1 // SPDX-License-Identifier: GPL-2.0
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
40 * empty slabs with no allocated objects
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
69 * Further notes from the original documentation:
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
77 * At present, each engine can be growing a cache. This should be blocked.
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
143 #ifdef CONFIG_DEBUG_SLAB
146 #define FORCED_DEBUG 1
150 #define FORCED_DEBUG 0
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t
;
167 typedef unsigned short freelist_idx_t
;
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
180 * The limit is stored in the per-cpu structure to reduce the data cache
187 unsigned int batchcount
;
188 unsigned int touched
;
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
198 struct array_cache ac
;
202 * Need this for bootstrapping a per node allocator.
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
209 static int drain_freelist(struct kmem_cache
*cache
,
210 struct kmem_cache_node
*n
, int tofree
);
211 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
212 int node
, struct list_head
*list
);
213 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
214 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
215 static void cache_reap(struct work_struct
*unused
);
217 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
219 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
220 struct kmem_cache_node
*n
, struct page
*page
,
222 static int slab_early_init
= 1;
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
228 INIT_LIST_HEAD(&parent
->slabs_full
);
229 INIT_LIST_HEAD(&parent
->slabs_partial
);
230 INIT_LIST_HEAD(&parent
->slabs_free
);
231 parent
->total_slabs
= 0;
232 parent
->free_slabs
= 0;
233 parent
->shared
= NULL
;
234 parent
->alien
= NULL
;
235 parent
->colour_next
= 0;
236 spin_lock_init(&parent
->list_lock
);
237 parent
->free_objects
= 0;
238 parent
->free_touched
= 0;
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259 #define BATCHREFILL_LIMIT 16
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
315 * memory layout of objects:
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
327 static int obj_offset(struct kmem_cache
*cachep
)
329 return cachep
->obj_offset
;
332 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
334 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
335 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
336 sizeof(unsigned long long));
339 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
341 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
342 if (cachep
->flags
& SLAB_STORE_USER
)
343 return (unsigned long long *)(objp
+ cachep
->size
-
344 sizeof(unsigned long long) -
346 return (unsigned long long *) (objp
+ cachep
->size
-
347 sizeof(unsigned long long));
350 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
352 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
353 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
372 static bool slab_max_order_set __initdata
;
374 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
376 struct page
*page
= virt_to_head_page(obj
);
377 return page
->slab_cache
;
380 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
383 return page
->s_mem
+ cache
->size
* idx
;
386 #define BOOT_CPUCACHE_ENTRIES 1
387 /* internal cache of cache description objs */
388 static struct kmem_cache kmem_cache_boot
= {
390 .limit
= BOOT_CPUCACHE_ENTRIES
,
392 .size
= sizeof(struct kmem_cache
),
393 .name
= "kmem_cache",
396 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
398 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
400 return this_cpu_ptr(cachep
->cpu_cache
);
404 * Calculate the number of objects and left-over bytes for a given buffer size.
406 static unsigned int cache_estimate(unsigned long gfporder
, size_t buffer_size
,
407 slab_flags_t flags
, size_t *left_over
)
410 size_t slab_size
= PAGE_SIZE
<< gfporder
;
413 * The slab management structure can be either off the slab or
414 * on it. For the latter case, the memory allocated for a
417 * - @buffer_size bytes for each object
418 * - One freelist_idx_t for each object
420 * We don't need to consider alignment of freelist because
421 * freelist will be at the end of slab page. The objects will be
422 * at the correct alignment.
424 * If the slab management structure is off the slab, then the
425 * alignment will already be calculated into the size. Because
426 * the slabs are all pages aligned, the objects will be at the
427 * correct alignment when allocated.
429 if (flags
& (CFLGS_OBJFREELIST_SLAB
| CFLGS_OFF_SLAB
)) {
430 num
= slab_size
/ buffer_size
;
431 *left_over
= slab_size
% buffer_size
;
433 num
= slab_size
/ (buffer_size
+ sizeof(freelist_idx_t
));
434 *left_over
= slab_size
%
435 (buffer_size
+ sizeof(freelist_idx_t
));
442 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
444 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
447 pr_err("slab error in %s(): cache `%s': %s\n",
448 function
, cachep
->name
, msg
);
450 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
455 * By default on NUMA we use alien caches to stage the freeing of
456 * objects allocated from other nodes. This causes massive memory
457 * inefficiencies when using fake NUMA setup to split memory into a
458 * large number of small nodes, so it can be disabled on the command
462 static int use_alien_caches __read_mostly
= 1;
463 static int __init
noaliencache_setup(char *s
)
465 use_alien_caches
= 0;
468 __setup("noaliencache", noaliencache_setup
);
470 static int __init
slab_max_order_setup(char *str
)
472 get_option(&str
, &slab_max_order
);
473 slab_max_order
= slab_max_order
< 0 ? 0 :
474 min(slab_max_order
, MAX_ORDER
- 1);
475 slab_max_order_set
= true;
479 __setup("slab_max_order=", slab_max_order_setup
);
483 * Special reaping functions for NUMA systems called from cache_reap().
484 * These take care of doing round robin flushing of alien caches (containing
485 * objects freed on different nodes from which they were allocated) and the
486 * flushing of remote pcps by calling drain_node_pages.
488 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
490 static void init_reap_node(int cpu
)
492 per_cpu(slab_reap_node
, cpu
) = next_node_in(cpu_to_mem(cpu
),
496 static void next_reap_node(void)
498 int node
= __this_cpu_read(slab_reap_node
);
500 node
= next_node_in(node
, node_online_map
);
501 __this_cpu_write(slab_reap_node
, node
);
505 #define init_reap_node(cpu) do { } while (0)
506 #define next_reap_node(void) do { } while (0)
510 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
511 * via the workqueue/eventd.
512 * Add the CPU number into the expiration time to minimize the possibility of
513 * the CPUs getting into lockstep and contending for the global cache chain
516 static void start_cpu_timer(int cpu
)
518 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
520 if (reap_work
->work
.func
== NULL
) {
522 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
523 schedule_delayed_work_on(cpu
, reap_work
,
524 __round_jiffies_relative(HZ
, cpu
));
528 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
533 ac
->batchcount
= batch
;
538 static struct array_cache
*alloc_arraycache(int node
, int entries
,
539 int batchcount
, gfp_t gfp
)
541 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
542 struct array_cache
*ac
= NULL
;
544 ac
= kmalloc_node(memsize
, gfp
, node
);
546 * The array_cache structures contain pointers to free object.
547 * However, when such objects are allocated or transferred to another
548 * cache the pointers are not cleared and they could be counted as
549 * valid references during a kmemleak scan. Therefore, kmemleak must
550 * not scan such objects.
552 kmemleak_no_scan(ac
);
553 init_arraycache(ac
, entries
, batchcount
);
557 static noinline
void cache_free_pfmemalloc(struct kmem_cache
*cachep
,
558 struct page
*page
, void *objp
)
560 struct kmem_cache_node
*n
;
564 page_node
= page_to_nid(page
);
565 n
= get_node(cachep
, page_node
);
567 spin_lock(&n
->list_lock
);
568 free_block(cachep
, &objp
, 1, page_node
, &list
);
569 spin_unlock(&n
->list_lock
);
571 slabs_destroy(cachep
, &list
);
575 * Transfer objects in one arraycache to another.
576 * Locking must be handled by the caller.
578 * Return the number of entries transferred.
580 static int transfer_objects(struct array_cache
*to
,
581 struct array_cache
*from
, unsigned int max
)
583 /* Figure out how many entries to transfer */
584 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
589 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
599 #define drain_alien_cache(cachep, alien) do { } while (0)
600 #define reap_alien(cachep, n) do { } while (0)
602 static inline struct alien_cache
**alloc_alien_cache(int node
,
603 int limit
, gfp_t gfp
)
608 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
612 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
617 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
623 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
624 gfp_t flags
, int nodeid
)
629 static inline gfp_t
gfp_exact_node(gfp_t flags
)
631 return flags
& ~__GFP_NOFAIL
;
634 #else /* CONFIG_NUMA */
636 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
637 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
639 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
640 int batch
, gfp_t gfp
)
642 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
643 struct alien_cache
*alc
= NULL
;
645 alc
= kmalloc_node(memsize
, gfp
, node
);
647 kmemleak_no_scan(alc
);
648 init_arraycache(&alc
->ac
, entries
, batch
);
649 spin_lock_init(&alc
->lock
);
654 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
656 struct alien_cache
**alc_ptr
;
661 alc_ptr
= kcalloc_node(nr_node_ids
, sizeof(void *), gfp
, node
);
666 if (i
== node
|| !node_online(i
))
668 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
670 for (i
--; i
>= 0; i
--)
679 static void free_alien_cache(struct alien_cache
**alc_ptr
)
690 static void __drain_alien_cache(struct kmem_cache
*cachep
,
691 struct array_cache
*ac
, int node
,
692 struct list_head
*list
)
694 struct kmem_cache_node
*n
= get_node(cachep
, node
);
697 spin_lock(&n
->list_lock
);
699 * Stuff objects into the remote nodes shared array first.
700 * That way we could avoid the overhead of putting the objects
701 * into the free lists and getting them back later.
704 transfer_objects(n
->shared
, ac
, ac
->limit
);
706 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
708 spin_unlock(&n
->list_lock
);
713 * Called from cache_reap() to regularly drain alien caches round robin.
715 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
717 int node
= __this_cpu_read(slab_reap_node
);
720 struct alien_cache
*alc
= n
->alien
[node
];
721 struct array_cache
*ac
;
725 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
728 __drain_alien_cache(cachep
, ac
, node
, &list
);
729 spin_unlock_irq(&alc
->lock
);
730 slabs_destroy(cachep
, &list
);
736 static void drain_alien_cache(struct kmem_cache
*cachep
,
737 struct alien_cache
**alien
)
740 struct alien_cache
*alc
;
741 struct array_cache
*ac
;
744 for_each_online_node(i
) {
750 spin_lock_irqsave(&alc
->lock
, flags
);
751 __drain_alien_cache(cachep
, ac
, i
, &list
);
752 spin_unlock_irqrestore(&alc
->lock
, flags
);
753 slabs_destroy(cachep
, &list
);
758 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
759 int node
, int page_node
)
761 struct kmem_cache_node
*n
;
762 struct alien_cache
*alien
= NULL
;
763 struct array_cache
*ac
;
766 n
= get_node(cachep
, node
);
767 STATS_INC_NODEFREES(cachep
);
768 if (n
->alien
&& n
->alien
[page_node
]) {
769 alien
= n
->alien
[page_node
];
771 spin_lock(&alien
->lock
);
772 if (unlikely(ac
->avail
== ac
->limit
)) {
773 STATS_INC_ACOVERFLOW(cachep
);
774 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
776 ac
->entry
[ac
->avail
++] = objp
;
777 spin_unlock(&alien
->lock
);
778 slabs_destroy(cachep
, &list
);
780 n
= get_node(cachep
, page_node
);
781 spin_lock(&n
->list_lock
);
782 free_block(cachep
, &objp
, 1, page_node
, &list
);
783 spin_unlock(&n
->list_lock
);
784 slabs_destroy(cachep
, &list
);
789 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
791 int page_node
= page_to_nid(virt_to_page(objp
));
792 int node
= numa_mem_id();
794 * Make sure we are not freeing a object from another node to the array
797 if (likely(node
== page_node
))
800 return __cache_free_alien(cachep
, objp
, node
, page_node
);
804 * Construct gfp mask to allocate from a specific node but do not reclaim or
805 * warn about failures.
