Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blob132c118d12e153cfb72ac12a3402174922ec36c8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
8 /*
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
22 * MUSTDO:
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
26 * TODO v4:
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
30 * - quota
31 * - reservation for superuser
33 * TODO v3:
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
38 * - error handling
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
61 * represented as:
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
75 * pa_free.
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
97 * inode as:
99 * { page }
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * the smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
130 * The regular allocator (using the buddy cache) supports a few tunables.
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
150 * checked.
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
159 * mballoc operates on the following data:
160 * - on-disk bitmap
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
164 * there are two types of preallocations:
165 * - inode
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
174 * - locality group
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215 * block
217 * so, now we're building a concurrency table:
218 * - init buddy vs.
219 * - new PA
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
222 * - use inode PA
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
225 * - discard inode PA
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - new PA vs.
232 * - use inode PA
233 * i_data_sem serializes them
234 * - discard inode PA
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
240 * - use inode PA
241 * - use inode PA
242 * i_data_sem or another mutex should serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
264 * Logic in few words:
266 * - allocation:
267 * load group
268 * find blocks
269 * mark bits in on-disk bitmap
270 * release group
272 * - use preallocation:
273 * find proper PA (per-inode or group)
274 * load group
275 * mark bits in on-disk bitmap
276 * release group
277 * release PA
279 * - free:
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
284 * - discard preallocations in group:
285 * mark PAs deleted
286 * move them onto local list
287 * load on-disk bitmap
288 * load group
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
292 * - discard inode's preallocations:
296 * Locking rules
298 * Locks:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
301 * - per-pa lock (pa)
303 * Paths:
304 * - new pa
305 * object
306 * group
308 * - find and use pa:
309 * pa
311 * - release consumed pa:
312 * pa
313 * group
314 * object
316 * - generate in-core bitmap:
317 * group
318 * pa
320 * - discard all for given object (inode, locality group):
321 * object
322 * pa
323 * group
325 * - discard all for given group:
326 * group
327 * pa
328 * group
329 * object
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
375 int __cpu;
376 u64 __seq = 0;
378 for_each_possible_cpu(__cpu)
379 __seq += per_cpu(discard_pa_seq, __cpu);
380 return __seq;
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
385 #if BITS_PER_LONG == 64
386 *bit += ((unsigned long) addr & 7UL) << 3;
387 addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit += ((unsigned long) addr & 3UL) << 3;
390 addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 return addr;
397 static inline int mb_test_bit(int bit, void *addr)
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 return ext4_test_bit(bit, addr);
407 static inline void mb_set_bit(int bit, void *addr)
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 ext4_set_bit(bit, addr);
413 static inline void mb_clear_bit(int bit, void *addr)
415 addr = mb_correct_addr_and_bit(&bit, addr);
416 ext4_clear_bit(bit, addr);
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
421 addr = mb_correct_addr_and_bit(&bit, addr);
422 return ext4_test_and_clear_bit(bit, addr);
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
427 int fix = 0, ret, tmpmax;
428 addr = mb_correct_addr_and_bit(&fix, addr);
429 tmpmax = max + fix;
430 start += fix;
432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 if (ret > max)
434 return max;
435 return ret;
438 static inline int mb_find_next_bit(void *addr, int max, int start)
440 int fix = 0, ret, tmpmax;
441 addr = mb_correct_addr_and_bit(&fix, addr);
442 tmpmax = max + fix;
443 start += fix;
445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 if (ret > max)
447 return max;
448 return ret;
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
453 char *bb;
455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 BUG_ON(max == NULL);
458 if (order > e4b->bd_blkbits + 1) {
459 *max = 0;
460 return NULL;
463 /* at order 0 we see each particular block */
464 if (order == 0) {
465 *max = 1 << (e4b->bd_blkbits + 3);
466 return e4b->bd_bitmap;
469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
472 return bb;
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 int first, int count)
479 int i;
480 struct super_block *sb = e4b->bd_sb;
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 ext4_fsblk_t blocknr;
489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 ext4_grp_locked_error(sb, e4b->bd_group,
492 inode ? inode->i_ino : 0,
493 blocknr,
494 "freeing block already freed "
495 "(bit %u)",
496 first + i);
497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
506 int i;
508 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 return;
510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 for (i = 0; i < count; i++) {
512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 return;
521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 unsigned char *b1, *b2;
523 int i;
524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 b2 = (unsigned char *) bitmap;
526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 if (b1[i] != b2[i]) {
528 ext4_msg(e4b->bd_sb, KERN_ERR,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
531 "on disk/prealloc",
532 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 BUG();
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 struct ext4_group_info *grp, ext4_group_t group)
542 struct buffer_head *bh;
544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 if (!grp->bb_bitmap)
546 return;
548 bh = ext4_read_block_bitmap(sb, group);
549 if (IS_ERR_OR_NULL(bh)) {
550 kfree(grp->bb_bitmap);
551 grp->bb_bitmap = NULL;
552 return;
555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 put_bh(bh);
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
561 kfree(grp->bb_bitmap);
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 struct ext4_buddy *e4b, int first, int count)
568 return;
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 int first, int count)
573 return;
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
577 return;
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 struct ext4_group_info *grp, ext4_group_t group)
583 return;
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
588 return;
590 #endif
592 #ifdef AGGRESSIVE_CHECK
594 #define MB_CHECK_ASSERT(assert) \
595 do { \
596 if (!(assert)) { \
597 printk(KERN_EMERG \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
600 BUG(); \
602 } while (0)
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 const char *function, int line)
607 struct super_block *sb = e4b->bd_sb;
608 int order = e4b->bd_blkbits + 1;
609 int max;
610 int max2;
611 int i;
612 int j;
613 int k;
614 int count;
615 struct ext4_group_info *grp;
616 int fragments = 0;
617 int fstart;
618 struct list_head *cur;
619 void *buddy;
620 void *buddy2;
623 static int mb_check_counter;
624 if (mb_check_counter++ % 100 != 0)
625 return 0;
628 while (order > 1) {
629 buddy = mb_find_buddy(e4b, order, &max);
630 MB_CHECK_ASSERT(buddy);
631 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
632 MB_CHECK_ASSERT(buddy2);
633 MB_CHECK_ASSERT(buddy != buddy2);
634 MB_CHECK_ASSERT(max * 2 == max2);
636 count = 0;
637 for (i = 0; i < max; i++) {
639 if (mb_test_bit(i, buddy)) {
640 /* only single bit in buddy2 may be 1 */
641 if (!mb_test_bit(i << 1, buddy2)) {
642 MB_CHECK_ASSERT(
643 mb_test_bit((i<<1)+1, buddy2));
644 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
645 MB_CHECK_ASSERT(
646 mb_test_bit(i << 1, buddy2));
648 continue;
651 /* both bits in buddy2 must be 1 */
652 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
653 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
655 for (j = 0; j < (1 << order); j++) {
656 k = (i * (1 << order)) + j;
657 MB_CHECK_ASSERT(
658 !mb_test_bit(k, e4b->bd_bitmap));
660 count++;
662 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
663 order--;
666 fstart = -1;
667 buddy = mb_find_buddy(e4b, 0, &max);
668 for (i = 0; i < max; i++) {
669 if (!mb_test_bit(i, buddy)) {
670 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
671 if (fstart == -1) {
672 fragments++;
673 fstart = i;
675 continue;
677 fstart = -1;
678 /* check used bits only */
679 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
680 buddy2 = mb_find_buddy(e4b, j, &max2);
681 k = i >> j;
682 MB_CHECK_ASSERT(k < max2);
683 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
686 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
687 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
689 grp = ext4_get_group_info(sb, e4b->bd_group);
690 list_for_each(cur, &grp->bb_prealloc_list) {
691 ext4_group_t groupnr;
692 struct ext4_prealloc_space *pa;
693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
695 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
696 for (i = 0; i < pa->pa_len; i++)
697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
699 return 0;
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
703 __FILE__, __func__, __LINE__)
704 #else
705 #define mb_check_buddy(e4b)
706 #endif
709 * Divide blocks started from @first with length @len into
710 * smaller chunks with power of 2 blocks.
711 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712 * then increase bb_counters[] for corresponded chunk size.
714 static void ext4_mb_mark_free_simple(struct super_block *sb,
715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
716 struct ext4_group_info *grp)
718 struct ext4_sb_info *sbi = EXT4_SB(sb);
719 ext4_grpblk_t min;
720 ext4_grpblk_t max;
721 ext4_grpblk_t chunk;
722 unsigned int border;
724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
726 border = 2 << sb->s_blocksize_bits;
728 while (len > 0) {
729 /* find how many blocks can be covered since this position */
730 max = ffs(first | border) - 1;
732 /* find how many blocks of power 2 we need to mark */
733 min = fls(len) - 1;
735 if (max < min)
736 min = max;
737 chunk = 1 << min;
739 /* mark multiblock chunks only */
740 grp->bb_counters[min]++;
741 if (min > 0)
742 mb_clear_bit(first >> min,
743 buddy + sbi->s_mb_offsets[min]);
745 len -= chunk;
746 first += chunk;
751 * Cache the order of the largest free extent we have available in this block
752 * group.
754 static void
755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
757 int i;
758 int bits;
760 grp->bb_largest_free_order = -1; /* uninit */
762 bits = sb->s_blocksize_bits + 1;
763 for (i = bits; i >= 0; i--) {
764 if (grp->bb_counters[i] > 0) {
765 grp->bb_largest_free_order = i;
766 break;
771 static noinline_for_stack
772 void ext4_mb_generate_buddy(struct super_block *sb,
773 void *buddy, void *bitmap, ext4_group_t group)
775 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
776 struct ext4_sb_info *sbi = EXT4_SB(sb);
777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
778 ext4_grpblk_t i = 0;
779 ext4_grpblk_t first;
780 ext4_grpblk_t len;
781 unsigned free = 0;
782 unsigned fragments = 0;
783 unsigned long long period = get_cycles();
785 /* initialize buddy from bitmap which is aggregation
786 * of on-disk bitmap and preallocations */
787 i = mb_find_next_zero_bit(bitmap, max, 0);
788 grp->bb_first_free = i;
789 while (i < max) {
790 fragments++;
791 first = i;
792 i = mb_find_next_bit(bitmap, max, i);
793 len = i - first;
794 free += len;
795 if (len > 1)
796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
797 else
798 grp->bb_counters[0]++;
799 if (i < max)
800 i = mb_find_next_zero_bit(bitmap, max, i);
802 grp->bb_fragments = fragments;
804 if (free != grp->bb_free) {
805 ext4_grp_locked_error(sb, group, 0, 0,
806 "block bitmap and bg descriptor "
807 "inconsistent: %u vs %u free clusters",
808 free, grp->bb_free);
810 * If we intend to continue, we consider group descriptor
811 * corrupt and update bb_free using bitmap value
813 grp->bb_free = free;
814 ext4_mark_group_bitmap_corrupted(sb, group,
815 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
817 mb_set_largest_free_order(sb, grp);
819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
821 period = get_cycles() - period;
822 spin_lock(&sbi->s_bal_lock);
823 sbi->s_mb_buddies_generated++;
824 sbi->s_mb_generation_time += period;
825 spin_unlock(&sbi->s_bal_lock);
828 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
830 int count;
831 int order = 1;
832 void *buddy;
834 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
835 ext4_set_bits(buddy, 0, count);
837 e4b->bd_info->bb_fragments = 0;
838 memset(e4b->bd_info->bb_counters, 0,
839 sizeof(*e4b->bd_info->bb_counters) *
840 (e4b->bd_sb->s_blocksize_bits + 2));
842 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
843 e4b->bd_bitmap, e4b->bd_group);
846 /* The buddy information is attached the buddy cache inode
847 * for convenience. The information regarding each group
848 * is loaded via ext4_mb_load_buddy. The information involve
849 * block bitmap and buddy information. The information are
850 * stored in the inode as
852 * { page }
853 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
856 * one block each for bitmap and buddy information.
857 * So for each group we take up 2 blocks. A page can
858 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
859 * So it can have information regarding groups_per_page which
860 * is blocks_per_page/2
862 * Locking note: This routine takes the block group lock of all groups
863 * for this page; do not hold this lock when calling this routine!
866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
868 ext4_group_t ngroups;
869 int blocksize;
870 int blocks_per_page;
871 int groups_per_page;
872 int err = 0;
873 int i;
874 ext4_group_t first_group, group;
875 int first_block;
876 struct super_block *sb;
877 struct buffer_head *bhs;
878 struct buffer_head **bh = NULL;
879 struct inode *inode;
880 char *data;
881 char *bitmap;
882 struct ext4_group_info *grinfo;
884 inode = page->mapping->host;
885 sb = inode->i_sb;
886 ngroups = ext4_get_groups_count(sb);
887 blocksize = i_blocksize(inode);
888 blocks_per_page = PAGE_SIZE / blocksize;
890 mb_debug(sb, "init page %lu\n", page->index);
892 groups_per_page = blocks_per_page >> 1;
893 if (groups_per_page == 0)
894 groups_per_page = 1;
896 /* allocate buffer_heads to read bitmaps */
897 if (groups_per_page > 1) {
898 i = sizeof(struct buffer_head *) * groups_per_page;
899 bh = kzalloc(i, gfp);
900 if (bh == NULL) {
901 err = -ENOMEM;
902 goto out;
904 } else
905 bh = &bhs;
907 first_group = page->index * blocks_per_page / 2;
909 /* read all groups the page covers into the cache */
910 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
911 if (group >= ngroups)
912 break;
914 grinfo = ext4_get_group_info(sb, group);
916 * If page is uptodate then we came here after online resize
917 * which added some new uninitialized group info structs, so
918 * we must skip all initialized uptodate buddies on the page,
919 * which may be currently in use by an allocating task.
921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
922 bh[i] = NULL;
923 continue;
925 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
926 if (IS_ERR(bh[i])) {
927 err = PTR_ERR(bh[i]);
928 bh[i] = NULL;
929 goto out;
931 mb_debug(sb, "read bitmap for group %u\n", group);
934 /* wait for I/O completion */
935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
936 int err2;
938 if (!bh[i])
939 continue;
940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
941 if (!err)
942 err = err2;
945 first_block = page->index * blocks_per_page;
946 for (i = 0; i < blocks_per_page; i++) {
947 group = (first_block + i) >> 1;
948 if (group >= ngroups)
949 break;
951 if (!bh[group - first_group])
952 /* skip initialized uptodate buddy */
953 continue;
955 if (!buffer_verified(bh[group - first_group]))
956 /* Skip faulty bitmaps */
957 continue;
958 err = 0;
961 * data carry information regarding this
962 * particular group in the format specified
963 * above
966 data = page_address(page) + (i * blocksize);
967 bitmap = bh[group - first_group]->b_data;
970 * We place the buddy block and bitmap block
971 * close together
973 if ((first_block + i) & 1) {
974 /* this is block of buddy */
975 BUG_ON(incore == NULL);
976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
977 group, page->index, i * blocksize);
978 trace_ext4_mb_buddy_bitmap_load(sb, group);
979 grinfo = ext4_get_group_info(sb, group);
980 grinfo->bb_fragments = 0;
981 memset(grinfo->bb_counters, 0,
982 sizeof(*grinfo->bb_counters) *
983 (sb->s_blocksize_bits+2));
985 * incore got set to the group block bitmap below
987 ext4_lock_group(sb, group);
988 /* init the buddy */
989 memset(data, 0xff, blocksize);
990 ext4_mb_generate_buddy(sb, data, incore, group);
991 ext4_unlock_group(sb, group);
992 incore = NULL;
993 } else {
994 /* this is block of bitmap */
995 BUG_ON(incore != NULL);
996 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
997 group, page->index, i * blocksize);
998 trace_ext4_mb_bitmap_load(sb, group);
1000 /* see comments in ext4_mb_put_pa() */
1001 ext4_lock_group(sb, group);
1002 memcpy(data, bitmap, blocksize);
1004 /* mark all preallocated blks used in in-core bitmap */
1005 ext4_mb_generate_from_pa(sb, data, group);
1006 ext4_mb_generate_from_freelist(sb, data, group);
1007 ext4_unlock_group(sb, group);
1009 /* set incore so that the buddy information can be
1010 * generated using this
1012 incore = data;
1015 SetPageUptodate(page);
1017 out:
1018 if (bh) {
1019 for (i = 0; i < groups_per_page; i++)
1020 brelse(bh[i]);
1021 if (bh != &bhs)
1022 kfree(bh);
1024 return err;
1028 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1029 * on the same buddy page doesn't happen whild holding the buddy page lock.
1030 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1031 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1034 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1036 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1037 int block, pnum, poff;
1038 int blocks_per_page;
1039 struct page *page;
1041 e4b->bd_buddy_page = NULL;
1042 e4b->bd_bitmap_page = NULL;
1044 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1046 * the buddy cache inode stores the block bitmap
1047 * and buddy information in consecutive blocks.
1048 * So for each group we need two blocks.
1050 block = group * 2;
1051 pnum = block / blocks_per_page;
1052 poff = block % blocks_per_page;
1053 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1054 if (!page)
1055 return -ENOMEM;
1056 BUG_ON(page->mapping != inode->i_mapping);
1057 e4b->bd_bitmap_page = page;
1058 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1060 if (blocks_per_page >= 2) {
1061 /* buddy and bitmap are on the same page */
1062 return 0;
1065 block++;
1066 pnum = block / blocks_per_page;
1067 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1068 if (!page)
1069 return -ENOMEM;
1070 BUG_ON(page->mapping != inode->i_mapping);
1071 e4b->bd_buddy_page = page;
1072 return 0;
1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1077 if (e4b->bd_bitmap_page) {
1078 unlock_page(e4b->bd_bitmap_page);
1079 put_page(e4b->bd_bitmap_page);
1081 if (e4b->bd_buddy_page) {
1082 unlock_page(e4b->bd_buddy_page);
1083 put_page(e4b->bd_buddy_page);
1088 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1089 * block group lock of all groups for this page; do not hold the BG lock when
1090 * calling this routine!
1092 static noinline_for_stack
1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1096 struct ext4_group_info *this_grp;
1097 struct ext4_buddy e4b;
1098 struct page *page;
1099 int ret = 0;
1101 might_sleep();
1102 mb_debug(sb, "init group %u\n", group);
1103 this_grp = ext4_get_group_info(sb, group);
1105 * This ensures that we don't reinit the buddy cache
1106 * page which map to the group from which we are already
1107 * allocating. If we are looking at the buddy cache we would
1108 * have taken a reference using ext4_mb_load_buddy and that
1109 * would have pinned buddy page to page cache.
