PCI: designware: Check private_data validity in single place
[linux/fpc-iii.git] / mm / memory-failure.c
blob44c6bd201d3a1cac7120527b45e2a86f5f77abff
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
62 int sysctl_memory_failure_recovery __read_mostly = 1;
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79 static int hwpoison_filter_dev(struct page *p)
81 struct address_space *mapping;
82 dev_t dev;
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
89 * page_mapping() does not accept slab pages.
91 if (PageSlab(p))
92 return -EINVAL;
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
106 return 0;
109 static int hwpoison_filter_flags(struct page *p)
111 if (!hwpoison_filter_flags_mask)
112 return 0;
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
140 if (!hwpoison_filter_memcg)
141 return 0;
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
151 if (!ino || ino != hwpoison_filter_memcg)
152 return -EINVAL;
154 return 0;
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
160 int hwpoison_filter(struct page *p)
162 if (!hwpoison_filter_enable)
163 return 0;
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
174 return 0;
176 #else
177 int hwpoison_filter(struct page *p)
179 return 0;
181 #endif
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
193 struct siginfo si;
194 int ret;
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
230 void shake_page(struct page *p, int access)
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
245 if (access) {
246 int nr;
247 int nid = page_to_nid(p);
248 do {
249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
252 node_set(nid, shrink.nodes_to_scan);
254 nr = shrink_slab(&shrink, 1000, 1000);
255 if (page_count(p) == 1)
256 break;
257 } while (nr > 10);
260 EXPORT_SYMBOL_GPL(shake_page);
263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
284 struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
288 char addr_valid;
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
306 struct to_kill *tk;
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
328 if (tk->addr == -EFAULT) {
329 pr_info("MCE: Unable to find user space address %lx in %s\n",
330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
339 * Kill the processes that have been collected earlier.
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 int fail, struct page *page, unsigned long pfn,
348 int flags)
350 struct to_kill *tk, *next;
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
353 if (forcekill) {
355 * In case something went wrong with munmapping
356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 force_sig(SIGKILL, tk->tsk);
367 * In theory the process could have mapped
368 * something else on the address in-between. We could
369 * check for that, but we need to tell the
370 * process anyways.
372 else if (kill_proc(tk->tsk, tk->addr, trapno,
373 pfn, page, flags) < 0)
374 printk(KERN_ERR
375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 pfn, tk->tsk->comm, tk->tsk->pid);
378 put_task_struct(tk->tsk);
379 kfree(tk);
384 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
385 * on behalf of the thread group. Return task_struct of the (first found)
386 * dedicated thread if found, and return NULL otherwise.
388 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
389 * have to call rcu_read_lock/unlock() in this function.
391 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
393 struct task_struct *t;
395 for_each_thread(tsk, t)
396 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
397 return t;
398 return NULL;
402 * Determine whether a given process is "early kill" process which expects
403 * to be signaled when some page under the process is hwpoisoned.
404 * Return task_struct of the dedicated thread (main thread unless explicitly
405 * specified) if the process is "early kill," and otherwise returns NULL.
407 static struct task_struct *task_early_kill(struct task_struct *tsk,
408 int force_early)
410 struct task_struct *t;
411 if (!tsk->mm)
412 return NULL;
413 if (force_early)
414 return tsk;
415 t = find_early_kill_thread(tsk);
416 if (t)
417 return t;
418 if (sysctl_memory_failure_early_kill)
419 return tsk;
420 return NULL;
424 * Collect processes when the error hit an anonymous page.
426 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
427 struct to_kill **tkc, int force_early)
429 struct vm_area_struct *vma;
430 struct task_struct *tsk;
431 struct anon_vma *av;
432 pgoff_t pgoff;
434 av = page_lock_anon_vma_read(page);
435 if (av == NULL) /* Not actually mapped anymore */
436 return;
438 pgoff = page_to_pgoff(page);
439 read_lock(&tasklist_lock);
440 for_each_process (tsk) {
441 struct anon_vma_chain *vmac;
442 struct task_struct *t = task_early_kill(tsk, force_early);
444 if (!t)
445 continue;
446 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
447 pgoff, pgoff) {
448 vma = vmac->vma;
449 if (!page_mapped_in_vma(page, vma))
450 continue;
451 if (vma->vm_mm == t->mm)
452 add_to_kill(t, page, vma, to_kill, tkc);
455 read_unlock(&tasklist_lock);
456 page_unlock_anon_vma_read(av);
460 * Collect processes when the error hit a file mapped page.
462 static void collect_procs_file(struct page *page, struct list_head *to_kill,
463 struct to_kill **tkc, int force_early)
465 struct vm_area_struct *vma;
466 struct task_struct *tsk;
467 struct address_space *mapping = page->mapping;
469 mutex_lock(&mapping->i_mmap_mutex);
470 read_lock(&tasklist_lock);
471 for_each_process(tsk) {
472 pgoff_t pgoff = page_to_pgoff(page);
473 struct task_struct *t = task_early_kill(tsk, force_early);
475 if (!t)
476 continue;
477 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
478 pgoff) {
480 * Send early kill signal to tasks where a vma covers
481 * the page but the corrupted page is not necessarily
482 * mapped it in its pte.
