4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
218 /* Is it from 0 to ~0? */
219 tlb
->fullmm
= !(start
| (end
+1));
220 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb
);
244 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
246 struct mmu_gather_batch
*batch
;
248 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
249 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
252 tlb
->active
= &tlb
->local
;
255 void tlb_flush_mmu(struct mmu_gather
*tlb
)
257 if (!tlb
->need_flush
)
259 tlb_flush_mmu_tlbonly(tlb
);
260 tlb_flush_mmu_free(tlb
);
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
267 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
269 struct mmu_gather_batch
*batch
, *next
;
273 /* keep the page table cache within bounds */
276 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
278 free_pages((unsigned long)batch
, 0);
280 tlb
->local
.next
= NULL
;
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
289 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
291 struct mmu_gather_batch
*batch
;
293 VM_BUG_ON(!tlb
->need_flush
);
296 batch
->pages
[batch
->nr
++] = page
;
297 if (batch
->nr
== batch
->max
) {
298 if (!tlb_next_batch(tlb
))
302 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
304 return batch
->max
- batch
->nr
;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg
)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table
)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
330 __tlb_remove_table(table
);
333 static void tlb_remove_table_rcu(struct rcu_head
*head
)
335 struct mmu_table_batch
*batch
;
338 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
340 for (i
= 0; i
< batch
->nr
; i
++)
341 __tlb_remove_table(batch
->tables
[i
]);
343 free_page((unsigned long)batch
);
346 void tlb_table_flush(struct mmu_gather
*tlb
)
348 struct mmu_table_batch
**batch
= &tlb
->batch
;
351 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
356 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
358 struct mmu_table_batch
**batch
= &tlb
->batch
;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
367 __tlb_remove_table(table
);
371 if (*batch
== NULL
) {
372 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
373 if (*batch
== NULL
) {
374 tlb_remove_table_one(table
);
379 (*batch
)->tables
[(*batch
)->nr
++] = table
;
380 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
381 tlb_table_flush(tlb
);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
393 pgtable_t token
= pmd_pgtable(*pmd
);
395 pte_free_tlb(tlb
, token
, addr
);
396 atomic_long_dec(&tlb
->mm
->nr_ptes
);
399 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
400 unsigned long addr
, unsigned long end
,
401 unsigned long floor
, unsigned long ceiling
)
408 pmd
= pmd_offset(pud
, addr
);
410 next
= pmd_addr_end(addr
, end
);
411 if (pmd_none_or_clear_bad(pmd
))
413 free_pte_range(tlb
, pmd
, addr
);
414 } while (pmd
++, addr
= next
, addr
!= end
);
424 if (end
- 1 > ceiling
- 1)
427 pmd
= pmd_offset(pud
, start
);
429 pmd_free_tlb(tlb
, pmd
, start
);
432 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
433 unsigned long addr
, unsigned long end
,
434 unsigned long floor
, unsigned long ceiling
)
441 pud
= pud_offset(pgd
, addr
);
443 next
= pud_addr_end(addr
, end
);
444 if (pud_none_or_clear_bad(pud
))
446 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
447 } while (pud
++, addr
= next
, addr
!= end
);
453 ceiling
&= PGDIR_MASK
;
457 if (end
- 1 > ceiling
- 1)
460 pud
= pud_offset(pgd
, start
);
462 pud_free_tlb(tlb
, pud
, start
);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather
*tlb
,
469 unsigned long addr
, unsigned long end
,
470 unsigned long floor
, unsigned long ceiling
)
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
512 if (end
- 1 > ceiling
- 1)
517 pgd
= pgd_offset(tlb
->mm
, addr
);
519 next
= pgd_addr_end(addr
, end
);
520 if (pgd_none_or_clear_bad(pgd
))
522 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
523 } while (pgd
++, addr
= next
, addr
!= end
);
526 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
527 unsigned long floor
, unsigned long ceiling
)
530 struct vm_area_struct
*next
= vma
->vm_next
;
531 unsigned long addr
= vma
->vm_start
;
534 * Hide vma from rmap and truncate_pagecache before freeing
537 unlink_anon_vmas(vma
);
538 unlink_file_vma(vma
);
540 if (is_vm_hugetlb_page(vma
)) {
541 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
542 floor
, next
? next
->vm_start
: ceiling
);
545 * Optimization: gather nearby vmas into one call down
547 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
548 && !is_vm_hugetlb_page(next
)) {
551 unlink_anon_vmas(vma
);
552 unlink_file_vma(vma
);
554 free_pgd_range(tlb
, addr
, vma
->vm_end
,
555 floor
, next
? next
->vm_start
: ceiling
);
561 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
562 pmd_t
*pmd
, unsigned long address
)
565 pgtable_t
new = pte_alloc_one(mm
, address
);
566 int wait_split_huge_page
;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl
= pmd_lock(mm
, pmd
);
586 wait_split_huge_page
= 0;
587 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
588 atomic_long_inc(&mm
->nr_ptes
);
589 pmd_populate(mm
, pmd
, new);
591 } else if (unlikely(pmd_trans_splitting(*pmd
)))
592 wait_split_huge_page
= 1;
596 if (wait_split_huge_page
)
597 wait_split_huge_page(vma
->anon_vma
, pmd
);
601 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
603 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm
.page_table_lock
);
610 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm
, pmd
, new);
614 VM_BUG_ON(pmd_trans_splitting(*pmd
));
615 spin_unlock(&init_mm
.page_table_lock
);
617 pte_free_kernel(&init_mm
, new);
621 static inline void init_rss_vec(int *rss
)
623 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
626 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
630 if (current
->mm
== mm
)
632 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
634 add_mm_counter(mm
, i
, rss
[i
]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
645 pte_t pte
, struct page
*page
)
647 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
648 pud_t
*pud
= pud_offset(pgd
, addr
);
649 pmd_t
*pmd
= pmd_offset(pud
, addr
);
650 struct address_space
*mapping
;
652 static unsigned long resume
;
653 static unsigned long nr_shown
;
654 static unsigned long nr_unshown
;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown
== 60) {
661 if (time_before(jiffies
, resume
)) {
667 "BUG: Bad page map: %lu messages suppressed\n",
674 resume
= jiffies
+ 60 * HZ
;
676 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
677 index
= linear_page_index(vma
, addr
);
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
684 dump_page(page
, "bad pte");
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
695 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
696 vma
->vm_file
->f_op
->mmap
);
698 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 * And for normal mappings this is false.