1110 * The call to ext4_mb_get_buddy_page_lock will mark the
1111 * page accessed.
1113 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1114 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1116 * somebody initialized the group
1117 * return without doing anything
1119 goto err;
1122 page = e4b.bd_bitmap_page;
1123 ret = ext4_mb_init_cache(page, NULL, gfp);
1124 if (ret)
1125 goto err;
1126 if (!PageUptodate(page)) {
1127 ret = -EIO;
1128 goto err;
1131 if (e4b.bd_buddy_page == NULL) {
1133 * If both the bitmap and buddy are in
1134 * the same page we don't need to force
1135 * init the buddy
1137 ret = 0;
1138 goto err;
1140 /* init buddy cache */
1141 page = e4b.bd_buddy_page;
1142 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1143 if (ret)
1144 goto err;
1145 if (!PageUptodate(page)) {
1146 ret = -EIO;
1147 goto err;
1149 err:
1150 ext4_mb_put_buddy_page_lock(&e4b);
1151 return ret;
1155 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1156 * block group lock of all groups for this page; do not hold the BG lock when
1157 * calling this routine!
1159 static noinline_for_stack int
1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1161 struct ext4_buddy *e4b, gfp_t gfp)
1163 int blocks_per_page;
1164 int block;
1165 int pnum;
1166 int poff;
1167 struct page *page;
1168 int ret;
1169 struct ext4_group_info *grp;
1170 struct ext4_sb_info *sbi = EXT4_SB(sb);
1171 struct inode *inode = sbi->s_buddy_cache;
1173 might_sleep();
1174 mb_debug(sb, "load group %u\n", group);
1176 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1177 grp = ext4_get_group_info(sb, group);
1179 e4b->bd_blkbits = sb->s_blocksize_bits;
1180 e4b->bd_info = grp;
1181 e4b->bd_sb = sb;
1182 e4b->bd_group = group;
1183 e4b->bd_buddy_page = NULL;
1184 e4b->bd_bitmap_page = NULL;
1186 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1188 * we need full data about the group
1189 * to make a good selection
1191 ret = ext4_mb_init_group(sb, group, gfp);
1192 if (ret)
1193 return ret;
1197 * the buddy cache inode stores the block bitmap
1198 * and buddy information in consecutive blocks.
1199 * So for each group we need two blocks.
1201 block = group * 2;
1202 pnum = block / blocks_per_page;
1203 poff = block % blocks_per_page;
1205 /* we could use find_or_create_page(), but it locks page
1206 * what we'd like to avoid in fast path ... */
1207 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1208 if (page == NULL || !PageUptodate(page)) {
1209 if (page)
1211 * drop the page reference and try
1212 * to get the page with lock. If we
1213 * are not uptodate that implies
1214 * somebody just created the page but
1215 * is yet to initialize the same. So
1216 * wait for it to initialize.
1218 put_page(page);
1219 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1220 if (page) {
1221 BUG_ON(page->mapping != inode->i_mapping);
1222 if (!PageUptodate(page)) {
1223 ret = ext4_mb_init_cache(page, NULL, gfp);
1224 if (ret) {
1225 unlock_page(page);
1226 goto err;
1228 mb_cmp_bitmaps(e4b, page_address(page) +
1229 (poff * sb->s_blocksize));
1231 unlock_page(page);
1234 if (page == NULL) {
1235 ret = -ENOMEM;
1236 goto err;
1238 if (!PageUptodate(page)) {
1239 ret = -EIO;
1240 goto err;
1243 /* Pages marked accessed already */
1244 e4b->bd_bitmap_page = page;
1245 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1247 block++;
1248 pnum = block / blocks_per_page;
1249 poff = block % blocks_per_page;
1251 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1252 if (page == NULL || !PageUptodate(page)) {
1253 if (page)
1254 put_page(page);
1255 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1256 if (page) {
1257 BUG_ON(page->mapping != inode->i_mapping);
1258 if (!PageUptodate(page)) {
1259 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1260 gfp);
1261 if (ret) {
1262 unlock_page(page);
1263 goto err;
1266 unlock_page(page);
1269 if (page == NULL) {
1270 ret = -ENOMEM;
1271 goto err;
1273 if (!PageUptodate(page)) {
1274 ret = -EIO;
1275 goto err;
1278 /* Pages marked accessed already */
1279 e4b->bd_buddy_page = page;
1280 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1282 return 0;
1284 err:
1285 if (page)
1286 put_page(page);
1287 if (e4b->bd_bitmap_page)
1288 put_page(e4b->bd_bitmap_page);
1289 if (e4b->bd_buddy_page)
1290 put_page(e4b->bd_buddy_page);
1291 e4b->bd_buddy = NULL;
1292 e4b->bd_bitmap = NULL;
1293 return ret;
1296 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1297 struct ext4_buddy *e4b)
1299 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1302 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1304 if (e4b->bd_bitmap_page)
1305 put_page(e4b->bd_bitmap_page);
1306 if (e4b->bd_buddy_page)
1307 put_page(e4b->bd_buddy_page);
1311 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1313 int order = 1;
1314 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1315 void *bb;
1317 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1318 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1320 bb = e4b->bd_buddy;
1321 while (order <= e4b->bd_blkbits + 1) {
1322 block = block >> 1;
1323 if (!mb_test_bit(block, bb)) {
1324 /* this block is part of buddy of order 'order' */
1325 return order;
1327 bb += bb_incr;
1328 bb_incr >>= 1;
1329 order++;
1331 return 0;
1334 static void mb_clear_bits(void *bm, int cur, int len)
1336 __u32 *addr;
1338 len = cur + len;
1339 while (cur < len) {
1340 if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 /* fast path: clear whole word at once */
1342 addr = bm + (cur >> 3);
1343 *addr = 0;
1344 cur += 32;
1345 continue;
1347 mb_clear_bit(cur, bm);
1348 cur++;
1352 /* clear bits in given range
1353 * will return first found zero bit if any, -1 otherwise
1355 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1357 __u32 *addr;
1358 int zero_bit = -1;
1360 len = cur + len;
1361 while (cur < len) {
1362 if ((cur & 31) == 0 && (len - cur) >= 32) {
1363 /* fast path: clear whole word at once */
1364 addr = bm + (cur >> 3);
1365 if (*addr != (__u32)(-1) && zero_bit == -1)
1366 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1367 *addr = 0;
1368 cur += 32;
1369 continue;
1371 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1372 zero_bit = cur;
1373 cur++;
1376 return zero_bit;
1379 void ext4_set_bits(void *bm, int cur, int len)
1381 __u32 *addr;
1383 len = cur + len;
1384 while (cur < len) {
1385 if ((cur & 31) == 0 && (len - cur) >= 32) {
1386 /* fast path: set whole word at once */
1387 addr = bm + (cur >> 3);
1388 *addr = 0xffffffff;
1389 cur += 32;
1390 continue;
1392 mb_set_bit(cur, bm);
1393 cur++;
1398 * _________________________________________________________________ */
1400 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1402 if (mb_test_bit(*bit + side, bitmap)) {
1403 mb_clear_bit(*bit, bitmap);
1404 (*bit) -= side;
1405 return 1;
1407 else {
1408 (*bit) += side;
1409 mb_set_bit(*bit, bitmap);
1410 return -1;
1414 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1416 int max;
1417 int order = 1;
1418 void *buddy = mb_find_buddy(e4b, order, &max);
1420 while (buddy) {
1421 void *buddy2;
1423 /* Bits in range [first; last] are known to be set since
1424 * corresponding blocks were allocated. Bits in range
1425 * (first; last) will stay set because they form buddies on
1426 * upper layer. We just deal with borders if they don't
1427 * align with upper layer and then go up.
1428 * Releasing entire group is all about clearing
1429 * single bit of highest order buddy.
1432 /* Example:
1433 * ---------------------------------
1434 * | 1 | 1 | 1 | 1 |
1435 * ---------------------------------
1436 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1437 * ---------------------------------
1438 * 0 1 2 3 4 5 6 7
1439 * \_____________________/
1441 * Neither [1] nor [6] is aligned to above layer.
1442 * Left neighbour [0] is free, so mark it busy,
1443 * decrease bb_counters and extend range to
1444 * [0; 6]
1445 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1446 * mark [6] free, increase bb_counters and shrink range to
1447 * [0; 5].
1448 * Then shift range to [0; 2], go up and do the same.
1452 if (first & 1)
1453 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1454 if (!(last & 1))
1455 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1456 if (first > last)
1457 break;
1458 order++;
1460 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1461 mb_clear_bits(buddy, first, last - first + 1);
1462 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1463 break;
1465 first >>= 1;
1466 last >>= 1;
1467 buddy = buddy2;
1471 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1472 int first, int count)
1474 int left_is_free = 0;
1475 int right_is_free = 0;
1476 int block;
1477 int last = first + count - 1;
1478 struct super_block *sb = e4b->bd_sb;
1480 if (WARN_ON(count == 0))
1481 return;
1482 BUG_ON(last >= (sb->s_blocksize << 3));
1483 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1484 /* Don't bother if the block group is corrupt. */
1485 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1486 return;
1488 mb_check_buddy(e4b);
1489 mb_free_blocks_double(inode, e4b, first, count);
1491 this_cpu_inc(discard_pa_seq);
1492 e4b->bd_info->bb_free += count;
1493 if (first < e4b->bd_info->bb_first_free)
1494 e4b->bd_info->bb_first_free = first;
1496 /* access memory sequentially: check left neighbour,
1497 * clear range and then check right neighbour
1499 if (first != 0)
1500 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1501 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1502 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1503 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1505 if (unlikely(block != -1)) {
1506 struct ext4_sb_info *sbi = EXT4_SB(sb);
1507 ext4_fsblk_t blocknr;
1509 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1510 blocknr += EXT4_C2B(sbi, block);
1511 ext4_grp_locked_error(sb, e4b->bd_group,
1512 inode ? inode->i_ino : 0,
1513 blocknr,
1514 "freeing already freed block "
1515 "(bit %u); block bitmap corrupt.",
1516 block);
1517 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1518 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1519 mb_regenerate_buddy(e4b);
1520 goto done;
1523 /* let's maintain fragments counter */
1524 if (left_is_free && right_is_free)
1525 e4b->bd_info->bb_fragments--;
1526 else if (!left_is_free && !right_is_free)
1527 e4b->bd_info->bb_fragments++;
1529 /* buddy[0] == bd_bitmap is a special case, so handle
1530 * it right away and let mb_buddy_mark_free stay free of
1531 * zero order checks.
1532 * Check if neighbours are to be coaleasced,
1533 * adjust bitmap bb_counters and borders appropriately.
1535 if (first & 1) {
1536 first += !left_is_free;
1537 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1539 if (!(last & 1)) {
1540 last -= !right_is_free;
1541 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1544 if (first <= last)
1545 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1547 done:
1548 mb_set_largest_free_order(sb, e4b->bd_info);
1549 mb_check_buddy(e4b);
1552 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1553 int needed, struct ext4_free_extent *ex)
1555 int next = block;
1556 int max, order;
1557 void *buddy;
1559 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1560 BUG_ON(ex == NULL);
1562 buddy = mb_find_buddy(e4b, 0, &max);
1563 BUG_ON(buddy == NULL);
1564 BUG_ON(block >= max);
1565 if (mb_test_bit(block, buddy)) {
1566 ex->fe_len = 0;
1567 ex->fe_start = 0;
1568 ex->fe_group = 0;
1569 return 0;
1572 /* find actual order */
1573 order = mb_find_order_for_block(e4b, block);
1574 block = block >> order;
1576 ex->fe_len = 1 << order;
1577 ex->fe_start = block << order;
1578 ex->fe_group = e4b->bd_group;
1580 /* calc difference from given start */
1581 next = next - ex->fe_start;
1582 ex->fe_len -= next;
1583 ex->fe_start += next;
1585 while (needed > ex->fe_len &&
1586 mb_find_buddy(e4b, order, &max)) {
1588 if (block + 1 >= max)
1589 break;
1591 next = (block + 1) * (1 << order);
1592 if (mb_test_bit(next, e4b->bd_bitmap))
1593 break;
1595 order = mb_find_order_for_block(e4b, next);
1597 block = next >> order;
1598 ex->fe_len += 1 << order;
1601 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1602 /* Should never happen! (but apparently sometimes does?!?) */
1603 WARN_ON(1);
1604 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1605 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1606 block, order, needed, ex->fe_group, ex->fe_start,
1607 ex->fe_len, ex->fe_logical);
1608 ex->fe_len = 0;
1609 ex->fe_start = 0;
1610 ex->fe_group = 0;
1612 return ex->fe_len;
1615 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1617 int ord;
1618 int mlen = 0;
1619 int max = 0;
1620 int cur;
1621 int start = ex->fe_start;
1622 int len = ex->fe_len;
1623 unsigned ret = 0;
1624 int len0 = len;
1625 void *buddy;
1627 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1628 BUG_ON(e4b->bd_group != ex->fe_group);
1629 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1630 mb_check_buddy(e4b);
1631 mb_mark_used_double(e4b, start, len);
1633 this_cpu_inc(discard_pa_seq);
1634 e4b->bd_info->bb_free -= len;
1635 if (e4b->bd_info->bb_first_free == start)
1636 e4b->bd_info->bb_first_free += len;
1638 /* let's maintain fragments counter */
1639 if (start != 0)
1640 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1641 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1642 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1643 if (mlen && max)
1644 e4b->bd_info->bb_fragments++;
1645 else if (!mlen && !max)
1646 e4b->bd_info->bb_fragments--;
1648 /* let's maintain buddy itself */
1649 while (len) {
1650 ord = mb_find_order_for_block(e4b, start);
1652 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1653 /* the whole chunk may be allocated at once! */
1654 mlen = 1 << ord;
1655 buddy = mb_find_buddy(e4b, ord, &max);
1656 BUG_ON((start >> ord) >= max);
1657 mb_set_bit(start >> ord, buddy);
1658 e4b->bd_info->bb_counters[ord]--;
1659 start += mlen;
1660 len -= mlen;
1661 BUG_ON(len < 0);
1662 continue;
1665 /* store for history */
1666 if (ret == 0)
1667 ret = len | (ord << 16);
1669 /* we have to split large buddy */
1670 BUG_ON(ord <= 0);
1671 buddy = mb_find_buddy(e4b, ord, &max);
1672 mb_set_bit(start >> ord, buddy);
1673 e4b->bd_info->bb_counters[ord]--;
1675 ord--;
1676 cur = (start >> ord) & ~1U;
1677 buddy = mb_find_buddy(e4b, ord, &max);
1678 mb_clear_bit(cur, buddy);
1679 mb_clear_bit(cur + 1, buddy);
1680 e4b->bd_info->bb_counters[ord]++;
1681 e4b->bd_info->bb_counters[ord]++;
1683 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1685 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1686 mb_check_buddy(e4b);
1688 return ret;
1692 * Must be called under group lock!
1694 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1695 struct ext4_buddy *e4b)
1697 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1698 int ret;
1700 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1701 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1703 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1704 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1705 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1707 /* preallocation can change ac_b_ex, thus we store actually
1708 * allocated blocks for history */
1709 ac->ac_f_ex = ac->ac_b_ex;
1711 ac->ac_status = AC_STATUS_FOUND;
1712 ac->ac_tail = ret & 0xffff;
1713 ac->ac_buddy = ret >> 16;
1716 * take the page reference. We want the page to be pinned
1717 * so that we don't get a ext4_mb_init_cache_call for this
1718 * group until we update the bitmap. That would mean we
1719 * double allocate blocks. The reference is dropped
1720 * in ext4_mb_release_context
1722 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1723 get_page(ac->ac_bitmap_page);
1724 ac->ac_buddy_page = e4b->bd_buddy_page;
1725 get_page(ac->ac_buddy_page);
1726 /* store last allocated for subsequent stream allocation */
1727 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1728 spin_lock(&sbi->s_md_lock);
1729 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1730 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1731 spin_unlock(&sbi->s_md_lock);
1734 * As we've just preallocated more space than
1735 * user requested originally, we store allocated
1736 * space in a special descriptor.
1738 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1739 ext4_mb_new_preallocation(ac);
1743 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1744 struct ext4_buddy *e4b,
1745 int finish_group)
1747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1748 struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 struct ext4_free_extent *gex = &ac->ac_g_ex;
1750 struct ext4_free_extent ex;
1751 int max;
1753 if (ac->ac_status == AC_STATUS_FOUND)
1754 return;
1756 * We don't want to scan for a whole year
1758 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1759 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1760 ac->ac_status = AC_STATUS_BREAK;
1761 return;
1765 * Haven't found good chunk so far, let's continue
1767 if (bex->fe_len < gex->fe_len)
1768 return;
1770 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1771 && bex->fe_group == e4b->bd_group) {
1772 /* recheck chunk's availability - we don't know
1773 * when it was found (within this lock-unlock
1774 * period or not) */
1775 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1776 if (max >= gex->fe_len) {
1777 ext4_mb_use_best_found(ac, e4b);
1778 return;
1784 * The routine checks whether found extent is good enough. If it is,
1785 * then the extent gets marked used and flag is set to the context
1786 * to stop scanning. Otherwise, the extent is compared with the
1787 * previous found extent and if new one is better, then it's stored
1788 * in the context. Later, the best found extent will be used, if
1789 * mballoc can't find good enough extent.
1791 * FIXME: real allocation policy is to be designed yet!