807 static inline gfp_t
gfp_exact_node(gfp_t flags
)
809 return (flags
| __GFP_THISNODE
| __GFP_NOWARN
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
813 static int init_cache_node(struct kmem_cache
*cachep
, int node
, gfp_t gfp
)
815 struct kmem_cache_node
*n
;
818 * Set up the kmem_cache_node for cpu before we can
819 * begin anything. Make sure some other cpu on this
820 * node has not already allocated this
822 n
= get_node(cachep
, node
);
824 spin_lock_irq(&n
->list_lock
);
825 n
->free_limit
= (1 + nr_cpus_node(node
)) * cachep
->batchcount
+
827 spin_unlock_irq(&n
->list_lock
);
832 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
836 kmem_cache_node_init(n
);
837 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
838 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
841 (1 + nr_cpus_node(node
)) * cachep
->batchcount
+ cachep
->num
;
844 * The kmem_cache_nodes don't come and go as CPUs
845 * come and go. slab_mutex is sufficient
848 cachep
->node
[node
] = n
;
853 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
855 * Allocates and initializes node for a node on each slab cache, used for
856 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
857 * will be allocated off-node since memory is not yet online for the new node.
858 * When hotplugging memory or a cpu, existing node are not replaced if
861 * Must hold slab_mutex.
863 static int init_cache_node_node(int node
)
866 struct kmem_cache
*cachep
;
868 list_for_each_entry(cachep
, &slab_caches
, list
) {
869 ret
= init_cache_node(cachep
, node
, GFP_KERNEL
);
878 static int setup_kmem_cache_node(struct kmem_cache
*cachep
,
879 int node
, gfp_t gfp
, bool force_change
)
882 struct kmem_cache_node
*n
;
883 struct array_cache
*old_shared
= NULL
;
884 struct array_cache
*new_shared
= NULL
;
885 struct alien_cache
**new_alien
= NULL
;
888 if (use_alien_caches
) {
889 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
894 if (cachep
->shared
) {
895 new_shared
= alloc_arraycache(node
,
896 cachep
->shared
* cachep
->batchcount
, 0xbaadf00d, gfp
);
901 ret
= init_cache_node(cachep
, node
, gfp
);
905 n
= get_node(cachep
, node
);
906 spin_lock_irq(&n
->list_lock
);
907 if (n
->shared
&& force_change
) {
908 free_block(cachep
, n
->shared
->entry
,
909 n
->shared
->avail
, node
, &list
);
910 n
->shared
->avail
= 0;
913 if (!n
->shared
|| force_change
) {
914 old_shared
= n
->shared
;
915 n
->shared
= new_shared
;
920 n
->alien
= new_alien
;
924 spin_unlock_irq(&n
->list_lock
);
925 slabs_destroy(cachep
, &list
);
928 * To protect lockless access to n->shared during irq disabled context.
929 * If n->shared isn't NULL in irq disabled context, accessing to it is
930 * guaranteed to be valid until irq is re-enabled, because it will be
931 * freed after synchronize_rcu().
933 if (old_shared
&& force_change
)
939 free_alien_cache(new_alien
);
946 static void cpuup_canceled(long cpu
)
948 struct kmem_cache
*cachep
;
949 struct kmem_cache_node
*n
= NULL
;
950 int node
= cpu_to_mem(cpu
);
951 const struct cpumask
*mask
= cpumask_of_node(node
);
953 list_for_each_entry(cachep
, &slab_caches
, list
) {
954 struct array_cache
*nc
;
955 struct array_cache
*shared
;
956 struct alien_cache
**alien
;
959 n
= get_node(cachep
, node
);
963 spin_lock_irq(&n
->list_lock
);
965 /* Free limit for this kmem_cache_node */
966 n
->free_limit
-= cachep
->batchcount
;
968 /* cpu is dead; no one can alloc from it. */
969 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
970 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
973 if (!cpumask_empty(mask
)) {
974 spin_unlock_irq(&n
->list_lock
);
980 free_block(cachep
, shared
->entry
,
981 shared
->avail
, node
, &list
);
988 spin_unlock_irq(&n
->list_lock
);
992 drain_alien_cache(cachep
, alien
);
993 free_alien_cache(alien
);
997 slabs_destroy(cachep
, &list
);
1000 * In the previous loop, all the objects were freed to
1001 * the respective cache's slabs, now we can go ahead and
1002 * shrink each nodelist to its limit.
1004 list_for_each_entry(cachep
, &slab_caches
, list
) {
1005 n
= get_node(cachep
, node
);
1008 drain_freelist(cachep
, n
, INT_MAX
);
1012 static int cpuup_prepare(long cpu
)
1014 struct kmem_cache
*cachep
;
1015 int node
= cpu_to_mem(cpu
);
1019 * We need to do this right in the beginning since
1020 * alloc_arraycache's are going to use this list.
1021 * kmalloc_node allows us to add the slab to the right
1022 * kmem_cache_node and not this cpu's kmem_cache_node
1024 err
= init_cache_node_node(node
);
1029 * Now we can go ahead with allocating the shared arrays and
1032 list_for_each_entry(cachep
, &slab_caches
, list
) {
1033 err
= setup_kmem_cache_node(cachep
, node
, GFP_KERNEL
, false);
1040 cpuup_canceled(cpu
);
1044 int slab_prepare_cpu(unsigned int cpu
)
1048 mutex_lock(&slab_mutex
);
1049 err
= cpuup_prepare(cpu
);
1050 mutex_unlock(&slab_mutex
);
1055 * This is called for a failed online attempt and for a successful
1058 * Even if all the cpus of a node are down, we don't free the
1059 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1060 * a kmalloc allocation from another cpu for memory from the node of
1061 * the cpu going down. The list3 structure is usually allocated from
1062 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1064 int slab_dead_cpu(unsigned int cpu
)
1066 mutex_lock(&slab_mutex
);
1067 cpuup_canceled(cpu
);
1068 mutex_unlock(&slab_mutex
);
1073 static int slab_online_cpu(unsigned int cpu
)
1075 start_cpu_timer(cpu
);
1079 static int slab_offline_cpu(unsigned int cpu
)
1082 * Shutdown cache reaper. Note that the slab_mutex is held so
1083 * that if cache_reap() is invoked it cannot do anything
1084 * expensive but will only modify reap_work and reschedule the
1087 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1088 /* Now the cache_reaper is guaranteed to be not running. */
1089 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1093 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1095 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1096 * Returns -EBUSY if all objects cannot be drained so that the node is not
1099 * Must hold slab_mutex.
1101 static int __meminit
drain_cache_node_node(int node
)
1103 struct kmem_cache
*cachep
;
1106 list_for_each_entry(cachep
, &slab_caches
, list
) {
1107 struct kmem_cache_node
*n
;
1109 n
= get_node(cachep
, node
);
1113 drain_freelist(cachep
, n
, INT_MAX
);
1115 if (!list_empty(&n
->slabs_full
) ||
1116 !list_empty(&n
->slabs_partial
)) {
1124 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1125 unsigned long action
, void *arg
)
1127 struct memory_notify
*mnb
= arg
;
1131 nid
= mnb
->status_change_nid
;
1136 case MEM_GOING_ONLINE
:
1137 mutex_lock(&slab_mutex
);
1138 ret
= init_cache_node_node(nid
);
1139 mutex_unlock(&slab_mutex
);
1141 case MEM_GOING_OFFLINE
:
1142 mutex_lock(&slab_mutex
);
1143 ret
= drain_cache_node_node(nid
);
1144 mutex_unlock(&slab_mutex
);
1148 case MEM_CANCEL_ONLINE
:
1149 case MEM_CANCEL_OFFLINE
:
1153 return notifier_from_errno(ret
);
1155 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1158 * swap the static kmem_cache_node with kmalloced memory
1160 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1163 struct kmem_cache_node
*ptr
;
1165 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1168 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1170 * Do not assume that spinlocks can be initialized via memcpy:
1172 spin_lock_init(&ptr
->list_lock
);
1174 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1175 cachep
->node
[nodeid
] = ptr
;
1179 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1180 * size of kmem_cache_node.
1182 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1186 for_each_online_node(node
) {
1187 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1188 cachep
->node
[node
]->next_reap
= jiffies
+
1190 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1195 * Initialisation. Called after the page allocator have been initialised and
1196 * before smp_init().
1198 void __init
kmem_cache_init(void)
1202 kmem_cache
= &kmem_cache_boot
;
1204 if (!IS_ENABLED(CONFIG_NUMA
) || num_possible_nodes() == 1)
1205 use_alien_caches
= 0;
1207 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1208 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1211 * Fragmentation resistance on low memory - only use bigger
1212 * page orders on machines with more than 32MB of memory if
1213 * not overridden on the command line.
1215 if (!slab_max_order_set
&& totalram_pages() > (32 << 20) >> PAGE_SHIFT
)
1216 slab_max_order
= SLAB_MAX_ORDER_HI
;
1218 /* Bootstrap is tricky, because several objects are allocated
1219 * from caches that do not exist yet:
1220 * 1) initialize the kmem_cache cache: it contains the struct
1221 * kmem_cache structures of all caches, except kmem_cache itself:
1222 * kmem_cache is statically allocated.
1223 * Initially an __init data area is used for the head array and the
1224 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1225 * array at the end of the bootstrap.
1226 * 2) Create the first kmalloc cache.
1227 * The struct kmem_cache for the new cache is allocated normally.
1228 * An __init data area is used for the head array.
1229 * 3) Create the remaining kmalloc caches, with minimally sized
1231 * 4) Replace the __init data head arrays for kmem_cache and the first
1232 * kmalloc cache with kmalloc allocated arrays.
1233 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1234 * the other cache's with kmalloc allocated memory.
1235 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1238 /* 1) create the kmem_cache */
1241 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1243 create_boot_cache(kmem_cache
, "kmem_cache",
1244 offsetof(struct kmem_cache
, node
) +
1245 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1246 SLAB_HWCACHE_ALIGN
, 0, 0);
1247 list_add(&kmem_cache
->list
, &slab_caches
);
1248 memcg_link_cache(kmem_cache
);
1249 slab_state
= PARTIAL
;
1252 * Initialize the caches that provide memory for the kmem_cache_node
1253 * structures first. Without this, further allocations will bug.
1255 kmalloc_caches
[KMALLOC_NORMAL
][INDEX_NODE
] = create_kmalloc_cache(
1256 kmalloc_info
[INDEX_NODE
].name
,
1257 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
,
1258 0, kmalloc_size(INDEX_NODE
));
1259 slab_state
= PARTIAL_NODE
;
1260 setup_kmalloc_cache_index_table();
1262 slab_early_init
= 0;
1264 /* 5) Replace the bootstrap kmem_cache_node */
1268 for_each_online_node(nid
) {
1269 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1271 init_list(kmalloc_caches
[KMALLOC_NORMAL
][INDEX_NODE
],
1272 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1276 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1279 void __init
kmem_cache_init_late(void)
1281 struct kmem_cache
*cachep
;
1283 /* 6) resize the head arrays to their final sizes */
1284 mutex_lock(&slab_mutex
);
1285 list_for_each_entry(cachep
, &slab_caches
, list
)
1286 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1288 mutex_unlock(&slab_mutex
);
1295 * Register a memory hotplug callback that initializes and frees
1298 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1302 * The reap timers are started later, with a module init call: That part
1303 * of the kernel is not yet operational.