483 * Assume applications who requested early kill want
484 * to be informed of all such data corruptions.
486 if (vma->vm_mm == t->mm)
487 add_to_kill(t, page, vma, to_kill, tkc);
490 read_unlock(&tasklist_lock);
491 mutex_unlock(&mapping->i_mmap_mutex);
495 * Collect the processes who have the corrupted page mapped to kill.
496 * This is done in two steps for locking reasons.
497 * First preallocate one tokill structure outside the spin locks,
498 * so that we can kill at least one process reasonably reliable.
500 static void collect_procs(struct page *page, struct list_head *tokill,
501 int force_early)
503 struct to_kill *tk;
505 if (!page->mapping)
506 return;
508 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
509 if (!tk)
510 return;
511 if (PageAnon(page))
512 collect_procs_anon(page, tokill, &tk, force_early);
513 else
514 collect_procs_file(page, tokill, &tk, force_early);
515 kfree(tk);
519 * Error handlers for various types of pages.
522 enum outcome {
523 IGNORED, /* Error: cannot be handled */
524 FAILED, /* Error: handling failed */
525 DELAYED, /* Will be handled later */
526 RECOVERED, /* Successfully recovered */
529 static const char *action_name[] = {
530 [IGNORED] = "Ignored",
531 [FAILED] = "Failed",
532 [DELAYED] = "Delayed",
533 [RECOVERED] = "Recovered",
537 * XXX: It is possible that a page is isolated from LRU cache,
538 * and then kept in swap cache or failed to remove from page cache.
539 * The page count will stop it from being freed by unpoison.
540 * Stress tests should be aware of this memory leak problem.
542 static int delete_from_lru_cache(struct page *p)
544 if (!isolate_lru_page(p)) {
546 * Clear sensible page flags, so that the buddy system won't
547 * complain when the page is unpoison-and-freed.
549 ClearPageActive(p);
550 ClearPageUnevictable(p);
552 * drop the page count elevated by isolate_lru_page()
554 page_cache_release(p);
555 return 0;
557 return -EIO;
561 * Error hit kernel page.
562 * Do nothing, try to be lucky and not touch this instead. For a few cases we
563 * could be more sophisticated.
565 static int me_kernel(struct page *p, unsigned long pfn)
567 return IGNORED;
571 * Page in unknown state. Do nothing.
573 static int me_unknown(struct page *p, unsigned long pfn)
575 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
576 return FAILED;
580 * Clean (or cleaned) page cache page.
582 static int me_pagecache_clean(struct page *p, unsigned long pfn)
584 int err;
585 int ret = FAILED;
586 struct address_space *mapping;
588 delete_from_lru_cache(p);
591 * For anonymous pages we're done the only reference left
592 * should be the one m_f() holds.
594 if (PageAnon(p))
595 return RECOVERED;
598 * Now truncate the page in the page cache. This is really
599 * more like a "temporary hole punch"
600 * Don't do this for block devices when someone else
601 * has a reference, because it could be file system metadata
602 * and that's not safe to truncate.
604 mapping = page_mapping(p);
605 if (!mapping) {
607 * Page has been teared down in the meanwhile
609 return FAILED;
613 * Truncation is a bit tricky. Enable it per file system for now.
615 * Open: to take i_mutex or not for this? Right now we don't.
617 if (mapping->a_ops->error_remove_page) {
618 err = mapping->a_ops->error_remove_page(mapping, p);
619 if (err != 0) {
620 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
621 pfn, err);
622 } else if (page_has_private(p) &&
623 !try_to_release_page(p, GFP_NOIO)) {
624 pr_info("MCE %#lx: failed to release buffers\n", pfn);
625 } else {
626 ret = RECOVERED;
628 } else {
630 * If the file system doesn't support it just invalidate
631 * This fails on dirty or anything with private pages
633 if (invalidate_inode_page(p))
634 ret = RECOVERED;
635 else
636 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
637 pfn);
639 return ret;
643 * Dirty pagecache page
644 * Issues: when the error hit a hole page the error is not properly
645 * propagated.
647 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649 struct address_space *mapping = page_mapping(p);
651 SetPageError(p);
652 /* TBD: print more information about the file. */
653 if (mapping) {
655 * IO error will be reported by write(), fsync(), etc.
656 * who check the mapping.
657 * This way the application knows that something went
658 * wrong with its dirty file data.
660 * There's one open issue:
662 * The EIO will be only reported on the next IO
663 * operation and then cleared through the IO map.
664 * Normally Linux has two mechanisms to pass IO error
665 * first through the AS_EIO flag in the address space
666 * and then through the PageError flag in the page.
667 * Since we drop pages on memory failure handling the
668 * only mechanism open to use is through AS_AIO.
670 * This has the disadvantage that it gets cleared on
671 * the first operation that returns an error, while
672 * the PageError bit is more sticky and only cleared
673 * when the page is reread or dropped. If an
674 * application assumes it will always get error on
675 * fsync, but does other operations on the fd before
676 * and the page is dropped between then the error
677 * will not be properly reported.