1793 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1794 struct ext4_free_extent *ex,
1795 struct ext4_buddy *e4b)
1797 struct ext4_free_extent *bex = &ac->ac_b_ex;
1798 struct ext4_free_extent *gex = &ac->ac_g_ex;
1800 BUG_ON(ex->fe_len <= 0);
1801 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1802 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1803 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1805 ac->ac_found++;
1808 * The special case - take what you catch first
1810 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1811 *bex = *ex;
1812 ext4_mb_use_best_found(ac, e4b);
1813 return;
1817 * Let's check whether the chuck is good enough
1819 if (ex->fe_len == gex->fe_len) {
1820 *bex = *ex;
1821 ext4_mb_use_best_found(ac, e4b);
1822 return;
1826 * If this is first found extent, just store it in the context
1828 if (bex->fe_len == 0) {
1829 *bex = *ex;
1830 return;
1834 * If new found extent is better, store it in the context
1836 if (bex->fe_len < gex->fe_len) {
1837 /* if the request isn't satisfied, any found extent
1838 * larger than previous best one is better */
1839 if (ex->fe_len > bex->fe_len)
1840 *bex = *ex;
1841 } else if (ex->fe_len > gex->fe_len) {
1842 /* if the request is satisfied, then we try to find
1843 * an extent that still satisfy the request, but is
1844 * smaller than previous one */
1845 if (ex->fe_len < bex->fe_len)
1846 *bex = *ex;
1849 ext4_mb_check_limits(ac, e4b, 0);
1852 static noinline_for_stack
1853 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1854 struct ext4_buddy *e4b)
1856 struct ext4_free_extent ex = ac->ac_b_ex;
1857 ext4_group_t group = ex.fe_group;
1858 int max;
1859 int err;
1861 BUG_ON(ex.fe_len <= 0);
1862 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1863 if (err)
1864 return err;
1866 ext4_lock_group(ac->ac_sb, group);
1867 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1869 if (max > 0) {
1870 ac->ac_b_ex = ex;
1871 ext4_mb_use_best_found(ac, e4b);
1874 ext4_unlock_group(ac->ac_sb, group);
1875 ext4_mb_unload_buddy(e4b);
1877 return 0;
1880 static noinline_for_stack
1881 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1882 struct ext4_buddy *e4b)
1884 ext4_group_t group = ac->ac_g_ex.fe_group;
1885 int max;
1886 int err;
1887 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1888 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1889 struct ext4_free_extent ex;
1891 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1892 return 0;
1893 if (grp->bb_free == 0)
1894 return 0;
1896 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1897 if (err)
1898 return err;
1900 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1901 ext4_mb_unload_buddy(e4b);
1902 return 0;
1905 ext4_lock_group(ac->ac_sb, group);
1906 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1907 ac->ac_g_ex.fe_len, &ex);
1908 ex.fe_logical = 0xDEADFA11; /* debug value */
1910 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1911 ext4_fsblk_t start;
1913 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1914 ex.fe_start;
1915 /* use do_div to get remainder (would be 64-bit modulo) */
1916 if (do_div(start, sbi->s_stripe) == 0) {
1917 ac->ac_found++;
1918 ac->ac_b_ex = ex;
1919 ext4_mb_use_best_found(ac, e4b);
1921 } else if (max >= ac->ac_g_ex.fe_len) {
1922 BUG_ON(ex.fe_len <= 0);
1923 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1924 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1925 ac->ac_found++;
1926 ac->ac_b_ex = ex;
1927 ext4_mb_use_best_found(ac, e4b);
1928 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1929 /* Sometimes, caller may want to merge even small
1930 * number of blocks to an existing extent */
1931 BUG_ON(ex.fe_len <= 0);
1932 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1933 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1934 ac->ac_found++;
1935 ac->ac_b_ex = ex;
1936 ext4_mb_use_best_found(ac, e4b);
1938 ext4_unlock_group(ac->ac_sb, group);
1939 ext4_mb_unload_buddy(e4b);
1941 return 0;
1945 * The routine scans buddy structures (not bitmap!) from given order
1946 * to max order and tries to find big enough chunk to satisfy the req
1948 static noinline_for_stack
1949 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1950 struct ext4_buddy *e4b)
1952 struct super_block *sb = ac->ac_sb;
1953 struct ext4_group_info *grp = e4b->bd_info;
1954 void *buddy;
1955 int i;
1956 int k;
1957 int max;
1959 BUG_ON(ac->ac_2order <= 0);
1960 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1961 if (grp->bb_counters[i] == 0)
1962 continue;
1964 buddy = mb_find_buddy(e4b, i, &max);
1965 BUG_ON(buddy == NULL);
1967 k = mb_find_next_zero_bit(buddy, max, 0);
1968 if (k >= max) {
1969 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1970 "%d free clusters of order %d. But found 0",
1971 grp->bb_counters[i], i);
1972 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1973 e4b->bd_group,
1974 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1975 break;
1977 ac->ac_found++;
1979 ac->ac_b_ex.fe_len = 1 << i;
1980 ac->ac_b_ex.fe_start = k << i;
1981 ac->ac_b_ex.fe_group = e4b->bd_group;
1983 ext4_mb_use_best_found(ac, e4b);
1985 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1987 if (EXT4_SB(sb)->s_mb_stats)
1988 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1990 break;
1995 * The routine scans the group and measures all found extents.
1996 * In order to optimize scanning, caller must pass number of
1997 * free blocks in the group, so the routine can know upper limit.
1999 static noinline_for_stack
2000 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2001 struct ext4_buddy *e4b)
2003 struct super_block *sb = ac->ac_sb;
2004 void *bitmap = e4b->bd_bitmap;
2005 struct ext4_free_extent ex;
2006 int i;
2007 int free;
2009 free = e4b->bd_info->bb_free;
2010 if (WARN_ON(free <= 0))
2011 return;
2013 i = e4b->bd_info->bb_first_free;
2015 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2016 i = mb_find_next_zero_bit(bitmap,
2017 EXT4_CLUSTERS_PER_GROUP(sb), i);
2018 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2020 * IF we have corrupt bitmap, we won't find any
2021 * free blocks even though group info says we
2022 * we have free blocks
2024 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2025 "%d free clusters as per "
2026 "group info. But bitmap says 0",
2027 free);
2028 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2029 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2030 break;
2033 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2034 if (WARN_ON(ex.fe_len <= 0))
2035 break;
2036 if (free < ex.fe_len) {
2037 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2038 "%d free clusters as per "
2039 "group info. But got %d blocks",
2040 free, ex.fe_len);
2041 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2042 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2044 * The number of free blocks differs. This mostly
2045 * indicate that the bitmap is corrupt. So exit
2046 * without claiming the space.
2048 break;
2050 ex.fe_logical = 0xDEADC0DE; /* debug value */
2051 ext4_mb_measure_extent(ac, &ex, e4b);
2053 i += ex.fe_len;
2054 free -= ex.fe_len;
2057 ext4_mb_check_limits(ac, e4b, 1);
2061 * This is a special case for storages like raid5
2062 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2064 static noinline_for_stack
2065 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2066 struct ext4_buddy *e4b)
2068 struct super_block *sb = ac->ac_sb;
2069 struct ext4_sb_info *sbi = EXT4_SB(sb);
2070 void *bitmap = e4b->bd_bitmap;
2071 struct ext4_free_extent ex;
2072 ext4_fsblk_t first_group_block;
2073 ext4_fsblk_t a;
2074 ext4_grpblk_t i;
2075 int max;
2077 BUG_ON(sbi->s_stripe == 0);
2079 /* find first stripe-aligned block in group */
2080 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2082 a = first_group_block + sbi->s_stripe - 1;
2083 do_div(a, sbi->s_stripe);
2084 i = (a * sbi->s_stripe) - first_group_block;
2086 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2087 if (!mb_test_bit(i, bitmap)) {
2088 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2089 if (max >= sbi->s_stripe) {
2090 ac->ac_found++;
2091 ex.fe_logical = 0xDEADF00D; /* debug value */
2092 ac->ac_b_ex = ex;
2093 ext4_mb_use_best_found(ac, e4b);
2094 break;
2097 i += sbi->s_stripe;
2102 * This is also called BEFORE we load the buddy bitmap.
2103 * Returns either 1 or 0 indicating that the group is either suitable
2104 * for the allocation or not.
2106 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2107 ext4_group_t group, int cr)
2109 ext4_grpblk_t free, fragments;
2110 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2111 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2113 BUG_ON(cr < 0 || cr >= 4);
2115 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2116 return false;
2118 free = grp->bb_free;
2119 if (free == 0)
2120 return false;
2122 fragments = grp->bb_fragments;
2123 if (fragments == 0)
2124 return false;
2126 switch (cr) {
2127 case 0:
2128 BUG_ON(ac->ac_2order == 0);
2130 /* Avoid using the first bg of a flexgroup for data files */
2131 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2132 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2133 ((group % flex_size) == 0))
2134 return false;
2136 if (free < ac->ac_g_ex.fe_len)
2137 return false;
2139 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2140 return true;
2142 if (grp->bb_largest_free_order < ac->ac_2order)
2143 return false;
2145 return true;
2146 case 1:
2147 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2148 return true;
2149 break;
2150 case 2:
2151 if (free >= ac->ac_g_ex.fe_len)
2152 return true;
2153 break;
2154 case 3:
2155 return true;
2156 default:
2157 BUG();
2160 return false;
2164 * This could return negative error code if something goes wrong
2165 * during ext4_mb_init_group(). This should not be called with
2166 * ext4_lock_group() held.
2168 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2169 ext4_group_t group, int cr)
2171 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2172 struct super_block *sb = ac->ac_sb;
2173 struct ext4_sb_info *sbi = EXT4_SB(sb);
2174 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2175 ext4_grpblk_t free;
2176 int ret = 0;
2178 if (should_lock)
2179 ext4_lock_group(sb, group);
2180 free = grp->bb_free;
2181 if (free == 0)
2182 goto out;
2183 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2184 goto out;
2185 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2186 goto out;
2187 if (should_lock)
2188 ext4_unlock_group(sb, group);
2190 /* We only do this if the grp has never been initialized */
2191 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2192 struct ext4_group_desc *gdp =
2193 ext4_get_group_desc(sb, group, NULL);
2194 int ret;
2196 /* cr=0/1 is a very optimistic search to find large
2197 * good chunks almost for free. If buddy data is not
2198 * ready, then this optimization makes no sense. But
2199 * we never skip the first block group in a flex_bg,
2200 * since this gets used for metadata block allocation,
2201 * and we want to make sure we locate metadata blocks
2202 * in the first block group in the flex_bg if possible.
2204 if (cr < 2 &&
2205 (!sbi->s_log_groups_per_flex ||
2206 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2207 !(ext4_has_group_desc_csum(sb) &&
2208 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2209 return 0;
2210 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2211 if (ret)
2212 return ret;
2215 if (should_lock)
2216 ext4_lock_group(sb, group);
2217 ret = ext4_mb_good_group(ac, group, cr);
2218 out:
2219 if (should_lock)
2220 ext4_unlock_group(sb, group);
2221 return ret;
2225 * Start prefetching @nr block bitmaps starting at @group.
2226 * Return the next group which needs to be prefetched.
2228 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2229 unsigned int nr, int *cnt)
2231 ext4_group_t ngroups = ext4_get_groups_count(sb);
2232 struct buffer_head *bh;
2233 struct blk_plug plug;
2235 blk_start_plug(&plug);
2236 while (nr-- > 0) {
2237 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2238 NULL);
2239 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2242 * Prefetch block groups with free blocks; but don't
2243 * bother if it is marked uninitialized on disk, since
2244 * it won't require I/O to read. Also only try to
2245 * prefetch once, so we avoid getblk() call, which can
2246 * be expensive.
2248 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2249 EXT4_MB_GRP_NEED_INIT(grp) &&
2250 ext4_free_group_clusters(sb, gdp) > 0 &&
2251 !(ext4_has_group_desc_csum(sb) &&
2252 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2253 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2254 if (bh && !IS_ERR(bh)) {
2255 if (!buffer_uptodate(bh) && cnt)
2256 (*cnt)++;
2257 brelse(bh);
2260 if (++group >= ngroups)
2261 group = 0;
2263 blk_finish_plug(&plug);
2264 return group;
2268 * Prefetching reads the block bitmap into the buffer cache; but we
2269 * need to make sure that the buddy bitmap in the page cache has been
2270 * initialized. Note that ext4_mb_init_group() will block if the I/O
2271 * is not yet completed, or indeed if it was not initiated by
2272 * ext4_mb_prefetch did not start the I/O.
2274 * TODO: We should actually kick off the buddy bitmap setup in a work
2275 * queue when the buffer I/O is completed, so that we don't block
2276 * waiting for the block allocation bitmap read to finish when
2277 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2279 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2280 unsigned int nr)
2282 while (nr-- > 0) {
2283 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2284 NULL);
2285 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2287 if (!group)
2288 group = ext4_get_groups_count(sb);
2289 group--;
2290 grp = ext4_get_group_info(sb, group);
2292 if (EXT4_MB_GRP_NEED_INIT(grp) &&
2293 ext4_free_group_clusters(sb, gdp) > 0 &&
2294 !(ext4_has_group_desc_csum(sb) &&
2295 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2296 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2297 break;
2302 static noinline_for_stack int
2303 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2305 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2306 int cr = -1;
2307 int err = 0, first_err = 0;
2308 unsigned int nr = 0, prefetch_ios = 0;
2309 struct ext4_sb_info *sbi;
2310 struct super_block *sb;
2311 struct ext4_buddy e4b;
2312 int lost;
2314 sb = ac->ac_sb;
2315 sbi = EXT4_SB(sb);
2316 ngroups = ext4_get_groups_count(sb);
2317 /* non-extent files are limited to low blocks/groups */
2318 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2319 ngroups = sbi->s_blockfile_groups;
2321 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2323 /* first, try the goal */
2324 err = ext4_mb_find_by_goal(ac, &e4b);
2325 if (err || ac->ac_status == AC_STATUS_FOUND)
2326 goto out;
2328 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2329 goto out;
2332 * ac->ac_2order is set only if the fe_len is a power of 2
2333 * if ac->ac_2order is set we also set criteria to 0 so that we
2334 * try exact allocation using buddy.
2336 i = fls(ac->ac_g_ex.fe_len);
2337 ac->ac_2order = 0;
2339 * We search using buddy data only if the order of the request
2340 * is greater than equal to the sbi_s_mb_order2_reqs
2341 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2342 * We also support searching for power-of-two requests only for
2343 * requests upto maximum buddy size we have constructed.
2345 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2347 * This should tell if fe_len is exactly power of 2
2349 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2350 ac->ac_2order = array_index_nospec(i - 1,
2351 sb->s_blocksize_bits + 2);
2354 /* if stream allocation is enabled, use global goal */
2355 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2356 /* TBD: may be hot point */
2357 spin_lock(&sbi->s_md_lock);
2358 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2359 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2360 spin_unlock(&sbi->s_md_lock);
2363 /* Let's just scan groups to find more-less suitable blocks */
2364 cr = ac->ac_2order ? 0 : 1;
2366 * cr == 0 try to get exact allocation,
2367 * cr == 3 try to get anything
2369 repeat:
2370 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2371 ac->ac_criteria = cr;
2373 * searching for the right group start
2374 * from the goal value specified
2376 group = ac->ac_g_ex.fe_group;
2377 prefetch_grp = group;
2379 for (i = 0; i < ngroups; group++, i++) {
2380 int ret = 0;
2381 cond_resched();
2383 * Artificially restricted ngroups for non-extent
2384 * files makes group > ngroups possible on first loop.
2386 if (group >= ngroups)
2387 group = 0;
2390 * Batch reads of the block allocation bitmaps
2391 * to get multiple READs in flight; limit
2392 * prefetching at cr=0/1, otherwise mballoc can
2393 * spend a lot of time loading imperfect groups
2395 if ((prefetch_grp == group) &&
2396 (cr > 1 ||
2397 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2398 unsigned int curr_ios = prefetch_ios;
2400 nr = sbi->s_mb_prefetch;
2401 if (ext4_has_feature_flex_bg(sb)) {
2402 nr = (group / sbi->s_mb_prefetch) *
2403 sbi->s_mb_prefetch;
2404 nr = nr + sbi->s_mb_prefetch - group;
2406 prefetch_grp = ext4_mb_prefetch(sb, group,
2407 nr, &prefetch_ios);
2408 if (prefetch_ios == curr_ios)
2409 nr = 0;
2412 /* This now checks without needing the buddy page */
2413 ret = ext4_mb_good_group_nolock(ac, group, cr);
2414 if (ret <= 0) {
2415 if (!first_err)
2416 first_err = ret;
2417 continue;
2420 err = ext4_mb_load_buddy(sb, group, &e4b);
2421 if (err)
2422 goto out;
2424 ext4_lock_group(sb, group);
2427 * We need to check again after locking the
2428 * block group
2430 ret = ext4_mb_good_group(ac, group, cr);
2431 if (ret == 0) {
2432 ext4_unlock_group(sb, group);
2433 ext4_mb_unload_buddy(&e4b);
2434 continue;
2437 ac->ac_groups_scanned++;
2438 if (cr == 0)
2439 ext4_mb_simple_scan_group(ac, &e4b);
2440 else if (cr == 1 && sbi->s_stripe &&
2441 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2442 ext4_mb_scan_aligned(ac, &e4b);
2443 else
2444 ext4_mb_complex_scan_group(ac, &e4b);
2446 ext4_unlock_group(sb, group);
2447 ext4_mb_unload_buddy(&e4b);
2449 if (ac->ac_status != AC_STATUS_CONTINUE)
2450 break;
2454 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2455 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2457 * We've been searching too long. Let's try to allocate
2458 * the best chunk we've found so far
2460 ext4_mb_try_best_found(ac, &e4b);
2461 if (ac->ac_status != AC_STATUS_FOUND) {
2463 * Someone more lucky has already allocated it.