1307 static int __init
cpucache_init(void)
1312 * Register the timers that return unneeded pages to the page allocator
1314 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "SLAB online",
1315 slab_online_cpu
, slab_offline_cpu
);
1320 __initcall(cpucache_init
);
1322 static noinline
void
1323 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1326 struct kmem_cache_node
*n
;
1327 unsigned long flags
;
1329 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1330 DEFAULT_RATELIMIT_BURST
);
1332 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1335 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1336 nodeid
, gfpflags
, &gfpflags
);
1337 pr_warn(" cache: %s, object size: %d, order: %d\n",
1338 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1340 for_each_kmem_cache_node(cachep
, node
, n
) {
1341 unsigned long total_slabs
, free_slabs
, free_objs
;
1343 spin_lock_irqsave(&n
->list_lock
, flags
);
1344 total_slabs
= n
->total_slabs
;
1345 free_slabs
= n
->free_slabs
;
1346 free_objs
= n
->free_objects
;
1347 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1349 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1350 node
, total_slabs
- free_slabs
, total_slabs
,
1351 (total_slabs
* cachep
->num
) - free_objs
,
1352 total_slabs
* cachep
->num
);
1358 * Interface to system's page allocator. No need to hold the
1359 * kmem_cache_node ->list_lock.
1361 * If we requested dmaable memory, we will get it. Even if we
1362 * did not request dmaable memory, we might get it, but that
1363 * would be relatively rare and ignorable.
1365 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1371 flags
|= cachep
->allocflags
;
1373 page
= __alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1375 slab_out_of_memory(cachep
, flags
, nodeid
);
1379 if (memcg_charge_slab(page
, flags
, cachep
->gfporder
, cachep
)) {
1380 __free_pages(page
, cachep
->gfporder
);
1384 nr_pages
= (1 << cachep
->gfporder
);
1385 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1386 mod_lruvec_page_state(page
, NR_SLAB_RECLAIMABLE
, nr_pages
);
1388 mod_lruvec_page_state(page
, NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1390 __SetPageSlab(page
);
1391 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1392 if (sk_memalloc_socks() && page_is_pfmemalloc(page
))
1393 SetPageSlabPfmemalloc(page
);
1399 * Interface to system's page release.
1401 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1403 int order
= cachep
->gfporder
;
1404 unsigned long nr_freed
= (1 << order
);
1406 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1407 mod_lruvec_page_state(page
, NR_SLAB_RECLAIMABLE
, -nr_freed
);
1409 mod_lruvec_page_state(page
, NR_SLAB_UNRECLAIMABLE
, -nr_freed
);
1411 BUG_ON(!PageSlab(page
));
1412 __ClearPageSlabPfmemalloc(page
);
1413 __ClearPageSlab(page
);
1414 page_mapcount_reset(page
);
1415 page
->mapping
= NULL
;
1417 if (current
->reclaim_state
)
1418 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1419 memcg_uncharge_slab(page
, order
, cachep
);
1420 __free_pages(page
, order
);
1423 static void kmem_rcu_free(struct rcu_head
*head
)
1425 struct kmem_cache
*cachep
;
1428 page
= container_of(head
, struct page
, rcu_head
);
1429 cachep
= page
->slab_cache
;
1431 kmem_freepages(cachep
, page
);
1435 static bool is_debug_pagealloc_cache(struct kmem_cache
*cachep
)
1437 if (debug_pagealloc_enabled() && OFF_SLAB(cachep
) &&
1438 (cachep
->size
% PAGE_SIZE
) == 0)
1444 #ifdef CONFIG_DEBUG_PAGEALLOC
1445 static void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
, int map
)
1447 if (!is_debug_pagealloc_cache(cachep
))
1450 kernel_map_pages(virt_to_page(objp
), cachep
->size
/ PAGE_SIZE
, map
);
1454 static inline void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1459 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1461 int size
= cachep
->object_size
;
1462 addr
= &((char *)addr
)[obj_offset(cachep
)];
1464 memset(addr
, val
, size
);
1465 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1468 static void dump_line(char *data
, int offset
, int limit
)
1471 unsigned char error
= 0;
1474 pr_err("%03x: ", offset
);
1475 for (i
= 0; i
< limit
; i
++) {
1476 if (data
[offset
+ i
] != POISON_FREE
) {
1477 error
= data
[offset
+ i
];
1481 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1482 &data
[offset
], limit
, 1);
1484 if (bad_count
== 1) {
1485 error
^= POISON_FREE
;
1486 if (!(error
& (error
- 1))) {
1487 pr_err("Single bit error detected. Probably bad RAM.\n");
1489 pr_err("Run memtest86+ or a similar memory test tool.\n");
1491 pr_err("Run a memory test tool.\n");
1500 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1505 if (cachep
->flags
& SLAB_RED_ZONE
) {
1506 pr_err("Redzone: 0x%llx/0x%llx\n",
1507 *dbg_redzone1(cachep
, objp
),
1508 *dbg_redzone2(cachep
, objp
));
1511 if (cachep
->flags
& SLAB_STORE_USER
)
1512 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep
, objp
));
1513 realobj
= (char *)objp
+ obj_offset(cachep
);
1514 size
= cachep
->object_size
;
1515 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1518 if (i
+ limit
> size
)
1520 dump_line(realobj
, i
, limit
);
1524 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1530 if (is_debug_pagealloc_cache(cachep
))
1533 realobj
= (char *)objp
+ obj_offset(cachep
);
1534 size
= cachep
->object_size
;
1536 for (i
= 0; i
< size
; i
++) {
1537 char exp
= POISON_FREE
;
1540 if (realobj
[i
] != exp
) {
1545 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1546 print_tainted(), cachep
->name
,
1548 print_objinfo(cachep
, objp
, 0);
1550 /* Hexdump the affected line */
1553 if (i
+ limit
> size
)
1555 dump_line(realobj
, i
, limit
);
1558 /* Limit to 5 lines */
1564 /* Print some data about the neighboring objects, if they
1567 struct page
*page
= virt_to_head_page(objp
);
1570 objnr
= obj_to_index(cachep
, page
, objp
);
1572 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1573 realobj
= (char *)objp
+ obj_offset(cachep
);
1574 pr_err("Prev obj: start=%px, len=%d\n", realobj
, size
);
1575 print_objinfo(cachep
, objp
, 2);
1577 if (objnr
+ 1 < cachep
->num
) {
1578 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1579 realobj
= (char *)objp
+ obj_offset(cachep
);
1580 pr_err("Next obj: start=%px, len=%d\n", realobj
, size
);
1581 print_objinfo(cachep
, objp
, 2);
1588 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1593 if (OBJFREELIST_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
) {
1594 poison_obj(cachep
, page
->freelist
- obj_offset(cachep
),
1598 for (i
= 0; i
< cachep
->num
; i
++) {
1599 void *objp
= index_to_obj(cachep
, page
, i
);
1601 if (cachep
->flags
& SLAB_POISON
) {
1602 check_poison_obj(cachep
, objp
);
1603 slab_kernel_map(cachep
, objp
, 1);
1605 if (cachep
->flags
& SLAB_RED_ZONE
) {
1606 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1607 slab_error(cachep
, "start of a freed object was overwritten");
1608 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1609 slab_error(cachep
, "end of a freed object was overwritten");
1614 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1621 * slab_destroy - destroy and release all objects in a slab
1622 * @cachep: cache pointer being destroyed
1623 * @page: page pointer being destroyed
1625 * Destroy all the objs in a slab page, and release the mem back to the system.
1626 * Before calling the slab page must have been unlinked from the cache. The
1627 * kmem_cache_node ->list_lock is not held/needed.
1629 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1633 freelist
= page
->freelist
;
1634 slab_destroy_debugcheck(cachep
, page
);
1635 if (unlikely(cachep
->flags
& SLAB_TYPESAFE_BY_RCU
))
1636 call_rcu(&page
->rcu_head
, kmem_rcu_free
);
1638 kmem_freepages(cachep
, page
);
1641 * From now on, we don't use freelist
1642 * although actual page can be freed in rcu context
1644 if (OFF_SLAB(cachep
))
1645 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1648 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1650 struct page
*page
, *n
;
1652 list_for_each_entry_safe(page
, n
, list
, slab_list
) {
1653 list_del(&page
->slab_list
);
1654 slab_destroy(cachep
, page
);
1659 * calculate_slab_order - calculate size (page order) of slabs
1660 * @cachep: pointer to the cache that is being created
1661 * @size: size of objects to be created in this cache.
1662 * @flags: slab allocation flags
1664 * Also calculates the number of objects per slab.
1666 * This could be made much more intelligent. For now, try to avoid using
1667 * high order pages for slabs. When the gfp() functions are more friendly
1668 * towards high-order requests, this should be changed.
1670 * Return: number of left-over bytes in a slab
1672 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1673 size_t size
, slab_flags_t flags
)
1675 size_t left_over
= 0;
1678 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1682 num
= cache_estimate(gfporder
, size
, flags
, &remainder
);
1686 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1687 if (num
> SLAB_OBJ_MAX_NUM
)
1690 if (flags
& CFLGS_OFF_SLAB
) {
1691 struct kmem_cache
*freelist_cache
;
1692 size_t freelist_size
;
1694 freelist_size
= num
* sizeof(freelist_idx_t
);
1695 freelist_cache
= kmalloc_slab(freelist_size
, 0u);
1696 if (!freelist_cache
)
1700 * Needed to avoid possible looping condition
1701 * in cache_grow_begin()
1703 if (OFF_SLAB(freelist_cache
))
1706 /* check if off slab has enough benefit */
1707 if (freelist_cache
->size
> cachep
->size
/ 2)
1711 /* Found something acceptable - save it away */
1713 cachep
->gfporder
= gfporder
;
1714 left_over
= remainder
;
1717 * A VFS-reclaimable slab tends to have most allocations
1718 * as GFP_NOFS and we really don't want to have to be allocating
1719 * higher-order pages when we are unable to shrink dcache.
1721 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1725 * Large number of objects is good, but very large slabs are
1726 * currently bad for the gfp()s.
1728 if (gfporder
>= slab_max_order
)
1732 * Acceptable internal fragmentation?
