1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
31 * - reservation for superuser
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * the smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
130 * The regular allocator (using the buddy cache) supports a few tunables.
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
159 * mballoc operates on the following data:
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
164 * there are two types of preallocations:
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
217 * so, now we're building a concurrency table:
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
233 * i_data_sem serializes them
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
242 * i_data_sem or another mutex should serializes them
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
264 * Logic in few words:
269 * mark bits in on-disk bitmap
272 * - use preallocation:
273 * find proper PA (per-inode or group)
275 * mark bits in on-disk bitmap
281 * mark bits in on-disk bitmap
284 * - discard preallocations in group:
286 * move them onto local list
287 * load on-disk bitmap
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
292 * - discard inode's preallocations:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
311 * - release consumed pa:
316 * - generate in-core bitmap:
320 * - discard all for given object (inode, locality group):
325 * - discard all for given group:
332 static struct kmem_cache
*ext4_pspace_cachep
;
333 static struct kmem_cache
*ext4_ac_cachep
;
334 static struct kmem_cache
*ext4_free_data_cachep
;
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
342 static const char * const ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
348 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
350 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
);
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
372 static DEFINE_PER_CPU(u64
, discard_pa_seq
);
373 static inline u64
ext4_get_discard_pa_seq_sum(void)
378 for_each_possible_cpu(__cpu
)
379 __seq
+= per_cpu(discard_pa_seq
, __cpu
);
383 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
385 #if BITS_PER_LONG == 64
386 *bit
+= ((unsigned long) addr
& 7UL) << 3;
387 addr
= (void *) ((unsigned long) addr
& ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit
+= ((unsigned long) addr
& 3UL) << 3;
390 addr
= (void *) ((unsigned long) addr
& ~3UL);
392 #error "how many bits you are?!"
397 static inline int mb_test_bit(int bit
, void *addr
)
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
403 addr
= mb_correct_addr_and_bit(&bit
, addr
);
404 return ext4_test_bit(bit
, addr
);
407 static inline void mb_set_bit(int bit
, void *addr
)
409 addr
= mb_correct_addr_and_bit(&bit
, addr
);
410 ext4_set_bit(bit
, addr
);
413 static inline void mb_clear_bit(int bit
, void *addr
)
415 addr
= mb_correct_addr_and_bit(&bit
, addr
);
416 ext4_clear_bit(bit
, addr
);
419 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
421 addr
= mb_correct_addr_and_bit(&bit
, addr
);
422 return ext4_test_and_clear_bit(bit
, addr
);
425 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
427 int fix
= 0, ret
, tmpmax
;
428 addr
= mb_correct_addr_and_bit(&fix
, addr
);
432 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
438 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
440 int fix
= 0, ret
, tmpmax
;
441 addr
= mb_correct_addr_and_bit(&fix
, addr
);
445 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
451 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
455 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
458 if (order
> e4b
->bd_blkbits
+ 1) {
463 /* at order 0 we see each particular block */
465 *max
= 1 << (e4b
->bd_blkbits
+ 3);
466 return e4b
->bd_bitmap
;
469 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
470 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
476 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
477 int first
, int count
)
480 struct super_block
*sb
= e4b
->bd_sb
;
482 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
484 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
485 for (i
= 0; i
< count
; i
++) {
486 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
487 ext4_fsblk_t blocknr
;
489 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
490 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
491 ext4_grp_locked_error(sb
, e4b
->bd_group
,
492 inode
? inode
->i_ino
: 0,
494 "freeing block already freed "
497 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
500 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
504 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
508 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
510 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
511 for (i
= 0; i
< count
; i
++) {
512 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
513 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
517 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
519 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
521 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
522 unsigned char *b1
, *b2
;
524 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
525 b2
= (unsigned char *) bitmap
;
526 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
527 if (b1
[i
] != b2
[i
]) {
528 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
532 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
539 static void mb_group_bb_bitmap_alloc(struct super_block
*sb
,
540 struct ext4_group_info
*grp
, ext4_group_t group
)
542 struct buffer_head
*bh
;
544 grp
->bb_bitmap
= kmalloc(sb
->s_blocksize
, GFP_NOFS
);
548 bh
= ext4_read_block_bitmap(sb
, group
);
549 if (IS_ERR_OR_NULL(bh
)) {
550 kfree(grp
->bb_bitmap
);
551 grp
->bb_bitmap
= NULL
;
555 memcpy(grp
->bb_bitmap
, bh
->b_data
, sb
->s_blocksize
);
559 static void mb_group_bb_bitmap_free(struct ext4_group_info
*grp
)
561 kfree(grp
->bb_bitmap
);
565 static inline void mb_free_blocks_double(struct inode
*inode
,
566 struct ext4_buddy
*e4b
, int first
, int count
)
570 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
571 int first
, int count
)
575 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
580 static inline void mb_group_bb_bitmap_alloc(struct super_block
*sb
,
581 struct ext4_group_info
*grp
, ext4_group_t group
)
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info
*grp
)
592 #ifdef AGGRESSIVE_CHECK
594 #define MB_CHECK_ASSERT(assert) \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
604 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
605 const char *function
, int line
)
607 struct super_block
*sb
= e4b
->bd_sb
;
608 int order
= e4b
->bd_blkbits
+ 1;
615 struct ext4_group_info
*grp
;
618 struct list_head
*cur
;
623 static int mb_check_counter
;
624 if (mb_check_counter
++ % 100 != 0)
629 buddy
= mb_find_buddy(e4b
, order
, &max
);
630 MB_CHECK_ASSERT(buddy
);
631 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
632 MB_CHECK_ASSERT(buddy2
);
633 MB_CHECK_ASSERT(buddy
!= buddy2
);
634 MB_CHECK_ASSERT(max
* 2 == max2
);
637 for (i
= 0; i
< max
; i
++) {
639 if (mb_test_bit(i
, buddy
)) {
640 /* only single bit in buddy2 may be 1 */
641 if (!mb_test_bit(i
<< 1, buddy2
)) {
643 mb_test_bit((i
<<1)+1, buddy2
));
644 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
646 mb_test_bit(i
<< 1, buddy2
));
651 /* both bits in buddy2 must be 1 */
652 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
653 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
655 for (j
= 0; j
< (1 << order
); j
++) {
656 k
= (i
* (1 << order
)) + j
;
658 !mb_test_bit(k
, e4b
->bd_bitmap
));
662 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
667 buddy
= mb_find_buddy(e4b
, 0, &max
);
668 for (i
= 0; i
< max
; i
++) {
669 if (!mb_test_bit(i
, buddy
)) {
670 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
678 /* check used bits only */
679 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
680 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
682 MB_CHECK_ASSERT(k
< max2
);
683 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
686 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
687 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
689 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
690 list_for_each(cur
, &grp
->bb_prealloc_list
) {
691 ext4_group_t groupnr
;
692 struct ext4_prealloc_space
*pa
;
693 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
694 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
695 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
696 for (i
= 0; i
< pa
->pa_len
; i
++)
697 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
703 __FILE__, __func__, __LINE__)
705 #define mb_check_buddy(e4b)
709 * Divide blocks started from @first with length @len into
710 * smaller chunks with power of 2 blocks.
711 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712 * then increase bb_counters[] for corresponded chunk size.
714 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
715 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
716 struct ext4_group_info
*grp
)
718 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
724 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
726 border
= 2 << sb
->s_blocksize_bits
;
729 /* find how many blocks can be covered since this position */
730 max
= ffs(first
| border
) - 1;
732 /* find how many blocks of power 2 we need to mark */
739 /* mark multiblock chunks only */
740 grp
->bb_counters
[min
]++;
742 mb_clear_bit(first
>> min
,
743 buddy
+ sbi
->s_mb_offsets
[min
]);
751 * Cache the order of the largest free extent we have available in this block
755 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
760 grp
->bb_largest_free_order
= -1; /* uninit */
762 bits
= sb
->s_blocksize_bits
+ 1;
763 for (i
= bits
; i
>= 0; i
--) {
764 if (grp
->bb_counters
[i
] > 0) {
765 grp
->bb_largest_free_order
= i
;
771 static noinline_for_stack
772 void ext4_mb_generate_buddy(struct super_block
*sb
,
773 void *buddy
, void *bitmap
, ext4_group_t group
)
775 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
776 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
777 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
782 unsigned fragments
= 0;
783 unsigned long long period
= get_cycles();
785 /* initialize buddy from bitmap which is aggregation
786 * of on-disk bitmap and preallocations */
787 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
788 grp
->bb_first_free
= i
;
792 i
= mb_find_next_bit(bitmap
, max
, i
);
796 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
798 grp
->bb_counters
[0]++;
800 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
802 grp
->bb_fragments
= fragments
;
804 if (free
!= grp
->bb_free
) {
805 ext4_grp_locked_error(sb
, group
, 0, 0,
806 "block bitmap and bg descriptor "
807 "inconsistent: %u vs %u free clusters",
810 * If we intend to continue, we consider group descriptor
811 * corrupt and update bb_free using bitmap value
814 ext4_mark_group_bitmap_corrupted(sb
, group
,
815 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
817 mb_set_largest_free_order(sb
, grp
);
819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
821 period
= get_cycles() - period
;
822 spin_lock(&sbi
->s_bal_lock
);
823 sbi
->s_mb_buddies_generated
++;
824 sbi
->s_mb_generation_time
+= period
;
825 spin_unlock(&sbi
->s_bal_lock
);
828 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
834 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
835 ext4_set_bits(buddy
, 0, count
);
837 e4b
->bd_info
->bb_fragments
= 0;
838 memset(e4b
->bd_info
->bb_counters
, 0,
839 sizeof(*e4b
->bd_info
->bb_counters
) *
840 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
842 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
843 e4b
->bd_bitmap
, e4b
->bd_group
);
846 /* The buddy information is attached the buddy cache inode
847 * for convenience. The information regarding each group
848 * is loaded via ext4_mb_load_buddy. The information involve
849 * block bitmap and buddy information. The information are
850 * stored in the inode as
853 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
856 * one block each for bitmap and buddy information.
857 * So for each group we take up 2 blocks. A page can
858 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
859 * So it can have information regarding groups_per_page which
860 * is blocks_per_page/2
862 * Locking note: This routine takes the block group lock of all groups
863 * for this page; do not hold this lock when calling this routine!
866 static int ext4_mb_init_cache(struct page
*page
, char *incore
, gfp_t gfp
)
868 ext4_group_t ngroups
;
874 ext4_group_t first_group
, group
;
876 struct super_block
*sb
;
877 struct buffer_head
*bhs
;
878 struct buffer_head
**bh
= NULL
;
882 struct ext4_group_info
*grinfo
;
884 inode
= page
->mapping
->host
;
886 ngroups
= ext4_get_groups_count(sb
);
887 blocksize
= i_blocksize(inode
);
888 blocks_per_page
= PAGE_SIZE
/ blocksize
;
890 mb_debug(sb
, "init page %lu\n", page
->index
);
892 groups_per_page
= blocks_per_page
>> 1;
893 if (groups_per_page
== 0)
896 /* allocate buffer_heads to read bitmaps */
897 if (groups_per_page
> 1) {
898 i
= sizeof(struct buffer_head
*) * groups_per_page
;
899 bh
= kzalloc(i
, gfp
);
907 first_group
= page
->index
* blocks_per_page
/ 2;
909 /* read all groups the page covers into the cache */
910 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
911 if (group
>= ngroups
)
914 grinfo
= ext4_get_group_info(sb
, group
);
916 * If page is uptodate then we came here after online resize
917 * which added some new uninitialized group info structs, so
918 * we must skip all initialized uptodate buddies on the page,
919 * which may be currently in use by an allocating task.
921 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
925 bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
, false);
927 err
= PTR_ERR(bh
[i
]);
931 mb_debug(sb
, "read bitmap for group %u\n", group
);
934 /* wait for I/O completion */
935 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
940 err2
= ext4_wait_block_bitmap(sb
, group
, bh
[i
]);
945 first_block
= page
->index
* blocks_per_page
;
946 for (i
= 0; i
< blocks_per_page
; i
++) {
947 group
= (first_block
+ i
) >> 1;
948 if (group
>= ngroups
)
951 if (!bh
[group
- first_group
])
952 /* skip initialized uptodate buddy */
955 if (!buffer_verified(bh
[group
- first_group
]))
956 /* Skip faulty bitmaps */
961 * data carry information regarding this
962 * particular group in the format specified
966 data
= page_address(page
) + (i
* blocksize
);
967 bitmap
= bh
[group
- first_group
]->b_data
;
970 * We place the buddy block and bitmap block
973 if ((first_block
+ i
) & 1) {
974 /* this is block of buddy */
975 BUG_ON(incore
== NULL
);
976 mb_debug(sb
, "put buddy for group %u in page %lu/%x\n",
977 group
, page
->index
, i
* blocksize
);
978 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
979 grinfo
= ext4_get_group_info(sb
, group
);
980 grinfo
->bb_fragments
= 0;
981 memset(grinfo
->bb_counters
, 0,
982 sizeof(*grinfo
->bb_counters
) *
983 (sb
->s_blocksize_bits
+2));
985 * incore got set to the group block bitmap below
987 ext4_lock_group(sb
, group
);
989 memset(data
, 0xff, blocksize
);
990 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
991 ext4_unlock_group(sb
, group
);
994 /* this is block of bitmap */
995 BUG_ON(incore
!= NULL
);
996 mb_debug(sb
, "put bitmap for group %u in page %lu/%x\n",
997 group
, page
->index
, i
* blocksize
);
998 trace_ext4_mb_bitmap_load(sb
, group
);
1000 /* see comments in ext4_mb_put_pa() */
1001 ext4_lock_group(sb
, group
);
1002 memcpy(data
, bitmap
, blocksize
);
1004 /* mark all preallocated blks used in in-core bitmap */
1005 ext4_mb_generate_from_pa(sb
, data
, group
);
1006 ext4_mb_generate_from_freelist(sb
, data
, group
);
1007 ext4_unlock_group(sb
, group
);
1009 /* set incore so that the buddy information can be
1010 * generated using this
1015 SetPageUptodate(page
);
1019 for (i
= 0; i
< groups_per_page
; i
++)
1028 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1029 * on the same buddy page doesn't happen whild holding the buddy page lock.
1030 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1031 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1033 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
1034 ext4_group_t group
, struct ext4_buddy
*e4b
, gfp_t gfp
)
1036 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
1037 int block
, pnum
, poff
;
1038 int blocks_per_page
;
1041 e4b
->bd_buddy_page
= NULL
;
1042 e4b
->bd_bitmap_page
= NULL
;
1044 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
1046 * the buddy cache inode stores the block bitmap
1047 * and buddy information in consecutive blocks.
1048 * So for each group we need two blocks.
1051 pnum
= block
/ blocks_per_page
;
1052 poff
= block
% blocks_per_page
;
1053 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1056 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1057 e4b
->bd_bitmap_page
= page
;
1058 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1060 if (blocks_per_page
>= 2) {
1061 /* buddy and bitmap are on the same page */
1066 pnum
= block
/ blocks_per_page
;
1067 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1070 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1071 e4b
->bd_buddy_page
= page
;
1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1077 if (e4b
->bd_bitmap_page
) {
1078 unlock_page(e4b
->bd_bitmap_page
);
1079 put_page(e4b
->bd_bitmap_page
);
1081 if (e4b
->bd_buddy_page
) {
1082 unlock_page(e4b
->bd_buddy_page
);
1083 put_page(e4b
->bd_buddy_page
);
1088 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1089 * block group lock of all groups for this page; do not hold the BG lock when
1090 * calling this routine!
1092 static noinline_for_stack
1093 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
, gfp_t gfp
)
1096 struct ext4_group_info
*this_grp
;
1097 struct ext4_buddy e4b
;
1102 mb_debug(sb
, "init group %u\n", group
);
1103 this_grp
= ext4_get_group_info(sb
, group
);
1105 * This ensures that we don't reinit the buddy cache
1106 * page which map to the group from which we are already
1107 * allocating. If we are looking at the buddy cache we would
1108 * have taken a reference using ext4_mb_load_buddy and that
1109 * would have pinned buddy page to page cache.
