return;
1713 memblock_cap_memory_range(0, max_addr);
1716 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1718 unsigned int left = 0, right = type->cnt;
1720 do {
1721 unsigned int mid = (right + left) / 2;
1723 if (addr < type->regions[mid].base)
1724 right = mid;
1725 else if (addr >= (type->regions[mid].base +
1726 type->regions[mid].size))
1727 left = mid + 1;
1728 else
1729 return mid;
1730 } while (left < right);
1731 return -1;
1734 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1736 return memblock_search(&memblock.reserved, addr) != -1;
1739 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1741 return memblock_search(&memblock.memory, addr) != -1;
1744 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1746 int i = memblock_search(&memblock.memory, addr);
1748 if (i == -1)
1749 return false;
1750 return !memblock_is_nomap(&memblock.memory.regions[i]);
1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1754 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1755 unsigned long *start_pfn, unsigned long *end_pfn)
1757 struct memblock_type *type = &memblock.memory;
1758 int mid = memblock_search(type, PFN_PHYS(pfn));
1760 if (mid == -1)
1761 return -1;
1763 *start_pfn = PFN_DOWN(type->regions[mid].base);
1764 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1766 return type->regions[mid].nid;
1768 #endif
1771 * memblock_is_region_memory - check if a region is a subset of memory
1772 * @base: base of region to check
1773 * @size: size of region to check
1775 * Check if the region [@base, @base + @size) is a subset of a memory block.
1777 * Return:
1778 * 0 if false, non-zero if true
1780 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1782 int idx = memblock_search(&memblock.memory, base);
1783 phys_addr_t end = base + memblock_cap_size(base, &size);
1785 if (idx == -1)
1786 return false;
1787 return (memblock.memory.regions[idx].base +
1788 memblock.memory.regions[idx].size) >= end;
1792 * memblock_is_region_reserved - check if a region intersects reserved memory
1793 * @base: base of region to check
1794 * @size: size of region to check
1796 * Check if the region [@base, @base + @size) intersects a reserved
1797 * memory block.
1799 * Return:
1800 * True if they intersect, false if not.
1802 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1804 memblock_cap_size(base, &size);
1805 return memblock_overlaps_region(&memblock.reserved, base, size);
1808 void __init_memblock memblock_trim_memory(phys_addr_t align)
1810 phys_addr_t start, end, orig_start, orig_end;
1811 struct memblock_region *r;
1813 for_each_memblock(memory, r) {
1814 orig_start = r->base;
1815 orig_end = r->base + r->size;
1816 start = round_up(orig_start, align);
1817 end = round_down(orig_end, align);
1819 if (start == orig_start && end == orig_end)
1820 continue;
1822 if (start < end) {
1823 r->base = start;
1824 r->size = end - start;
1825 } else {
1826 memblock_remove_region(&memblock.memory,
1827 r - memblock.memory.regions);
1828 r--;
1833 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1835 memblock.current_limit = limit;
1838 phys_addr_t __init_memblock memblock_get_current_limit(void)
1840 return memblock.current_limit;
1843 static void __init_memblock memblock_dump(struct memblock_type *type)
1845 phys_addr_t base, end, size;
1846 enum memblock_flags flags;
1847 int idx;
1848 struct memblock_region *rgn;
1850 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1852 for_each_memblock_type(idx, type, rgn) {
1853 char nid_buf[32] = "";
1855 base = rgn->base;
1856 size = rgn->size;
1857 end = base + size - 1;
1858 flags = rgn->flags;
1859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1860 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1861 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1862 memblock_get_region_node(rgn));
1863 #endif
1864 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1865 type->name, idx, &base, &end, &size, nid_buf, flags);
1869 void __init_memblock __memblock_dump_all(void)
1871 pr_info("MEMBLOCK configuration:\n");
1872 pr_info(" memory size = %pa reserved size = %pa\n",
1873 &memblock.memory.total_size,
1874 &memblock.reserved.total_size);
1876 memblock_dump(&memblock.memory);
1877 memblock_dump(&memblock.reserved);
1878 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1879 memblock_dump(&memblock.physmem);
1880 #endif
1883 void __init memblock_allow_resize(void)
1885 memblock_can_resize = 1;
1888 static int __init early_memblock(char *p)
1890 if (p && strstr(p, "debug"))
1891 memblock_debug = 1;
1892 return 0;
1894 early_param("memblock", early_memblock);
1896 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1898 int order;
1900 while (start < end) {
1901 order = min(MAX_ORDER - 1UL, __ffs(start));
1903 while (start + (1UL << order) > end)
1904 order--;
1906 memblock_free_pages(pfn_to_page(start), start, order);
1908 start += (1UL << order);
1912 static unsigned long __init __free_memory_core(phys_addr_t start,
1913 phys_addr_t end)
1915 unsigned long start_pfn = PFN_UP(start);
1916 unsigned long end_pfn = min_t(unsigned long,
1917 PFN_DOWN(end), max_low_pfn);
1919 if (start_pfn >= end_pfn)
1920 return 0;
1922 __free_pages_memory(start_pfn, end_pfn);
1924 return end_pfn - start_pfn;
1927 static unsigned long __init free_low_memory_core_early(void)
1929 unsigned long count = 0;
1930 phys_addr_t start, end;
1931 u64 i;
1933 memblock_clear_hotplug(0, -1);
1935 for_each_reserved_mem_region(i, &start, &end)
1936 reserve_bootmem_region(start, end);
1939 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1940 * because in some case like Node0 doesn't have RAM installed
1941 * low ram will be on Node1
1943 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1944 NULL)
1945 count += __free_memory_core(start, end);
1947 return count;
1950 static int reset_managed_pages_done __initdata;
1952 void reset_node_managed_pages(pg_data_t *pgdat)
1954 struct zone *z;
1956 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1957 atomic_long_set(&z->managed_pages, 0);
1960 void __init reset_all_zones_managed_pages(void)
1962 struct pglist_data *pgdat;
1964 if (reset_managed_pages_done)
1965 return;
1967 for_each_online_pgdat(pgdat)
1968 reset_node_managed_pages(pgdat);
1970 reset_managed_pages_done = 1;
1974 * memblock_free_all - release free pages to the buddy allocator
1976 * Return: the number of pages actually released.
1978 unsigned long __init memblock_free_all(void)
1980 unsigned long pages;
1982 reset_all_zones_managed_pages();
1984 pages = free_low_memory_core_early();
1985 totalram_pages_add(pages);
1987 return pages;
1990 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1992 static int memblock_debug_show(struct seq_file *m, void *private)
1994 struct memblock_type *type = m->private;
1995 struct memblock_region *reg;
1996 int i;
1997 phys_addr_t end;
1999 for (i = 0; i < type->cnt; i++) {
2000 reg = &type->regions[i];
2001 end = reg->base + reg->size - 1;
2003 seq_printf(m, "%4d: ", i);
2004 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2006 return 0;
2008 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2010 static int __init memblock_init_debugfs(void)
2012 struct dentry *root = debugfs_create_dir("memblock", NULL);
2014 debugfs_create_file("memory", 0444, root,
2015 &memblock.memory, &memblock_debug_fops);
2016 debugfs_create_file("reserved", 0444, root,
2017 &memblock.reserved, &memblock_debug_fops);
2018 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2019 debugfs_create_file("physmem", 0444, root,
2020 &memblock.physmem, &memblock_debug_fops);
2021 #endif
2023 return 0;
2025 __initcall(memblock_init_debugfs);
2027 #endif /* CONFIG_DEBUG_FS */