1734 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1740 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
1741 struct kmem_cache
*cachep
, int entries
, int batchcount
)
1745 struct array_cache __percpu
*cpu_cache
;
1747 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
1748 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
1753 for_each_possible_cpu(cpu
) {
1754 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
1755 entries
, batchcount
);
1761 static int __ref
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
1763 if (slab_state
>= FULL
)
1764 return enable_cpucache(cachep
, gfp
);
1766 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
1767 if (!cachep
->cpu_cache
)
1770 if (slab_state
== DOWN
) {
1771 /* Creation of first cache (kmem_cache). */
1772 set_up_node(kmem_cache
, CACHE_CACHE
);
1773 } else if (slab_state
== PARTIAL
) {
1774 /* For kmem_cache_node */
1775 set_up_node(cachep
, SIZE_NODE
);
1779 for_each_online_node(node
) {
1780 cachep
->node
[node
] = kmalloc_node(
1781 sizeof(struct kmem_cache_node
), gfp
, node
);
1782 BUG_ON(!cachep
->node
[node
]);
1783 kmem_cache_node_init(cachep
->node
[node
]);
1787 cachep
->node
[numa_mem_id()]->next_reap
=
1788 jiffies
+ REAPTIMEOUT_NODE
+
1789 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1791 cpu_cache_get(cachep
)->avail
= 0;
1792 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1793 cpu_cache_get(cachep
)->batchcount
= 1;
1794 cpu_cache_get(cachep
)->touched
= 0;
1795 cachep
->batchcount
= 1;
1796 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1800 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1801 slab_flags_t flags
, const char *name
,
1802 void (*ctor
)(void *))
1808 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
1809 slab_flags_t flags
, void (*ctor
)(void *))
1811 struct kmem_cache
*cachep
;
1813 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
1818 * Adjust the object sizes so that we clear
1819 * the complete object on kzalloc.
1821 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
1826 static bool set_objfreelist_slab_cache(struct kmem_cache
*cachep
,
1827 size_t size
, slab_flags_t flags
)
1833 if (cachep
->ctor
|| flags
& SLAB_TYPESAFE_BY_RCU
)
1836 left
= calculate_slab_order(cachep
, size
,
1837 flags
| CFLGS_OBJFREELIST_SLAB
);
1841 if (cachep
->num
* sizeof(freelist_idx_t
) > cachep
->object_size
)
1844 cachep
->colour
= left
/ cachep
->colour_off
;
1849 static bool set_off_slab_cache(struct kmem_cache
*cachep
,
1850 size_t size
, slab_flags_t flags
)
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
1860 if (flags
& SLAB_NOLEAKTRACE
)
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1867 left
= calculate_slab_order(cachep
, size
, flags
| CFLGS_OFF_SLAB
);
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1875 if (left
>= cachep
->num
* sizeof(freelist_idx_t
))
1878 cachep
->colour
= left
/ cachep
->colour_off
;
1883 static bool set_on_slab_cache(struct kmem_cache
*cachep
,
1884 size_t size
, slab_flags_t flags
)
1890 left
= calculate_slab_order(cachep
, size
, flags
);
1894 cachep
->colour
= left
/ cachep
->colour_off
;
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1920 * Return: a pointer to the created cache or %NULL in case of error
1922 int __kmem_cache_create(struct kmem_cache
*cachep
, slab_flags_t flags
)
1924 size_t ralign
= BYTES_PER_WORD
;
1927 unsigned int size
= cachep
->size
;
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1937 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
1938 2 * sizeof(unsigned long long)))
1939 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
1940 if (!(flags
& SLAB_TYPESAFE_BY_RCU
))
1941 flags
|= SLAB_POISON
;
1946 * Check that size is in terms of words. This is needed to avoid
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1950 size
= ALIGN(size
, BYTES_PER_WORD
);
1952 if (flags
& SLAB_RED_ZONE
) {
1953 ralign
= REDZONE_ALIGN
;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
1956 size
= ALIGN(size
, REDZONE_ALIGN
);
1959 /* 3) caller mandated alignment */
1960 if (ralign
< cachep
->align
) {
1961 ralign
= cachep
->align
;
1963 /* disable debug if necessary */
1964 if (ralign
> __alignof__(unsigned long long))
1965 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
1969 cachep
->align
= ralign
;
1970 cachep
->colour_off
= cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep
->colour_off
< cachep
->align
)
1973 cachep
->colour_off
= cachep
->align
;
1975 if (slab_is_available())
1983 * Both debugging options require word-alignment which is calculated
1986 if (flags
& SLAB_RED_ZONE
) {
1987 /* add space for red zone words */
1988 cachep
->obj_offset
+= sizeof(unsigned long long);
1989 size
+= 2 * sizeof(unsigned long long);
1991 if (flags
& SLAB_STORE_USER
) {
1992 /* user store requires one word storage behind the end of
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1996 if (flags
& SLAB_RED_ZONE
)
1997 size
+= REDZONE_ALIGN
;
1999 size
+= BYTES_PER_WORD
;
2003 kasan_cache_create(cachep
, &size
, &flags
);
2005 size
= ALIGN(size
, cachep
->align
);
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2010 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2011 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2021 if (debug_pagealloc_enabled() && (flags
& SLAB_POISON
) &&
2022 size
>= 256 && cachep
->object_size
> cache_line_size()) {
2023 if (size
< PAGE_SIZE
|| size
% PAGE_SIZE
== 0) {
2024 size_t tmp_size
= ALIGN(size
, PAGE_SIZE
);
2026 if (set_off_slab_cache(cachep
, tmp_size
, flags
)) {
2027 flags
|= CFLGS_OFF_SLAB
;
2028 cachep
->obj_offset
+= tmp_size
- size
;
2036 if (set_objfreelist_slab_cache(cachep
, size
, flags
)) {
2037 flags
|= CFLGS_OBJFREELIST_SLAB
;
2041 if (set_off_slab_cache(cachep
, size
, flags
)) {
2042 flags
|= CFLGS_OFF_SLAB
;
2046 if (set_on_slab_cache(cachep
, size
, flags
))
2052 cachep
->freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
2053 cachep
->flags
= flags
;
2054 cachep
->allocflags
= __GFP_COMP
;
2055 if (flags
& SLAB_CACHE_DMA
)
2056 cachep
->allocflags
|= GFP_DMA
;
2057 if (flags
& SLAB_CACHE_DMA32
)
2058 cachep
->allocflags
|= GFP_DMA32
;
2059 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2060 cachep
->allocflags
|= __GFP_RECLAIMABLE
;
2061 cachep
->size
= size
;
2062 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING
) &&
2071 (cachep
->flags
& SLAB_POISON
) &&
2072 is_debug_pagealloc_cache(cachep
))
2073 cachep
->flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2076 if (OFF_SLAB(cachep
)) {
2077 cachep
->freelist_cache
=
2078 kmalloc_slab(cachep
->freelist_size
, 0u);
2081 err
= setup_cpu_cache(cachep
, gfp
);
2083 __kmem_cache_release(cachep
);
2091 static void check_irq_off(void)
2093 BUG_ON(!irqs_disabled());
2096 static void check_irq_on(void)
2098 BUG_ON(irqs_disabled());
2101 static void check_mutex_acquired(void)
2103 BUG_ON(!mutex_is_locked(&slab_mutex
));
2106 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2110 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2114 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2118 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2123 #define check_irq_off() do { } while(0)
2124 #define check_irq_on() do { } while(0)
2125 #define check_mutex_acquired() do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2130 static void drain_array_locked(struct kmem_cache
*cachep
, struct array_cache
*ac
,
2131 int node
, bool free_all
, struct list_head
*list
)
2135 if (!ac
|| !ac
->avail
)
2138 tofree
= free_all
? ac
->avail
: (ac
->limit
+ 4) / 5;
2139 if (tofree
> ac
->avail
)
2140 tofree
= (ac
->avail
+ 1) / 2;
2142 free_block(cachep
, ac
->entry
, tofree
, node
, list
);
2143 ac
->avail
-= tofree
;
2144 memmove(ac
->entry
, &(ac
->entry
[tofree
]), sizeof(void *) * ac
->avail
);
2147 static void do_drain(void *arg
)
2149 struct kmem_cache
*cachep
= arg
;
2150 struct array_cache
*ac
;
2151 int node
= numa_mem_id();
2152 struct kmem_cache_node
*n
;
2156 ac
= cpu_cache_get(cachep
);
2157 n
= get_node(cachep
, node
);
2158 spin_lock(&n
->list_lock
);
2159 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2160 spin_unlock(&n
->list_lock
);
2161 slabs_destroy(cachep
, &list
);
2165 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2167 struct kmem_cache_node
*n
;
2171 on_each_cpu(do_drain
, cachep
, 1);
2173 for_each_kmem_cache_node(cachep
, node
, n
)
2175 drain_alien_cache(cachep
, n
->alien
);
2177 for_each_kmem_cache_node(cachep
, node
, n
) {
2178 spin_lock_irq(&n
->list_lock
);
2179 drain_array_locked(cachep
, n
->shared
, node
, true, &list
);
2180 spin_unlock_irq(&n
->list_lock
);
2182 slabs_destroy(cachep
, &list
);
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2190 * Returns the actual number of slabs released.
2192 static int drain_freelist(struct kmem_cache
*cache
,
2193 struct kmem_cache_node
*n
, int tofree
)
2195 struct list_head
*p
;
2200 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2202 spin_lock_irq(&n
->list_lock
);
2203 p
= n
->slabs_free
.prev
;
2204 if (p
== &n
->slabs_free
) {
2205 spin_unlock_irq(&n
->list_lock
);
2209 page
= list_entry(p
, struct page
, slab_list
);
2210 list_del(&page
->slab_list
);
2214 * Safe to drop the lock. The slab is no longer linked
2217 n
->free_objects
-= cache
->num
;
2218 spin_unlock_irq(&n
->list_lock
);
2219 slab_destroy(cache
, page
);
2226 bool __kmem_cache_empty(struct kmem_cache
*s
)
2229 struct kmem_cache_node
*n
;
2231 for_each_kmem_cache_node(s
, node
, n
)
2232 if (!list_empty(&n
->slabs_full
) ||
2233 !list_empty(&n
->slabs_partial
))
2238 int __kmem_cache_shrink(struct kmem_cache
*cachep
)
2242 struct kmem_cache_node
*n
;
2244 drain_cpu_caches(cachep
);
2247 for_each_kmem_cache_node(cachep
, node
, n
) {
2248 drain_freelist(cachep
, n
, INT_MAX
);
2250 ret
+= !list_empty(&n
->slabs_full
) ||
2251 !list_empty(&n
->slabs_partial
);
2253 return (ret
? 1 : 0);
2257 void __kmemcg_cache_deactivate(struct kmem_cache
*cachep
)
2259 __kmem_cache_shrink(cachep
);
2263 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2265 return __kmem_cache_shrink(cachep
);
2268 void __kmem_cache_release(struct kmem_cache
*cachep
)
2271 struct kmem_cache_node
*n
;
2273 cache_random_seq_destroy(cachep
);
2275 free_percpu(cachep
->cpu_cache
);
2277 /* NUMA: free the node structures */
2278 for_each_kmem_cache_node(cachep
, i
, n
) {
2280 free_alien_cache(n
->alien
);
2282 cachep
->node
[i
] = NULL
;
2287 * Get the memory for a slab management obj.
2289 * For a slab cache when the slab descriptor is off-slab, the
2290 * slab descriptor can't come from the same cache which is being created,
2291 * Because if it is the case, that means we defer the creation of
2292 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2293 * And we eventually call down to __kmem_cache_create(), which
2294 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2295 * This is a "chicken-and-egg" problem.
2297 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2298 * which are all initialized during kmem_cache_init().