1110 * The call to ext4_mb_get_buddy_page_lock will mark the
1113 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
, gfp
);
1114 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1116 * somebody initialized the group
1117 * return without doing anything
1122 page
= e4b
.bd_bitmap_page
;
1123 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1126 if (!PageUptodate(page
)) {
1131 if (e4b
.bd_buddy_page
== NULL
) {
1133 * If both the bitmap and buddy are in
1134 * the same page we don't need to force
1140 /* init buddy cache */
1141 page
= e4b
.bd_buddy_page
;
1142 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
, gfp
);
1145 if (!PageUptodate(page
)) {
1150 ext4_mb_put_buddy_page_lock(&e4b
);
1155 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1156 * block group lock of all groups for this page; do not hold the BG lock when
1157 * calling this routine!
1159 static noinline_for_stack
int
1160 ext4_mb_load_buddy_gfp(struct super_block
*sb
, ext4_group_t group
,
1161 struct ext4_buddy
*e4b
, gfp_t gfp
)
1163 int blocks_per_page
;
1169 struct ext4_group_info
*grp
;
1170 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1171 struct inode
*inode
= sbi
->s_buddy_cache
;
1174 mb_debug(sb
, "load group %u\n", group
);
1176 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
1177 grp
= ext4_get_group_info(sb
, group
);
1179 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1182 e4b
->bd_group
= group
;
1183 e4b
->bd_buddy_page
= NULL
;
1184 e4b
->bd_bitmap_page
= NULL
;
1186 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1188 * we need full data about the group
1189 * to make a good selection
1191 ret
= ext4_mb_init_group(sb
, group
, gfp
);
1197 * the buddy cache inode stores the block bitmap
1198 * and buddy information in consecutive blocks.
1199 * So for each group we need two blocks.
1202 pnum
= block
/ blocks_per_page
;
1203 poff
= block
% blocks_per_page
;
1205 /* we could use find_or_create_page(), but it locks page
1206 * what we'd like to avoid in fast path ... */
1207 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1208 if (page
== NULL
|| !PageUptodate(page
)) {
1211 * drop the page reference and try
1212 * to get the page with lock. If we
1213 * are not uptodate that implies
1214 * somebody just created the page but
1215 * is yet to initialize the same. So
1216 * wait for it to initialize.
1219 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1221 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1222 if (!PageUptodate(page
)) {
1223 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1228 mb_cmp_bitmaps(e4b
, page_address(page
) +
1229 (poff
* sb
->s_blocksize
));
1238 if (!PageUptodate(page
)) {
1243 /* Pages marked accessed already */
1244 e4b
->bd_bitmap_page
= page
;
1245 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1248 pnum
= block
/ blocks_per_page
;
1249 poff
= block
% blocks_per_page
;
1251 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1252 if (page
== NULL
|| !PageUptodate(page
)) {
1255 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1257 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1258 if (!PageUptodate(page
)) {
1259 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
,
1273 if (!PageUptodate(page
)) {
1278 /* Pages marked accessed already */
1279 e4b
->bd_buddy_page
= page
;
1280 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1287 if (e4b
->bd_bitmap_page
)
1288 put_page(e4b
->bd_bitmap_page
);
1289 if (e4b
->bd_buddy_page
)
1290 put_page(e4b
->bd_buddy_page
);
1291 e4b
->bd_buddy
= NULL
;
1292 e4b
->bd_bitmap
= NULL
;
1296 static int ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1297 struct ext4_buddy
*e4b
)
1299 return ext4_mb_load_buddy_gfp(sb
, group
, e4b
, GFP_NOFS
);
1302 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1304 if (e4b
->bd_bitmap_page
)
1305 put_page(e4b
->bd_bitmap_page
);
1306 if (e4b
->bd_buddy_page
)
1307 put_page(e4b
->bd_buddy_page
);
1311 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1314 int bb_incr
= 1 << (e4b
->bd_blkbits
- 1);
1317 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1318 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1321 while (order
<= e4b
->bd_blkbits
+ 1) {
1323 if (!mb_test_bit(block
, bb
)) {
1324 /* this block is part of buddy of order 'order' */
1334 static void mb_clear_bits(void *bm
, int cur
, int len
)
1340 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1341 /* fast path: clear whole word at once */
1342 addr
= bm
+ (cur
>> 3);
1347 mb_clear_bit(cur
, bm
);
1352 /* clear bits in given range
1353 * will return first found zero bit if any, -1 otherwise
1355 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1362 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1363 /* fast path: clear whole word at once */
1364 addr
= bm
+ (cur
>> 3);
1365 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1366 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1371 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1379 void ext4_set_bits(void *bm
, int cur
, int len
)
1385 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1386 /* fast path: set whole word at once */
1387 addr
= bm
+ (cur
>> 3);
1392 mb_set_bit(cur
, bm
);
1398 * _________________________________________________________________ */
1400 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1402 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1403 mb_clear_bit(*bit
, bitmap
);
1409 mb_set_bit(*bit
, bitmap
);
1414 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1418 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1423 /* Bits in range [first; last] are known to be set since
1424 * corresponding blocks were allocated. Bits in range
1425 * (first; last) will stay set because they form buddies on
1426 * upper layer. We just deal with borders if they don't
1427 * align with upper layer and then go up.
1428 * Releasing entire group is all about clearing
1429 * single bit of highest order buddy.
1433 * ---------------------------------
1435 * ---------------------------------
1436 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1437 * ---------------------------------
1439 * \_____________________/
1441 * Neither [1] nor [6] is aligned to above layer.
1442 * Left neighbour [0] is free, so mark it busy,
1443 * decrease bb_counters and extend range to
1445 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1446 * mark [6] free, increase bb_counters and shrink range to
1448 * Then shift range to [0; 2], go up and do the same.
1453 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1455 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1460 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1461 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1462 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1471 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1472 int first
, int count
)
1474 int left_is_free
= 0;
1475 int right_is_free
= 0;
1477 int last
= first
+ count
- 1;
1478 struct super_block
*sb
= e4b
->bd_sb
;
1480 if (WARN_ON(count
== 0))
1482 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1483 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1484 /* Don't bother if the block group is corrupt. */
1485 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1488 mb_check_buddy(e4b
);
1489 mb_free_blocks_double(inode
, e4b
, first
, count
);
1491 this_cpu_inc(discard_pa_seq
);
1492 e4b
->bd_info
->bb_free
+= count
;
1493 if (first
< e4b
->bd_info
->bb_first_free
)
1494 e4b
->bd_info
->bb_first_free
= first
;
1496 /* access memory sequentially: check left neighbour,
1497 * clear range and then check right neighbour
1500 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1501 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1502 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1503 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1505 if (unlikely(block
!= -1)) {
1506 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1507 ext4_fsblk_t blocknr
;
1509 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1510 blocknr
+= EXT4_C2B(sbi
, block
);
1511 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1512 inode
? inode
->i_ino
: 0,
1514 "freeing already freed block "
1515 "(bit %u); block bitmap corrupt.",
1517 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
1518 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
1519 mb_regenerate_buddy(e4b
);
1523 /* let's maintain fragments counter */
1524 if (left_is_free
&& right_is_free
)
1525 e4b
->bd_info
->bb_fragments
--;
1526 else if (!left_is_free
&& !right_is_free
)
1527 e4b
->bd_info
->bb_fragments
++;
1529 /* buddy[0] == bd_bitmap is a special case, so handle
1530 * it right away and let mb_buddy_mark_free stay free of
1531 * zero order checks.
1532 * Check if neighbours are to be coaleasced,
1533 * adjust bitmap bb_counters and borders appropriately.
1536 first
+= !left_is_free
;
1537 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1540 last
-= !right_is_free
;
1541 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1545 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1548 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1549 mb_check_buddy(e4b
);
1552 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1553 int needed
, struct ext4_free_extent
*ex
)
1559 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1562 buddy
= mb_find_buddy(e4b
, 0, &max
);
1563 BUG_ON(buddy
== NULL
);
1564 BUG_ON(block
>= max
);
1565 if (mb_test_bit(block
, buddy
)) {
1572 /* find actual order */
1573 order
= mb_find_order_for_block(e4b
, block
);
1574 block
= block
>> order
;
1576 ex
->fe_len
= 1 << order
;
1577 ex
->fe_start
= block
<< order
;
1578 ex
->fe_group
= e4b
->bd_group
;
1580 /* calc difference from given start */
1581 next
= next
- ex
->fe_start
;
1583 ex
->fe_start
+= next
;
1585 while (needed
> ex
->fe_len
&&
1586 mb_find_buddy(e4b
, order
, &max
)) {
1588 if (block
+ 1 >= max
)
1591 next
= (block
+ 1) * (1 << order
);
1592 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1595 order
= mb_find_order_for_block(e4b
, next
);
1597 block
= next
>> order
;
1598 ex
->fe_len
+= 1 << order
;
1601 if (ex
->fe_start
+ ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(e4b
->bd_sb
)) {
1602 /* Should never happen! (but apparently sometimes does?!?) */
1604 ext4_error(e4b
->bd_sb
, "corruption or bug in mb_find_extent "
1605 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1606 block
, order
, needed
, ex
->fe_group
, ex
->fe_start
,
1607 ex
->fe_len
, ex
->fe_logical
);
1615 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1621 int start
= ex
->fe_start
;
1622 int len
= ex
->fe_len
;
1627 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1628 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1629 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1630 mb_check_buddy(e4b
);
1631 mb_mark_used_double(e4b
, start
, len
);
1633 this_cpu_inc(discard_pa_seq
);
1634 e4b
->bd_info
->bb_free
-= len
;
1635 if (e4b
->bd_info
->bb_first_free
== start
)
1636 e4b
->bd_info
->bb_first_free
+= len
;
1638 /* let's maintain fragments counter */
1640 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1641 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1642 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1644 e4b
->bd_info
->bb_fragments
++;
1645 else if (!mlen
&& !max
)
1646 e4b
->bd_info
->bb_fragments
--;
1648 /* let's maintain buddy itself */
1650 ord
= mb_find_order_for_block(e4b
, start
);
1652 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1653 /* the whole chunk may be allocated at once! */
1655 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1656 BUG_ON((start
>> ord
) >= max
);
1657 mb_set_bit(start
>> ord
, buddy
);
1658 e4b
->bd_info
->bb_counters
[ord
]--;
1665 /* store for history */
1667 ret
= len
| (ord
<< 16);
1669 /* we have to split large buddy */
1671 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1672 mb_set_bit(start
>> ord
, buddy
);
1673 e4b
->bd_info
->bb_counters
[ord
]--;
1676 cur
= (start
>> ord
) & ~1U;
1677 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1678 mb_clear_bit(cur
, buddy
);
1679 mb_clear_bit(cur
+ 1, buddy
);
1680 e4b
->bd_info
->bb_counters
[ord
]++;
1681 e4b
->bd_info
->bb_counters
[ord
]++;
1683 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1685 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1686 mb_check_buddy(e4b
);
1692 * Must be called under group lock!
1694 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1695 struct ext4_buddy
*e4b
)
1697 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1700 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1701 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1703 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1704 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1705 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1707 /* preallocation can change ac_b_ex, thus we store actually
1708 * allocated blocks for history */
1709 ac
->ac_f_ex
= ac
->ac_b_ex
;
1711 ac
->ac_status
= AC_STATUS_FOUND
;
1712 ac
->ac_tail
= ret
& 0xffff;
1713 ac
->ac_buddy
= ret
>> 16;
1716 * take the page reference. We want the page to be pinned
1717 * so that we don't get a ext4_mb_init_cache_call for this
1718 * group until we update the bitmap. That would mean we
1719 * double allocate blocks. The reference is dropped
1720 * in ext4_mb_release_context
1722 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1723 get_page(ac
->ac_bitmap_page
);
1724 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1725 get_page(ac
->ac_buddy_page
);
1726 /* store last allocated for subsequent stream allocation */
1727 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1728 spin_lock(&sbi
->s_md_lock
);
1729 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1730 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1731 spin_unlock(&sbi
->s_md_lock
);
1734 * As we've just preallocated more space than
1735 * user requested originally, we store allocated
1736 * space in a special descriptor.
1738 if (ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
1739 ext4_mb_new_preallocation(ac
);
1743 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1744 struct ext4_buddy
*e4b
,
1747 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1748 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1749 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1750 struct ext4_free_extent ex
;
1753 if (ac
->ac_status
== AC_STATUS_FOUND
)
1756 * We don't want to scan for a whole year
1758 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1759 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1760 ac
->ac_status
= AC_STATUS_BREAK
;
1765 * Haven't found good chunk so far, let's continue
1767 if (bex
->fe_len
< gex
->fe_len
)
1770 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1771 && bex
->fe_group
== e4b
->bd_group
) {
1772 /* recheck chunk's availability - we don't know
1773 * when it was found (within this lock-unlock
1775 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1776 if (max
>= gex
->fe_len
) {
1777 ext4_mb_use_best_found(ac
, e4b
);
1784 * The routine checks whether found extent is good enough. If it is,
1785 * then the extent gets marked used and flag is set to the context
1786 * to stop scanning. Otherwise, the extent is compared with the
1787 * previous found extent and if new one is better, then it's stored
1788 * in the context. Later, the best found extent will be used, if
1789 * mballoc can't find good enough extent.
1791 * FIXME: real allocation policy is to be designed yet!
1793 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1794 struct ext4_free_extent
*ex
,
1795 struct ext4_buddy
*e4b
)
1797 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1798 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1800 BUG_ON(ex
->fe_len
<= 0);
1801 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1802 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1803 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1808 * The special case - take what you catch first
1810 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1812 ext4_mb_use_best_found(ac
, e4b
);
1817 * Let's check whether the chuck is good enough
1819 if (ex
->fe_len
== gex
->fe_len
) {
1821 ext4_mb_use_best_found(ac
, e4b
);
1826 * If this is first found extent, just store it in the context
1828 if (bex
->fe_len
== 0) {
1834 * If new found extent is better, store it in the context
1836 if (bex
->fe_len
< gex
->fe_len
) {
1837 /* if the request isn't satisfied, any found extent
1838 * larger than previous best one is better */
1839 if (ex
->fe_len
> bex
->fe_len
)
1841 } else if (ex
->fe_len
> gex
->fe_len
) {
1842 /* if the request is satisfied, then we try to find
1843 * an extent that still satisfy the request, but is
1844 * smaller than previous one */
1845 if (ex
->fe_len
< bex
->fe_len
)
1849 ext4_mb_check_limits(ac
, e4b
, 0);
1852 static noinline_for_stack
1853 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1854 struct ext4_buddy
*e4b
)
1856 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1857 ext4_group_t group
= ex
.fe_group
;
1861 BUG_ON(ex
.fe_len
<= 0);
1862 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1866 ext4_lock_group(ac
->ac_sb
, group
);
1867 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1871 ext4_mb_use_best_found(ac
, e4b
);
1874 ext4_unlock_group(ac
->ac_sb
, group
);
1875 ext4_mb_unload_buddy(e4b
);
1880 static noinline_for_stack
1881 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1882 struct ext4_buddy
*e4b
)
1884 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1887 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1888 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1889 struct ext4_free_extent ex
;
1891 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1893 if (grp
->bb_free
== 0)
1896 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1900 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1901 ext4_mb_unload_buddy(e4b
);
1905 ext4_lock_group(ac
->ac_sb
, group
);
1906 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1907 ac
->ac_g_ex
.fe_len
, &ex
);
1908 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1910 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1913 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1915 /* use do_div to get remainder (would be 64-bit modulo) */
1916 if (do_div(start
, sbi
->s_stripe
) == 0) {
1919 ext4_mb_use_best_found(ac
, e4b
);
1921 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1922 BUG_ON(ex
.fe_len
<= 0);
1923 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1924 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1927 ext4_mb_use_best_found(ac
, e4b
);
1928 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1929 /* Sometimes, caller may want to merge even small
1930 * number of blocks to an existing extent */
1931 BUG_ON(ex
.fe_len
<= 0);
1932 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1933 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1936 ext4_mb_use_best_found(ac
, e4b
);
1938 ext4_unlock_group(ac
->ac_sb
, group
);
1939 ext4_mb_unload_buddy(e4b
);
1945 * The routine scans buddy structures (not bitmap!) from given order
1946 * to max order and tries to find big enough chunk to satisfy the req
1948 static noinline_for_stack
1949 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1950 struct ext4_buddy
*e4b
)
1952 struct super_block
*sb
= ac
->ac_sb
;
1953 struct ext4_group_info
*grp
= e4b
->bd_info
;
1959 BUG_ON(ac
->ac_2order
<= 0);
1960 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1961 if (grp
->bb_counters
[i
] == 0)
1964 buddy
= mb_find_buddy(e4b
, i
, &max
);
1965 BUG_ON(buddy
== NULL
);
1967 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1969 ext4_grp_locked_error(ac
->ac_sb
, e4b
->bd_group
, 0, 0,
1970 "%d free clusters of order %d. But found 0",
1971 grp
->bb_counters
[i
], i
);
1972 ext4_mark_group_bitmap_corrupted(ac
->ac_sb
,
1974 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
1979 ac
->ac_b_ex
.fe_len
= 1 << i
;
1980 ac
->ac_b_ex
.fe_start
= k
<< i
;
1981 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1983 ext4_mb_use_best_found(ac
, e4b
);
1985 BUG_ON(ac
->ac_f_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1987 if (EXT4_SB(sb
)->s_mb_stats
)
1988 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1995 * The routine scans the group and measures all found extents.