2464 * The only thing we can do is just take first
2465 * found block(s)
2467 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2468 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2469 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2470 ac->ac_b_ex.fe_len, lost);
2472 ac->ac_b_ex.fe_group = 0;
2473 ac->ac_b_ex.fe_start = 0;
2474 ac->ac_b_ex.fe_len = 0;
2475 ac->ac_status = AC_STATUS_CONTINUE;
2476 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2477 cr = 3;
2478 goto repeat;
2481 out:
2482 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2483 err = first_err;
2485 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2486 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2487 ac->ac_flags, cr, err);
2489 if (nr)
2490 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2492 return err;
2495 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2497 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2498 ext4_group_t group;
2500 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2501 return NULL;
2502 group = *pos + 1;
2503 return (void *) ((unsigned long) group);
2506 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2508 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2509 ext4_group_t group;
2511 ++*pos;
2512 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2513 return NULL;
2514 group = *pos + 1;
2515 return (void *) ((unsigned long) group);
2518 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2520 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2521 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2522 int i;
2523 int err, buddy_loaded = 0;
2524 struct ext4_buddy e4b;
2525 struct ext4_group_info *grinfo;
2526 unsigned char blocksize_bits = min_t(unsigned char,
2527 sb->s_blocksize_bits,
2528 EXT4_MAX_BLOCK_LOG_SIZE);
2529 struct sg {
2530 struct ext4_group_info info;
2531 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2532 } sg;
2534 group--;
2535 if (group == 0)
2536 seq_puts(seq, "#group: free frags first ["
2537 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2538 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2540 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2541 sizeof(struct ext4_group_info);
2543 grinfo = ext4_get_group_info(sb, group);
2544 /* Load the group info in memory only if not already loaded. */
2545 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2546 err = ext4_mb_load_buddy(sb, group, &e4b);
2547 if (err) {
2548 seq_printf(seq, "#%-5u: I/O error\n", group);
2549 return 0;
2551 buddy_loaded = 1;
2554 memcpy(&sg, ext4_get_group_info(sb, group), i);
2556 if (buddy_loaded)
2557 ext4_mb_unload_buddy(&e4b);
2559 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2560 sg.info.bb_fragments, sg.info.bb_first_free);
2561 for (i = 0; i <= 13; i++)
2562 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2563 sg.info.bb_counters[i] : 0);
2564 seq_puts(seq, " ]\n");
2566 return 0;
2569 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2573 const struct seq_operations ext4_mb_seq_groups_ops = {
2574 .start = ext4_mb_seq_groups_start,
2575 .next = ext4_mb_seq_groups_next,
2576 .stop = ext4_mb_seq_groups_stop,
2577 .show = ext4_mb_seq_groups_show,
2580 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2582 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2583 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2585 BUG_ON(!cachep);
2586 return cachep;
2590 * Allocate the top-level s_group_info array for the specified number
2591 * of groups
2593 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2595 struct ext4_sb_info *sbi = EXT4_SB(sb);
2596 unsigned size;
2597 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2599 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2600 EXT4_DESC_PER_BLOCK_BITS(sb);
2601 if (size <= sbi->s_group_info_size)
2602 return 0;
2604 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2605 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2606 if (!new_groupinfo) {
2607 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2608 return -ENOMEM;
2610 rcu_read_lock();
2611 old_groupinfo = rcu_dereference(sbi->s_group_info);
2612 if (old_groupinfo)
2613 memcpy(new_groupinfo, old_groupinfo,
2614 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2615 rcu_read_unlock();
2616 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2617 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2618 if (old_groupinfo)
2619 ext4_kvfree_array_rcu(old_groupinfo);
2620 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2621 sbi->s_group_info_size);
2622 return 0;
2625 /* Create and initialize ext4_group_info data for the given group. */
2626 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2627 struct ext4_group_desc *desc)
2629 int i;
2630 int metalen = 0;
2631 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2632 struct ext4_sb_info *sbi = EXT4_SB(sb);
2633 struct ext4_group_info **meta_group_info;
2634 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2637 * First check if this group is the first of a reserved block.
2638 * If it's true, we have to allocate a new table of pointers
2639 * to ext4_group_info structures
2641 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2642 metalen = sizeof(*meta_group_info) <<
2643 EXT4_DESC_PER_BLOCK_BITS(sb);
2644 meta_group_info = kmalloc(metalen, GFP_NOFS);
2645 if (meta_group_info == NULL) {
2646 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2647 "for a buddy group");
2648 goto exit_meta_group_info;
2650 rcu_read_lock();
2651 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2652 rcu_read_unlock();
2655 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2656 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2658 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2659 if (meta_group_info[i] == NULL) {
2660 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2661 goto exit_group_info;
2663 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2664 &(meta_group_info[i]->bb_state));
2667 * initialize bb_free to be able to skip
2668 * empty groups without initialization
2670 if (ext4_has_group_desc_csum(sb) &&
2671 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2672 meta_group_info[i]->bb_free =
2673 ext4_free_clusters_after_init(sb, group, desc);
2674 } else {
2675 meta_group_info[i]->bb_free =
2676 ext4_free_group_clusters(sb, desc);
2679 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2680 init_rwsem(&meta_group_info[i]->alloc_sem);
2681 meta_group_info[i]->bb_free_root = RB_ROOT;
2682 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2684 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2685 return 0;
2687 exit_group_info:
2688 /* If a meta_group_info table has been allocated, release it now */
2689 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2690 struct ext4_group_info ***group_info;
2692 rcu_read_lock();
2693 group_info = rcu_dereference(sbi->s_group_info);
2694 kfree(group_info[idx]);
2695 group_info[idx] = NULL;
2696 rcu_read_unlock();
2698 exit_meta_group_info:
2699 return -ENOMEM;
2700 } /* ext4_mb_add_groupinfo */
2702 static int ext4_mb_init_backend(struct super_block *sb)
2704 ext4_group_t ngroups = ext4_get_groups_count(sb);
2705 ext4_group_t i;
2706 struct ext4_sb_info *sbi = EXT4_SB(sb);
2707 int err;
2708 struct ext4_group_desc *desc;
2709 struct ext4_group_info ***group_info;
2710 struct kmem_cache *cachep;
2712 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2713 if (err)
2714 return err;
2716 sbi->s_buddy_cache = new_inode(sb);
2717 if (sbi->s_buddy_cache == NULL) {
2718 ext4_msg(sb, KERN_ERR, "can't get new inode");
2719 goto err_freesgi;
2721 /* To avoid potentially colliding with an valid on-disk inode number,
2722 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2723 * not in the inode hash, so it should never be found by iget(), but
2724 * this will avoid confusion if it ever shows up during debugging. */
2725 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2726 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2727 for (i = 0; i < ngroups; i++) {
2728 cond_resched();
2729 desc = ext4_get_group_desc(sb, i, NULL);
2730 if (desc == NULL) {
2731 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2732 goto err_freebuddy;
2734 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2735 goto err_freebuddy;
2738 if (ext4_has_feature_flex_bg(sb)) {
2739 /* a single flex group is supposed to be read by a single IO */
2740 sbi->s_mb_prefetch = 1 << sbi->s_es->s_log_groups_per_flex;
2741 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2742 } else {
2743 sbi->s_mb_prefetch = 32;
2745 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2746 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2747 /* now many real IOs to prefetch within a single allocation at cr=0
2748 * given cr=0 is an CPU-related optimization we shouldn't try to
2749 * load too many groups, at some point we should start to use what
2750 * we've got in memory.
2751 * with an average random access time 5ms, it'd take a second to get
2752 * 200 groups (* N with flex_bg), so let's make this limit 4
2754 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2755 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2756 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2758 return 0;
2760 err_freebuddy:
2761 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2762 while (i-- > 0)
2763 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2764 i = sbi->s_group_info_size;
2765 rcu_read_lock();
2766 group_info = rcu_dereference(sbi->s_group_info);
2767 while (i-- > 0)
2768 kfree(group_info[i]);
2769 rcu_read_unlock();
2770 iput(sbi->s_buddy_cache);
2771 err_freesgi:
2772 rcu_read_lock();
2773 kvfree(rcu_dereference(sbi->s_group_info));
2774 rcu_read_unlock();
2775 return -ENOMEM;
2778 static void ext4_groupinfo_destroy_slabs(void)
2780 int i;
2782 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2783 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2784 ext4_groupinfo_caches[i] = NULL;
2788 static int ext4_groupinfo_create_slab(size_t size)
2790 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2791 int slab_size;
2792 int blocksize_bits = order_base_2(size);
2793 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2794 struct kmem_cache *cachep;
2796 if (cache_index >= NR_GRPINFO_CACHES)
2797 return -EINVAL;
2799 if (unlikely(cache_index < 0))
2800 cache_index = 0;
2802 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2803 if (ext4_groupinfo_caches[cache_index]) {
2804 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2805 return 0; /* Already created */
2808 slab_size = offsetof(struct ext4_group_info,
2809 bb_counters[blocksize_bits + 2]);
2811 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2812 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2813 NULL);
2815 ext4_groupinfo_caches[cache_index] = cachep;
2817 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2818 if (!cachep) {
2819 printk(KERN_EMERG
2820 "EXT4-fs: no memory for groupinfo slab cache\n");
2821 return -ENOMEM;
2824 return 0;
2827 int ext4_mb_init(struct super_block *sb)
2829 struct ext4_sb_info *sbi = EXT4_SB(sb);
2830 unsigned i, j;
2831 unsigned offset, offset_incr;
2832 unsigned max;
2833 int ret;
2835 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2837 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2838 if (sbi->s_mb_offsets == NULL) {
2839 ret = -ENOMEM;
2840 goto out;
2843 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2844 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2845 if (sbi->s_mb_maxs == NULL) {
2846 ret = -ENOMEM;
2847 goto out;
2850 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2851 if (ret < 0)
2852 goto out;
2854 /* order 0 is regular bitmap */
2855 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2856 sbi->s_mb_offsets[0] = 0;
2858 i = 1;
2859 offset = 0;
2860 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2861 max = sb->s_blocksize << 2;
2862 do {
2863 sbi->s_mb_offsets[i] = offset;
2864 sbi->s_mb_maxs[i] = max;
2865 offset += offset_incr;
2866 offset_incr = offset_incr >> 1;
2867 max = max >> 1;
2868 i++;
2869 } while (i <= sb->s_blocksize_bits + 1);
2871 spin_lock_init(&sbi->s_md_lock);
2872 spin_lock_init(&sbi->s_bal_lock);
2873 sbi->s_mb_free_pending = 0;
2874 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2876 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2877 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2878 sbi->s_mb_stats = MB_DEFAULT_STATS;
2879 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2880 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2881 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2883 * The default group preallocation is 512, which for 4k block
2884 * sizes translates to 2 megabytes. However for bigalloc file
2885 * systems, this is probably too big (i.e, if the cluster size
2886 * is 1 megabyte, then group preallocation size becomes half a
2887 * gigabyte!). As a default, we will keep a two megabyte
2888 * group pralloc size for cluster sizes up to 64k, and after
2889 * that, we will force a minimum group preallocation size of
2890 * 32 clusters. This translates to 8 megs when the cluster
2891 * size is 256k, and 32 megs when the cluster size is 1 meg,
2892 * which seems reasonable as a default.
2894 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2895 sbi->s_cluster_bits, 32);
2897 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2898 * to the lowest multiple of s_stripe which is bigger than
2899 * the s_mb_group_prealloc as determined above. We want
2900 * the preallocation size to be an exact multiple of the
2901 * RAID stripe size so that preallocations don't fragment
2902 * the stripes.
2904 if (sbi->s_stripe > 1) {
2905 sbi->s_mb_group_prealloc = roundup(
2906 sbi->s_mb_group_prealloc, sbi->s_stripe);
2909 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2910 if (sbi->s_locality_groups == NULL) {
2911 ret = -ENOMEM;
2912 goto out;
2914 for_each_possible_cpu(i) {
2915 struct ext4_locality_group *lg;
2916 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2917 mutex_init(&lg->lg_mutex);
2918 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2919 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2920 spin_lock_init(&lg->lg_prealloc_lock);
2923 /* init file for buddy data */
2924 ret = ext4_mb_init_backend(sb);
2925 if (ret != 0)
2926 goto out_free_locality_groups;
2928 return 0;
2930 out_free_locality_groups:
2931 free_percpu(sbi->s_locality_groups);
2932 sbi->s_locality_groups = NULL;
2933 out:
2934 kfree(sbi->s_mb_offsets);
2935 sbi->s_mb_offsets = NULL;
2936 kfree(sbi->s_mb_maxs);
2937 sbi->s_mb_maxs = NULL;
2938 return ret;
2941 /* need to called with the ext4 group lock held */
2942 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2944 struct ext4_prealloc_space *pa;
2945 struct list_head *cur, *tmp;
2946 int count = 0;
2948 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2949 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2950 list_del(&pa->pa_group_list);
2951 count++;
2952 kmem_cache_free(ext4_pspace_cachep, pa);
2954 return count;
2957 int ext4_mb_release(struct super_block *sb)
2959 ext4_group_t ngroups = ext4_get_groups_count(sb);
2960 ext4_group_t i;
2961 int num_meta_group_infos;
2962 struct ext4_group_info *grinfo, ***group_info;
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2965 int count;
2967 if (sbi->s_group_info) {
2968 for (i = 0; i < ngroups; i++) {
2969 cond_resched();
2970 grinfo = ext4_get_group_info(sb, i);
2971 mb_group_bb_bitmap_free(grinfo);
2972 ext4_lock_group(sb, i);
2973 count = ext4_mb_cleanup_pa(grinfo);
2974 if (count)
2975 mb_debug(sb, "mballoc: %d PAs left\n",
2976 count);
2977 ext4_unlock_group(sb, i);
2978 kmem_cache_free(cachep, grinfo);
2980 num_meta_group_infos = (ngroups +
2981 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2982 EXT4_DESC_PER_BLOCK_BITS(sb);
2983 rcu_read_lock();
2984 group_info = rcu_dereference(sbi->s_group_info);
2985 for (i = 0; i < num_meta_group_infos; i++)
2986 kfree(group_info[i]);
2987 kvfree(group_info);
2988 rcu_read_unlock();
2990 kfree(sbi->s_mb_offsets);
2991 kfree(sbi->s_mb_maxs);
2992 iput(sbi->s_buddy_cache);
2993 if (sbi->s_mb_stats) {
2994 ext4_msg(sb, KERN_INFO,
2995 "mballoc: %u blocks %u reqs (%u success)",
2996 atomic_read(&sbi->s_bal_allocated),
2997 atomic_read(&sbi->s_bal_reqs),
2998 atomic_read(&sbi->s_bal_success));
2999 ext4_msg(sb, KERN_INFO,
3000 "mballoc: %u extents scanned, %u goal hits, "
3001 "%u 2^N hits, %u breaks, %u lost",
3002 atomic_read(&sbi->s_bal_ex_scanned),
3003 atomic_read(&sbi->s_bal_goals),
3004 atomic_read(&sbi->s_bal_2orders),
3005 atomic_read(&sbi->s_bal_breaks),
3006 atomic_read(&sbi->s_mb_lost_chunks));
3007 ext4_msg(sb, KERN_INFO,
3008 "mballoc: %lu generated and it took %Lu",
3009 sbi->s_mb_buddies_generated,
3010 sbi->s_mb_generation_time);
3011 ext4_msg(sb, KERN_INFO,
3012 "mballoc: %u preallocated, %u discarded",
3013 atomic_read(&sbi->s_mb_preallocated),
3014 atomic_read(&sbi->s_mb_discarded));
3017 free_percpu(sbi->s_locality_groups);
3019 return 0;
3022 static inline int ext4_issue_discard(struct super_block *sb,
3023 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3024 struct bio **biop)
3026 ext4_fsblk_t discard_block;
3028 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3029 ext4_group_first_block_no(sb, block_group));
3030 count = EXT4_C2B(EXT4_SB(sb), count);
3031 trace_ext4_discard_blocks(sb,
3032 (unsigned long long) discard_block, count);
3033 if (biop) {
3034 return __blkdev_issue_discard(sb->s_bdev,
3035 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3036 (sector_t)count << (sb->s_blocksize_bits - 9),
3037 GFP_NOFS, 0, biop);
3038 } else
3039 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3042 static void ext4_free_data_in_buddy(struct super_block *sb,
3043 struct ext4_free_data *entry)
3045 struct ext4_buddy e4b;
3046 struct ext4_group_info *db;
3047 int err, count = 0, count2 = 0;
3049 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3050 entry->efd_count, entry->efd_group, entry);
3052 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3053 /* we expect to find existing buddy because it's pinned */
3054 BUG_ON(err != 0);
3056 spin_lock(&EXT4_SB(sb)->s_md_lock);
3057 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3058 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3060 db = e4b.bd_info;
3061 /* there are blocks to put in buddy to make them really free */
3062 count += entry->efd_count;
3063 count2++;
3064 ext4_lock_group(sb, entry->efd_group);
3065 /* Take it out of per group rb tree */
3066 rb_erase(&entry->efd_node, &(db->bb_free_root));
3067 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3070 * Clear the trimmed flag for the group so that the next
3071 * ext4_trim_fs can trim it.
3072 * If the volume is mounted with -o discard, online discard
3073 * is supported and the free blocks will be trimmed online.
3075 if (!test_opt(sb, DISCARD))
3076 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3078 if (!db->bb_free_root.rb_node) {
3079 /* No more items in the per group rb tree
3080 * balance refcounts from ext4_mb_free_metadata()
3082 put_page(e4b.bd_buddy_page);
3083 put_page(e4b.bd_bitmap_page);
3085 ext4_unlock_group(sb, entry->efd_group);
3086 kmem_cache_free(ext4_free_data_cachep, entry);
3087 ext4_mb_unload_buddy(&e4b);
3089 mb_debug(sb, "freed %d blocks in %d structures\n", count,
3090 count2);
3094 * This function is called by the jbd2 layer once the commit has finished,
3095 * so we know we can free the blocks that were released with that commit.
3097 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3099 struct ext4_sb_info *sbi = EXT4_SB(sb);
3100 struct ext4_free_data *entry, *tmp;
3101 struct bio *discard_bio = NULL;
3102 struct list_head freed_data_list;
3103 struct list_head *cut_pos = NULL;
3104 int err;
3106 INIT_LIST_HEAD(&freed_data_list);
3108 spin_lock(&sbi->s_md_lock);
3109 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3110 if (entry->efd_tid != commit_tid)
3111 break;
3112 cut_pos = &entry->efd_list;
3114 if (cut_pos)
3115 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3116 cut_pos);
3117 spin_unlock(&sbi->s_md_lock);
3119 if (test_opt(sb, DISCARD)) {
3120 list_for_each_entry(entry, &freed_data_list, efd_list) {
3121 err = ext4_issue_discard(sb, entry->efd_group,
3122 entry->efd_start_cluster,
3123 entry->efd_count,
3124 &discard_bio);
3125 if (err && err != -EOPNOTSUPP) {
3126 ext4_msg(sb, KERN_WARNING, "discard request in"
3127 " group:%d block:%d count:%d failed"
3128 " with %d", entry->efd_group,
3129 entry->efd_start_cluster,
3130 entry->efd_count, err);
3131 } else if (err == -EOPNOTSUPP)
3132 break;
3135 if (discard_bio) {
3136 submit_bio_wait(discard_bio);
3137 bio_put(discard_bio);
3141 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3142 ext4_free_data_in_buddy(sb, entry);
3145 int __init ext4_init_mballoc(void)
3147 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3148 SLAB_RECLAIM_ACCOUNT);
3149 if (ext4_pspace_cachep == NULL)
3150 goto out;
3152 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3153 SLAB_RECLAIM_ACCOUNT);
3154 if (ext4_ac_cachep == NULL)
3155 goto out_pa_free;
3157 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3158 SLAB_RECLAIM_ACCOUNT);
3159 if (ext4_free_data_cachep == NULL)
3160 goto out_ac_free;
3162 return 0;
3164 out_ac_free:
3165 kmem_cache_destroy(ext4_ac_cachep);
3166 out_pa_free:
3167 kmem_cache_destroy(ext4_pspace_cachep);
3168 out:
3169 return -ENOMEM;
3172 void ext4_exit_mballoc(void)
3175 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3176 * before destroying the slab cache.