2300 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2301 struct page
*page
, int colour_off
,
2302 gfp_t local_flags
, int nodeid
)
2305 void *addr
= page_address(page
);
2307 page
->s_mem
= addr
+ colour_off
;
2310 if (OBJFREELIST_SLAB(cachep
))
2312 else if (OFF_SLAB(cachep
)) {
2313 /* Slab management obj is off-slab. */
2314 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2315 local_flags
, nodeid
);
2319 /* We will use last bytes at the slab for freelist */
2320 freelist
= addr
+ (PAGE_SIZE
<< cachep
->gfporder
) -
2321 cachep
->freelist_size
;
2327 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2329 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2332 static inline void set_free_obj(struct page
*page
,
2333 unsigned int idx
, freelist_idx_t val
)
2335 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2338 static void cache_init_objs_debug(struct kmem_cache
*cachep
, struct page
*page
)
2343 for (i
= 0; i
< cachep
->num
; i
++) {
2344 void *objp
= index_to_obj(cachep
, page
, i
);
2346 if (cachep
->flags
& SLAB_STORE_USER
)
2347 *dbg_userword(cachep
, objp
) = NULL
;
2349 if (cachep
->flags
& SLAB_RED_ZONE
) {
2350 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2351 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2354 * Constructors are not allowed to allocate memory from the same
2355 * cache which they are a constructor for. Otherwise, deadlock.
2356 * They must also be threaded.
2358 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
)) {
2359 kasan_unpoison_object_data(cachep
,
2360 objp
+ obj_offset(cachep
));
2361 cachep
->ctor(objp
+ obj_offset(cachep
));
2362 kasan_poison_object_data(
2363 cachep
, objp
+ obj_offset(cachep
));
2366 if (cachep
->flags
& SLAB_RED_ZONE
) {
2367 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2368 slab_error(cachep
, "constructor overwrote the end of an object");
2369 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2370 slab_error(cachep
, "constructor overwrote the start of an object");
2372 /* need to poison the objs? */
2373 if (cachep
->flags
& SLAB_POISON
) {
2374 poison_obj(cachep
, objp
, POISON_FREE
);
2375 slab_kernel_map(cachep
, objp
, 0);
2381 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2382 /* Hold information during a freelist initialization */
2383 union freelist_init_state
{
2389 struct rnd_state rnd_state
;
2393 * Initialize the state based on the randomization methode available.
2394 * return true if the pre-computed list is available, false otherwize.
2396 static bool freelist_state_initialize(union freelist_init_state
*state
,
2397 struct kmem_cache
*cachep
,
2403 /* Use best entropy available to define a random shift */
2404 rand
= get_random_int();
2406 /* Use a random state if the pre-computed list is not available */
2407 if (!cachep
->random_seq
) {
2408 prandom_seed_state(&state
->rnd_state
, rand
);
2411 state
->list
= cachep
->random_seq
;
2412 state
->count
= count
;
2413 state
->pos
= rand
% count
;
2419 /* Get the next entry on the list and randomize it using a random shift */
2420 static freelist_idx_t
next_random_slot(union freelist_init_state
*state
)
2422 if (state
->pos
>= state
->count
)
2424 return state
->list
[state
->pos
++];
2427 /* Swap two freelist entries */
2428 static void swap_free_obj(struct page
*page
, unsigned int a
, unsigned int b
)
2430 swap(((freelist_idx_t
*)page
->freelist
)[a
],
2431 ((freelist_idx_t
*)page
->freelist
)[b
]);
2435 * Shuffle the freelist initialization state based on pre-computed lists.
2436 * return true if the list was successfully shuffled, false otherwise.
2438 static bool shuffle_freelist(struct kmem_cache
*cachep
, struct page
*page
)
2440 unsigned int objfreelist
= 0, i
, rand
, count
= cachep
->num
;
2441 union freelist_init_state state
;
2447 precomputed
= freelist_state_initialize(&state
, cachep
, count
);
2449 /* Take a random entry as the objfreelist */
2450 if (OBJFREELIST_SLAB(cachep
)) {
2452 objfreelist
= count
- 1;
2454 objfreelist
= next_random_slot(&state
);
2455 page
->freelist
= index_to_obj(cachep
, page
, objfreelist
) +
2461 * On early boot, generate the list dynamically.
2462 * Later use a pre-computed list for speed.
2465 for (i
= 0; i
< count
; i
++)
2466 set_free_obj(page
, i
, i
);
2468 /* Fisher-Yates shuffle */
2469 for (i
= count
- 1; i
> 0; i
--) {
2470 rand
= prandom_u32_state(&state
.rnd_state
);
2472 swap_free_obj(page
, i
, rand
);
2475 for (i
= 0; i
< count
; i
++)
2476 set_free_obj(page
, i
, next_random_slot(&state
));
2479 if (OBJFREELIST_SLAB(cachep
))
2480 set_free_obj(page
, cachep
->num
- 1, objfreelist
);
2485 static inline bool shuffle_freelist(struct kmem_cache
*cachep
,
2490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2492 static void cache_init_objs(struct kmem_cache
*cachep
,
2499 cache_init_objs_debug(cachep
, page
);
2501 /* Try to randomize the freelist if enabled */
2502 shuffled
= shuffle_freelist(cachep
, page
);
2504 if (!shuffled
&& OBJFREELIST_SLAB(cachep
)) {
2505 page
->freelist
= index_to_obj(cachep
, page
, cachep
->num
- 1) +
2509 for (i
= 0; i
< cachep
->num
; i
++) {
2510 objp
= index_to_obj(cachep
, page
, i
);
2511 objp
= kasan_init_slab_obj(cachep
, objp
);
2513 /* constructor could break poison info */
2514 if (DEBUG
== 0 && cachep
->ctor
) {
2515 kasan_unpoison_object_data(cachep
, objp
);
2517 kasan_poison_object_data(cachep
, objp
);
2521 set_free_obj(page
, i
, i
);
2525 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
)
2529 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2535 static void slab_put_obj(struct kmem_cache
*cachep
,
2536 struct page
*page
, void *objp
)
2538 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2542 /* Verify double free bug */
2543 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2544 if (get_free_obj(page
, i
) == objnr
) {
2545 pr_err("slab: double free detected in cache '%s', objp %px\n",
2546 cachep
->name
, objp
);
2552 if (!page
->freelist
)
2553 page
->freelist
= objp
+ obj_offset(cachep
);
2555 set_free_obj(page
, page
->active
, objnr
);
2559 * Map pages beginning at addr to the given cache and slab. This is required
2560 * for the slab allocator to be able to lookup the cache and slab of a
2561 * virtual address for kfree, ksize, and slab debugging.
2563 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2566 page
->slab_cache
= cache
;
2567 page
->freelist
= freelist
;
2571 * Grow (by 1) the number of slabs within a cache. This is called by
2572 * kmem_cache_alloc() when there are no active objs left in a cache.
2574 static struct page
*cache_grow_begin(struct kmem_cache
*cachep
,
2575 gfp_t flags
, int nodeid
)
2581 struct kmem_cache_node
*n
;
2585 * Be lazy and only check for valid flags here, keeping it out of the
2586 * critical path in kmem_cache_alloc().
2588 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
2589 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
2590 flags
&= ~GFP_SLAB_BUG_MASK
;
2591 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2592 invalid_mask
, &invalid_mask
, flags
, &flags
);
2595 WARN_ON_ONCE(cachep
->ctor
&& (flags
& __GFP_ZERO
));
2596 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2599 if (gfpflags_allow_blocking(local_flags
))
2603 * Get mem for the objs. Attempt to allocate a physical page from
2606 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2610 page_node
= page_to_nid(page
);
2611 n
= get_node(cachep
, page_node
);
2613 /* Get colour for the slab, and cal the next value. */
2615 if (n
->colour_next
>= cachep
->colour
)
2618 offset
= n
->colour_next
;
2619 if (offset
>= cachep
->colour
)
2622 offset
*= cachep
->colour_off
;
2625 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2626 * page_address() in the latter returns a non-tagged pointer,
2627 * as it should be for slab pages.
2629 kasan_poison_slab(page
);
2631 /* Get slab management. */
2632 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2633 local_flags
& ~GFP_CONSTRAINT_MASK
, page_node
);
2634 if (OFF_SLAB(cachep
) && !freelist
)
2637 slab_map_pages(cachep
, page
, freelist
);
2639 cache_init_objs(cachep
, page
);
2641 if (gfpflags_allow_blocking(local_flags
))
2642 local_irq_disable();
2647 kmem_freepages(cachep
, page
);
2649 if (gfpflags_allow_blocking(local_flags
))
2650 local_irq_disable();
2654 static void cache_grow_end(struct kmem_cache
*cachep
, struct page
*page
)
2656 struct kmem_cache_node
*n
;
2664 INIT_LIST_HEAD(&page
->slab_list
);
2665 n
= get_node(cachep
, page_to_nid(page
));
2667 spin_lock(&n
->list_lock
);
2669 if (!page
->active
) {
2670 list_add_tail(&page
->slab_list
, &n
->slabs_free
);
2673 fixup_slab_list(cachep
, n
, page
, &list
);
2675 STATS_INC_GROWN(cachep
);
2676 n
->free_objects
+= cachep
->num
- page
->active
;
2677 spin_unlock(&n
->list_lock
);
2679 fixup_objfreelist_debug(cachep
, &list
);
2685 * Perform extra freeing checks:
2686 * - detect bad pointers.