1996 * In order to optimize scanning, caller must pass number of
1997 * free blocks in the group, so the routine can know upper limit.
1999 static noinline_for_stack
2000 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
2001 struct ext4_buddy
*e4b
)
2003 struct super_block
*sb
= ac
->ac_sb
;
2004 void *bitmap
= e4b
->bd_bitmap
;
2005 struct ext4_free_extent ex
;
2009 free
= e4b
->bd_info
->bb_free
;
2010 if (WARN_ON(free
<= 0))
2013 i
= e4b
->bd_info
->bb_first_free
;
2015 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
2016 i
= mb_find_next_zero_bit(bitmap
,
2017 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
2018 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
2020 * IF we have corrupt bitmap, we won't find any
2021 * free blocks even though group info says we
2022 * we have free blocks
2024 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
2025 "%d free clusters as per "
2026 "group info. But bitmap says 0",
2028 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
2029 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
2033 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
2034 if (WARN_ON(ex
.fe_len
<= 0))
2036 if (free
< ex
.fe_len
) {
2037 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
2038 "%d free clusters as per "
2039 "group info. But got %d blocks",
2041 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
2042 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
2044 * The number of free blocks differs. This mostly
2045 * indicate that the bitmap is corrupt. So exit
2046 * without claiming the space.
2050 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
2051 ext4_mb_measure_extent(ac
, &ex
, e4b
);
2057 ext4_mb_check_limits(ac
, e4b
, 1);
2061 * This is a special case for storages like raid5
2062 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2064 static noinline_for_stack
2065 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
2066 struct ext4_buddy
*e4b
)
2068 struct super_block
*sb
= ac
->ac_sb
;
2069 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2070 void *bitmap
= e4b
->bd_bitmap
;
2071 struct ext4_free_extent ex
;
2072 ext4_fsblk_t first_group_block
;
2077 BUG_ON(sbi
->s_stripe
== 0);
2079 /* find first stripe-aligned block in group */
2080 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
2082 a
= first_group_block
+ sbi
->s_stripe
- 1;
2083 do_div(a
, sbi
->s_stripe
);
2084 i
= (a
* sbi
->s_stripe
) - first_group_block
;
2086 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
2087 if (!mb_test_bit(i
, bitmap
)) {
2088 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
2089 if (max
>= sbi
->s_stripe
) {
2091 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2093 ext4_mb_use_best_found(ac
, e4b
);
2102 * This is also called BEFORE we load the buddy bitmap.
2103 * Returns either 1 or 0 indicating that the group is either suitable
2104 * for the allocation or not.
2106 static bool ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2107 ext4_group_t group
, int cr
)
2109 ext4_grpblk_t free
, fragments
;
2110 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2111 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2113 BUG_ON(cr
< 0 || cr
>= 4);
2115 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2118 free
= grp
->bb_free
;
2122 fragments
= grp
->bb_fragments
;
2128 BUG_ON(ac
->ac_2order
== 0);
2130 /* Avoid using the first bg of a flexgroup for data files */
2131 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2132 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2133 ((group
% flex_size
) == 0))
2136 if (free
< ac
->ac_g_ex
.fe_len
)
2139 if (ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1)
2142 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2147 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2151 if (free
>= ac
->ac_g_ex
.fe_len
)
2164 * This could return negative error code if something goes wrong
2165 * during ext4_mb_init_group(). This should not be called with
2166 * ext4_lock_group() held.
2168 static int ext4_mb_good_group_nolock(struct ext4_allocation_context
*ac
,
2169 ext4_group_t group
, int cr
)
2171 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2172 struct super_block
*sb
= ac
->ac_sb
;
2173 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2174 bool should_lock
= ac
->ac_flags
& EXT4_MB_STRICT_CHECK
;
2179 ext4_lock_group(sb
, group
);
2180 free
= grp
->bb_free
;
2183 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2185 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2188 ext4_unlock_group(sb
, group
);
2190 /* We only do this if the grp has never been initialized */
2191 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2192 struct ext4_group_desc
*gdp
=
2193 ext4_get_group_desc(sb
, group
, NULL
);
2196 /* cr=0/1 is a very optimistic search to find large
2197 * good chunks almost for free. If buddy data is not
2198 * ready, then this optimization makes no sense. But
2199 * we never skip the first block group in a flex_bg,
2200 * since this gets used for metadata block allocation,
2201 * and we want to make sure we locate metadata blocks
2202 * in the first block group in the flex_bg if possible.
2205 (!sbi
->s_log_groups_per_flex
||
2206 ((group
& ((1 << sbi
->s_log_groups_per_flex
) - 1)) != 0)) &&
2207 !(ext4_has_group_desc_csum(sb
) &&
2208 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))))
2210 ret
= ext4_mb_init_group(sb
, group
, GFP_NOFS
);
2216 ext4_lock_group(sb
, group
);
2217 ret
= ext4_mb_good_group(ac
, group
, cr
);
2220 ext4_unlock_group(sb
, group
);
2225 * Start prefetching @nr block bitmaps starting at @group.
2226 * Return the next group which needs to be prefetched.
2228 ext4_group_t
ext4_mb_prefetch(struct super_block
*sb
, ext4_group_t group
,
2229 unsigned int nr
, int *cnt
)
2231 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2232 struct buffer_head
*bh
;
2233 struct blk_plug plug
;
2235 blk_start_plug(&plug
);
2237 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, group
,
2239 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
2242 * Prefetch block groups with free blocks; but don't
2243 * bother if it is marked uninitialized on disk, since
2244 * it won't require I/O to read. Also only try to
2245 * prefetch once, so we avoid getblk() call, which can
2248 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp
) &&
2249 EXT4_MB_GRP_NEED_INIT(grp
) &&
2250 ext4_free_group_clusters(sb
, gdp
) > 0 &&
2251 !(ext4_has_group_desc_csum(sb
) &&
2252 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)))) {
2253 bh
= ext4_read_block_bitmap_nowait(sb
, group
, true);
2254 if (bh
&& !IS_ERR(bh
)) {
2255 if (!buffer_uptodate(bh
) && cnt
)
2260 if (++group
>= ngroups
)
2263 blk_finish_plug(&plug
);
2268 * Prefetching reads the block bitmap into the buffer cache; but we
2269 * need to make sure that the buddy bitmap in the page cache has been
2270 * initialized. Note that ext4_mb_init_group() will block if the I/O
2271 * is not yet completed, or indeed if it was not initiated by
2272 * ext4_mb_prefetch did not start the I/O.
2274 * TODO: We should actually kick off the buddy bitmap setup in a work
2275 * queue when the buffer I/O is completed, so that we don't block
2276 * waiting for the block allocation bitmap read to finish when
2277 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2279 void ext4_mb_prefetch_fini(struct super_block
*sb
, ext4_group_t group
,
2283 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, group
,
2285 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
2288 group
= ext4_get_groups_count(sb
);
2290 grp
= ext4_get_group_info(sb
, group
);
2292 if (EXT4_MB_GRP_NEED_INIT(grp
) &&
2293 ext4_free_group_clusters(sb
, gdp
) > 0 &&
2294 !(ext4_has_group_desc_csum(sb
) &&
2295 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)))) {
2296 if (ext4_mb_init_group(sb
, group
, GFP_NOFS
))
2302 static noinline_for_stack
int
2303 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2305 ext4_group_t prefetch_grp
= 0, ngroups
, group
, i
;
2307 int err
= 0, first_err
= 0;
2308 unsigned int nr
= 0, prefetch_ios
= 0;
2309 struct ext4_sb_info
*sbi
;
2310 struct super_block
*sb
;
2311 struct ext4_buddy e4b
;
2316 ngroups
= ext4_get_groups_count(sb
);
2317 /* non-extent files are limited to low blocks/groups */
2318 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2319 ngroups
= sbi
->s_blockfile_groups
;
2321 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2323 /* first, try the goal */
2324 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2325 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2328 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2332 * ac->ac_2order is set only if the fe_len is a power of 2
2333 * if ac->ac_2order is set we also set criteria to 0 so that we
2334 * try exact allocation using buddy.
2336 i
= fls(ac
->ac_g_ex
.fe_len
);
2339 * We search using buddy data only if the order of the request
2340 * is greater than equal to the sbi_s_mb_order2_reqs
2341 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2342 * We also support searching for power-of-two requests only for
2343 * requests upto maximum buddy size we have constructed.
2345 if (i
>= sbi
->s_mb_order2_reqs
&& i
<= sb
->s_blocksize_bits
+ 2) {
2347 * This should tell if fe_len is exactly power of 2
2349 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2350 ac
->ac_2order
= array_index_nospec(i
- 1,
2351 sb
->s_blocksize_bits
+ 2);
2354 /* if stream allocation is enabled, use global goal */
2355 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2356 /* TBD: may be hot point */
2357 spin_lock(&sbi
->s_md_lock
);
2358 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2359 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2360 spin_unlock(&sbi
->s_md_lock
);
2363 /* Let's just scan groups to find more-less suitable blocks */
2364 cr
= ac
->ac_2order
? 0 : 1;
2366 * cr == 0 try to get exact allocation,
2367 * cr == 3 try to get anything
2370 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2371 ac
->ac_criteria
= cr
;
2373 * searching for the right group start
2374 * from the goal value specified
2376 group
= ac
->ac_g_ex
.fe_group
;
2377 prefetch_grp
= group
;
2379 for (i
= 0; i
< ngroups
; group
++, i
++) {
2383 * Artificially restricted ngroups for non-extent
2384 * files makes group > ngroups possible on first loop.
2386 if (group
>= ngroups
)
2390 * Batch reads of the block allocation bitmaps
2391 * to get multiple READs in flight; limit
2392 * prefetching at cr=0/1, otherwise mballoc can
2393 * spend a lot of time loading imperfect groups
2395 if ((prefetch_grp
== group
) &&
2397 prefetch_ios
< sbi
->s_mb_prefetch_limit
)) {
2398 unsigned int curr_ios
= prefetch_ios
;
2400 nr
= sbi
->s_mb_prefetch
;
2401 if (ext4_has_feature_flex_bg(sb
)) {
2402 nr
= (group
/ sbi
->s_mb_prefetch
) *
2404 nr
= nr
+ sbi
->s_mb_prefetch
- group
;
2406 prefetch_grp
= ext4_mb_prefetch(sb
, group
,
2408 if (prefetch_ios
== curr_ios
)
2412 /* This now checks without needing the buddy page */
2413 ret
= ext4_mb_good_group_nolock(ac
, group
, cr
);
2420 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2424 ext4_lock_group(sb
, group
);
2427 * We need to check again after locking the
2430 ret
= ext4_mb_good_group(ac
, group
, cr
);
2432 ext4_unlock_group(sb
, group
);
2433 ext4_mb_unload_buddy(&e4b
);
2437 ac
->ac_groups_scanned
++;
2439 ext4_mb_simple_scan_group(ac
, &e4b
);
2440 else if (cr
== 1 && sbi
->s_stripe
&&
2441 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2442 ext4_mb_scan_aligned(ac
, &e4b
);
2444 ext4_mb_complex_scan_group(ac
, &e4b
);
2446 ext4_unlock_group(sb
, group
);
2447 ext4_mb_unload_buddy(&e4b
);
2449 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2454 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2455 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2457 * We've been searching too long. Let's try to allocate
2458 * the best chunk we've found so far
2460 ext4_mb_try_best_found(ac
, &e4b
);
2461 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2463 * Someone more lucky has already allocated it.
2464 * The only thing we can do is just take first
2467 lost
= atomic_inc_return(&sbi
->s_mb_lost_chunks
);
2468 mb_debug(sb
, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2469 ac
->ac_b_ex
.fe_group
, ac
->ac_b_ex
.fe_start
,
2470 ac
->ac_b_ex
.fe_len
, lost
);
2472 ac
->ac_b_ex
.fe_group
= 0;
2473 ac
->ac_b_ex
.fe_start
= 0;
2474 ac
->ac_b_ex
.fe_len
= 0;
2475 ac
->ac_status
= AC_STATUS_CONTINUE
;
2476 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2482 if (!err
&& ac
->ac_status
!= AC_STATUS_FOUND
&& first_err
)
2485 mb_debug(sb
, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2486 ac
->ac_b_ex
.fe_len
, ac
->ac_o_ex
.fe_len
, ac
->ac_status
,
2487 ac
->ac_flags
, cr
, err
);
2490 ext4_mb_prefetch_fini(sb
, prefetch_grp
, nr
);
2495 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2497 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2500 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2503 return (void *) ((unsigned long) group
);
2506 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2508 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2512 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2515 return (void *) ((unsigned long) group
);
2518 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2520 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2521 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2523 int err
, buddy_loaded
= 0;
2524 struct ext4_buddy e4b
;
2525 struct ext4_group_info
*grinfo
;
2526 unsigned char blocksize_bits
= min_t(unsigned char,
2527 sb
->s_blocksize_bits
,
2528 EXT4_MAX_BLOCK_LOG_SIZE
);
2530 struct ext4_group_info info
;
2531 ext4_grpblk_t counters
[EXT4_MAX_BLOCK_LOG_SIZE
+ 2];
2536 seq_puts(seq
, "#group: free frags first ["
2537 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2538 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2540 i
= (blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2541 sizeof(struct ext4_group_info
);
2543 grinfo
= ext4_get_group_info(sb
, group
);
2544 /* Load the group info in memory only if not already loaded. */
2545 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2546 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2548 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2554 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2557 ext4_mb_unload_buddy(&e4b
);
2559 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2560 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2561 for (i
= 0; i
<= 13; i
++)
2562 seq_printf(seq
, " %-5u", i
<= blocksize_bits
+ 1 ?