679 * This can already happen even without hwpoisoned
680 * pages: first on metadata IO errors (which only
681 * report through AS_EIO) or when the page is dropped
682 * at the wrong time.
684 * So right now we assume that the application DTRT on
685 * the first EIO, but we're not worse than other parts
686 * of the kernel.
688 mapping_set_error(mapping, EIO);
691 return me_pagecache_clean(p, pfn);
695 * Clean and dirty swap cache.
697 * Dirty swap cache page is tricky to handle. The page could live both in page
698 * cache and swap cache(ie. page is freshly swapped in). So it could be
699 * referenced concurrently by 2 types of PTEs:
700 * normal PTEs and swap PTEs. We try to handle them consistently by calling
701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
702 * and then
703 * - clear dirty bit to prevent IO
704 * - remove from LRU
705 * - but keep in the swap cache, so that when we return to it on
706 * a later page fault, we know the application is accessing
707 * corrupted data and shall be killed (we installed simple
708 * interception code in do_swap_page to catch it).
710 * Clean swap cache pages can be directly isolated. A later page fault will
711 * bring in the known good data from disk.
713 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715 ClearPageDirty(p);
716 /* Trigger EIO in shmem: */
717 ClearPageUptodate(p);
719 if (!delete_from_lru_cache(p))
720 return DELAYED;
721 else
722 return FAILED;
725 static int me_swapcache_clean(struct page *p, unsigned long pfn)
727 delete_from_swap_cache(p);
729 if (!delete_from_lru_cache(p))
730 return RECOVERED;
731 else
732 return FAILED;
736 * Huge pages. Needs work.
737 * Issues:
738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
739 * To narrow down kill region to one page, we need to break up pmd.
741 static int me_huge_page(struct page *p, unsigned long pfn)
743 int res = 0;
744 struct page *hpage = compound_head(p);
746 * We can safely recover from error on free or reserved (i.e.
747 * not in-use) hugepage by dequeuing it from freelist.
748 * To check whether a hugepage is in-use or not, we can't use
749 * page->lru because it can be used in other hugepage operations,
750 * such as __unmap_hugepage_range() and gather_surplus_pages().
751 * So instead we use page_mapping() and PageAnon().
752 * We assume that this function is called with page lock held,
753 * so there is no race between isolation and mapping/unmapping.
755 if (!(page_mapping(hpage) || PageAnon(hpage))) {
756 res = dequeue_hwpoisoned_huge_page(hpage);
757 if (!res)
758 return RECOVERED;
760 return DELAYED;
764 * Various page states we can handle.
766 * A page state is defined by its current page->flags bits.
767 * The table matches them in order and calls the right handler.
769 * This is quite tricky because we can access page at any time
770 * in its live cycle, so all accesses have to be extremely careful.
772 * This is not complete. More states could be added.
773 * For any missing state don't attempt recovery.
776 #define dirty (1UL << PG_dirty)
777 #define sc (1UL << PG_swapcache)
778 #define unevict (1UL << PG_unevictable)
779 #define mlock (1UL << PG_mlocked)
780 #define writeback (1UL << PG_writeback)
781 #define lru (1UL << PG_lru)
782 #define swapbacked (1UL << PG_swapbacked)
783 #define head (1UL << PG_head)
784 #define tail (1UL << PG_tail)
785 #define compound (1UL << PG_compound)
786 #define slab (1UL << PG_slab)
787 #define reserved (1UL << PG_reserved)
789 static struct page_state {
790 unsigned long mask;
791 unsigned long res;
792 char *msg;
793 int (*action)(struct page *p, unsigned long pfn);
794 } error_states[] = {
795 { reserved, reserved, "reserved kernel", me_kernel },
797 * free pages are specially detected outside this table:
798 * PG_buddy pages only make a small fraction of all free pages.
802 * Could in theory check if slab page is free or if we can drop
803 * currently unused objects without touching them. But just
804 * treat it as standard kernel for now.
806 { slab, slab, "kernel slab", me_kernel },
808 #ifdef CONFIG_PAGEFLAGS_EXTENDED
809 { head, head, "huge", me_huge_page },
810 { tail, tail, "huge", me_huge_page },
811 #else
812 { compound, compound, "huge", me_huge_page },
813 #endif
815 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
816 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
818 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
819 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
821 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
822 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
824 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
825 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
828 * Catchall entry: must be at end.
830 { 0, 0, "unknown page state", me_unknown },
833 #undef dirty
834 #undef sc
835 #undef unevict
836 #undef mlock
837 #undef writeback
838 #undef lru
839 #undef swapbacked
840 #undef head
841 #undef tail
842 #undef compound
843 #undef slab
844 #undef reserved
847 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
848 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
850 static void action_result(unsigned long pfn, char *msg, int result)
852 pr_err("MCE %#lx: %s page recovery: %s\n",
853 pfn, msg, action_name[result]);
856 static int page_action(struct page_state *ps, struct page *p,
857 unsigned long pfn)
859 int result;
860 int count;
862 result = ps->action(p, pfn);
863 action_result(pfn, ps->msg, result);
865 count = page_count(p) - 1;
866 if (ps->action == me_swapcache_dirty && result == DELAYED)
867 count--;
868 if (count != 0) {
869 printk(KERN_ERR
870 "MCE %#lx: %s page still referenced by %d users\n",
871 pfn, ps->msg, count);
872 result = FAILED;
875 /* Could do more checks here if page looks ok */
877 * Could adjust zone counters here to correct for the missing page.