2687 * - POISON/RED_ZONE checking
2689 static void kfree_debugcheck(const void *objp
)
2691 if (!virt_addr_valid(objp
)) {
2692 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2693 (unsigned long)objp
);
2698 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2700 unsigned long long redzone1
, redzone2
;
2702 redzone1
= *dbg_redzone1(cache
, obj
);
2703 redzone2
= *dbg_redzone2(cache
, obj
);
2708 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2711 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2712 slab_error(cache
, "double free detected");
2714 slab_error(cache
, "memory outside object was overwritten");
2716 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2717 obj
, redzone1
, redzone2
);
2720 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2721 unsigned long caller
)
2726 BUG_ON(virt_to_cache(objp
) != cachep
);
2728 objp
-= obj_offset(cachep
);
2729 kfree_debugcheck(objp
);
2730 page
= virt_to_head_page(objp
);
2732 if (cachep
->flags
& SLAB_RED_ZONE
) {
2733 verify_redzone_free(cachep
, objp
);
2734 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2735 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2737 if (cachep
->flags
& SLAB_STORE_USER
)
2738 *dbg_userword(cachep
, objp
) = (void *)caller
;
2740 objnr
= obj_to_index(cachep
, page
, objp
);
2742 BUG_ON(objnr
>= cachep
->num
);
2743 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2745 if (cachep
->flags
& SLAB_POISON
) {
2746 poison_obj(cachep
, objp
, POISON_FREE
);
2747 slab_kernel_map(cachep
, objp
, 0);
2753 #define kfree_debugcheck(x) do { } while(0)
2754 #define cache_free_debugcheck(x,objp,z) (objp)
2757 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
2765 objp
= next
- obj_offset(cachep
);
2766 next
= *(void **)next
;
2767 poison_obj(cachep
, objp
, POISON_FREE
);
2772 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
2773 struct kmem_cache_node
*n
, struct page
*page
,
2776 /* move slabp to correct slabp list: */
2777 list_del(&page
->slab_list
);
2778 if (page
->active
== cachep
->num
) {
2779 list_add(&page
->slab_list
, &n
->slabs_full
);
2780 if (OBJFREELIST_SLAB(cachep
)) {
2782 /* Poisoning will be done without holding the lock */
2783 if (cachep
->flags
& SLAB_POISON
) {
2784 void **objp
= page
->freelist
;
2790 page
->freelist
= NULL
;
2793 list_add(&page
->slab_list
, &n
->slabs_partial
);
2796 /* Try to find non-pfmemalloc slab if needed */
2797 static noinline
struct page
*get_valid_first_slab(struct kmem_cache_node
*n
,
2798 struct page
*page
, bool pfmemalloc
)
2806 if (!PageSlabPfmemalloc(page
))
2809 /* No need to keep pfmemalloc slab if we have enough free objects */
2810 if (n
->free_objects
> n
->free_limit
) {
2811 ClearPageSlabPfmemalloc(page
);
2815 /* Move pfmemalloc slab to the end of list to speed up next search */
2816 list_del(&page
->slab_list
);
2817 if (!page
->active
) {
2818 list_add_tail(&page
->slab_list
, &n
->slabs_free
);
2821 list_add_tail(&page
->slab_list
, &n
->slabs_partial
);
2823 list_for_each_entry(page
, &n
->slabs_partial
, slab_list
) {
2824 if (!PageSlabPfmemalloc(page
))
2828 n
->free_touched
= 1;
2829 list_for_each_entry(page
, &n
->slabs_free
, slab_list
) {
2830 if (!PageSlabPfmemalloc(page
)) {
2839 static struct page
*get_first_slab(struct kmem_cache_node
*n
, bool pfmemalloc
)
2843 assert_spin_locked(&n
->list_lock
);
2844 page
= list_first_entry_or_null(&n
->slabs_partial
, struct page
,
2847 n
->free_touched
= 1;
2848 page
= list_first_entry_or_null(&n
->slabs_free
, struct page
,
2854 if (sk_memalloc_socks())
2855 page
= get_valid_first_slab(n
, page
, pfmemalloc
);
2860 static noinline
void *cache_alloc_pfmemalloc(struct kmem_cache
*cachep
,
2861 struct kmem_cache_node
*n
, gfp_t flags
)
2867 if (!gfp_pfmemalloc_allowed(flags
))
2870 spin_lock(&n
->list_lock
);
2871 page
= get_first_slab(n
, true);
2873 spin_unlock(&n
->list_lock
);
2877 obj
= slab_get_obj(cachep
, page
);
2880 fixup_slab_list(cachep
, n
, page
, &list
);
2882 spin_unlock(&n
->list_lock
);
2883 fixup_objfreelist_debug(cachep
, &list
);
2889 * Slab list should be fixed up by fixup_slab_list() for existing slab
2890 * or cache_grow_end() for new slab
2892 static __always_inline
int alloc_block(struct kmem_cache
*cachep
,
2893 struct array_cache
*ac
, struct page
*page
, int batchcount
)
2896 * There must be at least one object available for
2899 BUG_ON(page
->active
>= cachep
->num
);
2901 while (page
->active
< cachep
->num
&& batchcount
--) {
2902 STATS_INC_ALLOCED(cachep
);
2903 STATS_INC_ACTIVE(cachep
);
2904 STATS_SET_HIGH(cachep
);
2906 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, page
);
2912 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2915 struct kmem_cache_node
*n
;
2916 struct array_cache
*ac
, *shared
;
2922 node
= numa_mem_id();
2924 ac
= cpu_cache_get(cachep
);
2925 batchcount
= ac
->batchcount
;
2926 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2928 * If there was little recent activity on this cache, then
2929 * perform only a partial refill. Otherwise we could generate
2932 batchcount
= BATCHREFILL_LIMIT
;
2934 n
= get_node(cachep
, node
);
2936 BUG_ON(ac
->avail
> 0 || !n
);
2937 shared
= READ_ONCE(n
->shared
);
2938 if (!n
->free_objects
&& (!shared
|| !shared
->avail
))
2941 spin_lock(&n
->list_lock
);
2942 shared
= READ_ONCE(n
->shared
);
2944 /* See if we can refill from the shared array */
2945 if (shared
&& transfer_objects(ac
, shared
, batchcount
)) {
2946 shared
->touched
= 1;
2950 while (batchcount
> 0) {
2951 /* Get slab alloc is to come from. */
2952 page
= get_first_slab(n
, false);
2956 check_spinlock_acquired(cachep
);
2958 batchcount
= alloc_block(cachep
, ac
, page
, batchcount
);
2959 fixup_slab_list(cachep
, n
, page
, &list
);
2963 n
->free_objects
-= ac
->avail
;
2965 spin_unlock(&n
->list_lock
);
2966 fixup_objfreelist_debug(cachep
, &list
);
2969 if (unlikely(!ac
->avail
)) {
2970 /* Check if we can use obj in pfmemalloc slab */
2971 if (sk_memalloc_socks()) {
2972 void *obj
= cache_alloc_pfmemalloc(cachep
, n
, flags
);
2978 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), node
);
2981 * cache_grow_begin() can reenable interrupts,
2982 * then ac could change.
2984 ac
= cpu_cache_get(cachep
);
2985 if (!ac
->avail
&& page
)
2986 alloc_block(cachep
, ac
, page
, batchcount
);
2987 cache_grow_end(cachep
, page
);
2994 return ac
->entry
[--ac
->avail
];
2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3000 might_sleep_if(gfpflags_allow_blocking(flags
));
3004 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3005 gfp_t flags
, void *objp
, unsigned long caller
)
3007 WARN_ON_ONCE(cachep
->ctor
&& (flags
& __GFP_ZERO
));
3010 if (cachep
->flags
& SLAB_POISON
) {
3011 check_poison_obj(cachep
, objp
);
3012 slab_kernel_map(cachep
, objp
, 1);
3013 poison_obj(cachep
, objp
, POISON_INUSE
);
3015 if (cachep
->flags
& SLAB_STORE_USER
)
3016 *dbg_userword(cachep
, objp
) = (void *)caller
;
3018 if (cachep
->flags
& SLAB_RED_ZONE
) {
3019 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3020 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3021 slab_error(cachep
, "double free, or memory outside object was overwritten");
3022 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3023 objp
, *dbg_redzone1(cachep
, objp
),
3024 *dbg_redzone2(cachep
, objp
));
3026 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3027 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3030 objp
+= obj_offset(cachep
);
3031 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3033 if (ARCH_SLAB_MINALIGN
&&
3034 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3035 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3036 objp
, (int)ARCH_SLAB_MINALIGN
);
3041 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3044 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3047 struct array_cache
*ac
;
3051 ac
= cpu_cache_get(cachep
);
3052 if (likely(ac
->avail
)) {
3054 objp
= ac
->entry
[--ac
->avail
];
3056 STATS_INC_ALLOCHIT(cachep
);
3060 STATS_INC_ALLOCMISS(cachep
);
3061 objp
= cache_alloc_refill(cachep
, flags
);
3063 * the 'ac' may be updated by cache_alloc_refill(),
3064 * and kmemleak_erase() requires its correct value.
3066 ac
= cpu_cache_get(cachep
);
3070 * To avoid a false negative, if an object that is in one of the
3071 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3072 * treat the array pointers as a reference to the object.
3075 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3081 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3083 * If we are in_interrupt, then process context, including cpusets and
3084 * mempolicy, may not apply and should not be used for allocation policy.
3086 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3088 int nid_alloc
, nid_here
;
3090 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3092 nid_alloc
= nid_here
= numa_mem_id();
3093 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3094 nid_alloc
= cpuset_slab_spread_node();
3095 else if (current
->mempolicy
)
3096 nid_alloc
= mempolicy_slab_node();
3097 if (nid_alloc
!= nid_here
)
3098 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3103 * Fallback function if there was no memory available and no objects on a
3104 * certain node and fall back is permitted. First we scan all the
3105 * available node for available objects. If that fails then we
3106 * perform an allocation without specifying a node. This allows the page
3107 * allocator to do its reclaim / fallback magic. We then insert the
3108 * slab into the proper nodelist and then allocate from it.
3110 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3112 struct zonelist
*zonelist
;
3115 enum zone_type high_zoneidx
= gfp_zone(flags
);
3119 unsigned int cpuset_mems_cookie
;
3121 if (flags
& __GFP_THISNODE
)
3125 cpuset_mems_cookie
= read_mems_allowed_begin();
3126 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3130 * Look through allowed nodes for objects available
3131 * from existing per node queues.
3133 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3134 nid
= zone_to_nid(zone
);
3136 if (cpuset_zone_allowed(zone
, flags
) &&
3137 get_node(cache
, nid
) &&
3138 get_node(cache
, nid
)->free_objects
) {
3139 obj
= ____cache_alloc_node(cache
,
3140 gfp_exact_node(flags
), nid
);
3148 * This allocation will be performed within the constraints
3149 * of the current cpuset / memory policy requirements.
3150 * We may trigger various forms of reclaim on the allowed
3151 * set and go into memory reserves if necessary.
3153 page
= cache_grow_begin(cache
, flags
, numa_mem_id());
3154 cache_grow_end(cache
, page
);
3156 nid
= page_to_nid(page
);
3157 obj
= ____cache_alloc_node(cache
,
3158 gfp_exact_node(flags
), nid
);
3161 * Another processor may allocate the objects in
3162 * the slab since we are not holding any locks.
3169 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3175 * A interface to enable slab creation on nodeid
3177 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3181 struct kmem_cache_node
*n
;
3185 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3186 n
= get_node(cachep
, nodeid
);
3190 spin_lock(&n
->list_lock
);
3191 page
= get_first_slab(n
, false);
3195 check_spinlock_acquired_node(cachep
, nodeid
);
3197 STATS_INC_NODEALLOCS(cachep
);
3198 STATS_INC_ACTIVE(cachep
);
3199 STATS_SET_HIGH(cachep
);
3201 BUG_ON(page
->active
== cachep
->num
);
3203 obj
= slab_get_obj(cachep
, page
);
3206 fixup_slab_list(cachep
, n
, page
, &list
);
3208 spin_unlock(&n
->list_lock
);
3209 fixup_objfreelist_debug(cachep
, &list
);
3213 spin_unlock(&n
->list_lock
);
3214 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), nodeid
);
3216 /* This slab isn't counted yet so don't update free_objects */
3217 obj
= slab_get_obj(cachep
, page
);
3219 cache_grow_end(cachep
, page
);
3221 return obj
? obj
: fallback_alloc(cachep
, flags
);
3224 static __always_inline
void *
3225 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3226 unsigned long caller
)
3228 unsigned long save_flags
;
3230 int slab_node
= numa_mem_id();
3232 flags
&= gfp_allowed_mask
;
3233 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3234 if (unlikely(!cachep
))
3237 cache_alloc_debugcheck_before(cachep
, flags
);
3238 local_irq_save(save_flags
);
3240 if (nodeid
== NUMA_NO_NODE
)
3243 if (unlikely(!get_node(cachep
, nodeid
))) {
3244 /* Node not bootstrapped yet */
3245 ptr
= fallback_alloc(cachep
, flags
);
3249 if (nodeid
== slab_node
) {
3251 * Use the locally cached objects if possible.
3252 * However ____cache_alloc does not allow fallback
3253 * to other nodes. It may fail while we still have
3254 * objects on other nodes available.