3178 rcu_barrier();
3179 kmem_cache_destroy(ext4_pspace_cachep);
3180 kmem_cache_destroy(ext4_ac_cachep);
3181 kmem_cache_destroy(ext4_free_data_cachep);
3182 ext4_groupinfo_destroy_slabs();
3187 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3188 * Returns 0 if success or error code
3190 static noinline_for_stack int
3191 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3192 handle_t *handle, unsigned int reserv_clstrs)
3194 struct buffer_head *bitmap_bh = NULL;
3195 struct ext4_group_desc *gdp;
3196 struct buffer_head *gdp_bh;
3197 struct ext4_sb_info *sbi;
3198 struct super_block *sb;
3199 ext4_fsblk_t block;
3200 int err, len;
3202 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3203 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3205 sb = ac->ac_sb;
3206 sbi = EXT4_SB(sb);
3208 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3209 if (IS_ERR(bitmap_bh)) {
3210 err = PTR_ERR(bitmap_bh);
3211 bitmap_bh = NULL;
3212 goto out_err;
3215 BUFFER_TRACE(bitmap_bh, "getting write access");
3216 err = ext4_journal_get_write_access(handle, bitmap_bh);
3217 if (err)
3218 goto out_err;
3220 err = -EIO;
3221 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3222 if (!gdp)
3223 goto out_err;
3225 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3226 ext4_free_group_clusters(sb, gdp));
3228 BUFFER_TRACE(gdp_bh, "get_write_access");
3229 err = ext4_journal_get_write_access(handle, gdp_bh);
3230 if (err)
3231 goto out_err;
3233 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3235 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3236 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3237 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3238 "fs metadata", block, block+len);
3239 /* File system mounted not to panic on error
3240 * Fix the bitmap and return EFSCORRUPTED
3241 * We leak some of the blocks here.
3243 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3244 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3245 ac->ac_b_ex.fe_len);
3246 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3247 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3248 if (!err)
3249 err = -EFSCORRUPTED;
3250 goto out_err;
3253 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3254 #ifdef AGGRESSIVE_CHECK
3256 int i;
3257 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3258 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3259 bitmap_bh->b_data));
3262 #endif
3263 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3264 ac->ac_b_ex.fe_len);
3265 if (ext4_has_group_desc_csum(sb) &&
3266 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3267 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3268 ext4_free_group_clusters_set(sb, gdp,
3269 ext4_free_clusters_after_init(sb,
3270 ac->ac_b_ex.fe_group, gdp));
3272 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3273 ext4_free_group_clusters_set(sb, gdp, len);
3274 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3275 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3277 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3278 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3280 * Now reduce the dirty block count also. Should not go negative
3282 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3283 /* release all the reserved blocks if non delalloc */
3284 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3285 reserv_clstrs);
3287 if (sbi->s_log_groups_per_flex) {
3288 ext4_group_t flex_group = ext4_flex_group(sbi,
3289 ac->ac_b_ex.fe_group);
3290 atomic64_sub(ac->ac_b_ex.fe_len,
3291 &sbi_array_rcu_deref(sbi, s_flex_groups,
3292 flex_group)->free_clusters);
3295 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3296 if (err)
3297 goto out_err;
3298 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3300 out_err:
3301 brelse(bitmap_bh);
3302 return err;
3306 * here we normalize request for locality group
3307 * Group request are normalized to s_mb_group_prealloc, which goes to
3308 * s_strip if we set the same via mount option.
3309 * s_mb_group_prealloc can be configured via
3310 * /sys/fs/ext4/<partition>/mb_group_prealloc
3312 * XXX: should we try to preallocate more than the group has now?
3314 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3316 struct super_block *sb = ac->ac_sb;
3317 struct ext4_locality_group *lg = ac->ac_lg;
3319 BUG_ON(lg == NULL);
3320 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3321 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3325 * Normalization means making request better in terms of
3326 * size and alignment
3328 static noinline_for_stack void
3329 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3330 struct ext4_allocation_request *ar)
3332 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3333 int bsbits, max;
3334 ext4_lblk_t end;
3335 loff_t size, start_off;
3336 loff_t orig_size __maybe_unused;
3337 ext4_lblk_t start;
3338 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3339 struct ext4_prealloc_space *pa;
3341 /* do normalize only data requests, metadata requests
3342 do not need preallocation */
3343 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3344 return;
3346 /* sometime caller may want exact blocks */
3347 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3348 return;
3350 /* caller may indicate that preallocation isn't
3351 * required (it's a tail, for example) */
3352 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3353 return;
3355 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3356 ext4_mb_normalize_group_request(ac);
3357 return ;
3360 bsbits = ac->ac_sb->s_blocksize_bits;
3362 /* first, let's learn actual file size
3363 * given current request is allocated */
3364 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3365 size = size << bsbits;
3366 if (size < i_size_read(ac->ac_inode))
3367 size = i_size_read(ac->ac_inode);
3368 orig_size = size;
3370 /* max size of free chunks */
3371 max = 2 << bsbits;
3373 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3374 (req <= (size) || max <= (chunk_size))
3376 /* first, try to predict filesize */
3377 /* XXX: should this table be tunable? */
3378 start_off = 0;
3379 if (size <= 16 * 1024) {
3380 size = 16 * 1024;
3381 } else if (size <= 32 * 1024) {
3382 size = 32 * 1024;
3383 } else if (size <= 64 * 1024) {
3384 size = 64 * 1024;
3385 } else if (size <= 128 * 1024) {
3386 size = 128 * 1024;
3387 } else if (size <= 256 * 1024) {
3388 size = 256 * 1024;
3389 } else if (size <= 512 * 1024) {
3390 size = 512 * 1024;
3391 } else if (size <= 1024 * 1024) {
3392 size = 1024 * 1024;
3393 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3394 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3395 (21 - bsbits)) << 21;
3396 size = 2 * 1024 * 1024;
3397 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3398 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3399 (22 - bsbits)) << 22;
3400 size = 4 * 1024 * 1024;
3401 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3402 (8<<20)>>bsbits, max, 8 * 1024)) {
3403 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3404 (23 - bsbits)) << 23;
3405 size = 8 * 1024 * 1024;
3406 } else {
3407 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3408 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3409 ac->ac_o_ex.fe_len) << bsbits;
3411 size = size >> bsbits;
3412 start = start_off >> bsbits;
3414 /* don't cover already allocated blocks in selected range */
3415 if (ar->pleft && start <= ar->lleft) {
3416 size -= ar->lleft + 1 - start;
3417 start = ar->lleft + 1;
3419 if (ar->pright && start + size - 1 >= ar->lright)
3420 size -= start + size - ar->lright;
3423 * Trim allocation request for filesystems with artificially small
3424 * groups.
3426 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3427 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3429 end = start + size;
3431 /* check we don't cross already preallocated blocks */
3432 rcu_read_lock();
3433 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3434 ext4_lblk_t pa_end;
3436 if (pa->pa_deleted)
3437 continue;
3438 spin_lock(&pa->pa_lock);
3439 if (pa->pa_deleted) {
3440 spin_unlock(&pa->pa_lock);
3441 continue;
3444 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3445 pa->pa_len);
3447 /* PA must not overlap original request */
3448 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3449 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3451 /* skip PAs this normalized request doesn't overlap with */
3452 if (pa->pa_lstart >= end || pa_end <= start) {
3453 spin_unlock(&pa->pa_lock);
3454 continue;
3456 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3458 /* adjust start or end to be adjacent to this pa */
3459 if (pa_end <= ac->ac_o_ex.fe_logical) {
3460 BUG_ON(pa_end < start);
3461 start = pa_end;
3462 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3463 BUG_ON(pa->pa_lstart > end);
3464 end = pa->pa_lstart;
3466 spin_unlock(&pa->pa_lock);
3468 rcu_read_unlock();
3469 size = end - start;
3471 /* XXX: extra loop to check we really don't overlap preallocations */
3472 rcu_read_lock();
3473 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3474 ext4_lblk_t pa_end;
3476 spin_lock(&pa->pa_lock);
3477 if (pa->pa_deleted == 0) {
3478 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3479 pa->pa_len);
3480 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3482 spin_unlock(&pa->pa_lock);
3484 rcu_read_unlock();
3486 if (start + size <= ac->ac_o_ex.fe_logical &&
3487 start > ac->ac_o_ex.fe_logical) {
3488 ext4_msg(ac->ac_sb, KERN_ERR,
3489 "start %lu, size %lu, fe_logical %lu",
3490 (unsigned long) start, (unsigned long) size,
3491 (unsigned long) ac->ac_o_ex.fe_logical);
3492 BUG();
3494 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3496 /* now prepare goal request */
3498 /* XXX: is it better to align blocks WRT to logical
3499 * placement or satisfy big request as is */
3500 ac->ac_g_ex.fe_logical = start;
3501 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3503 /* define goal start in order to merge */
3504 if (ar->pright && (ar->lright == (start + size))) {
3505 /* merge to the right */
3506 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3507 &ac->ac_f_ex.fe_group,
3508 &ac->ac_f_ex.fe_start);
3509 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3511 if (ar->pleft && (ar->lleft + 1 == start)) {
3512 /* merge to the left */
3513 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3514 &ac->ac_f_ex.fe_group,
3515 &ac->ac_f_ex.fe_start);
3516 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3519 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3520 orig_size, start);
3523 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3527 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3528 atomic_inc(&sbi->s_bal_reqs);
3529 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3530 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3531 atomic_inc(&sbi->s_bal_success);
3532 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3533 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3534 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3535 atomic_inc(&sbi->s_bal_goals);
3536 if (ac->ac_found > sbi->s_mb_max_to_scan)
3537 atomic_inc(&sbi->s_bal_breaks);
3540 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3541 trace_ext4_mballoc_alloc(ac);
3542 else
3543 trace_ext4_mballoc_prealloc(ac);
3547 * Called on failure; free up any blocks from the inode PA for this
3548 * context. We don't need this for MB_GROUP_PA because we only change
3549 * pa_free in ext4_mb_release_context(), but on failure, we've already
3550 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3552 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3554 struct ext4_prealloc_space *pa = ac->ac_pa;
3555 struct ext4_buddy e4b;
3556 int err;
3558 if (pa == NULL) {
3559 if (ac->ac_f_ex.fe_len == 0)
3560 return;
3561 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3562 if (err) {
3564 * This should never happen since we pin the
3565 * pages in the ext4_allocation_context so
3566 * ext4_mb_load_buddy() should never fail.
3568 WARN(1, "mb_load_buddy failed (%d)", err);
3569 return;
3571 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3572 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3573 ac->ac_f_ex.fe_len);
3574 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3575 ext4_mb_unload_buddy(&e4b);
3576 return;
3578 if (pa->pa_type == MB_INODE_PA)
3579 pa->pa_free += ac->ac_b_ex.fe_len;
3583 * use blocks preallocated to inode
3585 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3586 struct ext4_prealloc_space *pa)
3588 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3589 ext4_fsblk_t start;
3590 ext4_fsblk_t end;
3591 int len;
3593 /* found preallocated blocks, use them */
3594 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3595 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3596 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3597 len = EXT4_NUM_B2C(sbi, end - start);
3598 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3599 &ac->ac_b_ex.fe_start);
3600 ac->ac_b_ex.fe_len = len;
3601 ac->ac_status = AC_STATUS_FOUND;
3602 ac->ac_pa = pa;
3604 BUG_ON(start < pa->pa_pstart);
3605 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3606 BUG_ON(pa->pa_free < len);
3607 pa->pa_free -= len;
3609 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3613 * use blocks preallocated to locality group
3615 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3616 struct ext4_prealloc_space *pa)
3618 unsigned int len = ac->ac_o_ex.fe_len;
3620 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3621 &ac->ac_b_ex.fe_group,
3622 &ac->ac_b_ex.fe_start);
3623 ac->ac_b_ex.fe_len = len;
3624 ac->ac_status = AC_STATUS_FOUND;
3625 ac->ac_pa = pa;
3627 /* we don't correct pa_pstart or pa_plen here to avoid
3628 * possible race when the group is being loaded concurrently
3629 * instead we correct pa later, after blocks are marked
3630 * in on-disk bitmap -- see ext4_mb_release_context()
3631 * Other CPUs are prevented from allocating from this pa by lg_mutex
3633 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3634 pa->pa_lstart-len, len, pa);
3638 * Return the prealloc space that have minimal distance
3639 * from the goal block. @cpa is the prealloc
3640 * space that is having currently known minimal distance
3641 * from the goal block.
3643 static struct ext4_prealloc_space *
3644 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3645 struct ext4_prealloc_space *pa,
3646 struct ext4_prealloc_space *cpa)
3648 ext4_fsblk_t cur_distance, new_distance;
3650 if (cpa == NULL) {
3651 atomic_inc(&pa->pa_count);
3652 return pa;
3654 cur_distance = abs(goal_block - cpa->pa_pstart);
3655 new_distance = abs(goal_block - pa->pa_pstart);
3657 if (cur_distance <= new_distance)
3658 return cpa;
3660 /* drop the previous reference */
3661 atomic_dec(&cpa->pa_count);
3662 atomic_inc(&pa->pa_count);
3663 return pa;
3667 * search goal blocks in preallocated space
3669 static noinline_for_stack bool
3670 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3672 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3673 int order, i;
3674 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3675 struct ext4_locality_group *lg;
3676 struct ext4_prealloc_space *pa, *cpa = NULL;
3677 ext4_fsblk_t goal_block;
3679 /* only data can be preallocated */
3680 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3681 return false;
3683 /* first, try per-file preallocation */
3684 rcu_read_lock();
3685 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3687 /* all fields in this condition don't change,
3688 * so we can skip locking for them */
3689 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3690 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3691 EXT4_C2B(sbi, pa->pa_len)))
3692 continue;
3694 /* non-extent files can't have physical blocks past 2^32 */
3695 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3696 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3697 EXT4_MAX_BLOCK_FILE_PHYS))
3698 continue;
3700 /* found preallocated blocks, use them */
3701 spin_lock(&pa->pa_lock);
3702 if (pa->pa_deleted == 0 && pa->pa_free) {
3703 atomic_inc(&pa->pa_count);
3704 ext4_mb_use_inode_pa(ac, pa);
3705 spin_unlock(&pa->pa_lock);
3706 ac->ac_criteria = 10;
3707 rcu_read_unlock();
3708 return true;
3710 spin_unlock(&pa->pa_lock);
3712 rcu_read_unlock();
3714 /* can we use group allocation? */
3715 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3716 return false;
3718 /* inode may have no locality group for some reason */
3719 lg = ac->ac_lg;
3720 if (lg == NULL)
3721 return false;
3722 order = fls(ac->ac_o_ex.fe_len) - 1;
3723 if (order > PREALLOC_TB_SIZE - 1)
3724 /* The max size of hash table is PREALLOC_TB_SIZE */
3725 order = PREALLOC_TB_SIZE - 1;
3727 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3729 * search for the prealloc space that is having
3730 * minimal distance from the goal block.
3732 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3733 rcu_read_lock();
3734 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3735 pa_inode_list) {
3736 spin_lock(&pa->pa_lock);
3737 if (pa->pa_deleted == 0 &&
3738 pa->pa_free >= ac->ac_o_ex.fe_len) {
3740 cpa = ext4_mb_check_group_pa(goal_block,
3741 pa, cpa);
3743 spin_unlock(&pa->pa_lock);
3745 rcu_read_unlock();
3747 if (cpa) {
3748 ext4_mb_use_group_pa(ac, cpa);
3749 ac->ac_criteria = 20;
3750 return true;
3752 return false;
3756 * the function goes through all block freed in the group
3757 * but not yet committed and marks them used in in-core bitmap.
3758 * buddy must be generated from this bitmap
3759 * Need to be called with the ext4 group lock held
3761 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3762 ext4_group_t group)
3764 struct rb_node *n;
3765 struct ext4_group_info *grp;
3766 struct ext4_free_data *entry;
3768 grp = ext4_get_group_info(sb, group);
3769 n = rb_first(&(grp->bb_free_root));
3771 while (n) {
3772 entry = rb_entry(n, struct ext4_free_data, efd_node);
3773 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3774 n = rb_next(n);
3776 return;
3780 * the function goes through all preallocation in this group and marks them
3781 * used in in-core bitmap. buddy must be generated from this bitmap
3782 * Need to be called with ext4 group lock held
3784 static noinline_for_stack
3785 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3786 ext4_group_t group)
3788 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3789 struct ext4_prealloc_space *pa;
3790 struct list_head *cur;
3791 ext4_group_t groupnr;
3792 ext4_grpblk_t start;
3793 int preallocated = 0;
3794 int len;
3796 /* all form of preallocation discards first load group,
3797 * so the only competing code is preallocation use.