2563 sg
.info
.bb_counters
[i
] : 0);
2564 seq_puts(seq
, " ]\n");
2569 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2573 const struct seq_operations ext4_mb_seq_groups_ops
= {
2574 .start
= ext4_mb_seq_groups_start
,
2575 .next
= ext4_mb_seq_groups_next
,
2576 .stop
= ext4_mb_seq_groups_stop
,
2577 .show
= ext4_mb_seq_groups_show
,
2580 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2582 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2583 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2590 * Allocate the top-level s_group_info array for the specified number
2593 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2595 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2597 struct ext4_group_info
***old_groupinfo
, ***new_groupinfo
;
2599 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2600 EXT4_DESC_PER_BLOCK_BITS(sb
);
2601 if (size
<= sbi
->s_group_info_size
)
2604 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2605 new_groupinfo
= kvzalloc(size
, GFP_KERNEL
);
2606 if (!new_groupinfo
) {
2607 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2611 old_groupinfo
= rcu_dereference(sbi
->s_group_info
);
2613 memcpy(new_groupinfo
, old_groupinfo
,
2614 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2616 rcu_assign_pointer(sbi
->s_group_info
, new_groupinfo
);
2617 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2619 ext4_kvfree_array_rcu(old_groupinfo
);
2620 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2621 sbi
->s_group_info_size
);
2625 /* Create and initialize ext4_group_info data for the given group. */
2626 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2627 struct ext4_group_desc
*desc
)
2631 int idx
= group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2632 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2633 struct ext4_group_info
**meta_group_info
;
2634 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2637 * First check if this group is the first of a reserved block.
2638 * If it's true, we have to allocate a new table of pointers
2639 * to ext4_group_info structures
2641 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2642 metalen
= sizeof(*meta_group_info
) <<
2643 EXT4_DESC_PER_BLOCK_BITS(sb
);
2644 meta_group_info
= kmalloc(metalen
, GFP_NOFS
);
2645 if (meta_group_info
== NULL
) {
2646 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2647 "for a buddy group");
2648 goto exit_meta_group_info
;
2651 rcu_dereference(sbi
->s_group_info
)[idx
] = meta_group_info
;
2655 meta_group_info
= sbi_array_rcu_deref(sbi
, s_group_info
, idx
);
2656 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2658 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_NOFS
);
2659 if (meta_group_info
[i
] == NULL
) {
2660 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2661 goto exit_group_info
;
2663 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2664 &(meta_group_info
[i
]->bb_state
));
2667 * initialize bb_free to be able to skip
2668 * empty groups without initialization
2670 if (ext4_has_group_desc_csum(sb
) &&
2671 (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
2672 meta_group_info
[i
]->bb_free
=
2673 ext4_free_clusters_after_init(sb
, group
, desc
);
2675 meta_group_info
[i
]->bb_free
=
2676 ext4_free_group_clusters(sb
, desc
);
2679 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2680 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2681 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2682 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2684 mb_group_bb_bitmap_alloc(sb
, meta_group_info
[i
], group
);
2688 /* If a meta_group_info table has been allocated, release it now */
2689 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2690 struct ext4_group_info
***group_info
;
2693 group_info
= rcu_dereference(sbi
->s_group_info
);
2694 kfree(group_info
[idx
]);
2695 group_info
[idx
] = NULL
;
2698 exit_meta_group_info
:
2700 } /* ext4_mb_add_groupinfo */
2702 static int ext4_mb_init_backend(struct super_block
*sb
)
2704 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2706 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2708 struct ext4_group_desc
*desc
;
2709 struct ext4_group_info
***group_info
;
2710 struct kmem_cache
*cachep
;
2712 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2716 sbi
->s_buddy_cache
= new_inode(sb
);
2717 if (sbi
->s_buddy_cache
== NULL
) {
2718 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2721 /* To avoid potentially colliding with an valid on-disk inode number,
2722 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2723 * not in the inode hash, so it should never be found by iget(), but
2724 * this will avoid confusion if it ever shows up during debugging. */
2725 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2726 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2727 for (i
= 0; i
< ngroups
; i
++) {
2729 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2731 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2734 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2738 if (ext4_has_feature_flex_bg(sb
)) {
2739 /* a single flex group is supposed to be read by a single IO */
2740 sbi
->s_mb_prefetch
= 1 << sbi
->s_es
->s_log_groups_per_flex
;
2741 sbi
->s_mb_prefetch
*= 8; /* 8 prefetch IOs in flight at most */
2743 sbi
->s_mb_prefetch
= 32;
2745 if (sbi
->s_mb_prefetch
> ext4_get_groups_count(sb
))
2746 sbi
->s_mb_prefetch
= ext4_get_groups_count(sb
);
2747 /* now many real IOs to prefetch within a single allocation at cr=0
2748 * given cr=0 is an CPU-related optimization we shouldn't try to
2749 * load too many groups, at some point we should start to use what
2750 * we've got in memory.
2751 * with an average random access time 5ms, it'd take a second to get
2752 * 200 groups (* N with flex_bg), so let's make this limit 4
2754 sbi
->s_mb_prefetch_limit
= sbi
->s_mb_prefetch
* 4;
2755 if (sbi
->s_mb_prefetch_limit
> ext4_get_groups_count(sb
))
2756 sbi
->s_mb_prefetch_limit
= ext4_get_groups_count(sb
);
2761 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2763 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2764 i
= sbi
->s_group_info_size
;
2766 group_info
= rcu_dereference(sbi
->s_group_info
);
2768 kfree(group_info
[i
]);
2770 iput(sbi
->s_buddy_cache
);
2773 kvfree(rcu_dereference(sbi
->s_group_info
));
2778 static void ext4_groupinfo_destroy_slabs(void)
2782 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2783 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2784 ext4_groupinfo_caches
[i
] = NULL
;
2788 static int ext4_groupinfo_create_slab(size_t size
)
2790 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2792 int blocksize_bits
= order_base_2(size
);
2793 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2794 struct kmem_cache
*cachep
;
2796 if (cache_index
>= NR_GRPINFO_CACHES
)
2799 if (unlikely(cache_index
< 0))
2802 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2803 if (ext4_groupinfo_caches
[cache_index
]) {
2804 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2805 return 0; /* Already created */
2808 slab_size
= offsetof(struct ext4_group_info
,
2809 bb_counters
[blocksize_bits
+ 2]);
2811 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2812 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2815 ext4_groupinfo_caches
[cache_index
] = cachep
;
2817 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2820 "EXT4-fs: no memory for groupinfo slab cache\n");
2827 int ext4_mb_init(struct super_block
*sb
)
2829 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2831 unsigned offset
, offset_incr
;
2835 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2837 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2838 if (sbi
->s_mb_offsets
== NULL
) {
2843 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2844 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2845 if (sbi
->s_mb_maxs
== NULL
) {
2850 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2854 /* order 0 is regular bitmap */
2855 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2856 sbi
->s_mb_offsets
[0] = 0;
2860 offset_incr
= 1 << (sb
->s_blocksize_bits
- 1);
2861 max
= sb
->s_blocksize
<< 2;
2863 sbi
->s_mb_offsets
[i
] = offset
;
2864 sbi
->s_mb_maxs
[i
] = max
;
2865 offset
+= offset_incr
;
2866 offset_incr
= offset_incr
>> 1;
2869 } while (i
<= sb
->s_blocksize_bits
+ 1);
2871 spin_lock_init(&sbi
->s_md_lock
);
2872 spin_lock_init(&sbi
->s_bal_lock
);
2873 sbi
->s_mb_free_pending
= 0;
2874 INIT_LIST_HEAD(&sbi
->s_freed_data_list
);
2876 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2877 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2878 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2879 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2880 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2881 sbi
->s_mb_max_inode_prealloc
= MB_DEFAULT_MAX_INODE_PREALLOC
;
2883 * The default group preallocation is 512, which for 4k block
2884 * sizes translates to 2 megabytes. However for bigalloc file
2885 * systems, this is probably too big (i.e, if the cluster size
2886 * is 1 megabyte, then group preallocation size becomes half a
2887 * gigabyte!). As a default, we will keep a two megabyte
2888 * group pralloc size for cluster sizes up to 64k, and after
2889 * that, we will force a minimum group preallocation size of
2890 * 32 clusters. This translates to 8 megs when the cluster
2891 * size is 256k, and 32 megs when the cluster size is 1 meg,
2892 * which seems reasonable as a default.
2894 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2895 sbi
->s_cluster_bits
, 32);
2897 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2898 * to the lowest multiple of s_stripe which is bigger than
2899 * the s_mb_group_prealloc as determined above. We want
2900 * the preallocation size to be an exact multiple of the
2901 * RAID stripe size so that preallocations don't fragment
2904 if (sbi
->s_stripe
> 1) {
2905 sbi
->s_mb_group_prealloc
= roundup(
2906 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2909 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2910 if (sbi
->s_locality_groups
== NULL
) {
2914 for_each_possible_cpu(i
) {
2915 struct ext4_locality_group
*lg
;
2916 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2917 mutex_init(&lg
->lg_mutex
);
2918 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2919 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2920 spin_lock_init(&lg
->lg_prealloc_lock
);
2923 /* init file for buddy data */
2924 ret
= ext4_mb_init_backend(sb
);
2926 goto out_free_locality_groups
;
2930 out_free_locality_groups
:
2931 free_percpu(sbi
->s_locality_groups
);
2932 sbi
->s_locality_groups
= NULL
;
2934 kfree(sbi
->s_mb_offsets
);
2935 sbi
->s_mb_offsets
= NULL
;
2936 kfree(sbi
->s_mb_maxs
);
2937 sbi
->s_mb_maxs
= NULL
;
2941 /* need to called with the ext4 group lock held */
2942 static int ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2944 struct ext4_prealloc_space
*pa
;
2945 struct list_head
*cur
, *tmp
;
2948 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2949 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2950 list_del(&pa
->pa_group_list
);
2952 kmem_cache_free(ext4_pspace_cachep
, pa
);
2957 int ext4_mb_release(struct super_block
*sb
)
2959 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2961 int num_meta_group_infos
;
2962 struct ext4_group_info
*grinfo
, ***group_info
;
2963 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2964 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2967 if (sbi
->s_group_info
) {
2968 for (i
= 0; i
< ngroups
; i
++) {
2970 grinfo
= ext4_get_group_info(sb
, i
);
2971 mb_group_bb_bitmap_free(grinfo
);
2972 ext4_lock_group(sb
, i
);
2973 count
= ext4_mb_cleanup_pa(grinfo
);
2975 mb_debug(sb
, "mballoc: %d PAs left\n",
2977 ext4_unlock_group(sb
, i
);
2978 kmem_cache_free(cachep
, grinfo
);
2980 num_meta_group_infos
= (ngroups
+
2981 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2982 EXT4_DESC_PER_BLOCK_BITS(sb
);
2984 group_info
= rcu_dereference(sbi
->s_group_info
);
2985 for (i
= 0; i
< num_meta_group_infos
; i
++)
2986 kfree(group_info
[i
]);
2990 kfree(sbi
->s_mb_offsets
);
2991 kfree(sbi
->s_mb_maxs
);
2992 iput(sbi
->s_buddy_cache
);
2993 if (sbi
->s_mb_stats
) {
2994 ext4_msg(sb
, KERN_INFO
,
2995 "mballoc: %u blocks %u reqs (%u success)",
2996 atomic_read(&sbi
->s_bal_allocated
),
2997 atomic_read(&sbi
->s_bal_reqs
),
2998 atomic_read(&sbi
->s_bal_success
));
2999 ext4_msg(sb
, KERN_INFO
,
3000 "mballoc: %u extents scanned, %u goal hits, "
3001 "%u 2^N hits, %u breaks, %u lost",
3002 atomic_read(&sbi
->s_bal_ex_scanned
),
3003 atomic_read(&sbi
->s_bal_goals
),
3004 atomic_read(&sbi
->s_bal_2orders
),
3005 atomic_read(&sbi
->s_bal_breaks
),
3006 atomic_read(&sbi
->s_mb_lost_chunks
));
3007 ext4_msg(sb
, KERN_INFO
,
3008 "mballoc: %lu generated and it took %Lu",
3009 sbi
->s_mb_buddies_generated
,
3010 sbi
->s_mb_generation_time
);
3011 ext4_msg(sb
, KERN_INFO
,
3012 "mballoc: %u preallocated, %u discarded",
3013 atomic_read(&sbi
->s_mb_preallocated
),
3014 atomic_read(&sbi
->s_mb_discarded
));
3017 free_percpu(sbi
->s_locality_groups
);
3022 static inline int ext4_issue_discard(struct super_block
*sb
,
3023 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
,
3026 ext4_fsblk_t discard_block
;
3028 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
3029 ext4_group_first_block_no(sb
, block_group
));
3030 count
= EXT4_C2B(EXT4_SB(sb
), count
);
3031 trace_ext4_discard_blocks(sb
,
3032 (unsigned long long) discard_block
, count
);
3034 return __blkdev_issue_discard(sb
->s_bdev
,
3035 (sector_t
)discard_block
<< (sb
->s_blocksize_bits
- 9),
3036 (sector_t
)count
<< (sb
->s_blocksize_bits
- 9),
3039 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
3042 static void ext4_free_data_in_buddy(struct super_block
*sb
,
3043 struct ext4_free_data
*entry
)
3045 struct ext4_buddy e4b
;
3046 struct ext4_group_info
*db
;
3047 int err
, count
= 0, count2
= 0;
3049 mb_debug(sb
, "gonna free %u blocks in group %u (0x%p):",
3050 entry
->efd_count
, entry
->efd_group
, entry
);
3052 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
3053 /* we expect to find existing buddy because it's pinned */
3056 spin_lock(&EXT4_SB(sb
)->s_md_lock
);
3057 EXT4_SB(sb
)->s_mb_free_pending
-= entry
->efd_count
;
3058 spin_unlock(&EXT4_SB(sb
)->s_md_lock
);
3061 /* there are blocks to put in buddy to make them really free */
3062 count
+= entry
->efd_count
;
3064 ext4_lock_group(sb
, entry
->efd_group
);
3065 /* Take it out of per group rb tree */
3066 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
3067 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
3070 * Clear the trimmed flag for the group so that the next
3071 * ext4_trim_fs can trim it.
3072 * If the volume is mounted with -o discard, online discard
3073 * is supported and the free blocks will be trimmed online.
3075 if (!test_opt(sb
, DISCARD
))
3076 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
3078 if (!db
->bb_free_root
.rb_node
) {
3079 /* No more items in the per group rb tree
3080 * balance refcounts from ext4_mb_free_metadata()
3082 put_page(e4b
.bd_buddy_page
);
3083 put_page(e4b
.bd_bitmap_page
);
3085 ext4_unlock_group(sb
, entry
->efd_group
);
3086 kmem_cache_free(ext4_free_data_cachep
, entry
);
3087 ext4_mb_unload_buddy(&e4b
);
3089 mb_debug(sb
, "freed %d blocks in %d structures\n", count
,
3094 * This function is called by the jbd2 layer once the commit has finished,
3095 * so we know we can free the blocks that were released with that commit.
3097 void ext4_process_freed_data(struct super_block
*sb
, tid_t commit_tid
)
3099 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3100 struct ext4_free_data
*entry
, *tmp
;
3101 struct bio
*discard_bio
= NULL
;
3102 struct list_head freed_data_list
;
3103 struct list_head
*cut_pos
= NULL
;
3106 INIT_LIST_HEAD(&freed_data_list
);
3108 spin_lock(&sbi
->s_md_lock
);
3109 list_for_each_entry(entry
, &sbi
->s_freed_data_list
, efd_list
) {
3110 if (entry
->efd_tid
!= commit_tid
)
3112 cut_pos
= &entry
->efd_list
;
3115 list_cut_position(&freed_data_list
, &sbi
->s_freed_data_list
,
3117 spin_unlock(&sbi
->s_md_lock
);
3119 if (test_opt(sb
, DISCARD
)) {
3120 list_for_each_entry(entry
, &freed_data_list
, efd_list
) {
3121 err
= ext4_issue_discard(sb
, entry
->efd_group
,
3122 entry
->efd_start_cluster
,
3125 if (err
&& err
!= -EOPNOTSUPP
) {
3126 ext4_msg(sb
, KERN_WARNING
, "discard request in"
3127 " group:%d block:%d count:%d failed"
3128 " with %d", entry
->efd_group
,
3129 entry
->efd_start_cluster
,
3130 entry
->efd_count
, err
);
3131 } else if (err
== -EOPNOTSUPP
)
3136 submit_bio_wait(discard_bio
);
3137 bio_put(discard_bio
);
3141 list_for_each_entry_safe(entry
, tmp
, &freed_data_list
, efd_list
)
3142 ext4_free_data_in_buddy(sb
, entry
);
3145 int __init
ext4_init_mballoc(void)
3147 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
3148 SLAB_RECLAIM_ACCOUNT
);
3149 if (ext4_pspace_cachep
== NULL
)
3152 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
3153 SLAB_RECLAIM_ACCOUNT
);
3154 if (ext4_ac_cachep
== NULL
)
3157 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
3158 SLAB_RECLAIM_ACCOUNT
);
3159 if (ext4_free_data_cachep
== NULL
)
3165 kmem_cache_destroy(ext4_ac_cachep
);
3167 kmem_cache_destroy(ext4_pspace_cachep
);
3172 void ext4_exit_mballoc(void)
3175 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3176 * before destroying the slab cache.