3256 ptr
= ____cache_alloc(cachep
, flags
);
3260 /* ___cache_alloc_node can fall back to other nodes */
3261 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3263 local_irq_restore(save_flags
);
3264 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3266 if (unlikely(flags
& __GFP_ZERO
) && ptr
)
3267 memset(ptr
, 0, cachep
->object_size
);
3269 slab_post_alloc_hook(cachep
, flags
, 1, &ptr
);
3273 static __always_inline
void *
3274 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3278 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3279 objp
= alternate_node_alloc(cache
, flags
);
3283 objp
= ____cache_alloc(cache
, flags
);
3286 * We may just have run out of memory on the local node.
3287 * ____cache_alloc_node() knows how to locate memory on other nodes
3290 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3297 static __always_inline
void *
3298 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3300 return ____cache_alloc(cachep
, flags
);
3303 #endif /* CONFIG_NUMA */
3305 static __always_inline
void *
3306 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3308 unsigned long save_flags
;
3311 flags
&= gfp_allowed_mask
;
3312 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3313 if (unlikely(!cachep
))
3316 cache_alloc_debugcheck_before(cachep
, flags
);
3317 local_irq_save(save_flags
);
3318 objp
= __do_cache_alloc(cachep
, flags
);
3319 local_irq_restore(save_flags
);
3320 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3323 if (unlikely(flags
& __GFP_ZERO
) && objp
)
3324 memset(objp
, 0, cachep
->object_size
);
3326 slab_post_alloc_hook(cachep
, flags
, 1, &objp
);
3331 * Caller needs to acquire correct kmem_cache_node's list_lock
3332 * @list: List of detached free slabs should be freed by caller
3334 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3335 int nr_objects
, int node
, struct list_head
*list
)
3338 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3341 n
->free_objects
+= nr_objects
;
3343 for (i
= 0; i
< nr_objects
; i
++) {
3349 page
= virt_to_head_page(objp
);
3350 list_del(&page
->slab_list
);
3351 check_spinlock_acquired_node(cachep
, node
);
3352 slab_put_obj(cachep
, page
, objp
);
3353 STATS_DEC_ACTIVE(cachep
);
3355 /* fixup slab chains */
3356 if (page
->active
== 0) {
3357 list_add(&page
->slab_list
, &n
->slabs_free
);
3360 /* Unconditionally move a slab to the end of the
3361 * partial list on free - maximum time for the
3362 * other objects to be freed, too.
3364 list_add_tail(&page
->slab_list
, &n
->slabs_partial
);
3368 while (n
->free_objects
> n
->free_limit
&& !list_empty(&n
->slabs_free
)) {
3369 n
->free_objects
-= cachep
->num
;
3371 page
= list_last_entry(&n
->slabs_free
, struct page
, slab_list
);
3372 list_move(&page
->slab_list
, list
);
3378 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3381 struct kmem_cache_node
*n
;
3382 int node
= numa_mem_id();
3385 batchcount
= ac
->batchcount
;
3388 n
= get_node(cachep
, node
);
3389 spin_lock(&n
->list_lock
);
3391 struct array_cache
*shared_array
= n
->shared
;
3392 int max
= shared_array
->limit
- shared_array
->avail
;
3394 if (batchcount
> max
)
3396 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3397 ac
->entry
, sizeof(void *) * batchcount
);
3398 shared_array
->avail
+= batchcount
;
3403 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3410 list_for_each_entry(page
, &n
->slabs_free
, slab_list
) {
3411 BUG_ON(page
->active
);
3415 STATS_SET_FREEABLE(cachep
, i
);
3418 spin_unlock(&n
->list_lock
);
3419 slabs_destroy(cachep
, &list
);
3420 ac
->avail
-= batchcount
;
3421 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3425 * Release an obj back to its cache. If the obj has a constructed state, it must
3426 * be in this state _before_ it is released. Called with disabled ints.
3428 static __always_inline
void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3429 unsigned long caller
)
3431 /* Put the object into the quarantine, don't touch it for now. */
3432 if (kasan_slab_free(cachep
, objp
, _RET_IP_
))
3435 ___cache_free(cachep
, objp
, caller
);
3438 void ___cache_free(struct kmem_cache
*cachep
, void *objp
,
3439 unsigned long caller
)
3441 struct array_cache
*ac
= cpu_cache_get(cachep
);
3444 kmemleak_free_recursive(objp
, cachep
->flags
);
3445 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3448 * Skip calling cache_free_alien() when the platform is not numa.
3449 * This will avoid cache misses that happen while accessing slabp (which
3450 * is per page memory reference) to get nodeid. Instead use a global
3451 * variable to skip the call, which is mostly likely to be present in
3454 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3457 if (ac
->avail
< ac
->limit
) {
3458 STATS_INC_FREEHIT(cachep
);
3460 STATS_INC_FREEMISS(cachep
);
3461 cache_flusharray(cachep
, ac
);
3464 if (sk_memalloc_socks()) {
3465 struct page
*page
= virt_to_head_page(objp
);
3467 if (unlikely(PageSlabPfmemalloc(page
))) {
3468 cache_free_pfmemalloc(cachep
, page
, objp
);
3473 ac
->entry
[ac
->avail
++] = objp
;
3477 * kmem_cache_alloc - Allocate an object
3478 * @cachep: The cache to allocate from.
3479 * @flags: See kmalloc().
3481 * Allocate an object from this cache. The flags are only relevant
3482 * if the cache has no available objects.
3484 * Return: pointer to the new object or %NULL in case of error
3486 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3488 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3490 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3491 cachep
->object_size
, cachep
->size
, flags
);
3495 EXPORT_SYMBOL(kmem_cache_alloc
);
3497 static __always_inline
void
3498 cache_alloc_debugcheck_after_bulk(struct kmem_cache
*s
, gfp_t flags
,
3499 size_t size
, void **p
, unsigned long caller
)
3503 for (i
= 0; i
< size
; i
++)
3504 p
[i
] = cache_alloc_debugcheck_after(s
, flags
, p
[i
], caller
);
3507 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3512 s
= slab_pre_alloc_hook(s
, flags
);
3516 cache_alloc_debugcheck_before(s
, flags
);
3518 local_irq_disable();
3519 for (i
= 0; i
< size
; i
++) {
3520 void *objp
= __do_cache_alloc(s
, flags
);
3522 if (unlikely(!objp
))
3528 cache_alloc_debugcheck_after_bulk(s
, flags
, size
, p
, _RET_IP_
);
3530 /* Clear memory outside IRQ disabled section */
3531 if (unlikely(flags
& __GFP_ZERO
))
3532 for (i
= 0; i
< size
; i
++)
3533 memset(p
[i
], 0, s
->object_size
);
3535 slab_post_alloc_hook(s
, flags
, size
, p
);
3536 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3540 cache_alloc_debugcheck_after_bulk(s
, flags
, i
, p
, _RET_IP_
);
3541 slab_post_alloc_hook(s
, flags
, i
, p
);
3542 __kmem_cache_free_bulk(s
, i
, p
);
3545 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3547 #ifdef CONFIG_TRACING
3549 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3553 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3555 ret
= kasan_kmalloc(cachep
, ret
, size
, flags
);
3556 trace_kmalloc(_RET_IP_
, ret
,
3557 size
, cachep
->size
, flags
);
3560 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3565 * kmem_cache_alloc_node - Allocate an object on the specified node
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 * @nodeid: node number of the target node.
3570 * Identical to kmem_cache_alloc but it will allocate memory on the given
3571 * node, which can improve the performance for cpu bound structures.
3573 * Fallback to other node is possible if __GFP_THISNODE is not set.
3575 * Return: pointer to the new object or %NULL in case of error
3577 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3579 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3581 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3582 cachep
->object_size
, cachep
->size
,
3587 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3589 #ifdef CONFIG_TRACING
3590 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3597 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3599 ret
= kasan_kmalloc(cachep
, ret
, size
, flags
);
3600 trace_kmalloc_node(_RET_IP_
, ret
,
3605 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3608 static __always_inline
void *
3609 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3611 struct kmem_cache
*cachep
;
3614 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3616 cachep
= kmalloc_slab(size
, flags
);
3617 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3619 ret
= kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3620 ret
= kasan_kmalloc(cachep
, ret
, size
, flags
);
3625 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3627 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3629 EXPORT_SYMBOL(__kmalloc_node
);
3631 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3632 int node
, unsigned long caller
)
3634 return __do_kmalloc_node(size
, flags
, node
, caller
);
3636 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3637 #endif /* CONFIG_NUMA */
3640 * __do_kmalloc - allocate memory
3641 * @size: how many bytes of memory are required.
3642 * @flags: the type of memory to allocate (see kmalloc).
3643 * @caller: function caller for debug tracking of the caller
3645 * Return: pointer to the allocated memory or %NULL in case of error
3647 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3648 unsigned long caller
)
3650 struct kmem_cache
*cachep
;
3653 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3655 cachep
= kmalloc_slab(size
, flags
);
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3658 ret
= slab_alloc(cachep
, flags
, caller
);
3660 ret
= kasan_kmalloc(cachep
, ret
, size
, flags
);
3661 trace_kmalloc(caller
, ret
,
3662 size
, cachep
->size
, flags
);
3667 void *__kmalloc(size_t size
, gfp_t flags
)
3669 return __do_kmalloc(size
, flags
, _RET_IP_
);
3671 EXPORT_SYMBOL(__kmalloc
);
3673 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3675 return __do_kmalloc(size
, flags
, caller
);
3677 EXPORT_SYMBOL(__kmalloc_track_caller
);
3680 * kmem_cache_free - Deallocate an object
3681 * @cachep: The cache the allocation was from.
3682 * @objp: The previously allocated object.
3684 * Free an object which was previously allocated from this
3687 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3689 unsigned long flags
;
3690 cachep
= cache_from_obj(cachep
, objp
);
3694 local_irq_save(flags
);
3695 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3696 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3697 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3698 __cache_free(cachep
, objp
, _RET_IP_
);
3699 local_irq_restore(flags
);
3701 trace_kmem_cache_free(_RET_IP_
, objp
);
3703 EXPORT_SYMBOL(kmem_cache_free
);
3705 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
3707 struct kmem_cache
*s
;
3710 local_irq_disable();
3711 for (i
= 0; i
< size
; i
++) {
3714 if (!orig_s
) /* called via kfree_bulk */
3715 s
= virt_to_cache(objp
);
3717 s
= cache_from_obj(orig_s
, objp
);
3719 debug_check_no_locks_freed(objp
, s
->object_size
);
3720 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
3721 debug_check_no_obj_freed(objp
, s
->object_size
);
3723 __cache_free(s
, objp
, _RET_IP_
);
3727 /* FIXME: add tracing */
3729 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3732 * kfree - free previously allocated memory
3733 * @objp: pointer returned by kmalloc.
3735 * If @objp is NULL, no operation is performed.
3737 * Don't free memory not originally allocated by kmalloc()
3738 * or you will run into trouble.
3740 void kfree(const void *objp
)
3742 struct kmem_cache
*c
;
3743 unsigned long flags
;
3745 trace_kfree(_RET_IP_
, objp
);
3747 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3749 local_irq_save(flags
);
3750 kfree_debugcheck(objp
);
3751 c
= virt_to_cache(objp
);
3752 debug_check_no_locks_freed(objp
, c
->object_size
);
3754 debug_check_no_obj_freed(objp
, c
->object_size
);
3755 __cache_free(c
, (void *)objp
, _RET_IP_
);
3756 local_irq_restore(flags
);
3758 EXPORT_SYMBOL(kfree
);
3761 * This initializes kmem_cache_node or resizes various caches for all nodes.