880 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
884 * Do all that is necessary to remove user space mappings. Unmap
885 * the pages and send SIGBUS to the processes if the data was dirty.
887 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
888 int trapno, int flags, struct page **hpagep)
890 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
891 struct address_space *mapping;
892 LIST_HEAD(tokill);
893 int ret;
894 int kill = 1, forcekill;
895 struct page *hpage = *hpagep;
896 struct page *ppage;
899 * Here we are interested only in user-mapped pages, so skip any
900 * other types of pages.
902 if (PageReserved(p) || PageSlab(p))
903 return SWAP_SUCCESS;
904 if (!(PageLRU(hpage) || PageHuge(p)))
905 return SWAP_SUCCESS;
908 * This check implies we don't kill processes if their pages
909 * are in the swap cache early. Those are always late kills.
911 if (!page_mapped(hpage))
912 return SWAP_SUCCESS;
914 if (PageKsm(p)) {
915 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
916 return SWAP_FAIL;
919 if (PageSwapCache(p)) {
920 printk(KERN_ERR
921 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
922 ttu |= TTU_IGNORE_HWPOISON;
926 * Propagate the dirty bit from PTEs to struct page first, because we
927 * need this to decide if we should kill or just drop the page.
928 * XXX: the dirty test could be racy: set_page_dirty() may not always
929 * be called inside page lock (it's recommended but not enforced).
931 mapping = page_mapping(hpage);
932 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
933 mapping_cap_writeback_dirty(mapping)) {
934 if (page_mkclean(hpage)) {
935 SetPageDirty(hpage);
936 } else {
937 kill = 0;
938 ttu |= TTU_IGNORE_HWPOISON;
939 printk(KERN_INFO
940 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
941 pfn);
946 * ppage: poisoned page
947 * if p is regular page(4k page)
948 * ppage == real poisoned page;
949 * else p is hugetlb or THP, ppage == head page.
951 ppage = hpage;
953 if (PageTransHuge(hpage)) {
955 * Verify that this isn't a hugetlbfs head page, the check for
956 * PageAnon is just for avoid tripping a split_huge_page
957 * internal debug check, as split_huge_page refuses to deal with
958 * anything that isn't an anon page. PageAnon can't go away fro
959 * under us because we hold a refcount on the hpage, without a
960 * refcount on the hpage. split_huge_page can't be safely called
961 * in the first place, having a refcount on the tail isn't
962 * enough * to be safe.
964 if (!PageHuge(hpage) && PageAnon(hpage)) {
965 if (unlikely(split_huge_page(hpage))) {
967 * FIXME: if splitting THP is failed, it is
968 * better to stop the following operation rather
969 * than causing panic by unmapping. System might
970 * survive if the page is freed later.
972 printk(KERN_INFO
973 "MCE %#lx: failed to split THP\n", pfn);
975 BUG_ON(!PageHWPoison(p));
976 return SWAP_FAIL;
979 * We pinned the head page for hwpoison handling,
980 * now we split the thp and we are interested in
981 * the hwpoisoned raw page, so move the refcount
982 * to it. Similarly, page lock is shifted.
984 if (hpage != p) {
985 if (!(flags & MF_COUNT_INCREASED)) {
986 put_page(hpage);
987 get_page(p);
989 lock_page(p);
990 unlock_page(hpage);
991 *hpagep = p;
993 /* THP is split, so ppage should be the real poisoned page. */
994 ppage = p;
999 * First collect all the processes that have the page
1000 * mapped in dirty form. This has to be done before try_to_unmap,
1001 * because ttu takes the rmap data structures down.
1003 * Error handling: We ignore errors here because
1004 * there's nothing that can be done.
1006 if (kill)
1007 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1009 ret = try_to_unmap(ppage, ttu);
1010 if (ret != SWAP_SUCCESS)
1011 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1012 pfn, page_mapcount(ppage));
1015 * Now that the dirty bit has been propagated to the
1016 * struct page and all unmaps done we can decide if
1017 * killing is needed or not. Only kill when the page
1018 * was dirty or the process is not restartable,
1019 * otherwise the tokill list is merely
1020 * freed. When there was a problem unmapping earlier
1021 * use a more force-full uncatchable kill to prevent
1022 * any accesses to the poisoned memory.
1024 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1025 kill_procs(&tokill, forcekill, trapno,
1026 ret != SWAP_SUCCESS, p, pfn, flags);
1028 return ret;
1031 static void set_page_hwpoison_huge_page(struct page *hpage)
1033 int i;
1034 int nr_pages = 1 << compound_order(hpage);
1035 for (i = 0; i < nr_pages; i++)
1036 SetPageHWPoison(hpage + i);
1039 static void clear_page_hwpoison_huge_page(struct page *hpage)
1041 int i;
1042 int nr_pages = 1 << compound_order(hpage);
1043 for (i = 0; i < nr_pages; i++)
1044 ClearPageHWPoison(hpage + i);
1048 * memory_failure - Handle memory failure of a page.