3179 kmem_cache_destroy(ext4_pspace_cachep
);
3180 kmem_cache_destroy(ext4_ac_cachep
);
3181 kmem_cache_destroy(ext4_free_data_cachep
);
3182 ext4_groupinfo_destroy_slabs();
3187 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3188 * Returns 0 if success or error code
3190 static noinline_for_stack
int
3191 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
3192 handle_t
*handle
, unsigned int reserv_clstrs
)
3194 struct buffer_head
*bitmap_bh
= NULL
;
3195 struct ext4_group_desc
*gdp
;
3196 struct buffer_head
*gdp_bh
;
3197 struct ext4_sb_info
*sbi
;
3198 struct super_block
*sb
;
3202 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3203 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
3208 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
3209 if (IS_ERR(bitmap_bh
)) {
3210 err
= PTR_ERR(bitmap_bh
);
3215 BUFFER_TRACE(bitmap_bh
, "getting write access");
3216 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
3221 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
3225 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
3226 ext4_free_group_clusters(sb
, gdp
));
3228 BUFFER_TRACE(gdp_bh
, "get_write_access");
3229 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
3233 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3235 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3236 if (!ext4_inode_block_valid(ac
->ac_inode
, block
, len
)) {
3237 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
3238 "fs metadata", block
, block
+len
);
3239 /* File system mounted not to panic on error
3240 * Fix the bitmap and return EFSCORRUPTED
3241 * We leak some of the blocks here.
3243 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3244 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
3245 ac
->ac_b_ex
.fe_len
);
3246 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3247 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3249 err
= -EFSCORRUPTED
;
3253 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3254 #ifdef AGGRESSIVE_CHECK
3257 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
3258 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
3259 bitmap_bh
->b_data
));
3263 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
3264 ac
->ac_b_ex
.fe_len
);
3265 if (ext4_has_group_desc_csum(sb
) &&
3266 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
3267 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
3268 ext4_free_group_clusters_set(sb
, gdp
,
3269 ext4_free_clusters_after_init(sb
,
3270 ac
->ac_b_ex
.fe_group
, gdp
));
3272 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
3273 ext4_free_group_clusters_set(sb
, gdp
, len
);
3274 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
3275 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
3277 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3278 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
3280 * Now reduce the dirty block count also. Should not go negative
3282 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
3283 /* release all the reserved blocks if non delalloc */
3284 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
3287 if (sbi
->s_log_groups_per_flex
) {
3288 ext4_group_t flex_group
= ext4_flex_group(sbi
,
3289 ac
->ac_b_ex
.fe_group
);
3290 atomic64_sub(ac
->ac_b_ex
.fe_len
,
3291 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
3292 flex_group
)->free_clusters
);
3295 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3298 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
3306 * here we normalize request for locality group
3307 * Group request are normalized to s_mb_group_prealloc, which goes to
3308 * s_strip if we set the same via mount option.
3309 * s_mb_group_prealloc can be configured via
3310 * /sys/fs/ext4/<partition>/mb_group_prealloc
3312 * XXX: should we try to preallocate more than the group has now?
3314 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
3316 struct super_block
*sb
= ac
->ac_sb
;
3317 struct ext4_locality_group
*lg
= ac
->ac_lg
;
3320 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
3321 mb_debug(sb
, "goal %u blocks for locality group\n", ac
->ac_g_ex
.fe_len
);
3325 * Normalization means making request better in terms of
3326 * size and alignment
3328 static noinline_for_stack
void
3329 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3330 struct ext4_allocation_request
*ar
)
3332 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3335 loff_t size
, start_off
;
3336 loff_t orig_size __maybe_unused
;
3338 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3339 struct ext4_prealloc_space
*pa
;
3341 /* do normalize only data requests, metadata requests
3342 do not need preallocation */
3343 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3346 /* sometime caller may want exact blocks */
3347 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3350 /* caller may indicate that preallocation isn't
3351 * required (it's a tail, for example) */
3352 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3355 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3356 ext4_mb_normalize_group_request(ac
);
3360 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3362 /* first, let's learn actual file size
3363 * given current request is allocated */
3364 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3365 size
= size
<< bsbits
;
3366 if (size
< i_size_read(ac
->ac_inode
))
3367 size
= i_size_read(ac
->ac_inode
);
3370 /* max size of free chunks */
3373 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3374 (req <= (size) || max <= (chunk_size))
3376 /* first, try to predict filesize */
3377 /* XXX: should this table be tunable? */
3379 if (size
<= 16 * 1024) {
3381 } else if (size
<= 32 * 1024) {
3383 } else if (size
<= 64 * 1024) {
3385 } else if (size
<= 128 * 1024) {
3387 } else if (size
<= 256 * 1024) {
3389 } else if (size
<= 512 * 1024) {
3391 } else if (size
<= 1024 * 1024) {
3393 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3394 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3395 (21 - bsbits
)) << 21;
3396 size
= 2 * 1024 * 1024;
3397 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3398 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3399 (22 - bsbits
)) << 22;
3400 size
= 4 * 1024 * 1024;
3401 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3402 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3403 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3404 (23 - bsbits
)) << 23;
3405 size
= 8 * 1024 * 1024;
3407 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3408 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3409 ac
->ac_o_ex
.fe_len
) << bsbits
;
3411 size
= size
>> bsbits
;
3412 start
= start_off
>> bsbits
;
3414 /* don't cover already allocated blocks in selected range */
3415 if (ar
->pleft
&& start
<= ar
->lleft
) {
3416 size
-= ar
->lleft
+ 1 - start
;
3417 start
= ar
->lleft
+ 1;
3419 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3420 size
-= start
+ size
- ar
->lright
;
3423 * Trim allocation request for filesystems with artificially small
3426 if (size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
))
3427 size
= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
);
3431 /* check we don't cross already preallocated blocks */
3433 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3438 spin_lock(&pa
->pa_lock
);
3439 if (pa
->pa_deleted
) {
3440 spin_unlock(&pa
->pa_lock
);
3444 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3447 /* PA must not overlap original request */
3448 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3449 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3451 /* skip PAs this normalized request doesn't overlap with */
3452 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3453 spin_unlock(&pa
->pa_lock
);
3456 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3458 /* adjust start or end to be adjacent to this pa */
3459 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3460 BUG_ON(pa_end
< start
);
3462 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3463 BUG_ON(pa
->pa_lstart
> end
);
3464 end
= pa
->pa_lstart
;
3466 spin_unlock(&pa
->pa_lock
);
3471 /* XXX: extra loop to check we really don't overlap preallocations */
3473 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3476 spin_lock(&pa
->pa_lock
);
3477 if (pa
->pa_deleted
== 0) {
3478 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3480 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3482 spin_unlock(&pa
->pa_lock
);
3486 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3487 start
> ac
->ac_o_ex
.fe_logical
) {
3488 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3489 "start %lu, size %lu, fe_logical %lu",
3490 (unsigned long) start
, (unsigned long) size
,
3491 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3494 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3496 /* now prepare goal request */
3498 /* XXX: is it better to align blocks WRT to logical
3499 * placement or satisfy big request as is */
3500 ac
->ac_g_ex
.fe_logical
= start
;
3501 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3503 /* define goal start in order to merge */
3504 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3505 /* merge to the right */
3506 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3507 &ac
->ac_f_ex
.fe_group
,
3508 &ac
->ac_f_ex
.fe_start
);
3509 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3511 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3512 /* merge to the left */
3513 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3514 &ac
->ac_f_ex
.fe_group
,
3515 &ac
->ac_f_ex
.fe_start
);
3516 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3519 mb_debug(ac
->ac_sb
, "goal: %lld(was %lld) blocks at %u\n", size
,
3523 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3525 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3527 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3528 atomic_inc(&sbi
->s_bal_reqs
);
3529 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3530 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3531 atomic_inc(&sbi
->s_bal_success
);
3532 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3533 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3534 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3535 atomic_inc(&sbi
->s_bal_goals
);
3536 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3537 atomic_inc(&sbi
->s_bal_breaks
);
3540 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3541 trace_ext4_mballoc_alloc(ac
);
3543 trace_ext4_mballoc_prealloc(ac
);
3547 * Called on failure; free up any blocks from the inode PA for this
3548 * context. We don't need this for MB_GROUP_PA because we only change
3549 * pa_free in ext4_mb_release_context(), but on failure, we've already
3550 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3552 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3554 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3555 struct ext4_buddy e4b
;
3559 if (ac
->ac_f_ex
.fe_len
== 0)
3561 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3564 * This should never happen since we pin the
3565 * pages in the ext4_allocation_context so
3566 * ext4_mb_load_buddy() should never fail.
3568 WARN(1, "mb_load_buddy failed (%d)", err
);
3571 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3572 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3573 ac
->ac_f_ex
.fe_len
);
3574 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3575 ext4_mb_unload_buddy(&e4b
);
3578 if (pa
->pa_type
== MB_INODE_PA
)
3579 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3583 * use blocks preallocated to inode
3585 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3586 struct ext4_prealloc_space
*pa
)
3588 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3593 /* found preallocated blocks, use them */
3594 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3595 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3596 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3597 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3598 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3599 &ac
->ac_b_ex
.fe_start
);
3600 ac
->ac_b_ex
.fe_len
= len
;
3601 ac
->ac_status
= AC_STATUS_FOUND
;
3604 BUG_ON(start
< pa
->pa_pstart
);
3605 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3606 BUG_ON(pa
->pa_free
< len
);
3609 mb_debug(ac
->ac_sb
, "use %llu/%d from inode pa %p\n", start
, len
, pa
);
3613 * use blocks preallocated to locality group
3615 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3616 struct ext4_prealloc_space
*pa
)
3618 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3620 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3621 &ac
->ac_b_ex
.fe_group
,
3622 &ac
->ac_b_ex
.fe_start
);
3623 ac
->ac_b_ex
.fe_len
= len
;
3624 ac
->ac_status
= AC_STATUS_FOUND
;
3627 /* we don't correct pa_pstart or pa_plen here to avoid
3628 * possible race when the group is being loaded concurrently
3629 * instead we correct pa later, after blocks are marked
3630 * in on-disk bitmap -- see ext4_mb_release_context()
3631 * Other CPUs are prevented from allocating from this pa by lg_mutex
3633 mb_debug(ac
->ac_sb
, "use %u/%u from group pa %p\n",
3634 pa
->pa_lstart
-len
, len
, pa
);
3638 * Return the prealloc space that have minimal distance
3639 * from the goal block. @cpa is the prealloc
3640 * space that is having currently known minimal distance
3641 * from the goal block.
3643 static struct ext4_prealloc_space
*
3644 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3645 struct ext4_prealloc_space
*pa
,
3646 struct ext4_prealloc_space
*cpa
)
3648 ext4_fsblk_t cur_distance
, new_distance
;
3651 atomic_inc(&pa
->pa_count
);
3654 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3655 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3657 if (cur_distance
<= new_distance
)
3660 /* drop the previous reference */
3661 atomic_dec(&cpa
->pa_count
);
3662 atomic_inc(&pa
->pa_count
);
3667 * search goal blocks in preallocated space
3669 static noinline_for_stack
bool
3670 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3672 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3674 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3675 struct ext4_locality_group
*lg
;
3676 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3677 ext4_fsblk_t goal_block
;
3679 /* only data can be preallocated */
3680 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3683 /* first, try per-file preallocation */
3685 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3687 /* all fields in this condition don't change,
3688 * so we can skip locking for them */
3689 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3690 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3691 EXT4_C2B(sbi
, pa
->pa_len
)))
3694 /* non-extent files can't have physical blocks past 2^32 */
3695 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3696 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3697 EXT4_MAX_BLOCK_FILE_PHYS
))
3700 /* found preallocated blocks, use them */
3701 spin_lock(&pa
->pa_lock
);
3702 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3703 atomic_inc(&pa
->pa_count
);
3704 ext4_mb_use_inode_pa(ac
, pa
);
3705 spin_unlock(&pa
->pa_lock
);
3706 ac
->ac_criteria
= 10;
3710 spin_unlock(&pa
->pa_lock
);
3714 /* can we use group allocation? */
3715 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3718 /* inode may have no locality group for some reason */
3722 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3723 if (order
> PREALLOC_TB_SIZE
- 1)
3724 /* The max size of hash table is PREALLOC_TB_SIZE */
3725 order
= PREALLOC_TB_SIZE
- 1;
3727 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3729 * search for the prealloc space that is having
3730 * minimal distance from the goal block.
3732 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3734 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3736 spin_lock(&pa
->pa_lock
);
3737 if (pa
->pa_deleted
== 0 &&
3738 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3740 cpa
= ext4_mb_check_group_pa(goal_block
,
3743 spin_unlock(&pa
->pa_lock
);
3748 ext4_mb_use_group_pa(ac
, cpa
);
3749 ac
->ac_criteria
= 20;
3756 * the function goes through all block freed in the group
3757 * but not yet committed and marks them used in in-core bitmap.
3758 * buddy must be generated from this bitmap
3759 * Need to be called with the ext4 group lock held
3761 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3765 struct ext4_group_info
*grp
;
3766 struct ext4_free_data
*entry
;
3768 grp
= ext4_get_group_info(sb
, group
);
3769 n
= rb_first(&(grp
->bb_free_root
));
3772 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3773 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3780 * the function goes through all preallocation in this group and marks them
3781 * used in in-core bitmap. buddy must be generated from this bitmap
3782 * Need to be called with ext4 group lock held
3784 static noinline_for_stack
3785 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3788 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3789 struct ext4_prealloc_space
*pa
;
3790 struct list_head
*cur
;
3791 ext4_group_t groupnr
;
3792 ext4_grpblk_t start
;
3793 int preallocated
= 0;
3796 /* all form of preallocation discards first load group,
3797 * so the only competing code is preallocation use.