3798 * we don't need any locking here
3799 * notice we do NOT ignore preallocations with pa_deleted
3800 * otherwise we could leave used blocks available for
3801 * allocation in buddy when concurrent ext4_mb_put_pa()
3802 * is dropping preallocation
3804 list_for_each(cur, &grp->bb_prealloc_list) {
3805 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3806 spin_lock(&pa->pa_lock);
3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3808 &groupnr, &start);
3809 len = pa->pa_len;
3810 spin_unlock(&pa->pa_lock);
3811 if (unlikely(len == 0))
3812 continue;
3813 BUG_ON(groupnr != group);
3814 ext4_set_bits(bitmap, start, len);
3815 preallocated += len;
3817 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3820 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3821 struct ext4_prealloc_space *pa)
3823 struct ext4_inode_info *ei;
3825 if (pa->pa_deleted) {
3826 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3827 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3828 pa->pa_len);
3829 return;
3832 pa->pa_deleted = 1;
3834 if (pa->pa_type == MB_INODE_PA) {
3835 ei = EXT4_I(pa->pa_inode);
3836 atomic_dec(&ei->i_prealloc_active);
3840 static void ext4_mb_pa_callback(struct rcu_head *head)
3842 struct ext4_prealloc_space *pa;
3843 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3845 BUG_ON(atomic_read(&pa->pa_count));
3846 BUG_ON(pa->pa_deleted == 0);
3847 kmem_cache_free(ext4_pspace_cachep, pa);
3851 * drops a reference to preallocated space descriptor
3852 * if this was the last reference and the space is consumed
3854 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3855 struct super_block *sb, struct ext4_prealloc_space *pa)
3857 ext4_group_t grp;
3858 ext4_fsblk_t grp_blk;
3860 /* in this short window concurrent discard can set pa_deleted */
3861 spin_lock(&pa->pa_lock);
3862 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3863 spin_unlock(&pa->pa_lock);
3864 return;
3867 if (pa->pa_deleted == 1) {
3868 spin_unlock(&pa->pa_lock);
3869 return;
3872 ext4_mb_mark_pa_deleted(sb, pa);
3873 spin_unlock(&pa->pa_lock);
3875 grp_blk = pa->pa_pstart;
3877 * If doing group-based preallocation, pa_pstart may be in the
3878 * next group when pa is used up
3880 if (pa->pa_type == MB_GROUP_PA)
3881 grp_blk--;
3883 grp = ext4_get_group_number(sb, grp_blk);
3886 * possible race:
3888 * P1 (buddy init) P2 (regular allocation)
3889 * find block B in PA
3890 * copy on-disk bitmap to buddy
3891 * mark B in on-disk bitmap
3892 * drop PA from group
3893 * mark all PAs in buddy
3895 * thus, P1 initializes buddy with B available. to prevent this
3896 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3897 * against that pair
3899 ext4_lock_group(sb, grp);
3900 list_del(&pa->pa_group_list);
3901 ext4_unlock_group(sb, grp);
3903 spin_lock(pa->pa_obj_lock);
3904 list_del_rcu(&pa->pa_inode_list);
3905 spin_unlock(pa->pa_obj_lock);
3907 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3911 * creates new preallocated space for given inode
3913 static noinline_for_stack void
3914 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3916 struct super_block *sb = ac->ac_sb;
3917 struct ext4_sb_info *sbi = EXT4_SB(sb);
3918 struct ext4_prealloc_space *pa;
3919 struct ext4_group_info *grp;
3920 struct ext4_inode_info *ei;
3922 /* preallocate only when found space is larger then requested */
3923 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3924 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3925 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3926 BUG_ON(ac->ac_pa == NULL);
3928 pa = ac->ac_pa;
3930 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3931 int winl;
3932 int wins;
3933 int win;
3934 int offs;
3936 /* we can't allocate as much as normalizer wants.
3937 * so, found space must get proper lstart
3938 * to cover original request */
3939 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3940 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3942 /* we're limited by original request in that
3943 * logical block must be covered any way
3944 * winl is window we can move our chunk within */
3945 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3947 /* also, we should cover whole original request */
3948 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3950 /* the smallest one defines real window */
3951 win = min(winl, wins);
3953 offs = ac->ac_o_ex.fe_logical %
3954 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3955 if (offs && offs < win)
3956 win = offs;
3958 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3959 EXT4_NUM_B2C(sbi, win);
3960 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3961 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3964 /* preallocation can change ac_b_ex, thus we store actually
3965 * allocated blocks for history */
3966 ac->ac_f_ex = ac->ac_b_ex;
3968 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3969 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3970 pa->pa_len = ac->ac_b_ex.fe_len;
3971 pa->pa_free = pa->pa_len;
3972 spin_lock_init(&pa->pa_lock);
3973 INIT_LIST_HEAD(&pa->pa_inode_list);
3974 INIT_LIST_HEAD(&pa->pa_group_list);
3975 pa->pa_deleted = 0;
3976 pa->pa_type = MB_INODE_PA;
3978 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3979 pa->pa_len, pa->pa_lstart);
3980 trace_ext4_mb_new_inode_pa(ac, pa);
3982 ext4_mb_use_inode_pa(ac, pa);
3983 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3985 ei = EXT4_I(ac->ac_inode);
3986 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3988 pa->pa_obj_lock = &ei->i_prealloc_lock;
3989 pa->pa_inode = ac->ac_inode;
3991 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3993 spin_lock(pa->pa_obj_lock);
3994 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3995 spin_unlock(pa->pa_obj_lock);
3996 atomic_inc(&ei->i_prealloc_active);
4000 * creates new preallocated space for locality group inodes belongs to
4002 static noinline_for_stack void
4003 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4005 struct super_block *sb = ac->ac_sb;
4006 struct ext4_locality_group *lg;
4007 struct ext4_prealloc_space *pa;
4008 struct ext4_group_info *grp;
4010 /* preallocate only when found space is larger then requested */
4011 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4012 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4013 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4014 BUG_ON(ac->ac_pa == NULL);
4016 pa = ac->ac_pa;
4018 /* preallocation can change ac_b_ex, thus we store actually
4019 * allocated blocks for history */
4020 ac->ac_f_ex = ac->ac_b_ex;
4022 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4023 pa->pa_lstart = pa->pa_pstart;
4024 pa->pa_len = ac->ac_b_ex.fe_len;
4025 pa->pa_free = pa->pa_len;
4026 spin_lock_init(&pa->pa_lock);
4027 INIT_LIST_HEAD(&pa->pa_inode_list);
4028 INIT_LIST_HEAD(&pa->pa_group_list);
4029 pa->pa_deleted = 0;
4030 pa->pa_type = MB_GROUP_PA;
4032 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4033 pa->pa_len, pa->pa_lstart);
4034 trace_ext4_mb_new_group_pa(ac, pa);
4036 ext4_mb_use_group_pa(ac, pa);
4037 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4039 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4040 lg = ac->ac_lg;
4041 BUG_ON(lg == NULL);
4043 pa->pa_obj_lock = &lg->lg_prealloc_lock;
4044 pa->pa_inode = NULL;
4046 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4049 * We will later add the new pa to the right bucket
4050 * after updating the pa_free in ext4_mb_release_context
4054 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4056 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4057 ext4_mb_new_group_pa(ac);
4058 else
4059 ext4_mb_new_inode_pa(ac);
4063 * finds all unused blocks in on-disk bitmap, frees them in
4064 * in-core bitmap and buddy.
4065 * @pa must be unlinked from inode and group lists, so that
4066 * nobody else can find/use it.
4067 * the caller MUST hold group/inode locks.
4068 * TODO: optimize the case when there are no in-core structures yet
4070 static noinline_for_stack int
4071 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4072 struct ext4_prealloc_space *pa)
4074 struct super_block *sb = e4b->bd_sb;
4075 struct ext4_sb_info *sbi = EXT4_SB(sb);
4076 unsigned int end;
4077 unsigned int next;
4078 ext4_group_t group;
4079 ext4_grpblk_t bit;
4080 unsigned long long grp_blk_start;
4081 int free = 0;
4083 BUG_ON(pa->pa_deleted == 0);
4084 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4085 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4086 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4087 end = bit + pa->pa_len;
4089 while (bit < end) {
4090 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4091 if (bit >= end)
4092 break;
4093 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4094 mb_debug(sb, "free preallocated %u/%u in group %u\n",
4095 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4096 (unsigned) next - bit, (unsigned) group);
4097 free += next - bit;
4099 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4100 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4101 EXT4_C2B(sbi, bit)),
4102 next - bit);
4103 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4104 bit = next + 1;
4106 if (free != pa->pa_free) {
4107 ext4_msg(e4b->bd_sb, KERN_CRIT,
4108 "pa %p: logic %lu, phys. %lu, len %d",
4109 pa, (unsigned long) pa->pa_lstart,
4110 (unsigned long) pa->pa_pstart,
4111 pa->pa_len);
4112 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4113 free, pa->pa_free);
4115 * pa is already deleted so we use the value obtained
4116 * from the bitmap and continue.
4119 atomic_add(free, &sbi->s_mb_discarded);
4121 return 0;
4124 static noinline_for_stack int
4125 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4126 struct ext4_prealloc_space *pa)
4128 struct super_block *sb = e4b->bd_sb;
4129 ext4_group_t group;
4130 ext4_grpblk_t bit;
4132 trace_ext4_mb_release_group_pa(sb, pa);
4133 BUG_ON(pa->pa_deleted == 0);
4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4135 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4136 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4137 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4138 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4140 return 0;
4144 * releases all preallocations in given group
4146 * first, we need to decide discard policy:
4147 * - when do we discard
4148 * 1) ENOSPC
4149 * - how many do we discard
4150 * 1) how many requested
4152 static noinline_for_stack int
4153 ext4_mb_discard_group_preallocations(struct super_block *sb,
4154 ext4_group_t group, int needed)
4156 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4157 struct buffer_head *bitmap_bh = NULL;
4158 struct ext4_prealloc_space *pa, *tmp;
4159 struct list_head list;
4160 struct ext4_buddy e4b;
4161 int err;
4162 int busy = 0;
4163 int free = 0;
4165 mb_debug(sb, "discard preallocation for group %u\n", group);
4166 if (list_empty(&grp->bb_prealloc_list))
4167 goto out_dbg;
4169 bitmap_bh = ext4_read_block_bitmap(sb, group);
4170 if (IS_ERR(bitmap_bh)) {
4171 err = PTR_ERR(bitmap_bh);
4172 ext4_error_err(sb, -err,
4173 "Error %d reading block bitmap for %u",
4174 err, group);
4175 goto out_dbg;
4178 err = ext4_mb_load_buddy(sb, group, &e4b);
4179 if (err) {
4180 ext4_warning(sb, "Error %d loading buddy information for %u",
4181 err, group);
4182 put_bh(bitmap_bh);
4183 goto out_dbg;
4186 if (needed == 0)
4187 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4189 INIT_LIST_HEAD(&list);
4190 repeat:
4191 ext4_lock_group(sb, group);
4192 this_cpu_inc(discard_pa_seq);
4193 list_for_each_entry_safe(pa, tmp,
4194 &grp->bb_prealloc_list, pa_group_list) {
4195 spin_lock(&pa->pa_lock);
4196 if (atomic_read(&pa->pa_count)) {
4197 spin_unlock(&pa->pa_lock);
4198 busy = 1;
4199 continue;
4201 if (pa->pa_deleted) {
4202 spin_unlock(&pa->pa_lock);
4203 continue;
4206 /* seems this one can be freed ... */
4207 ext4_mb_mark_pa_deleted(sb, pa);
4209 /* we can trust pa_free ... */
4210 free += pa->pa_free;
4212 spin_unlock(&pa->pa_lock);
4214 list_del(&pa->pa_group_list);
4215 list_add(&pa->u.pa_tmp_list, &list);
4218 /* if we still need more blocks and some PAs were used, try again */
4219 if (free < needed && busy) {
4220 busy = 0;
4221 ext4_unlock_group(sb, group);
4222 cond_resched();
4223 goto repeat;
4226 /* found anything to free? */
4227 if (list_empty(&list)) {
4228 BUG_ON(free != 0);
4229 mb_debug(sb, "Someone else may have freed PA for this group %u\n",
4230 group);
4231 goto out;
4234 /* now free all selected PAs */
4235 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4237 /* remove from object (inode or locality group) */
4238 spin_lock(pa->pa_obj_lock);
4239 list_del_rcu(&pa->pa_inode_list);
4240 spin_unlock(pa->pa_obj_lock);
4242 if (pa->pa_type == MB_GROUP_PA)
4243 ext4_mb_release_group_pa(&e4b, pa);
4244 else
4245 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4247 list_del(&pa->u.pa_tmp_list);
4248 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4251 out:
4252 ext4_unlock_group(sb, group);
4253 ext4_mb_unload_buddy(&e4b);
4254 put_bh(bitmap_bh);
4255 out_dbg:
4256 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4257 free, group, grp->bb_free);
4258 return free;
4262 * releases all non-used preallocated blocks for given inode
4264 * It's important to discard preallocations under i_data_sem
4265 * We don't want another block to be served from the prealloc
4266 * space when we are discarding the inode prealloc space.
4268 * FIXME!! Make sure it is valid at all the call sites
4270 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4272 struct ext4_inode_info *ei = EXT4_I(inode);
4273 struct super_block *sb = inode->i_sb;
4274 struct buffer_head *bitmap_bh = NULL;
4275 struct ext4_prealloc_space *pa, *tmp;
4276 ext4_group_t group = 0;
4277 struct list_head list;
4278 struct ext4_buddy e4b;
4279 int err;
4281 if (!S_ISREG(inode->i_mode)) {
4282 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4283 return;
4286 mb_debug(sb, "discard preallocation for inode %lu\n",
4287 inode->i_ino);
4288 trace_ext4_discard_preallocations(inode,
4289 atomic_read(&ei->i_prealloc_active), needed);
4291 INIT_LIST_HEAD(&list);
4293 if (needed == 0)
4294 needed = UINT_MAX;
4296 repeat:
4297 /* first, collect all pa's in the inode */
4298 spin_lock(&ei->i_prealloc_lock);
4299 while (!list_empty(&ei->i_prealloc_list) && needed) {
4300 pa = list_entry(ei->i_prealloc_list.prev,
4301 struct ext4_prealloc_space, pa_inode_list);
4302 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4303 spin_lock(&pa->pa_lock);
4304 if (atomic_read(&pa->pa_count)) {
4305 /* this shouldn't happen often - nobody should
4306 * use preallocation while we're discarding it */
4307 spin_unlock(&pa->pa_lock);
4308 spin_unlock(&ei->i_prealloc_lock);
4309 ext4_msg(sb, KERN_ERR,
4310 "uh-oh! used pa while discarding");
4311 WARN_ON(1);
4312 schedule_timeout_uninterruptible(HZ);
4313 goto repeat;
4316 if (pa->pa_deleted == 0) {
4317 ext4_mb_mark_pa_deleted(sb, pa);
4318 spin_unlock(&pa->pa_lock);
4319 list_del_rcu(&pa->pa_inode_list);
4320 list_add(&pa->u.pa_tmp_list, &list);
4321 needed--;
4322 continue;
4325 /* someone is deleting pa right now */
4326 spin_unlock(&pa->pa_lock);
4327 spin_unlock(&ei->i_prealloc_lock);
4329 /* we have to wait here because pa_deleted
4330 * doesn't mean pa is already unlinked from
4331 * the list. as we might be called from
4332 * ->clear_inode() the inode will get freed
4333 * and concurrent thread which is unlinking
4334 * pa from inode's list may access already
4335 * freed memory, bad-bad-bad */
4337 /* XXX: if this happens too often, we can
4338 * add a flag to force wait only in case
4339 * of ->clear_inode(), but not in case of
4340 * regular truncate */
4341 schedule_timeout_uninterruptible(HZ);
4342 goto repeat;
4344 spin_unlock(&ei->i_prealloc_lock);
4346 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4347 BUG_ON(pa->pa_type != MB_INODE_PA);
4348 group = ext4_get_group_number(sb, pa->pa_pstart);
4350 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4351 GFP_NOFS|__GFP_NOFAIL);
4352 if (err) {
4353 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4354 err, group);
4355 continue;
4358 bitmap_bh = ext4_read_block_bitmap(sb, group);
4359 if (IS_ERR(bitmap_bh)) {
4360 err = PTR_ERR(bitmap_bh);
4361 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4362 err, group);
4363 ext4_mb_unload_buddy(&e4b);
4364 continue;
4367 ext4_lock_group(sb, group);
4368 list_del(&pa->pa_group_list);
4369 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4370 ext4_unlock_group(sb, group);
4372 ext4_mb_unload_buddy(&e4b);
4373 put_bh(bitmap_bh);
4375 list_del(&pa->u.pa_tmp_list);
4376 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4380 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4382 struct ext4_prealloc_space *pa;
4384 BUG_ON(ext4_pspace_cachep == NULL);
4385 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4386 if (!pa)
4387 return -ENOMEM;
4388 atomic_set(&pa->pa_count, 1);
4389 ac->ac_pa = pa;
4390 return 0;
4393 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4395 struct ext4_prealloc_space *pa = ac->ac_pa;
4397 BUG_ON(!pa);
4398 ac->ac_pa = NULL;
4399 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4400 kmem_cache_free(ext4_pspace_cachep, pa);
4403 #ifdef CONFIG_EXT4_DEBUG
4404 static inline void ext4_mb_show_pa(struct super_block *sb)
4406 ext4_group_t i, ngroups;
4408 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4409 return;
4411 ngroups = ext4_get_groups_count(sb);
4412 mb_debug(sb, "groups: ");
4413 for (i = 0; i < ngroups; i++) {
4414 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4415 struct ext4_prealloc_space *pa;
4416 ext4_grpblk_t start;
4417 struct list_head *cur;
4418 ext4_lock_group(sb, i);
4419 list_for_each(cur, &grp->bb_prealloc_list) {
4420 pa = list_entry(cur, struct ext4_prealloc_space,
4421 pa_group_list);
4422 spin_lock(&pa->pa_lock);
4423 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4424 NULL, &start);
4425 spin_unlock(&pa->pa_lock);
4426 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4427 pa->pa_len);
4429 ext4_unlock_group(sb, i);
4430 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4431 grp->bb_fragments);
4435 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4437 struct super_block *sb = ac->ac_sb;
4439 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4440 return;
4442 mb_debug(sb, "Can't allocate:"
4443 " Allocation context details:");
4444 mb_debug(sb, "status %u flags 0x%x",
4445 ac->ac_status, ac->ac_flags);
4446 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4447 "goal %lu/%lu/%lu@%lu, "
4448 "best %lu/%lu/%lu@%lu cr %d",
4449 (unsigned long)ac->ac_o_ex.fe_group,
4450 (unsigned long)ac->ac_o_ex.fe_start,
4451 (unsigned long)ac->ac_o_ex.fe_len,
4452 (unsigned long)ac->ac_o_ex.fe_logical,
4453 (unsigned long)ac->ac_g_ex.fe_group,
4454 (unsigned long)ac->ac_g_ex.fe_start,
4455 (unsigned long)ac->ac_g_ex.fe_len,
4456 (unsigned long)ac->ac_g_ex.fe_logical,
4457 (unsigned long)ac->ac_b_ex.fe_group,
4458 (unsigned long)ac->ac_b_ex.fe_start,
4459 (unsigned long)ac->ac_b_ex.fe_len,
4460 (unsigned long)ac->ac_b_ex.fe_logical,
4461 (int)ac->ac_criteria);
4462 mb_debug(sb, "%u found", ac->ac_found);
4463 ext4_mb_show_pa(sb);
4465 #else
4466 static inline void ext4_mb_show_pa(struct super_block *sb)
4468 return;
4470 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4472 ext4_mb_show_pa(ac->ac_sb);
4473 return;
4475 #endif
4478 * We use locality group preallocation for small size file. The size of the
4479 * file is determined by the current size or the resulting size after
4480 * allocation which ever is larger
4482 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4484 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4486 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4487 int bsbits = ac->ac_sb->s_blocksize_bits;
4488 loff_t size, isize;
4490 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4491 return;
4493 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4494 return;
4496 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4497 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4498 >> bsbits;
4500 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4501 !inode_is_open_for_write(ac->ac_inode)) {
4502 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4503 return;
4506 if (sbi->s_mb_group_prealloc <= 0) {
4507 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4508 return;
4511 /* don't use group allocation for large files */
4512 size = max(size, isize);
4513 if (size > sbi->s_mb_stream_request) {
4514 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4515 return;
4518 BUG_ON(ac->ac_lg != NULL);
4520 * locality group prealloc space are per cpu. The reason for having
4521 * per cpu locality group is to reduce the contention between block
4522 * request from multiple CPUs.