1049 * @pfn: Page Number of the corrupted page
1050 * @trapno: Trap number reported in the signal to user space.
1051 * @flags: fine tune action taken
1053 * This function is called by the low level machine check code
1054 * of an architecture when it detects hardware memory corruption
1055 * of a page. It tries its best to recover, which includes
1056 * dropping pages, killing processes etc.
1058 * The function is primarily of use for corruptions that
1059 * happen outside the current execution context (e.g. when
1060 * detected by a background scrubber)
1062 * Must run in process context (e.g. a work queue) with interrupts
1063 * enabled and no spinlocks hold.
1065 int memory_failure(unsigned long pfn, int trapno, int flags)
1067 struct page_state *ps;
1068 struct page *p;
1069 struct page *hpage;
1070 int res;
1071 unsigned int nr_pages;
1072 unsigned long page_flags;
1074 if (!sysctl_memory_failure_recovery)
1075 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1077 if (!pfn_valid(pfn)) {
1078 printk(KERN_ERR
1079 "MCE %#lx: memory outside kernel control\n",
1080 pfn);
1081 return -ENXIO;
1084 p = pfn_to_page(pfn);
1085 hpage = compound_head(p);
1086 if (TestSetPageHWPoison(p)) {
1087 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1088 return 0;
1092 * Currently errors on hugetlbfs pages are measured in hugepage units,
1093 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1094 * transparent hugepages, they are supposed to be split and error
1095 * measurement is done in normal page units. So nr_pages should be one
1096 * in this case.
1098 if (PageHuge(p))
1099 nr_pages = 1 << compound_order(hpage);
1100 else /* normal page or thp */
1101 nr_pages = 1;
1102 atomic_long_add(nr_pages, &num_poisoned_pages);
1105 * We need/can do nothing about count=0 pages.
1106 * 1) it's a free page, and therefore in safe hand:
1107 * prep_new_page() will be the gate keeper.
1108 * 2) it's a free hugepage, which is also safe:
1109 * an affected hugepage will be dequeued from hugepage freelist,
1110 * so there's no concern about reusing it ever after.
1111 * 3) it's part of a non-compound high order page.
1112 * Implies some kernel user: cannot stop them from
1113 * R/W the page; let's pray that the page has been
1114 * used and will be freed some time later.
1115 * In fact it's dangerous to directly bump up page count from 0,
1116 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1118 if (!(flags & MF_COUNT_INCREASED) &&
1119 !get_page_unless_zero(hpage)) {
1120 if (is_free_buddy_page(p)) {
1121 action_result(pfn, "free buddy", DELAYED);
1122 return 0;
1123 } else if (PageHuge(hpage)) {
1125 * Check "filter hit" and "race with other subpage."
1127 lock_page(hpage);
1128 if (PageHWPoison(hpage)) {
1129 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1130 || (p != hpage && TestSetPageHWPoison(hpage))) {
1131 atomic_long_sub(nr_pages, &num_poisoned_pages);
1132 unlock_page(hpage);
1133 return 0;
1136 set_page_hwpoison_huge_page(hpage);
1137 res = dequeue_hwpoisoned_huge_page(hpage);
1138 action_result(pfn, "free huge",
1139 res ? IGNORED : DELAYED);
1140 unlock_page(hpage);
1141 return res;
1142 } else {
1143 action_result(pfn, "high order kernel", IGNORED);
1144 return -EBUSY;
1149 * We ignore non-LRU pages for good reasons.
1150 * - PG_locked is only well defined for LRU pages and a few others
1151 * - to avoid races with __set_page_locked()
1152 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1153 * The check (unnecessarily) ignores LRU pages being isolated and
1154 * walked by the page reclaim code, however that's not a big loss.
1156 if (!PageHuge(p) && !PageTransTail(p)) {
1157 if (!PageLRU(p))
1158 shake_page(p, 0);
1159 if (!PageLRU(p)) {
1161 * shake_page could have turned it free.
1163 if (is_free_buddy_page(p)) {
1164 if (flags & MF_COUNT_INCREASED)
1165 action_result(pfn, "free buddy", DELAYED);
1166 else
1167 action_result(pfn, "free buddy, 2nd try", DELAYED);
1168 return 0;
1173 lock_page(hpage);
1176 * The page could have changed compound pages during the locking.
1177 * If this happens just bail out.
1179 if (compound_head(p) != hpage) {
1180 action_result(pfn, "different compound page after locking", IGNORED);
1181 res = -EBUSY;
1182 goto out;
1186 * We use page flags to determine what action should be taken, but
1187 * the flags can be modified by the error containment action. One
1188 * example is an mlocked page, where PG_mlocked is cleared by
1189 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1190 * correctly, we save a copy of the page flags at this time.