3798 * we don't need any locking here
3799 * notice we do NOT ignore preallocations with pa_deleted
3800 * otherwise we could leave used blocks available for
3801 * allocation in buddy when concurrent ext4_mb_put_pa()
3802 * is dropping preallocation
3804 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3805 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3806 spin_lock(&pa
->pa_lock
);
3807 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3810 spin_unlock(&pa
->pa_lock
);
3811 if (unlikely(len
== 0))
3813 BUG_ON(groupnr
!= group
);
3814 ext4_set_bits(bitmap
, start
, len
);
3815 preallocated
+= len
;
3817 mb_debug(sb
, "preallocated %d for group %u\n", preallocated
, group
);
3820 static void ext4_mb_mark_pa_deleted(struct super_block
*sb
,
3821 struct ext4_prealloc_space
*pa
)
3823 struct ext4_inode_info
*ei
;
3825 if (pa
->pa_deleted
) {
3826 ext4_warning(sb
, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3827 pa
->pa_type
, pa
->pa_pstart
, pa
->pa_lstart
,
3834 if (pa
->pa_type
== MB_INODE_PA
) {
3835 ei
= EXT4_I(pa
->pa_inode
);
3836 atomic_dec(&ei
->i_prealloc_active
);
3840 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3842 struct ext4_prealloc_space
*pa
;
3843 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3845 BUG_ON(atomic_read(&pa
->pa_count
));
3846 BUG_ON(pa
->pa_deleted
== 0);
3847 kmem_cache_free(ext4_pspace_cachep
, pa
);
3851 * drops a reference to preallocated space descriptor
3852 * if this was the last reference and the space is consumed
3854 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3855 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3858 ext4_fsblk_t grp_blk
;
3860 /* in this short window concurrent discard can set pa_deleted */
3861 spin_lock(&pa
->pa_lock
);
3862 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3863 spin_unlock(&pa
->pa_lock
);
3867 if (pa
->pa_deleted
== 1) {
3868 spin_unlock(&pa
->pa_lock
);
3872 ext4_mb_mark_pa_deleted(sb
, pa
);
3873 spin_unlock(&pa
->pa_lock
);
3875 grp_blk
= pa
->pa_pstart
;
3877 * If doing group-based preallocation, pa_pstart may be in the
3878 * next group when pa is used up
3880 if (pa
->pa_type
== MB_GROUP_PA
)
3883 grp
= ext4_get_group_number(sb
, grp_blk
);
3888 * P1 (buddy init) P2 (regular allocation)
3889 * find block B in PA
3890 * copy on-disk bitmap to buddy
3891 * mark B in on-disk bitmap
3892 * drop PA from group
3893 * mark all PAs in buddy
3895 * thus, P1 initializes buddy with B available. to prevent this
3896 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3899 ext4_lock_group(sb
, grp
);
3900 list_del(&pa
->pa_group_list
);
3901 ext4_unlock_group(sb
, grp
);
3903 spin_lock(pa
->pa_obj_lock
);
3904 list_del_rcu(&pa
->pa_inode_list
);
3905 spin_unlock(pa
->pa_obj_lock
);
3907 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3911 * creates new preallocated space for given inode
3913 static noinline_for_stack
void
3914 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3916 struct super_block
*sb
= ac
->ac_sb
;
3917 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3918 struct ext4_prealloc_space
*pa
;
3919 struct ext4_group_info
*grp
;
3920 struct ext4_inode_info
*ei
;
3922 /* preallocate only when found space is larger then requested */
3923 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3924 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3925 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3926 BUG_ON(ac
->ac_pa
== NULL
);
3930 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3936 /* we can't allocate as much as normalizer wants.
3937 * so, found space must get proper lstart
3938 * to cover original request */
3939 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3940 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3942 /* we're limited by original request in that
3943 * logical block must be covered any way
3944 * winl is window we can move our chunk within */
3945 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3947 /* also, we should cover whole original request */
3948 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3950 /* the smallest one defines real window */
3951 win
= min(winl
, wins
);
3953 offs
= ac
->ac_o_ex
.fe_logical
%
3954 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3955 if (offs
&& offs
< win
)
3958 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3959 EXT4_NUM_B2C(sbi
, win
);
3960 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3961 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3964 /* preallocation can change ac_b_ex, thus we store actually
3965 * allocated blocks for history */
3966 ac
->ac_f_ex
= ac
->ac_b_ex
;
3968 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3969 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3970 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3971 pa
->pa_free
= pa
->pa_len
;
3972 spin_lock_init(&pa
->pa_lock
);
3973 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3974 INIT_LIST_HEAD(&pa
->pa_group_list
);
3976 pa
->pa_type
= MB_INODE_PA
;
3978 mb_debug(sb
, "new inode pa %p: %llu/%d for %u\n", pa
, pa
->pa_pstart
,
3979 pa
->pa_len
, pa
->pa_lstart
);
3980 trace_ext4_mb_new_inode_pa(ac
, pa
);
3982 ext4_mb_use_inode_pa(ac
, pa
);
3983 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3985 ei
= EXT4_I(ac
->ac_inode
);
3986 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3988 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3989 pa
->pa_inode
= ac
->ac_inode
;
3991 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3993 spin_lock(pa
->pa_obj_lock
);
3994 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3995 spin_unlock(pa
->pa_obj_lock
);
3996 atomic_inc(&ei
->i_prealloc_active
);
4000 * creates new preallocated space for locality group inodes belongs to
4002 static noinline_for_stack
void
4003 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
4005 struct super_block
*sb
= ac
->ac_sb
;
4006 struct ext4_locality_group
*lg
;
4007 struct ext4_prealloc_space
*pa
;
4008 struct ext4_group_info
*grp
;
4010 /* preallocate only when found space is larger then requested */
4011 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
4012 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
4013 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
4014 BUG_ON(ac
->ac_pa
== NULL
);
4018 /* preallocation can change ac_b_ex, thus we store actually
4019 * allocated blocks for history */
4020 ac
->ac_f_ex
= ac
->ac_b_ex
;
4022 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4023 pa
->pa_lstart
= pa
->pa_pstart
;
4024 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
4025 pa
->pa_free
= pa
->pa_len
;
4026 spin_lock_init(&pa
->pa_lock
);
4027 INIT_LIST_HEAD(&pa
->pa_inode_list
);
4028 INIT_LIST_HEAD(&pa
->pa_group_list
);
4030 pa
->pa_type
= MB_GROUP_PA
;
4032 mb_debug(sb
, "new group pa %p: %llu/%d for %u\n", pa
, pa
->pa_pstart
,
4033 pa
->pa_len
, pa
->pa_lstart
);
4034 trace_ext4_mb_new_group_pa(ac
, pa
);
4036 ext4_mb_use_group_pa(ac
, pa
);
4037 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
4039 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
4043 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
4044 pa
->pa_inode
= NULL
;
4046 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
4049 * We will later add the new pa to the right bucket
4050 * after updating the pa_free in ext4_mb_release_context
4054 static void ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
4056 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4057 ext4_mb_new_group_pa(ac
);
4059 ext4_mb_new_inode_pa(ac
);
4063 * finds all unused blocks in on-disk bitmap, frees them in
4064 * in-core bitmap and buddy.
4065 * @pa must be unlinked from inode and group lists, so that
4066 * nobody else can find/use it.
4067 * the caller MUST hold group/inode locks.
4068 * TODO: optimize the case when there are no in-core structures yet
4070 static noinline_for_stack
int
4071 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
4072 struct ext4_prealloc_space
*pa
)
4074 struct super_block
*sb
= e4b
->bd_sb
;
4075 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4080 unsigned long long grp_blk_start
;
4083 BUG_ON(pa
->pa_deleted
== 0);
4084 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
4085 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
4086 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
4087 end
= bit
+ pa
->pa_len
;
4090 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
4093 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
4094 mb_debug(sb
, "free preallocated %u/%u in group %u\n",
4095 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
4096 (unsigned) next
- bit
, (unsigned) group
);
4099 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
4100 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
4101 EXT4_C2B(sbi
, bit
)),
4103 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
4106 if (free
!= pa
->pa_free
) {
4107 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
4108 "pa %p: logic %lu, phys. %lu, len %d",
4109 pa
, (unsigned long) pa
->pa_lstart
,
4110 (unsigned long) pa
->pa_pstart
,
4112 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
4115 * pa is already deleted so we use the value obtained
4116 * from the bitmap and continue.
4119 atomic_add(free
, &sbi
->s_mb_discarded
);
4124 static noinline_for_stack
int
4125 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
4126 struct ext4_prealloc_space
*pa
)
4128 struct super_block
*sb
= e4b
->bd_sb
;
4132 trace_ext4_mb_release_group_pa(sb
, pa
);
4133 BUG_ON(pa
->pa_deleted
== 0);
4134 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
4135 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
4136 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
4137 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
4138 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
4144 * releases all preallocations in given group
4146 * first, we need to decide discard policy:
4147 * - when do we discard
4149 * - how many do we discard
4150 * 1) how many requested
4152 static noinline_for_stack
int
4153 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
4154 ext4_group_t group
, int needed
)
4156 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
4157 struct buffer_head
*bitmap_bh
= NULL
;
4158 struct ext4_prealloc_space
*pa
, *tmp
;
4159 struct list_head list
;
4160 struct ext4_buddy e4b
;
4165 mb_debug(sb
, "discard preallocation for group %u\n", group
);
4166 if (list_empty(&grp
->bb_prealloc_list
))
4169 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4170 if (IS_ERR(bitmap_bh
)) {
4171 err
= PTR_ERR(bitmap_bh
);
4172 ext4_error_err(sb
, -err
,
4173 "Error %d reading block bitmap for %u",
4178 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4180 ext4_warning(sb
, "Error %d loading buddy information for %u",
4187 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
4189 INIT_LIST_HEAD(&list
);
4191 ext4_lock_group(sb
, group
);
4192 this_cpu_inc(discard_pa_seq
);
4193 list_for_each_entry_safe(pa
, tmp
,
4194 &grp
->bb_prealloc_list
, pa_group_list
) {
4195 spin_lock(&pa
->pa_lock
);
4196 if (atomic_read(&pa
->pa_count
)) {
4197 spin_unlock(&pa
->pa_lock
);
4201 if (pa
->pa_deleted
) {
4202 spin_unlock(&pa
->pa_lock
);
4206 /* seems this one can be freed ... */
4207 ext4_mb_mark_pa_deleted(sb
, pa
);
4209 /* we can trust pa_free ... */
4210 free
+= pa
->pa_free
;
4212 spin_unlock(&pa
->pa_lock
);
4214 list_del(&pa
->pa_group_list
);
4215 list_add(&pa
->u
.pa_tmp_list
, &list
);
4218 /* if we still need more blocks and some PAs were used, try again */
4219 if (free
< needed
&& busy
) {
4221 ext4_unlock_group(sb
, group
);
4226 /* found anything to free? */
4227 if (list_empty(&list
)) {
4229 mb_debug(sb
, "Someone else may have freed PA for this group %u\n",
4234 /* now free all selected PAs */
4235 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4237 /* remove from object (inode or locality group) */
4238 spin_lock(pa
->pa_obj_lock
);
4239 list_del_rcu(&pa
->pa_inode_list
);
4240 spin_unlock(pa
->pa_obj_lock
);
4242 if (pa
->pa_type
== MB_GROUP_PA
)
4243 ext4_mb_release_group_pa(&e4b
, pa
);
4245 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4247 list_del(&pa
->u
.pa_tmp_list
);
4248 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4252 ext4_unlock_group(sb
, group
);
4253 ext4_mb_unload_buddy(&e4b
);
4256 mb_debug(sb
, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4257 free
, group
, grp
->bb_free
);
4262 * releases all non-used preallocated blocks for given inode
4264 * It's important to discard preallocations under i_data_sem
4265 * We don't want another block to be served from the prealloc
4266 * space when we are discarding the inode prealloc space.
4268 * FIXME!! Make sure it is valid at all the call sites
4270 void ext4_discard_preallocations(struct inode
*inode
, unsigned int needed
)
4272 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4273 struct super_block
*sb
= inode
->i_sb
;
4274 struct buffer_head
*bitmap_bh
= NULL
;
4275 struct ext4_prealloc_space
*pa
, *tmp
;
4276 ext4_group_t group
= 0;
4277 struct list_head list
;
4278 struct ext4_buddy e4b
;
4281 if (!S_ISREG(inode
->i_mode
)) {
4282 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4286 mb_debug(sb
, "discard preallocation for inode %lu\n",
4288 trace_ext4_discard_preallocations(inode
,
4289 atomic_read(&ei
->i_prealloc_active
), needed
);
4291 INIT_LIST_HEAD(&list
);
4297 /* first, collect all pa's in the inode */
4298 spin_lock(&ei
->i_prealloc_lock
);
4299 while (!list_empty(&ei
->i_prealloc_list
) && needed
) {
4300 pa
= list_entry(ei
->i_prealloc_list
.prev
,
4301 struct ext4_prealloc_space
, pa_inode_list
);
4302 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
4303 spin_lock(&pa
->pa_lock
);
4304 if (atomic_read(&pa
->pa_count
)) {
4305 /* this shouldn't happen often - nobody should
4306 * use preallocation while we're discarding it */
4307 spin_unlock(&pa
->pa_lock
);
4308 spin_unlock(&ei
->i_prealloc_lock
);
4309 ext4_msg(sb
, KERN_ERR
,
4310 "uh-oh! used pa while discarding");
4312 schedule_timeout_uninterruptible(HZ
);
4316 if (pa
->pa_deleted
== 0) {
4317 ext4_mb_mark_pa_deleted(sb
, pa
);
4318 spin_unlock(&pa
->pa_lock
);
4319 list_del_rcu(&pa
->pa_inode_list
);
4320 list_add(&pa
->u
.pa_tmp_list
, &list
);
4325 /* someone is deleting pa right now */
4326 spin_unlock(&pa
->pa_lock
);
4327 spin_unlock(&ei
->i_prealloc_lock
);
4329 /* we have to wait here because pa_deleted
4330 * doesn't mean pa is already unlinked from
4331 * the list. as we might be called from
4332 * ->clear_inode() the inode will get freed
4333 * and concurrent thread which is unlinking
4334 * pa from inode's list may access already
4335 * freed memory, bad-bad-bad */
4337 /* XXX: if this happens too often, we can
4338 * add a flag to force wait only in case
4339 * of ->clear_inode(), but not in case of
4340 * regular truncate */
4341 schedule_timeout_uninterruptible(HZ
);
4344 spin_unlock(&ei
->i_prealloc_lock
);
4346 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4347 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
4348 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4350 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4351 GFP_NOFS
|__GFP_NOFAIL
);
4353 ext4_error_err(sb
, -err
, "Error %d loading buddy information for %u",
4358 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4359 if (IS_ERR(bitmap_bh
)) {
4360 err
= PTR_ERR(bitmap_bh
);
4361 ext4_error_err(sb
, -err
, "Error %d reading block bitmap for %u",
4363 ext4_mb_unload_buddy(&e4b
);
4367 ext4_lock_group(sb
, group
);
4368 list_del(&pa
->pa_group_list
);
4369 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4370 ext4_unlock_group(sb
, group
);
4372 ext4_mb_unload_buddy(&e4b
);
4375 list_del(&pa
->u
.pa_tmp_list
);
4376 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4380 static int ext4_mb_pa_alloc(struct ext4_allocation_context
*ac
)
4382 struct ext4_prealloc_space
*pa
;
4384 BUG_ON(ext4_pspace_cachep
== NULL
);
4385 pa
= kmem_cache_zalloc(ext4_pspace_cachep
, GFP_NOFS
);
4388 atomic_set(&pa
->pa_count
, 1);
4393 static void ext4_mb_pa_free(struct ext4_allocation_context
*ac
)
4395 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4399 WARN_ON(!atomic_dec_and_test(&pa
->pa_count
));
4400 kmem_cache_free(ext4_pspace_cachep
, pa
);
4403 #ifdef CONFIG_EXT4_DEBUG
4404 static inline void ext4_mb_show_pa(struct super_block
*sb
)
4406 ext4_group_t i
, ngroups
;
4408 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
4411 ngroups
= ext4_get_groups_count(sb
);
4412 mb_debug(sb
, "groups: ");
4413 for (i
= 0; i
< ngroups
; i
++) {
4414 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4415 struct ext4_prealloc_space
*pa
;
4416 ext4_grpblk_t start
;
4417 struct list_head
*cur
;
4418 ext4_lock_group(sb
, i
);
4419 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4420 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4422 spin_lock(&pa
->pa_lock
);
4423 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4425 spin_unlock(&pa
->pa_lock
);
4426 mb_debug(sb
, "PA:%u:%d:%d\n", i
, start
,
4429 ext4_unlock_group(sb
, i
);
4430 mb_debug(sb
, "%u: %d/%d\n", i
, grp
->bb_free
,
4435 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4437 struct super_block
*sb
= ac
->ac_sb
;
4439 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
4442 mb_debug(sb
, "Can't allocate:"
4443 " Allocation context details:");
4444 mb_debug(sb
, "status %u flags 0x%x",
4445 ac
->ac_status
, ac
->ac_flags
);
4446 mb_debug(sb
, "orig %lu/%lu/%lu@%lu, "
4447 "goal %lu/%lu/%lu@%lu, "
4448 "best %lu/%lu/%lu@%lu cr %d",
4449 (unsigned long)ac
->ac_o_ex
.fe_group
,
4450 (unsigned long)ac
->ac_o_ex
.fe_start
,
4451 (unsigned long)ac
->ac_o_ex
.fe_len
,
4452 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4453 (unsigned long)ac
->ac_g_ex
.fe_group
,
4454 (unsigned long)ac
->ac_g_ex
.fe_start
,
4455 (unsigned long)ac
->ac_g_ex
.fe_len
,
4456 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4457 (unsigned long)ac
->ac_b_ex
.fe_group
,
4458 (unsigned long)ac
->ac_b_ex
.fe_start
,
4459 (unsigned long)ac
->ac_b_ex
.fe_len
,
4460 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4461 (int)ac
->ac_criteria
);
4462 mb_debug(sb
, "%u found", ac
->ac_found
);
4463 ext4_mb_show_pa(sb
);
4466 static inline void ext4_mb_show_pa(struct super_block
*sb
)
4470 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4472 ext4_mb_show_pa(ac
->ac_sb
);
4478 * We use locality group preallocation for small size file. The size of the
4479 * file is determined by the current size or the resulting size after
4480 * allocation which ever is larger
4482 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4484 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4486 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4487 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4490 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4493 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4496 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4497 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4500 if ((size
== isize
) && !ext4_fs_is_busy(sbi
) &&
4501 !inode_is_open_for_write(ac
->ac_inode
)) {
4502 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4506 if (sbi
->s_mb_group_prealloc
<= 0) {
4507 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4511 /* don't use group allocation for large files */
4512 size
= max(size
, isize
);
4513 if (size
> sbi
->s_mb_stream_request
) {
4514 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4518 BUG_ON(ac
->ac_lg
!= NULL
);
4520 * locality group prealloc space are per cpu. The reason for having
4521 * per cpu locality group is to reduce the contention between block
4522 * request from multiple CPUs.