4524 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4526 /* we're going to use group allocation */
4527 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4529 /* serialize all allocations in the group */
4530 mutex_lock(&ac->ac_lg->lg_mutex);
4533 static noinline_for_stack int
4534 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4535 struct ext4_allocation_request *ar)
4537 struct super_block *sb = ar->inode->i_sb;
4538 struct ext4_sb_info *sbi = EXT4_SB(sb);
4539 struct ext4_super_block *es = sbi->s_es;
4540 ext4_group_t group;
4541 unsigned int len;
4542 ext4_fsblk_t goal;
4543 ext4_grpblk_t block;
4545 /* we can't allocate > group size */
4546 len = ar->len;
4548 /* just a dirty hack to filter too big requests */
4549 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4550 len = EXT4_CLUSTERS_PER_GROUP(sb);
4552 /* start searching from the goal */
4553 goal = ar->goal;
4554 if (goal < le32_to_cpu(es->s_first_data_block) ||
4555 goal >= ext4_blocks_count(es))
4556 goal = le32_to_cpu(es->s_first_data_block);
4557 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4559 /* set up allocation goals */
4560 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4561 ac->ac_status = AC_STATUS_CONTINUE;
4562 ac->ac_sb = sb;
4563 ac->ac_inode = ar->inode;
4564 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4565 ac->ac_o_ex.fe_group = group;
4566 ac->ac_o_ex.fe_start = block;
4567 ac->ac_o_ex.fe_len = len;
4568 ac->ac_g_ex = ac->ac_o_ex;
4569 ac->ac_flags = ar->flags;
4571 /* we have to define context: we'll work with a file or
4572 * locality group. this is a policy, actually */
4573 ext4_mb_group_or_file(ac);
4575 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4576 "left: %u/%u, right %u/%u to %swritable\n",
4577 (unsigned) ar->len, (unsigned) ar->logical,
4578 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4579 (unsigned) ar->lleft, (unsigned) ar->pleft,
4580 (unsigned) ar->lright, (unsigned) ar->pright,
4581 inode_is_open_for_write(ar->inode) ? "" : "non-");
4582 return 0;
4586 static noinline_for_stack void
4587 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4588 struct ext4_locality_group *lg,
4589 int order, int total_entries)
4591 ext4_group_t group = 0;
4592 struct ext4_buddy e4b;
4593 struct list_head discard_list;
4594 struct ext4_prealloc_space *pa, *tmp;
4596 mb_debug(sb, "discard locality group preallocation\n");
4598 INIT_LIST_HEAD(&discard_list);
4600 spin_lock(&lg->lg_prealloc_lock);
4601 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4602 pa_inode_list,
4603 lockdep_is_held(&lg->lg_prealloc_lock)) {
4604 spin_lock(&pa->pa_lock);
4605 if (atomic_read(&pa->pa_count)) {
4607 * This is the pa that we just used
4608 * for block allocation. So don't
4609 * free that
4611 spin_unlock(&pa->pa_lock);
4612 continue;
4614 if (pa->pa_deleted) {
4615 spin_unlock(&pa->pa_lock);
4616 continue;
4618 /* only lg prealloc space */
4619 BUG_ON(pa->pa_type != MB_GROUP_PA);
4621 /* seems this one can be freed ... */
4622 ext4_mb_mark_pa_deleted(sb, pa);
4623 spin_unlock(&pa->pa_lock);
4625 list_del_rcu(&pa->pa_inode_list);
4626 list_add(&pa->u.pa_tmp_list, &discard_list);
4628 total_entries--;
4629 if (total_entries <= 5) {
4631 * we want to keep only 5 entries
4632 * allowing it to grow to 8. This
4633 * mak sure we don't call discard
4634 * soon for this list.
4636 break;
4639 spin_unlock(&lg->lg_prealloc_lock);
4641 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4642 int err;
4644 group = ext4_get_group_number(sb, pa->pa_pstart);
4645 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4646 GFP_NOFS|__GFP_NOFAIL);
4647 if (err) {
4648 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4649 err, group);
4650 continue;
4652 ext4_lock_group(sb, group);
4653 list_del(&pa->pa_group_list);
4654 ext4_mb_release_group_pa(&e4b, pa);
4655 ext4_unlock_group(sb, group);
4657 ext4_mb_unload_buddy(&e4b);
4658 list_del(&pa->u.pa_tmp_list);
4659 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4664 * We have incremented pa_count. So it cannot be freed at this
4665 * point. Also we hold lg_mutex. So no parallel allocation is
4666 * possible from this lg. That means pa_free cannot be updated.
4668 * A parallel ext4_mb_discard_group_preallocations is possible.
4669 * which can cause the lg_prealloc_list to be updated.
4672 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4674 int order, added = 0, lg_prealloc_count = 1;
4675 struct super_block *sb = ac->ac_sb;
4676 struct ext4_locality_group *lg = ac->ac_lg;
4677 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4679 order = fls(pa->pa_free) - 1;
4680 if (order > PREALLOC_TB_SIZE - 1)
4681 /* The max size of hash table is PREALLOC_TB_SIZE */
4682 order = PREALLOC_TB_SIZE - 1;
4683 /* Add the prealloc space to lg */
4684 spin_lock(&lg->lg_prealloc_lock);
4685 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4686 pa_inode_list,
4687 lockdep_is_held(&lg->lg_prealloc_lock)) {
4688 spin_lock(&tmp_pa->pa_lock);
4689 if (tmp_pa->pa_deleted) {
4690 spin_unlock(&tmp_pa->pa_lock);
4691 continue;
4693 if (!added && pa->pa_free < tmp_pa->pa_free) {
4694 /* Add to the tail of the previous entry */
4695 list_add_tail_rcu(&pa->pa_inode_list,
4696 &tmp_pa->pa_inode_list);
4697 added = 1;
4699 * we want to count the total
4700 * number of entries in the list
4703 spin_unlock(&tmp_pa->pa_lock);
4704 lg_prealloc_count++;
4706 if (!added)
4707 list_add_tail_rcu(&pa->pa_inode_list,
4708 &lg->lg_prealloc_list[order]);
4709 spin_unlock(&lg->lg_prealloc_lock);
4711 /* Now trim the list to be not more than 8 elements */
4712 if (lg_prealloc_count > 8) {
4713 ext4_mb_discard_lg_preallocations(sb, lg,
4714 order, lg_prealloc_count);
4715 return;
4717 return ;
4721 * if per-inode prealloc list is too long, trim some PA
4723 static void ext4_mb_trim_inode_pa(struct inode *inode)
4725 struct ext4_inode_info *ei = EXT4_I(inode);
4726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4727 int count, delta;
4729 count = atomic_read(&ei->i_prealloc_active);
4730 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4731 if (count > sbi->s_mb_max_inode_prealloc + delta) {
4732 count -= sbi->s_mb_max_inode_prealloc;
4733 ext4_discard_preallocations(inode, count);
4738 * release all resource we used in allocation
4740 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4742 struct inode *inode = ac->ac_inode;
4743 struct ext4_inode_info *ei = EXT4_I(inode);
4744 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4745 struct ext4_prealloc_space *pa = ac->ac_pa;
4746 if (pa) {
4747 if (pa->pa_type == MB_GROUP_PA) {
4748 /* see comment in ext4_mb_use_group_pa() */
4749 spin_lock(&pa->pa_lock);
4750 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4751 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4752 pa->pa_free -= ac->ac_b_ex.fe_len;
4753 pa->pa_len -= ac->ac_b_ex.fe_len;
4754 spin_unlock(&pa->pa_lock);
4757 * We want to add the pa to the right bucket.
4758 * Remove it from the list and while adding
4759 * make sure the list to which we are adding
4760 * doesn't grow big.
4762 if (likely(pa->pa_free)) {
4763 spin_lock(pa->pa_obj_lock);
4764 list_del_rcu(&pa->pa_inode_list);
4765 spin_unlock(pa->pa_obj_lock);
4766 ext4_mb_add_n_trim(ac);
4770 if (pa->pa_type == MB_INODE_PA) {
4772 * treat per-inode prealloc list as a lru list, then try
4773 * to trim the least recently used PA.
4775 spin_lock(pa->pa_obj_lock);
4776 list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4777 spin_unlock(pa->pa_obj_lock);
4780 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4782 if (ac->ac_bitmap_page)
4783 put_page(ac->ac_bitmap_page);
4784 if (ac->ac_buddy_page)
4785 put_page(ac->ac_buddy_page);
4786 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4787 mutex_unlock(&ac->ac_lg->lg_mutex);
4788 ext4_mb_collect_stats(ac);
4789 ext4_mb_trim_inode_pa(inode);
4790 return 0;
4793 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4795 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4796 int ret;
4797 int freed = 0;
4799 trace_ext4_mb_discard_preallocations(sb, needed);
4800 for (i = 0; i < ngroups && needed > 0; i++) {
4801 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4802 freed += ret;
4803 needed -= ret;
4806 return freed;
4809 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4810 struct ext4_allocation_context *ac, u64 *seq)
4812 int freed;
4813 u64 seq_retry = 0;
4814 bool ret = false;
4816 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4817 if (freed) {
4818 ret = true;
4819 goto out_dbg;
4821 seq_retry = ext4_get_discard_pa_seq_sum();
4822 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4823 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4824 *seq = seq_retry;
4825 ret = true;
4828 out_dbg:
4829 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4830 return ret;
4834 * Main entry point into mballoc to allocate blocks
4835 * it tries to use preallocation first, then falls back
4836 * to usual allocation
4838 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4839 struct ext4_allocation_request *ar, int *errp)
4841 struct ext4_allocation_context *ac = NULL;
4842 struct ext4_sb_info *sbi;
4843 struct super_block *sb;
4844 ext4_fsblk_t block = 0;
4845 unsigned int inquota = 0;
4846 unsigned int reserv_clstrs = 0;
4847 u64 seq;
4849 might_sleep();
4850 sb = ar->inode->i_sb;
4851 sbi = EXT4_SB(sb);
4853 trace_ext4_request_blocks(ar);
4855 /* Allow to use superuser reservation for quota file */
4856 if (ext4_is_quota_file(ar->inode))
4857 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4859 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4860 /* Without delayed allocation we need to verify
4861 * there is enough free blocks to do block allocation
4862 * and verify allocation doesn't exceed the quota limits.
4864 while (ar->len &&
4865 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4867 /* let others to free the space */
4868 cond_resched();
4869 ar->len = ar->len >> 1;
4871 if (!ar->len) {
4872 ext4_mb_show_pa(sb);
4873 *errp = -ENOSPC;
4874 return 0;
4876 reserv_clstrs = ar->len;
4877 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4878 dquot_alloc_block_nofail(ar->inode,
4879 EXT4_C2B(sbi, ar->len));
4880 } else {
4881 while (ar->len &&
4882 dquot_alloc_block(ar->inode,
4883 EXT4_C2B(sbi, ar->len))) {
4885 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4886 ar->len--;
4889 inquota = ar->len;
4890 if (ar->len == 0) {
4891 *errp = -EDQUOT;
4892 goto out;
4896 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4897 if (!ac) {
4898 ar->len = 0;
4899 *errp = -ENOMEM;
4900 goto out;
4903 *errp = ext4_mb_initialize_context(ac, ar);
4904 if (*errp) {
4905 ar->len = 0;
4906 goto out;
4909 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4910 seq = this_cpu_read(discard_pa_seq);
4911 if (!ext4_mb_use_preallocated(ac)) {
4912 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4913 ext4_mb_normalize_request(ac, ar);
4915 *errp = ext4_mb_pa_alloc(ac);
4916 if (*errp)
4917 goto errout;
4918 repeat:
4919 /* allocate space in core */
4920 *errp = ext4_mb_regular_allocator(ac);
4922 * pa allocated above is added to grp->bb_prealloc_list only
4923 * when we were able to allocate some block i.e. when
4924 * ac->ac_status == AC_STATUS_FOUND.
4925 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4926 * So we have to free this pa here itself.
4928 if (*errp) {
4929 ext4_mb_pa_free(ac);
4930 ext4_discard_allocated_blocks(ac);
4931 goto errout;
4933 if (ac->ac_status == AC_STATUS_FOUND &&
4934 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4935 ext4_mb_pa_free(ac);
4937 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4938 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4939 if (*errp) {
4940 ext4_discard_allocated_blocks(ac);
4941 goto errout;
4942 } else {
4943 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4944 ar->len = ac->ac_b_ex.fe_len;
4946 } else {
4947 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
4948 goto repeat;
4950 * If block allocation fails then the pa allocated above
4951 * needs to be freed here itself.
4953 ext4_mb_pa_free(ac);
4954 *errp = -ENOSPC;
4957 errout:
4958 if (*errp) {
4959 ac->ac_b_ex.fe_len = 0;
4960 ar->len = 0;
4961 ext4_mb_show_ac(ac);
4963 ext4_mb_release_context(ac);
4964 out:
4965 if (ac)
4966 kmem_cache_free(ext4_ac_cachep, ac);
4967 if (inquota && ar->len < inquota)
4968 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4969 if (!ar->len) {
4970 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4971 /* release all the reserved blocks if non delalloc */
4972 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4973 reserv_clstrs);
4976 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4978 return block;
4982 * We can merge two free data extents only if the physical blocks
4983 * are contiguous, AND the extents were freed by the same transaction,
4984 * AND the blocks are associated with the same group.
4986 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4987 struct ext4_free_data *entry,
4988 struct ext4_free_data *new_entry,
4989 struct rb_root *entry_rb_root)
4991 if ((entry->efd_tid != new_entry->efd_tid) ||
4992 (entry->efd_group != new_entry->efd_group))
4993 return;
4994 if (entry->efd_start_cluster + entry->efd_count ==
4995 new_entry->efd_start_cluster) {
4996 new_entry->efd_start_cluster = entry->efd_start_cluster;
4997 new_entry->efd_count += entry->efd_count;
4998 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4999 entry->efd_start_cluster) {
5000 new_entry->efd_count += entry->efd_count;
5001 } else
5002 return;
5003 spin_lock(&sbi->s_md_lock);
5004 list_del(&entry->efd_list);
5005 spin_unlock(&sbi->s_md_lock);
5006 rb_erase(&entry->efd_node, entry_rb_root);
5007 kmem_cache_free(ext4_free_data_cachep, entry);
5010 static noinline_for_stack int
5011 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5012 struct ext4_free_data *new_entry)
5014 ext4_group_t group = e4b->bd_group;
5015 ext4_grpblk_t cluster;
5016 ext4_grpblk_t clusters = new_entry->efd_count;
5017 struct ext4_free_data *entry;
5018 struct ext4_group_info *db = e4b->bd_info;
5019 struct super_block *sb = e4b->bd_sb;
5020 struct ext4_sb_info *sbi = EXT4_SB(sb);
5021 struct rb_node **n = &db->bb_free_root.rb_node, *node;
5022 struct rb_node *parent = NULL, *new_node;
5024 BUG_ON(!ext4_handle_valid(handle));
5025 BUG_ON(e4b->bd_bitmap_page == NULL);
5026 BUG_ON(e4b->bd_buddy_page == NULL);
5028 new_node = &new_entry->efd_node;
5029 cluster = new_entry->efd_start_cluster;
5031 if (!*n) {
5032 /* first free block exent. We need to
5033 protect buddy cache from being freed,
5034 * otherwise we'll refresh it from
5035 * on-disk bitmap and lose not-yet-available
5036 * blocks */
5037 get_page(e4b->bd_buddy_page);
5038 get_page(e4b->bd_bitmap_page);
5040 while (*n) {
5041 parent = *n;
5042 entry = rb_entry(parent, struct ext4_free_data, efd_node);
5043 if (cluster < entry->efd_start_cluster)
5044 n = &(*n)->rb_left;
5045 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5046 n = &(*n)->rb_right;
5047 else {
5048 ext4_grp_locked_error(sb, group, 0,
5049 ext4_group_first_block_no(sb, group) +
5050 EXT4_C2B(sbi, cluster),
5051 "Block already on to-be-freed list");
5052 return 0;
5056 rb_link_node(new_node, parent, n);
5057 rb_insert_color(new_node, &db->bb_free_root);
5059 /* Now try to see the extent can be merged to left and right */
5060 node = rb_prev(new_node);
5061 if (node) {
5062 entry = rb_entry(node, struct ext4_free_data, efd_node);
5063 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5064 &(db->bb_free_root));
5067 node = rb_next(new_node);
5068 if (node) {
5069 entry = rb_entry(node, struct ext4_free_data, efd_node);
5070 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5071 &(db->bb_free_root));
5074 spin_lock(&sbi->s_md_lock);
5075 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5076 sbi->s_mb_free_pending += clusters;
5077 spin_unlock(&sbi->s_md_lock);
5078 return 0;
5082 * ext4_free_blocks() -- Free given blocks and update quota
5083 * @handle: handle for this transaction
5084 * @inode: inode
5085 * @bh: optional buffer of the block to be freed
5086 * @block: starting physical block to be freed
5087 * @count: number of blocks to be freed
5088 * @flags: flags used by ext4_free_blocks
5090 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5091 struct buffer_head *bh, ext4_fsblk_t block,
5092 unsigned long count, int flags)
5094 struct buffer_head *bitmap_bh = NULL;
5095 struct super_block *sb = inode->i_sb;
5096 struct ext4_group_desc *gdp;
5097 unsigned int overflow;
5098 ext4_grpblk_t bit;
5099 struct buffer_head *gd_bh;
5100 ext4_group_t block_group;
5101 struct ext4_sb_info *sbi;
5102 struct ext4_buddy e4b;
5103 unsigned int count_clusters;
5104 int err = 0;
5105 int ret;
5107 might_sleep();
5108 if (bh) {
5109 if (block)
5110 BUG_ON(block != bh->b_blocknr);
5111 else
5112 block = bh->b_blocknr;
5115 sbi = EXT4_SB(sb);
5116 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5117 !ext4_inode_block_valid(inode, block, count)) {
5118 ext4_error(sb, "Freeing blocks not in datazone - "
5119 "block = %llu, count = %lu", block, count);
5120 goto error_return;
5123 ext4_debug("freeing block %llu\n", block);
5124 trace_ext4_free_blocks(inode, block, count, flags);
5126 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5127 BUG_ON(count > 1);
5129 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5130 inode, bh, block);
5134 * If the extent to be freed does not begin on a cluster
5135 * boundary, we need to deal with partial clusters at the
5136 * beginning and end of the extent. Normally we will free
5137 * blocks at the beginning or the end unless we are explicitly
5138 * requested to avoid doing so.