1192 page_flags = p->flags;
1195 * unpoison always clear PG_hwpoison inside page lock
1197 if (!PageHWPoison(p)) {
1198 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1199 atomic_long_sub(nr_pages, &num_poisoned_pages);
1200 put_page(hpage);
1201 res = 0;
1202 goto out;
1204 if (hwpoison_filter(p)) {
1205 if (TestClearPageHWPoison(p))
1206 atomic_long_sub(nr_pages, &num_poisoned_pages);
1207 unlock_page(hpage);
1208 put_page(hpage);
1209 return 0;
1212 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1213 goto identify_page_state;
1216 * For error on the tail page, we should set PG_hwpoison
1217 * on the head page to show that the hugepage is hwpoisoned
1219 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1220 action_result(pfn, "hugepage already hardware poisoned",
1221 IGNORED);
1222 unlock_page(hpage);
1223 put_page(hpage);
1224 return 0;
1227 * Set PG_hwpoison on all pages in an error hugepage,
1228 * because containment is done in hugepage unit for now.
1229 * Since we have done TestSetPageHWPoison() for the head page with
1230 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1232 if (PageHuge(p))
1233 set_page_hwpoison_huge_page(hpage);
1236 * It's very difficult to mess with pages currently under IO
1237 * and in many cases impossible, so we just avoid it here.
1239 wait_on_page_writeback(p);
1242 * Now take care of user space mappings.
1243 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1245 * When the raw error page is thp tail page, hpage points to the raw
1246 * page after thp split.
1248 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1249 != SWAP_SUCCESS) {
1250 action_result(pfn, "unmapping failed", IGNORED);
1251 res = -EBUSY;
1252 goto out;
1256 * Torn down by someone else?
1258 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1259 action_result(pfn, "already truncated LRU", IGNORED);
1260 res = -EBUSY;
1261 goto out;
1264 identify_page_state:
1265 res = -EBUSY;
1267 * The first check uses the current page flags which may not have any
1268 * relevant information. The second check with the saved page flagss is
1269 * carried out only if the first check can't determine the page status.
1271 for (ps = error_states;; ps++)
1272 if ((p->flags & ps->mask) == ps->res)
1273 break;
1275 page_flags |= (p->flags & (1UL << PG_dirty));
1277 if (!ps->mask)
1278 for (ps = error_states;; ps++)
1279 if ((page_flags & ps->mask) == ps->res)
1280 break;
1281 res = page_action(ps, p, pfn);
1282 out:
1283 unlock_page(hpage);
1284 return res;
1286 EXPORT_SYMBOL_GPL(memory_failure);
1288 #define MEMORY_FAILURE_FIFO_ORDER 4
1289 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1291 struct memory_failure_entry {
1292 unsigned long pfn;
1293 int trapno;
1294 int flags;
1297 struct memory_failure_cpu {
1298 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1299 MEMORY_FAILURE_FIFO_SIZE);
1300 spinlock_t lock;
1301 struct work_struct work;
1304 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1307 * memory_failure_queue - Schedule handling memory failure of a page.
1308 * @pfn: Page Number of the corrupted page
1309 * @trapno: Trap number reported in the signal to user space.
1310 * @flags: Flags for memory failure handling
1312 * This function is called by the low level hardware error handler
1313 * when it detects hardware memory corruption of a page. It schedules
1314 * the recovering of error page, including dropping pages, killing
1315 * processes etc.
1317 * The function is primarily of use for corruptions that
1318 * happen outside the current execution context (e.g. when
1319 * detected by a background scrubber)
1321 * Can run in IRQ context.
1323 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1325 struct memory_failure_cpu *mf_cpu;
1326 unsigned long proc_flags;
1327 struct memory_failure_entry entry = {
1328 .pfn = pfn,
1329 .trapno = trapno,
1330 .flags = flags,
1333 mf_cpu = &get_cpu_var(memory_failure_cpu);
1334 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1335 if (kfifo_put(&mf_cpu->fifo, entry))
1336 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1337 else
1338 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1339 pfn);
1340 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341 put_cpu_var(memory_failure_cpu);
1343 EXPORT_SYMBOL_GPL(memory_failure_queue);
1345 static void memory_failure_work_func(struct work_struct *work)
1347 struct memory_failure_cpu *mf_cpu;
1348 struct memory_failure_entry entry = { 0, };
1349 unsigned long proc_flags;
1350 int gotten;
1352 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1353 for (;;) {
1354 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1355 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1356 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1357 if (!gotten)
1358 break;
1359 if (entry.flags & MF_SOFT_OFFLINE)
1360 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1361 else
1362 memory_failure(entry.pfn, entry.trapno, entry.flags);
1366 static int __init memory_failure_init(void)
1368 struct memory_failure_cpu *mf_cpu;
1369 int cpu;
1371 for_each_possible_cpu(cpu) {
1372 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1373 spin_lock_init(&mf_cpu->lock);
1374 INIT_KFIFO(mf_cpu->fifo);
1375 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1378 return 0;
1380 core_initcall(memory_failure_init);
1383 * unpoison_memory - Unpoison a previously poisoned page
1384 * @pfn: Page number of the to be unpoisoned page
1386 * Software-unpoison a page that has been poisoned by
1387 * memory_failure() earlier.