4524 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4526 /* we're going to use group allocation */
4527 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4529 /* serialize all allocations in the group */
4530 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4533 static noinline_for_stack
int
4534 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4535 struct ext4_allocation_request
*ar
)
4537 struct super_block
*sb
= ar
->inode
->i_sb
;
4538 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4539 struct ext4_super_block
*es
= sbi
->s_es
;
4543 ext4_grpblk_t block
;
4545 /* we can't allocate > group size */
4548 /* just a dirty hack to filter too big requests */
4549 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4550 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4552 /* start searching from the goal */
4554 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4555 goal
>= ext4_blocks_count(es
))
4556 goal
= le32_to_cpu(es
->s_first_data_block
);
4557 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4559 /* set up allocation goals */
4560 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4561 ac
->ac_status
= AC_STATUS_CONTINUE
;
4563 ac
->ac_inode
= ar
->inode
;
4564 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4565 ac
->ac_o_ex
.fe_group
= group
;
4566 ac
->ac_o_ex
.fe_start
= block
;
4567 ac
->ac_o_ex
.fe_len
= len
;
4568 ac
->ac_g_ex
= ac
->ac_o_ex
;
4569 ac
->ac_flags
= ar
->flags
;
4571 /* we have to define context: we'll work with a file or
4572 * locality group. this is a policy, actually */
4573 ext4_mb_group_or_file(ac
);
4575 mb_debug(sb
, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4576 "left: %u/%u, right %u/%u to %swritable\n",
4577 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4578 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4579 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4580 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4581 inode_is_open_for_write(ar
->inode
) ? "" : "non-");
4586 static noinline_for_stack
void
4587 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4588 struct ext4_locality_group
*lg
,
4589 int order
, int total_entries
)
4591 ext4_group_t group
= 0;
4592 struct ext4_buddy e4b
;
4593 struct list_head discard_list
;
4594 struct ext4_prealloc_space
*pa
, *tmp
;
4596 mb_debug(sb
, "discard locality group preallocation\n");
4598 INIT_LIST_HEAD(&discard_list
);
4600 spin_lock(&lg
->lg_prealloc_lock
);
4601 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4603 lockdep_is_held(&lg
->lg_prealloc_lock
)) {
4604 spin_lock(&pa
->pa_lock
);
4605 if (atomic_read(&pa
->pa_count
)) {
4607 * This is the pa that we just used
4608 * for block allocation. So don't
4611 spin_unlock(&pa
->pa_lock
);
4614 if (pa
->pa_deleted
) {
4615 spin_unlock(&pa
->pa_lock
);
4618 /* only lg prealloc space */
4619 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4621 /* seems this one can be freed ... */
4622 ext4_mb_mark_pa_deleted(sb
, pa
);
4623 spin_unlock(&pa
->pa_lock
);
4625 list_del_rcu(&pa
->pa_inode_list
);
4626 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4629 if (total_entries
<= 5) {
4631 * we want to keep only 5 entries
4632 * allowing it to grow to 8. This
4633 * mak sure we don't call discard
4634 * soon for this list.
4639 spin_unlock(&lg
->lg_prealloc_lock
);
4641 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4644 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4645 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4646 GFP_NOFS
|__GFP_NOFAIL
);
4648 ext4_error_err(sb
, -err
, "Error %d loading buddy information for %u",
4652 ext4_lock_group(sb
, group
);
4653 list_del(&pa
->pa_group_list
);
4654 ext4_mb_release_group_pa(&e4b
, pa
);
4655 ext4_unlock_group(sb
, group
);
4657 ext4_mb_unload_buddy(&e4b
);
4658 list_del(&pa
->u
.pa_tmp_list
);
4659 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4664 * We have incremented pa_count. So it cannot be freed at this
4665 * point. Also we hold lg_mutex. So no parallel allocation is
4666 * possible from this lg. That means pa_free cannot be updated.
4668 * A parallel ext4_mb_discard_group_preallocations is possible.
4669 * which can cause the lg_prealloc_list to be updated.
4672 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4674 int order
, added
= 0, lg_prealloc_count
= 1;
4675 struct super_block
*sb
= ac
->ac_sb
;
4676 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4677 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4679 order
= fls(pa
->pa_free
) - 1;
4680 if (order
> PREALLOC_TB_SIZE
- 1)
4681 /* The max size of hash table is PREALLOC_TB_SIZE */
4682 order
= PREALLOC_TB_SIZE
- 1;
4683 /* Add the prealloc space to lg */
4684 spin_lock(&lg
->lg_prealloc_lock
);
4685 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4687 lockdep_is_held(&lg
->lg_prealloc_lock
)) {
4688 spin_lock(&tmp_pa
->pa_lock
);
4689 if (tmp_pa
->pa_deleted
) {
4690 spin_unlock(&tmp_pa
->pa_lock
);
4693 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4694 /* Add to the tail of the previous entry */
4695 list_add_tail_rcu(&pa
->pa_inode_list
,
4696 &tmp_pa
->pa_inode_list
);
4699 * we want to count the total
4700 * number of entries in the list
4703 spin_unlock(&tmp_pa
->pa_lock
);
4704 lg_prealloc_count
++;
4707 list_add_tail_rcu(&pa
->pa_inode_list
,
4708 &lg
->lg_prealloc_list
[order
]);
4709 spin_unlock(&lg
->lg_prealloc_lock
);
4711 /* Now trim the list to be not more than 8 elements */
4712 if (lg_prealloc_count
> 8) {
4713 ext4_mb_discard_lg_preallocations(sb
, lg
,
4714 order
, lg_prealloc_count
);
4721 * if per-inode prealloc list is too long, trim some PA
4723 static void ext4_mb_trim_inode_pa(struct inode
*inode
)
4725 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4726 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4729 count
= atomic_read(&ei
->i_prealloc_active
);
4730 delta
= (sbi
->s_mb_max_inode_prealloc
>> 2) + 1;
4731 if (count
> sbi
->s_mb_max_inode_prealloc
+ delta
) {
4732 count
-= sbi
->s_mb_max_inode_prealloc
;
4733 ext4_discard_preallocations(inode
, count
);
4738 * release all resource we used in allocation
4740 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4742 struct inode
*inode
= ac
->ac_inode
;
4743 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4744 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4745 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4747 if (pa
->pa_type
== MB_GROUP_PA
) {
4748 /* see comment in ext4_mb_use_group_pa() */
4749 spin_lock(&pa
->pa_lock
);
4750 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4751 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4752 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4753 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4754 spin_unlock(&pa
->pa_lock
);
4757 * We want to add the pa to the right bucket.
4758 * Remove it from the list and while adding
4759 * make sure the list to which we are adding
4762 if (likely(pa
->pa_free
)) {
4763 spin_lock(pa
->pa_obj_lock
);
4764 list_del_rcu(&pa
->pa_inode_list
);
4765 spin_unlock(pa
->pa_obj_lock
);
4766 ext4_mb_add_n_trim(ac
);
4770 if (pa
->pa_type
== MB_INODE_PA
) {
4772 * treat per-inode prealloc list as a lru list, then try
4773 * to trim the least recently used PA.
4775 spin_lock(pa
->pa_obj_lock
);
4776 list_move(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
4777 spin_unlock(pa
->pa_obj_lock
);
4780 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4782 if (ac
->ac_bitmap_page
)
4783 put_page(ac
->ac_bitmap_page
);
4784 if (ac
->ac_buddy_page
)
4785 put_page(ac
->ac_buddy_page
);
4786 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4787 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4788 ext4_mb_collect_stats(ac
);
4789 ext4_mb_trim_inode_pa(inode
);
4793 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4795 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4799 trace_ext4_mb_discard_preallocations(sb
, needed
);
4800 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4801 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4809 static bool ext4_mb_discard_preallocations_should_retry(struct super_block
*sb
,
4810 struct ext4_allocation_context
*ac
, u64
*seq
)
4816 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4821 seq_retry
= ext4_get_discard_pa_seq_sum();
4822 if (!(ac
->ac_flags
& EXT4_MB_STRICT_CHECK
) || seq_retry
!= *seq
) {
4823 ac
->ac_flags
|= EXT4_MB_STRICT_CHECK
;
4829 mb_debug(sb
, "freed %d, retry ? %s\n", freed
, ret
? "yes" : "no");
4834 * Main entry point into mballoc to allocate blocks
4835 * it tries to use preallocation first, then falls back
4836 * to usual allocation
4838 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4839 struct ext4_allocation_request
*ar
, int *errp
)
4841 struct ext4_allocation_context
*ac
= NULL
;
4842 struct ext4_sb_info
*sbi
;
4843 struct super_block
*sb
;
4844 ext4_fsblk_t block
= 0;
4845 unsigned int inquota
= 0;
4846 unsigned int reserv_clstrs
= 0;
4850 sb
= ar
->inode
->i_sb
;
4853 trace_ext4_request_blocks(ar
);
4855 /* Allow to use superuser reservation for quota file */
4856 if (ext4_is_quota_file(ar
->inode
))
4857 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4859 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4860 /* Without delayed allocation we need to verify
4861 * there is enough free blocks to do block allocation
4862 * and verify allocation doesn't exceed the quota limits.
4865 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4867 /* let others to free the space */
4869 ar
->len
= ar
->len
>> 1;
4872 ext4_mb_show_pa(sb
);
4876 reserv_clstrs
= ar
->len
;
4877 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4878 dquot_alloc_block_nofail(ar
->inode
,
4879 EXT4_C2B(sbi
, ar
->len
));
4882 dquot_alloc_block(ar
->inode
,
4883 EXT4_C2B(sbi
, ar
->len
))) {
4885 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4896 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4903 *errp
= ext4_mb_initialize_context(ac
, ar
);
4909 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4910 seq
= this_cpu_read(discard_pa_seq
);
4911 if (!ext4_mb_use_preallocated(ac
)) {
4912 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4913 ext4_mb_normalize_request(ac
, ar
);
4915 *errp
= ext4_mb_pa_alloc(ac
);
4919 /* allocate space in core */
4920 *errp
= ext4_mb_regular_allocator(ac
);
4922 * pa allocated above is added to grp->bb_prealloc_list only
4923 * when we were able to allocate some block i.e. when
4924 * ac->ac_status == AC_STATUS_FOUND.
4925 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4926 * So we have to free this pa here itself.
4929 ext4_mb_pa_free(ac
);
4930 ext4_discard_allocated_blocks(ac
);
4933 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4934 ac
->ac_o_ex
.fe_len
>= ac
->ac_f_ex
.fe_len
)
4935 ext4_mb_pa_free(ac
);
4937 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4938 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4940 ext4_discard_allocated_blocks(ac
);
4943 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4944 ar
->len
= ac
->ac_b_ex
.fe_len
;
4947 if (ext4_mb_discard_preallocations_should_retry(sb
, ac
, &seq
))
4950 * If block allocation fails then the pa allocated above
4951 * needs to be freed here itself.
4953 ext4_mb_pa_free(ac
);
4959 ac
->ac_b_ex
.fe_len
= 0;
4961 ext4_mb_show_ac(ac
);
4963 ext4_mb_release_context(ac
);
4966 kmem_cache_free(ext4_ac_cachep
, ac
);
4967 if (inquota
&& ar
->len
< inquota
)
4968 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4970 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
4971 /* release all the reserved blocks if non delalloc */
4972 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4976 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4982 * We can merge two free data extents only if the physical blocks
4983 * are contiguous, AND the extents were freed by the same transaction,
4984 * AND the blocks are associated with the same group.
4986 static void ext4_try_merge_freed_extent(struct ext4_sb_info
*sbi
,
4987 struct ext4_free_data
*entry
,
4988 struct ext4_free_data
*new_entry
,
4989 struct rb_root
*entry_rb_root
)
4991 if ((entry
->efd_tid
!= new_entry
->efd_tid
) ||
4992 (entry
->efd_group
!= new_entry
->efd_group
))
4994 if (entry
->efd_start_cluster
+ entry
->efd_count
==
4995 new_entry
->efd_start_cluster
) {
4996 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4997 new_entry
->efd_count
+= entry
->efd_count
;
4998 } else if (new_entry
->efd_start_cluster
+ new_entry
->efd_count
==
4999 entry
->efd_start_cluster
) {
5000 new_entry
->efd_count
+= entry
->efd_count
;
5003 spin_lock(&sbi
->s_md_lock
);
5004 list_del(&entry
->efd_list
);
5005 spin_unlock(&sbi
->s_md_lock
);
5006 rb_erase(&entry
->efd_node
, entry_rb_root
);
5007 kmem_cache_free(ext4_free_data_cachep
, entry
);
5010 static noinline_for_stack
int
5011 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
5012 struct ext4_free_data
*new_entry
)
5014 ext4_group_t group
= e4b
->bd_group
;
5015 ext4_grpblk_t cluster
;
5016 ext4_grpblk_t clusters
= new_entry
->efd_count
;
5017 struct ext4_free_data
*entry
;
5018 struct ext4_group_info
*db
= e4b
->bd_info
;
5019 struct super_block
*sb
= e4b
->bd_sb
;
5020 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
5021 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
5022 struct rb_node
*parent
= NULL
, *new_node
;
5024 BUG_ON(!ext4_handle_valid(handle
));
5025 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
5026 BUG_ON(e4b
->bd_buddy_page
== NULL
);
5028 new_node
= &new_entry
->efd_node
;
5029 cluster
= new_entry
->efd_start_cluster
;
5032 /* first free block exent. We need to
5033 protect buddy cache from being freed,
5034 * otherwise we'll refresh it from
5035 * on-disk bitmap and lose not-yet-available
5037 get_page(e4b
->bd_buddy_page
);
5038 get_page(e4b
->bd_bitmap_page
);
5042 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
5043 if (cluster
< entry
->efd_start_cluster
)
5045 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
5046 n
= &(*n
)->rb_right
;
5048 ext4_grp_locked_error(sb
, group
, 0,
5049 ext4_group_first_block_no(sb
, group
) +
5050 EXT4_C2B(sbi
, cluster
),
5051 "Block already on to-be-freed list");
5056 rb_link_node(new_node
, parent
, n
);
5057 rb_insert_color(new_node
, &db
->bb_free_root
);
5059 /* Now try to see the extent can be merged to left and right */
5060 node
= rb_prev(new_node
);
5062 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
5063 ext4_try_merge_freed_extent(sbi
, entry
, new_entry
,
5064 &(db
->bb_free_root
));
5067 node
= rb_next(new_node
);
5069 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
5070 ext4_try_merge_freed_extent(sbi
, entry
, new_entry
,
5071 &(db
->bb_free_root
));
5074 spin_lock(&sbi
->s_md_lock
);
5075 list_add_tail(&new_entry
->efd_list
, &sbi
->s_freed_data_list
);
5076 sbi
->s_mb_free_pending
+= clusters
;
5077 spin_unlock(&sbi
->s_md_lock
);
5082 * ext4_free_blocks() -- Free given blocks and update quota
5083 * @handle: handle for this transaction
5085 * @bh: optional buffer of the block to be freed
5086 * @block: starting physical block to be freed
5087 * @count: number of blocks to be freed
5088 * @flags: flags used by ext4_free_blocks
5090 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
5091 struct buffer_head
*bh
, ext4_fsblk_t block
,
5092 unsigned long count
, int flags
)
5094 struct buffer_head
*bitmap_bh
= NULL
;
5095 struct super_block
*sb
= inode
->i_sb
;
5096 struct ext4_group_desc
*gdp
;
5097 unsigned int overflow
;
5099 struct buffer_head
*gd_bh
;
5100 ext4_group_t block_group
;
5101 struct ext4_sb_info
*sbi
;
5102 struct ext4_buddy e4b
;
5103 unsigned int count_clusters
;
5110 BUG_ON(block
!= bh
->b_blocknr
);
5112 block
= bh
->b_blocknr
;
5116 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
5117 !ext4_inode_block_valid(inode
, block
, count
)) {
5118 ext4_error(sb
, "Freeing blocks not in datazone - "
5119 "block = %llu, count = %lu", block
, count
);
5123 ext4_debug("freeing block %llu\n", block
);
5124 trace_ext4_free_blocks(inode
, block
, count
, flags
);
5126 if (bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
5129 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
5134 * If the extent to be freed does not begin on a cluster
5135 * boundary, we need to deal with partial clusters at the
5136 * beginning and end of the extent. Normally we will free
5137 * blocks at the beginning or the end unless we are explicitly
5138 * requested to avoid doing so.