5140 overflow = EXT4_PBLK_COFF(sbi, block);
5141 if (overflow) {
5142 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5143 overflow = sbi->s_cluster_ratio - overflow;
5144 block += overflow;
5145 if (count > overflow)
5146 count -= overflow;
5147 else
5148 return;
5149 } else {
5150 block -= overflow;
5151 count += overflow;
5154 overflow = EXT4_LBLK_COFF(sbi, count);
5155 if (overflow) {
5156 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5157 if (count > overflow)
5158 count -= overflow;
5159 else
5160 return;
5161 } else
5162 count += sbi->s_cluster_ratio - overflow;
5165 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5166 int i;
5167 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5169 for (i = 0; i < count; i++) {
5170 cond_resched();
5171 if (is_metadata)
5172 bh = sb_find_get_block(inode->i_sb, block + i);
5173 ext4_forget(handle, is_metadata, inode, bh, block + i);
5177 do_more:
5178 overflow = 0;
5179 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5181 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5182 ext4_get_group_info(sb, block_group))))
5183 return;
5186 * Check to see if we are freeing blocks across a group
5187 * boundary.
5189 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5190 overflow = EXT4_C2B(sbi, bit) + count -
5191 EXT4_BLOCKS_PER_GROUP(sb);
5192 count -= overflow;
5194 count_clusters = EXT4_NUM_B2C(sbi, count);
5195 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5196 if (IS_ERR(bitmap_bh)) {
5197 err = PTR_ERR(bitmap_bh);
5198 bitmap_bh = NULL;
5199 goto error_return;
5201 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5202 if (!gdp) {
5203 err = -EIO;
5204 goto error_return;
5207 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5208 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5209 in_range(block, ext4_inode_table(sb, gdp),
5210 sbi->s_itb_per_group) ||
5211 in_range(block + count - 1, ext4_inode_table(sb, gdp),
5212 sbi->s_itb_per_group)) {
5214 ext4_error(sb, "Freeing blocks in system zone - "
5215 "Block = %llu, count = %lu", block, count);
5216 /* err = 0. ext4_std_error should be a no op */
5217 goto error_return;
5220 BUFFER_TRACE(bitmap_bh, "getting write access");
5221 err = ext4_journal_get_write_access(handle, bitmap_bh);
5222 if (err)
5223 goto error_return;
5226 * We are about to modify some metadata. Call the journal APIs
5227 * to unshare ->b_data if a currently-committing transaction is
5228 * using it
5230 BUFFER_TRACE(gd_bh, "get_write_access");
5231 err = ext4_journal_get_write_access(handle, gd_bh);
5232 if (err)
5233 goto error_return;
5234 #ifdef AGGRESSIVE_CHECK
5236 int i;
5237 for (i = 0; i < count_clusters; i++)
5238 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5240 #endif
5241 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5243 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5244 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5245 GFP_NOFS|__GFP_NOFAIL);
5246 if (err)
5247 goto error_return;
5250 * We need to make sure we don't reuse the freed block until after the
5251 * transaction is committed. We make an exception if the inode is to be
5252 * written in writeback mode since writeback mode has weak data
5253 * consistency guarantees.
5255 if (ext4_handle_valid(handle) &&
5256 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5257 !ext4_should_writeback_data(inode))) {
5258 struct ext4_free_data *new_entry;
5260 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5261 * to fail.
5263 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5264 GFP_NOFS|__GFP_NOFAIL);
5265 new_entry->efd_start_cluster = bit;
5266 new_entry->efd_group = block_group;
5267 new_entry->efd_count = count_clusters;
5268 new_entry->efd_tid = handle->h_transaction->t_tid;
5270 ext4_lock_group(sb, block_group);
5271 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5272 ext4_mb_free_metadata(handle, &e4b, new_entry);
5273 } else {
5274 /* need to update group_info->bb_free and bitmap
5275 * with group lock held. generate_buddy look at
5276 * them with group lock_held
5278 if (test_opt(sb, DISCARD)) {
5279 err = ext4_issue_discard(sb, block_group, bit, count,
5280 NULL);
5281 if (err && err != -EOPNOTSUPP)
5282 ext4_msg(sb, KERN_WARNING, "discard request in"
5283 " group:%d block:%d count:%lu failed"
5284 " with %d", block_group, bit, count,
5285 err);
5286 } else
5287 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5289 ext4_lock_group(sb, block_group);
5290 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5291 mb_free_blocks(inode, &e4b, bit, count_clusters);
5294 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5295 ext4_free_group_clusters_set(sb, gdp, ret);
5296 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5297 ext4_group_desc_csum_set(sb, block_group, gdp);
5298 ext4_unlock_group(sb, block_group);
5300 if (sbi->s_log_groups_per_flex) {
5301 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5302 atomic64_add(count_clusters,
5303 &sbi_array_rcu_deref(sbi, s_flex_groups,
5304 flex_group)->free_clusters);
5308 * on a bigalloc file system, defer the s_freeclusters_counter
5309 * update to the caller (ext4_remove_space and friends) so they
5310 * can determine if a cluster freed here should be rereserved
5312 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5313 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5314 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5315 percpu_counter_add(&sbi->s_freeclusters_counter,
5316 count_clusters);
5319 ext4_mb_unload_buddy(&e4b);
5321 /* We dirtied the bitmap block */
5322 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5323 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5325 /* And the group descriptor block */
5326 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5327 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5328 if (!err)
5329 err = ret;
5331 if (overflow && !err) {
5332 block += count;
5333 count = overflow;
5334 put_bh(bitmap_bh);
5335 goto do_more;
5337 error_return:
5338 brelse(bitmap_bh);
5339 ext4_std_error(sb, err);
5340 return;
5344 * ext4_group_add_blocks() -- Add given blocks to an existing group
5345 * @handle: handle to this transaction
5346 * @sb: super block
5347 * @block: start physical block to add to the block group
5348 * @count: number of blocks to free
5350 * This marks the blocks as free in the bitmap and buddy.
5352 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5353 ext4_fsblk_t block, unsigned long count)
5355 struct buffer_head *bitmap_bh = NULL;
5356 struct buffer_head *gd_bh;
5357 ext4_group_t block_group;
5358 ext4_grpblk_t bit;
5359 unsigned int i;
5360 struct ext4_group_desc *desc;
5361 struct ext4_sb_info *sbi = EXT4_SB(sb);
5362 struct ext4_buddy e4b;
5363 int err = 0, ret, free_clusters_count;
5364 ext4_grpblk_t clusters_freed;
5365 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5366 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5367 unsigned long cluster_count = last_cluster - first_cluster + 1;
5369 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5371 if (count == 0)
5372 return 0;
5374 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5376 * Check to see if we are freeing blocks across a group
5377 * boundary.
5379 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5380 ext4_warning(sb, "too many blocks added to group %u",
5381 block_group);
5382 err = -EINVAL;
5383 goto error_return;
5386 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5387 if (IS_ERR(bitmap_bh)) {
5388 err = PTR_ERR(bitmap_bh);
5389 bitmap_bh = NULL;
5390 goto error_return;
5393 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5394 if (!desc) {
5395 err = -EIO;
5396 goto error_return;
5399 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5400 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5401 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5402 in_range(block + count - 1, ext4_inode_table(sb, desc),
5403 sbi->s_itb_per_group)) {
5404 ext4_error(sb, "Adding blocks in system zones - "
5405 "Block = %llu, count = %lu",
5406 block, count);
5407 err = -EINVAL;
5408 goto error_return;
5411 BUFFER_TRACE(bitmap_bh, "getting write access");
5412 err = ext4_journal_get_write_access(handle, bitmap_bh);
5413 if (err)
5414 goto error_return;
5417 * We are about to modify some metadata. Call the journal APIs
5418 * to unshare ->b_data if a currently-committing transaction is
5419 * using it
5421 BUFFER_TRACE(gd_bh, "get_write_access");
5422 err = ext4_journal_get_write_access(handle, gd_bh);
5423 if (err)
5424 goto error_return;
5426 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5427 BUFFER_TRACE(bitmap_bh, "clear bit");
5428 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5429 ext4_error(sb, "bit already cleared for block %llu",
5430 (ext4_fsblk_t)(block + i));
5431 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5432 } else {
5433 clusters_freed++;
5437 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5438 if (err)
5439 goto error_return;
5442 * need to update group_info->bb_free and bitmap
5443 * with group lock held. generate_buddy look at
5444 * them with group lock_held
5446 ext4_lock_group(sb, block_group);
5447 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5448 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5449 free_clusters_count = clusters_freed +
5450 ext4_free_group_clusters(sb, desc);
5451 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5452 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5453 ext4_group_desc_csum_set(sb, block_group, desc);
5454 ext4_unlock_group(sb, block_group);
5455 percpu_counter_add(&sbi->s_freeclusters_counter,
5456 clusters_freed);
5458 if (sbi->s_log_groups_per_flex) {
5459 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5460 atomic64_add(clusters_freed,
5461 &sbi_array_rcu_deref(sbi, s_flex_groups,
5462 flex_group)->free_clusters);
5465 ext4_mb_unload_buddy(&e4b);
5467 /* We dirtied the bitmap block */
5468 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5469 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5471 /* And the group descriptor block */
5472 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5473 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5474 if (!err)
5475 err = ret;
5477 error_return:
5478 brelse(bitmap_bh);
5479 ext4_std_error(sb, err);
5480 return err;
5484 * ext4_trim_extent -- function to TRIM one single free extent in the group
5485 * @sb: super block for the file system
5486 * @start: starting block of the free extent in the alloc. group
5487 * @count: number of blocks to TRIM
5488 * @group: alloc. group we are working with
5489 * @e4b: ext4 buddy for the group
5491 * Trim "count" blocks starting at "start" in the "group". To assure that no
5492 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5493 * be called with under the group lock.
5495 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5496 ext4_group_t group, struct ext4_buddy *e4b)
5497 __releases(bitlock)
5498 __acquires(bitlock)
5500 struct ext4_free_extent ex;
5501 int ret = 0;
5503 trace_ext4_trim_extent(sb, group, start, count);
5505 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5507 ex.fe_start = start;
5508 ex.fe_group = group;
5509 ex.fe_len = count;
5512 * Mark blocks used, so no one can reuse them while
5513 * being trimmed.
5515 mb_mark_used(e4b, &ex);
5516 ext4_unlock_group(sb, group);
5517 ret = ext4_issue_discard(sb, group, start, count, NULL);
5518 ext4_lock_group(sb, group);
5519 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5520 return ret;
5524 * ext4_trim_all_free -- function to trim all free space in alloc. group
5525 * @sb: super block for file system
5526 * @group: group to be trimmed
5527 * @start: first group block to examine
5528 * @max: last group block to examine
5529 * @minblocks: minimum extent block count
5531 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5532 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5533 * the extent.
5536 * ext4_trim_all_free walks through group's block bitmap searching for free
5537 * extents. When the free extent is found, mark it as used in group buddy
5538 * bitmap. Then issue a TRIM command on this extent and free the extent in
5539 * the group buddy bitmap. This is done until whole group is scanned.
5541 static ext4_grpblk_t
5542 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5543 ext4_grpblk_t start, ext4_grpblk_t max,
5544 ext4_grpblk_t minblocks)
5546 void *bitmap;
5547 ext4_grpblk_t next, count = 0, free_count = 0;
5548 struct ext4_buddy e4b;
5549 int ret = 0;
5551 trace_ext4_trim_all_free(sb, group, start, max);
5553 ret = ext4_mb_load_buddy(sb, group, &e4b);
5554 if (ret) {
5555 ext4_warning(sb, "Error %d loading buddy information for %u",
5556 ret, group);
5557 return ret;
5559 bitmap = e4b.bd_bitmap;
5561 ext4_lock_group(sb, group);
5562 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5563 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5564 goto out;
5566 start = (e4b.bd_info->bb_first_free > start) ?
5567 e4b.bd_info->bb_first_free : start;
5569 while (start <= max) {
5570 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5571 if (start > max)
5572 break;
5573 next = mb_find_next_bit(bitmap, max + 1, start);
5575 if ((next - start) >= minblocks) {
5576 ret = ext4_trim_extent(sb, start,
5577 next - start, group, &e4b);
5578 if (ret && ret != -EOPNOTSUPP)
5579 break;
5580 ret = 0;
5581 count += next - start;
5583 free_count += next - start;
5584 start = next + 1;
5586 if (fatal_signal_pending(current)) {
5587 count = -ERESTARTSYS;
5588 break;
5591 if (need_resched()) {
5592 ext4_unlock_group(sb, group);
5593 cond_resched();
5594 ext4_lock_group(sb, group);
5597 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5598 break;
5601 if (!ret) {
5602 ret = count;
5603 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5605 out:
5606 ext4_unlock_group(sb, group);
5607 ext4_mb_unload_buddy(&e4b);
5609 ext4_debug("trimmed %d blocks in the group %d\n",
5610 count, group);
5612 return ret;
5616 * ext4_trim_fs() -- trim ioctl handle function
5617 * @sb: superblock for filesystem
5618 * @range: fstrim_range structure
5620 * start: First Byte to trim
5621 * len: number of Bytes to trim from start
5622 * minlen: minimum extent length in Bytes
5623 * ext4_trim_fs goes through all allocation groups containing Bytes from
5624 * start to start+len. For each such a group ext4_trim_all_free function
5625 * is invoked to trim all free space.
5627 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5629 struct ext4_group_info *grp;
5630 ext4_group_t group, first_group, last_group;
5631 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5632 uint64_t start, end, minlen, trimmed = 0;
5633 ext4_fsblk_t first_data_blk =
5634 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5635 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5636 int ret = 0;
5638 start = range->start >> sb->s_blocksize_bits;
5639 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5640 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5641 range->minlen >> sb->s_blocksize_bits);
5643 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5644 start >= max_blks ||
5645 range->len < sb->s_blocksize)
5646 return -EINVAL;
5647 if (end >= max_blks)
5648 end = max_blks - 1;
5649 if (end <= first_data_blk)
5650 goto out;
5651 if (start < first_data_blk)
5652 start = first_data_blk;
5654 /* Determine first and last group to examine based on start and end */
5655 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5656 &first_group, &first_cluster);
5657 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5658 &last_group, &last_cluster);
5660 /* end now represents the last cluster to discard in this group */
5661 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5663 for (group = first_group; group <= last_group; group++) {
5664 grp = ext4_get_group_info(sb, group);
5665 /* We only do this if the grp has never been initialized */
5666 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5667 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5668 if (ret)
5669 break;
5673 * For all the groups except the last one, last cluster will
5674 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5675 * change it for the last group, note that last_cluster is
5676 * already computed earlier by ext4_get_group_no_and_offset()
5678 if (group == last_group)
5679 end = last_cluster;
5681 if (grp->bb_free >= minlen) {
5682 cnt = ext4_trim_all_free(sb, group, first_cluster,
5683 end, minlen);
5684 if (cnt < 0) {
5685 ret = cnt;
5686 break;
5688 trimmed += cnt;
5692 * For every group except the first one, we are sure
5693 * that the first cluster to discard will be cluster #0.
5695 first_cluster = 0;
5698 if (!ret)
5699 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5701 out:
5702 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5703 return ret;
5706 /* Iterate all the free extents in the group. */
5708 ext4_mballoc_query_range(
5709 struct super_block *sb,
5710 ext4_group_t group,
5711 ext4_grpblk_t start,
5712 ext4_grpblk_t end,
5713 ext4_mballoc_query_range_fn formatter,
5714 void *priv)
5716 void *bitmap;
5717 ext4_grpblk_t next;
5718 struct ext4_buddy e4b;
5719 int error;
5721 error = ext4_mb_load_buddy(sb, group, &e4b);
5722 if (error)
5723 return error;
5724 bitmap = e4b.bd_bitmap;
5726 ext4_lock_group(sb, group);
5728 start = (e4b.bd_info->bb_first_free > start) ?
5729 e4b.bd_info->bb_first_free : start;
5730 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5731 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5733 while (start <= end) {
5734 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5735 if (start > end)
5736 break;
5737 next = mb_find_next_bit(bitmap, end + 1, start);
5739 ext4_unlock_group(sb, group);
5740 error = formatter(sb, group, start, next - start, priv);
5741 if (error)
5742 goto out_unload;
5743 ext4_lock_group(sb, group);
5745 start = next + 1;
5748 ext4_unlock_group(sb, group);
5749 out_unload:
5750 ext4_mb_unload_buddy(&e4b);
5752 return error;