3763 static int setup_kmem_cache_nodes(struct kmem_cache
*cachep
, gfp_t gfp
)
3767 struct kmem_cache_node
*n
;
3769 for_each_online_node(node
) {
3770 ret
= setup_kmem_cache_node(cachep
, node
, gfp
, true);
3779 if (!cachep
->list
.next
) {
3780 /* Cache is not active yet. Roll back what we did */
3783 n
= get_node(cachep
, node
);
3786 free_alien_cache(n
->alien
);
3788 cachep
->node
[node
] = NULL
;
3796 /* Always called with the slab_mutex held */
3797 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3798 int batchcount
, int shared
, gfp_t gfp
)
3800 struct array_cache __percpu
*cpu_cache
, *prev
;
3803 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3807 prev
= cachep
->cpu_cache
;
3808 cachep
->cpu_cache
= cpu_cache
;
3810 * Without a previous cpu_cache there's no need to synchronize remote
3811 * cpus, so skip the IPIs.
3814 kick_all_cpus_sync();
3817 cachep
->batchcount
= batchcount
;
3818 cachep
->limit
= limit
;
3819 cachep
->shared
= shared
;
3824 for_each_online_cpu(cpu
) {
3827 struct kmem_cache_node
*n
;
3828 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3830 node
= cpu_to_mem(cpu
);
3831 n
= get_node(cachep
, node
);
3832 spin_lock_irq(&n
->list_lock
);
3833 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3834 spin_unlock_irq(&n
->list_lock
);
3835 slabs_destroy(cachep
, &list
);
3840 return setup_kmem_cache_nodes(cachep
, gfp
);
3843 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3844 int batchcount
, int shared
, gfp_t gfp
)
3847 struct kmem_cache
*c
;
3849 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3851 if (slab_state
< FULL
)
3854 if ((ret
< 0) || !is_root_cache(cachep
))
3857 lockdep_assert_held(&slab_mutex
);
3858 for_each_memcg_cache(c
, cachep
) {
3859 /* return value determined by the root cache only */
3860 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3866 /* Called with slab_mutex held always */
3867 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3874 err
= cache_random_seq_create(cachep
, cachep
->num
, gfp
);
3878 if (!is_root_cache(cachep
)) {
3879 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3880 limit
= root
->limit
;
3881 shared
= root
->shared
;
3882 batchcount
= root
->batchcount
;
3885 if (limit
&& shared
&& batchcount
)
3888 * The head array serves three purposes:
3889 * - create a LIFO ordering, i.e. return objects that are cache-warm
3890 * - reduce the number of spinlock operations.
3891 * - reduce the number of linked list operations on the slab and
3892 * bufctl chains: array operations are cheaper.
3893 * The numbers are guessed, we should auto-tune as described by
3896 if (cachep
->size
> 131072)
3898 else if (cachep
->size
> PAGE_SIZE
)
3900 else if (cachep
->size
> 1024)
3902 else if (cachep
->size
> 256)
3908 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3909 * allocation behaviour: Most allocs on one cpu, most free operations
3910 * on another cpu. For these cases, an efficient object passing between
3911 * cpus is necessary. This is provided by a shared array. The array
3912 * replaces Bonwick's magazine layer.
3913 * On uniprocessor, it's functionally equivalent (but less efficient)
3914 * to a larger limit. Thus disabled by default.
3917 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3922 * With debugging enabled, large batchcount lead to excessively long
3923 * periods with disabled local interrupts. Limit the batchcount
3928 batchcount
= (limit
+ 1) / 2;
3930 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3933 pr_err("enable_cpucache failed for %s, error %d\n",
3934 cachep
->name
, -err
);
3939 * Drain an array if it contains any elements taking the node lock only if
3940 * necessary. Note that the node listlock also protects the array_cache
3941 * if drain_array() is used on the shared array.
3943 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3944 struct array_cache
*ac
, int node
)
3948 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949 check_mutex_acquired();
3951 if (!ac
|| !ac
->avail
)
3959 spin_lock_irq(&n
->list_lock
);
3960 drain_array_locked(cachep
, ac
, node
, false, &list
);
3961 spin_unlock_irq(&n
->list_lock
);
3963 slabs_destroy(cachep
, &list
);
3967 * cache_reap - Reclaim memory from caches.
3968 * @w: work descriptor
3970 * Called from workqueue/eventd every few seconds.
3972 * - clear the per-cpu caches for this CPU.
3973 * - return freeable pages to the main free memory pool.
3975 * If we cannot acquire the cache chain mutex then just give up - we'll try
3976 * again on the next iteration.
3978 static void cache_reap(struct work_struct
*w
)
3980 struct kmem_cache
*searchp
;
3981 struct kmem_cache_node
*n
;
3982 int node
= numa_mem_id();
3983 struct delayed_work
*work
= to_delayed_work(w
);
3985 if (!mutex_trylock(&slab_mutex
))
3986 /* Give up. Setup the next iteration. */
3989 list_for_each_entry(searchp
, &slab_caches
, list
) {
3993 * We only take the node lock if absolutely necessary and we
3994 * have established with reasonable certainty that
3995 * we can do some work if the lock was obtained.
3997 n
= get_node(searchp
, node
);
3999 reap_alien(searchp
, n
);
4001 drain_array(searchp
, n
, cpu_cache_get(searchp
), node
);
4004 * These are racy checks but it does not matter
4005 * if we skip one check or scan twice.
4007 if (time_after(n
->next_reap
, jiffies
))
4010 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4012 drain_array(searchp
, n
, n
->shared
, node
);
4014 if (n
->free_touched
)
4015 n
->free_touched
= 0;
4019 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4020 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4021 STATS_ADD_REAPED(searchp
, freed
);
4027 mutex_unlock(&slab_mutex
);
4030 /* Set up the next iteration */
4031 schedule_delayed_work_on(smp_processor_id(), work
,
4032 round_jiffies_relative(REAPTIMEOUT_AC
));
4035 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4037 unsigned long active_objs
, num_objs
, active_slabs
;
4038 unsigned long total_slabs
= 0, free_objs
= 0, shared_avail
= 0;
4039 unsigned long free_slabs
= 0;
4041 struct kmem_cache_node
*n
;
4043 for_each_kmem_cache_node(cachep
, node
, n
) {
4045 spin_lock_irq(&n
->list_lock
);
4047 total_slabs
+= n
->total_slabs
;
4048 free_slabs
+= n
->free_slabs
;
4049 free_objs
+= n
->free_objects
;
4052 shared_avail
+= n
->shared
->avail
;
4054 spin_unlock_irq(&n
->list_lock
);
4056 num_objs
= total_slabs
* cachep
->num
;
4057 active_slabs
= total_slabs
- free_slabs
;
4058 active_objs
= num_objs
- free_objs
;
4060 sinfo
->active_objs
= active_objs
;
4061 sinfo
->num_objs
= num_objs
;
4062 sinfo
->active_slabs
= active_slabs
;
4063 sinfo
->num_slabs
= total_slabs
;
4064 sinfo
->shared_avail
= shared_avail
;
4065 sinfo
->limit
= cachep
->limit
;
4066 sinfo
->batchcount
= cachep
->batchcount
;
4067 sinfo
->shared
= cachep
->shared
;
4068 sinfo
->objects_per_slab
= cachep
->num
;
4069 sinfo
->cache_order
= cachep
->gfporder
;
4072 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4076 unsigned long high
= cachep
->high_mark
;
4077 unsigned long allocs
= cachep
->num_allocations
;
4078 unsigned long grown
= cachep
->grown
;
4079 unsigned long reaped
= cachep
->reaped
;
4080 unsigned long errors
= cachep
->errors
;
4081 unsigned long max_freeable
= cachep
->max_freeable
;
4082 unsigned long node_allocs
= cachep
->node_allocs
;
4083 unsigned long node_frees
= cachep
->node_frees
;
4084 unsigned long overflows
= cachep
->node_overflow
;
4086 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4087 allocs
, high
, grown
,
4088 reaped
, errors
, max_freeable
, node_allocs
,
4089 node_frees
, overflows
);
4093 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4094 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4095 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4096 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4098 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4099 allochit
, allocmiss
, freehit
, freemiss
);
4104 #define MAX_SLABINFO_WRITE 128
4106 * slabinfo_write - Tuning for the slab allocator
4108 * @buffer: user buffer
4109 * @count: data length
4112 * Return: %0 on success, negative error code otherwise.
4114 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4115 size_t count
, loff_t
*ppos
)
4117 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4118 int limit
, batchcount
, shared
, res
;
4119 struct kmem_cache
*cachep
;
4121 if (count
> MAX_SLABINFO_WRITE
)
4123 if (copy_from_user(&kbuf
, buffer
, count
))
4125 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4127 tmp
= strchr(kbuf
, ' ');
4132 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4135 /* Find the cache in the chain of caches. */
4136 mutex_lock(&slab_mutex
);
4138 list_for_each_entry(cachep
, &slab_caches
, list
) {
4139 if (!strcmp(cachep
->name
, kbuf
)) {
4140 if (limit
< 1 || batchcount
< 1 ||
4141 batchcount
> limit
|| shared
< 0) {
4144 res
= do_tune_cpucache(cachep
, limit
,
4151 mutex_unlock(&slab_mutex
);
4157 #ifdef CONFIG_HARDENED_USERCOPY
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4166 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
4169 struct kmem_cache
*cachep
;
4171 unsigned long offset
;
4173 ptr
= kasan_reset_tag(ptr
);
4175 /* Find and validate object. */
4176 cachep
= page
->slab_cache
;
4177 objnr
= obj_to_index(cachep
, page
, (void *)ptr
);
4178 BUG_ON(objnr
>= cachep
->num
);
4180 /* Find offset within object. */
4181 offset
= ptr
- index_to_obj(cachep
, page
, objnr
) - obj_offset(cachep
);
4183 /* Allow address range falling entirely within usercopy region. */
4184 if (offset
>= cachep
->useroffset
&&
4185 offset
- cachep
->useroffset
<= cachep
->usersize
&&
4186 n
<= cachep
->useroffset
- offset
+ cachep
->usersize
)
4190 * If the copy is still within the allocated object, produce
4191 * a warning instead of rejecting the copy. This is intended
4192 * to be a temporary method to find any missing usercopy
4195 if (usercopy_fallback
&&
4196 offset
<= cachep
->object_size
&&
4197 n
<= cachep
->object_size
- offset
) {
4198 usercopy_warn("SLAB object", cachep
->name
, to_user
, offset
, n
);
4202 usercopy_abort("SLAB object", cachep
->name
, to_user
, offset
, n
);
4204 #endif /* CONFIG_HARDENED_USERCOPY */
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
4218 * Return: size of the actual memory used by @objp in bytes
4220 size_t ksize(const void *objp
)
4225 if (unlikely(objp
== ZERO_SIZE_PTR
))
4228 size
= virt_to_cache(objp
)->object_size
;
4229 /* We assume that ksize callers could use the whole allocated area,
4230 * so we need to unpoison this area.
4232 kasan_unpoison_shadow(objp
, size
);
4236 EXPORT_SYMBOL(ksize
);