1389 * This is only done on the software-level, so it only works
1390 * for linux injected failures, not real hardware failures
1392 * Returns 0 for success, otherwise -errno.
1394 int unpoison_memory(unsigned long pfn)
1396 struct page *page;
1397 struct page *p;
1398 int freeit = 0;
1399 unsigned int nr_pages;
1401 if (!pfn_valid(pfn))
1402 return -ENXIO;
1404 p = pfn_to_page(pfn);
1405 page = compound_head(p);
1407 if (!PageHWPoison(p)) {
1408 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1409 return 0;
1413 * unpoison_memory() can encounter thp only when the thp is being
1414 * worked by memory_failure() and the page lock is not held yet.
1415 * In such case, we yield to memory_failure() and make unpoison fail.
1417 if (!PageHuge(page) && PageTransHuge(page)) {
1418 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1419 return 0;
1422 nr_pages = 1 << compound_order(page);
1424 if (!get_page_unless_zero(page)) {
1426 * Since HWPoisoned hugepage should have non-zero refcount,
1427 * race between memory failure and unpoison seems to happen.
1428 * In such case unpoison fails and memory failure runs
1429 * to the end.
1431 if (PageHuge(page)) {
1432 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1433 return 0;
1435 if (TestClearPageHWPoison(p))
1436 atomic_long_dec(&num_poisoned_pages);
1437 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1438 return 0;
1441 lock_page(page);
1443 * This test is racy because PG_hwpoison is set outside of page lock.
1444 * That's acceptable because that won't trigger kernel panic. Instead,
1445 * the PG_hwpoison page will be caught and isolated on the entrance to
1446 * the free buddy page pool.
1448 if (TestClearPageHWPoison(page)) {
1449 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1450 atomic_long_sub(nr_pages, &num_poisoned_pages);
1451 freeit = 1;
1452 if (PageHuge(page))
1453 clear_page_hwpoison_huge_page(page);
1455 unlock_page(page);
1457 put_page(page);
1458 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1459 put_page(page);
1461 return 0;
1463 EXPORT_SYMBOL(unpoison_memory);
1465 static struct page *new_page(struct page *p, unsigned long private, int **x)
1467 int nid = page_to_nid(p);
1468 if (PageHuge(p))
1469 return alloc_huge_page_node(page_hstate(compound_head(p)),
1470 nid);
1471 else
1472 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1476 * Safely get reference count of an arbitrary page.
1477 * Returns 0 for a free page, -EIO for a zero refcount page
1478 * that is not free, and 1 for any other page type.
1479 * For 1 the page is returned with increased page count, otherwise not.
1481 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1483 int ret;
1485 if (flags & MF_COUNT_INCREASED)
1486 return 1;
1489 * When the target page is a free hugepage, just remove it
1490 * from free hugepage list.
1492 if (!get_page_unless_zero(compound_head(p))) {
1493 if (PageHuge(p)) {
1494 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1495 ret = 0;
1496 } else if (is_free_buddy_page(p)) {
1497 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1498 ret = 0;
1499 } else {
1500 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1501 __func__, pfn, p->flags);
1502 ret = -EIO;
1504 } else {
1505 /* Not a free page */
1506 ret = 1;
1508 return ret;
1511 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1513 int ret = __get_any_page(page, pfn, flags);
1515 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1517 * Try to free it.
1519 put_page(page);
1520 shake_page(page, 1);
1523 * Did it turn free?
1525 ret = __get_any_page(page, pfn, 0);
1526 if (!PageLRU(page)) {
1527 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1528 pfn, page->flags);
1529 return -EIO;
1532 return ret;
1535 static int soft_offline_huge_page(struct page *page, int flags)
1537 int ret;
1538 unsigned long pfn = page_to_pfn(page);
1539 struct page *hpage = compound_head(page);
1540 LIST_HEAD(pagelist);
1543 * This double-check of PageHWPoison is to avoid the race with
1544 * memory_failure(). See also comment in __soft_offline_page().
1546 lock_page(hpage);
1547 if (PageHWPoison(hpage)) {
1548 unlock_page(hpage);
1549 put_page(hpage);
1550 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1551 return -EBUSY;
1553 unlock_page(hpage);
1555 /* Keep page count to indicate a given hugepage is isolated. */
1556 list_move(&hpage->lru, &pagelist);
1557 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1558 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1559 if (ret) {
1560 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1561 pfn, ret, page->flags);
1563 * We know that soft_offline_huge_page() tries to migrate
1564 * only one hugepage pointed to by hpage, so we need not
1565 * run through the pagelist here.