5140 overflow
= EXT4_PBLK_COFF(sbi
, block
);
5142 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
5143 overflow
= sbi
->s_cluster_ratio
- overflow
;
5145 if (count
> overflow
)
5154 overflow
= EXT4_LBLK_COFF(sbi
, count
);
5156 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
5157 if (count
> overflow
)
5162 count
+= sbi
->s_cluster_ratio
- overflow
;
5165 if (!bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
5167 int is_metadata
= flags
& EXT4_FREE_BLOCKS_METADATA
;
5169 for (i
= 0; i
< count
; i
++) {
5172 bh
= sb_find_get_block(inode
->i_sb
, block
+ i
);
5173 ext4_forget(handle
, is_metadata
, inode
, bh
, block
+ i
);
5179 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
5181 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5182 ext4_get_group_info(sb
, block_group
))))
5186 * Check to see if we are freeing blocks across a group
5189 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
5190 overflow
= EXT4_C2B(sbi
, bit
) + count
-
5191 EXT4_BLOCKS_PER_GROUP(sb
);
5194 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
5195 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
5196 if (IS_ERR(bitmap_bh
)) {
5197 err
= PTR_ERR(bitmap_bh
);
5201 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
5207 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
5208 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
5209 in_range(block
, ext4_inode_table(sb
, gdp
),
5210 sbi
->s_itb_per_group
) ||
5211 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
5212 sbi
->s_itb_per_group
)) {
5214 ext4_error(sb
, "Freeing blocks in system zone - "
5215 "Block = %llu, count = %lu", block
, count
);
5216 /* err = 0. ext4_std_error should be a no op */
5220 BUFFER_TRACE(bitmap_bh
, "getting write access");
5221 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
5226 * We are about to modify some metadata. Call the journal APIs
5227 * to unshare ->b_data if a currently-committing transaction is
5230 BUFFER_TRACE(gd_bh
, "get_write_access");
5231 err
= ext4_journal_get_write_access(handle
, gd_bh
);
5234 #ifdef AGGRESSIVE_CHECK
5237 for (i
= 0; i
< count_clusters
; i
++)
5238 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
5241 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
5243 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5244 err
= ext4_mb_load_buddy_gfp(sb
, block_group
, &e4b
,
5245 GFP_NOFS
|__GFP_NOFAIL
);
5250 * We need to make sure we don't reuse the freed block until after the
5251 * transaction is committed. We make an exception if the inode is to be
5252 * written in writeback mode since writeback mode has weak data
5253 * consistency guarantees.
5255 if (ext4_handle_valid(handle
) &&
5256 ((flags
& EXT4_FREE_BLOCKS_METADATA
) ||
5257 !ext4_should_writeback_data(inode
))) {
5258 struct ext4_free_data
*new_entry
;
5260 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5263 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
5264 GFP_NOFS
|__GFP_NOFAIL
);
5265 new_entry
->efd_start_cluster
= bit
;
5266 new_entry
->efd_group
= block_group
;
5267 new_entry
->efd_count
= count_clusters
;
5268 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
5270 ext4_lock_group(sb
, block_group
);
5271 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
5272 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
5274 /* need to update group_info->bb_free and bitmap
5275 * with group lock held. generate_buddy look at
5276 * them with group lock_held
5278 if (test_opt(sb
, DISCARD
)) {
5279 err
= ext4_issue_discard(sb
, block_group
, bit
, count
,
5281 if (err
&& err
!= -EOPNOTSUPP
)
5282 ext4_msg(sb
, KERN_WARNING
, "discard request in"
5283 " group:%d block:%d count:%lu failed"
5284 " with %d", block_group
, bit
, count
,
5287 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
5289 ext4_lock_group(sb
, block_group
);
5290 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
5291 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
5294 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
5295 ext4_free_group_clusters_set(sb
, gdp
, ret
);
5296 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
5297 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
5298 ext4_unlock_group(sb
, block_group
);
5300 if (sbi
->s_log_groups_per_flex
) {
5301 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5302 atomic64_add(count_clusters
,
5303 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
5304 flex_group
)->free_clusters
);
5308 * on a bigalloc file system, defer the s_freeclusters_counter
5309 * update to the caller (ext4_remove_space and friends) so they
5310 * can determine if a cluster freed here should be rereserved
5312 if (!(flags
& EXT4_FREE_BLOCKS_RERESERVE_CLUSTER
)) {
5313 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
5314 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
5315 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5319 ext4_mb_unload_buddy(&e4b
);
5321 /* We dirtied the bitmap block */
5322 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5323 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5325 /* And the group descriptor block */
5326 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5327 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5331 if (overflow
&& !err
) {
5339 ext4_std_error(sb
, err
);
5344 * ext4_group_add_blocks() -- Add given blocks to an existing group
5345 * @handle: handle to this transaction
5347 * @block: start physical block to add to the block group
5348 * @count: number of blocks to free
5350 * This marks the blocks as free in the bitmap and buddy.
5352 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
5353 ext4_fsblk_t block
, unsigned long count
)
5355 struct buffer_head
*bitmap_bh
= NULL
;
5356 struct buffer_head
*gd_bh
;
5357 ext4_group_t block_group
;
5360 struct ext4_group_desc
*desc
;
5361 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
5362 struct ext4_buddy e4b
;
5363 int err
= 0, ret
, free_clusters_count
;
5364 ext4_grpblk_t clusters_freed
;
5365 ext4_fsblk_t first_cluster
= EXT4_B2C(sbi
, block
);
5366 ext4_fsblk_t last_cluster
= EXT4_B2C(sbi
, block
+ count
- 1);
5367 unsigned long cluster_count
= last_cluster
- first_cluster
+ 1;
5369 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
5374 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
5376 * Check to see if we are freeing blocks across a group
5379 if (bit
+ cluster_count
> EXT4_CLUSTERS_PER_GROUP(sb
)) {
5380 ext4_warning(sb
, "too many blocks added to group %u",
5386 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
5387 if (IS_ERR(bitmap_bh
)) {
5388 err
= PTR_ERR(bitmap_bh
);
5393 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
5399 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
5400 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
5401 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
5402 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
5403 sbi
->s_itb_per_group
)) {
5404 ext4_error(sb
, "Adding blocks in system zones - "
5405 "Block = %llu, count = %lu",
5411 BUFFER_TRACE(bitmap_bh
, "getting write access");
5412 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
5417 * We are about to modify some metadata. Call the journal APIs
5418 * to unshare ->b_data if a currently-committing transaction is
5421 BUFFER_TRACE(gd_bh
, "get_write_access");
5422 err
= ext4_journal_get_write_access(handle
, gd_bh
);
5426 for (i
= 0, clusters_freed
= 0; i
< cluster_count
; i
++) {
5427 BUFFER_TRACE(bitmap_bh
, "clear bit");
5428 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
5429 ext4_error(sb
, "bit already cleared for block %llu",
5430 (ext4_fsblk_t
)(block
+ i
));
5431 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
5437 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
5442 * need to update group_info->bb_free and bitmap
5443 * with group lock held. generate_buddy look at
5444 * them with group lock_held
5446 ext4_lock_group(sb
, block_group
);
5447 mb_clear_bits(bitmap_bh
->b_data
, bit
, cluster_count
);
5448 mb_free_blocks(NULL
, &e4b
, bit
, cluster_count
);
5449 free_clusters_count
= clusters_freed
+
5450 ext4_free_group_clusters(sb
, desc
);
5451 ext4_free_group_clusters_set(sb
, desc
, free_clusters_count
);
5452 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
5453 ext4_group_desc_csum_set(sb
, block_group
, desc
);
5454 ext4_unlock_group(sb
, block_group
);
5455 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5458 if (sbi
->s_log_groups_per_flex
) {
5459 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5460 atomic64_add(clusters_freed
,
5461 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
5462 flex_group
)->free_clusters
);
5465 ext4_mb_unload_buddy(&e4b
);
5467 /* We dirtied the bitmap block */
5468 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5469 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5471 /* And the group descriptor block */
5472 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5473 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5479 ext4_std_error(sb
, err
);
5484 * ext4_trim_extent -- function to TRIM one single free extent in the group
5485 * @sb: super block for the file system
5486 * @start: starting block of the free extent in the alloc. group
5487 * @count: number of blocks to TRIM
5488 * @group: alloc. group we are working with
5489 * @e4b: ext4 buddy for the group
5491 * Trim "count" blocks starting at "start" in the "group". To assure that no
5492 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5493 * be called with under the group lock.
5495 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5496 ext4_group_t group
, struct ext4_buddy
*e4b
)
5500 struct ext4_free_extent ex
;
5503 trace_ext4_trim_extent(sb
, group
, start
, count
);
5505 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5507 ex
.fe_start
= start
;
5508 ex
.fe_group
= group
;
5512 * Mark blocks used, so no one can reuse them while
5515 mb_mark_used(e4b
, &ex
);
5516 ext4_unlock_group(sb
, group
);
5517 ret
= ext4_issue_discard(sb
, group
, start
, count
, NULL
);
5518 ext4_lock_group(sb
, group
);
5519 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5524 * ext4_trim_all_free -- function to trim all free space in alloc. group
5525 * @sb: super block for file system
5526 * @group: group to be trimmed
5527 * @start: first group block to examine
5528 * @max: last group block to examine
5529 * @minblocks: minimum extent block count
5531 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5532 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5536 * ext4_trim_all_free walks through group's block bitmap searching for free
5537 * extents. When the free extent is found, mark it as used in group buddy
5538 * bitmap. Then issue a TRIM command on this extent and free the extent in
5539 * the group buddy bitmap. This is done until whole group is scanned.
5541 static ext4_grpblk_t
5542 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5543 ext4_grpblk_t start
, ext4_grpblk_t max
,
5544 ext4_grpblk_t minblocks
)
5547 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5548 struct ext4_buddy e4b
;
5551 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5553 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5555 ext4_warning(sb
, "Error %d loading buddy information for %u",
5559 bitmap
= e4b
.bd_bitmap
;
5561 ext4_lock_group(sb
, group
);
5562 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5563 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5566 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5567 e4b
.bd_info
->bb_first_free
: start
;
5569 while (start
<= max
) {
5570 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5573 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5575 if ((next
- start
) >= minblocks
) {
5576 ret
= ext4_trim_extent(sb
, start
,
5577 next
- start
, group
, &e4b
);
5578 if (ret
&& ret
!= -EOPNOTSUPP
)
5581 count
+= next
- start
;
5583 free_count
+= next
- start
;
5586 if (fatal_signal_pending(current
)) {
5587 count
= -ERESTARTSYS
;
5591 if (need_resched()) {
5592 ext4_unlock_group(sb
, group
);
5594 ext4_lock_group(sb
, group
);
5597 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5603 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5606 ext4_unlock_group(sb
, group
);
5607 ext4_mb_unload_buddy(&e4b
);
5609 ext4_debug("trimmed %d blocks in the group %d\n",
5616 * ext4_trim_fs() -- trim ioctl handle function
5617 * @sb: superblock for filesystem
5618 * @range: fstrim_range structure
5620 * start: First Byte to trim
5621 * len: number of Bytes to trim from start
5622 * minlen: minimum extent length in Bytes
5623 * ext4_trim_fs goes through all allocation groups containing Bytes from
5624 * start to start+len. For each such a group ext4_trim_all_free function
5625 * is invoked to trim all free space.
5627 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5629 struct ext4_group_info
*grp
;
5630 ext4_group_t group
, first_group
, last_group
;
5631 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5632 uint64_t start
, end
, minlen
, trimmed
= 0;
5633 ext4_fsblk_t first_data_blk
=
5634 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5635 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5638 start
= range
->start
>> sb
->s_blocksize_bits
;
5639 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5640 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5641 range
->minlen
>> sb
->s_blocksize_bits
);
5643 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5644 start
>= max_blks
||
5645 range
->len
< sb
->s_blocksize
)
5647 if (end
>= max_blks
)
5649 if (end
<= first_data_blk
)
5651 if (start
< first_data_blk
)
5652 start
= first_data_blk
;
5654 /* Determine first and last group to examine based on start and end */
5655 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5656 &first_group
, &first_cluster
);
5657 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5658 &last_group
, &last_cluster
);
5660 /* end now represents the last cluster to discard in this group */
5661 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5663 for (group
= first_group
; group
<= last_group
; group
++) {
5664 grp
= ext4_get_group_info(sb
, group
);
5665 /* We only do this if the grp has never been initialized */
5666 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5667 ret
= ext4_mb_init_group(sb
, group
, GFP_NOFS
);
5673 * For all the groups except the last one, last cluster will
5674 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5675 * change it for the last group, note that last_cluster is
5676 * already computed earlier by ext4_get_group_no_and_offset()
5678 if (group
== last_group
)
5681 if (grp
->bb_free
>= minlen
) {
5682 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5692 * For every group except the first one, we are sure
5693 * that the first cluster to discard will be cluster #0.
5699 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5702 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;
5706 /* Iterate all the free extents in the group. */
5708 ext4_mballoc_query_range(
5709 struct super_block
*sb
,
5711 ext4_grpblk_t start
,
5713 ext4_mballoc_query_range_fn formatter
,
5718 struct ext4_buddy e4b
;
5721 error
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5724 bitmap
= e4b
.bd_bitmap
;
5726 ext4_lock_group(sb
, group
);
5728 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5729 e4b
.bd_info
->bb_first_free
: start
;
5730 if (end
>= EXT4_CLUSTERS_PER_GROUP(sb
))
5731 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5733 while (start
<= end
) {
5734 start
= mb_find_next_zero_bit(bitmap
, end
+ 1, start
);
5737 next
= mb_find_next_bit(bitmap
, end
+ 1, start
);
5739 ext4_unlock_group(sb
, group
);
5740 error
= formatter(sb
, group
, start
, next
- start
, priv
);
5743 ext4_lock_group(sb
, group
);
5748 ext4_unlock_group(sb
, group
);
5750 ext4_mb_unload_buddy(&e4b
);