1567 putback_active_hugepage(hpage);
1568 if (ret > 0)
1569 ret = -EIO;
1570 } else {
1571 /* overcommit hugetlb page will be freed to buddy */
1572 if (PageHuge(page)) {
1573 set_page_hwpoison_huge_page(hpage);
1574 dequeue_hwpoisoned_huge_page(hpage);
1575 atomic_long_add(1 << compound_order(hpage),
1576 &num_poisoned_pages);
1577 } else {
1578 SetPageHWPoison(page);
1579 atomic_long_inc(&num_poisoned_pages);
1582 return ret;
1585 static int __soft_offline_page(struct page *page, int flags)
1587 int ret;
1588 unsigned long pfn = page_to_pfn(page);
1591 * Check PageHWPoison again inside page lock because PageHWPoison
1592 * is set by memory_failure() outside page lock. Note that
1593 * memory_failure() also double-checks PageHWPoison inside page lock,
1594 * so there's no race between soft_offline_page() and memory_failure().
1596 lock_page(page);
1597 wait_on_page_writeback(page);
1598 if (PageHWPoison(page)) {
1599 unlock_page(page);
1600 put_page(page);
1601 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1602 return -EBUSY;
1605 * Try to invalidate first. This should work for
1606 * non dirty unmapped page cache pages.
1608 ret = invalidate_inode_page(page);
1609 unlock_page(page);
1611 * RED-PEN would be better to keep it isolated here, but we
1612 * would need to fix isolation locking first.
1614 if (ret == 1) {
1615 put_page(page);
1616 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1617 SetPageHWPoison(page);
1618 atomic_long_inc(&num_poisoned_pages);
1619 return 0;
1623 * Simple invalidation didn't work.
1624 * Try to migrate to a new page instead. migrate.c
1625 * handles a large number of cases for us.
1627 ret = isolate_lru_page(page);
1629 * Drop page reference which is came from get_any_page()
1630 * successful isolate_lru_page() already took another one.
1632 put_page(page);
1633 if (!ret) {
1634 LIST_HEAD(pagelist);
1635 inc_zone_page_state(page, NR_ISOLATED_ANON +
1636 page_is_file_cache(page));
1637 list_add(&page->lru, &pagelist);
1638 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1639 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1640 if (ret) {
1641 if (!list_empty(&pagelist)) {
1642 list_del(&page->lru);
1643 dec_zone_page_state(page, NR_ISOLATED_ANON +
1644 page_is_file_cache(page));
1645 putback_lru_page(page);
1648 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1649 pfn, ret, page->flags);
1650 if (ret > 0)
1651 ret = -EIO;
1652 } else {
1654 * After page migration succeeds, the source page can
1655 * be trapped in pagevec and actual freeing is delayed.
1656 * Freeing code works differently based on PG_hwpoison,
1657 * so there's a race. We need to make sure that the
1658 * source page should be freed back to buddy before
1659 * setting PG_hwpoison.
1661 if (!is_free_buddy_page(page))
1662 lru_add_drain_all();
1663 if (!is_free_buddy_page(page))
1664 drain_all_pages();
1665 SetPageHWPoison(page);
1666 if (!is_free_buddy_page(page))
1667 pr_info("soft offline: %#lx: page leaked\n",
1668 pfn);
1669 atomic_long_inc(&num_poisoned_pages);
1671 } else {
1672 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1673 pfn, ret, page_count(page), page->flags);
1675 return ret;
1679 * soft_offline_page - Soft offline a page.
1680 * @page: page to offline
1681 * @flags: flags. Same as memory_failure().
1683 * Returns 0 on success, otherwise negated errno.
1685 * Soft offline a page, by migration or invalidation,
1686 * without killing anything. This is for the case when
1687 * a page is not corrupted yet (so it's still valid to access),
1688 * but has had a number of corrected errors and is better taken
1689 * out.
1691 * The actual policy on when to do that is maintained by
1692 * user space.
1694 * This should never impact any application or cause data loss,
1695 * however it might take some time.
1697 * This is not a 100% solution for all memory, but tries to be
1698 * ``good enough'' for the majority of memory.
1700 int soft_offline_page(struct page *page, int flags)
1702 int ret;
1703 unsigned long pfn = page_to_pfn(page);
1704 struct page *hpage = compound_head(page);
1706 if (PageHWPoison(page)) {
1707 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1708 return -EBUSY;
1710 if (!PageHuge(page) && PageTransHuge(hpage)) {
1711 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1712 pr_info("soft offline: %#lx: failed to split THP\n",
1713 pfn);
1714 return -EBUSY;
1718 get_online_mems();
1721 * Isolate the page, so that it doesn't get reallocated if it
1722 * was free. This flag should be kept set until the source page
1723 * is freed and PG_hwpoison on it is set.
1725 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1726 set_migratetype_isolate(page, true);
1728 ret = get_any_page(page, pfn, flags);
1729 put_online_mems();
1730 if (ret > 0) { /* for in-use pages */
1731 if (PageHuge(page))
1732 ret = soft_offline_huge_page(page, flags);
1733 else
1734 ret = __soft_offline_page(page, flags);
1735 } else if (ret == 0) { /* for free pages */
1736 if (PageHuge(page)) {
1737 set_page_hwpoison_huge_page(hpage);
1738 dequeue_hwpoisoned_huge_page(hpage);
1739 atomic_long_add(1 << compound_order(hpage),
1740 &num_poisoned_pages);
1741 } else {
1742 SetPageHWPoison(page);
1743 atomic_long_inc(&num_poisoned_pages);
1746 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1747 return ret;