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
746 # define HAVE_PTE_SPECIAL 0
748 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
751 unsigned long pfn
= pte_pfn(pte
);
753 if (HAVE_PTE_SPECIAL
) {
754 if (likely(!pte_special(pte
)))
756 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
758 if (!is_zero_pfn(pfn
))
759 print_bad_pte(vma
, addr
, pte
, NULL
);
763 /* !HAVE_PTE_SPECIAL case follows: */
765 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
766 if (vma
->vm_flags
& VM_MIXEDMAP
) {
772 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
773 if (pfn
== vma
->vm_pgoff
+ off
)
775 if (!is_cow_mapping(vma
->vm_flags
))
780 if (is_zero_pfn(pfn
))
783 if (unlikely(pfn
> highest_memmap_pfn
)) {
784 print_bad_pte(vma
, addr
, pte
, NULL
);
789 * NOTE! We still have PageReserved() pages in the page tables.
790 * eg. VDSO mappings can cause them to exist.
793 return pfn_to_page(pfn
);
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
802 static inline unsigned long
803 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
804 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
805 unsigned long addr
, int *rss
)
807 unsigned long vm_flags
= vma
->vm_flags
;
808 pte_t pte
= *src_pte
;
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte
))) {
813 if (!pte_file(pte
)) {
814 swp_entry_t entry
= pte_to_swp_entry(pte
);
816 if (swap_duplicate(entry
) < 0)
819 /* make sure dst_mm is on swapoff's mmlist. */
820 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
821 spin_lock(&mmlist_lock
);
822 if (list_empty(&dst_mm
->mmlist
))
823 list_add(&dst_mm
->mmlist
,
825 spin_unlock(&mmlist_lock
);
827 if (likely(!non_swap_entry(entry
)))
829 else if (is_migration_entry(entry
)) {
830 page
= migration_entry_to_page(entry
);
837 if (is_write_migration_entry(entry
) &&
838 is_cow_mapping(vm_flags
)) {
840 * COW mappings require pages in both
841 * parent and child to be set to read.
843 make_migration_entry_read(&entry
);
844 pte
= swp_entry_to_pte(entry
);
845 if (pte_swp_soft_dirty(*src_pte
))
846 pte
= pte_swp_mksoft_dirty(pte
);
847 set_pte_at(src_mm
, addr
, src_pte
, pte
);
855 * If it's a COW mapping, write protect it both
856 * in the parent and the child
858 if (is_cow_mapping(vm_flags
)) {
859 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
860 pte
= pte_wrprotect(pte
);
864 * If it's a shared mapping, mark it clean in
867 if (vm_flags
& VM_SHARED
)
868 pte
= pte_mkclean(pte
);
869 pte
= pte_mkold(pte
);
871 page
= vm_normal_page(vma
, addr
, pte
);
882 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
886 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
887 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
888 unsigned long addr
, unsigned long end
)
890 pte_t
*orig_src_pte
, *orig_dst_pte
;
891 pte_t
*src_pte
, *dst_pte
;
892 spinlock_t
*src_ptl
, *dst_ptl
;
894 int rss
[NR_MM_COUNTERS
];
895 swp_entry_t entry
= (swp_entry_t
){0};
900 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
903 src_pte
= pte_offset_map(src_pmd
, addr
);
904 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
905 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
906 orig_src_pte
= src_pte
;
907 orig_dst_pte
= dst_pte
;
908 arch_enter_lazy_mmu_mode();
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
915 if (progress
>= 32) {
917 if (need_resched() ||
918 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
921 if (pte_none(*src_pte
)) {
925 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
930 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
932 arch_leave_lazy_mmu_mode();
933 spin_unlock(src_ptl
);
934 pte_unmap(orig_src_pte
);
935 add_mm_rss_vec(dst_mm
, rss
);
936 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
940 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
949 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
950 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
951 unsigned long addr
, unsigned long end
)
953 pmd_t
*src_pmd
, *dst_pmd
;
956 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
959 src_pmd
= pmd_offset(src_pud
, addr
);
961 next
= pmd_addr_end(addr
, end
);
962 if (pmd_trans_huge(*src_pmd
)) {
964 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
965 err
= copy_huge_pmd(dst_mm
, src_mm
,
966 dst_pmd
, src_pmd
, addr
, vma
);
973 if (pmd_none_or_clear_bad(src_pmd
))
975 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
978 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
982 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
983 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
984 unsigned long addr
, unsigned long end
)
986 pud_t
*src_pud
, *dst_pud
;
989 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
992 src_pud
= pud_offset(src_pgd
, addr
);
994 next
= pud_addr_end(addr
, end
);
995 if (pud_none_or_clear_bad(src_pud
))
997 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1000 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1004 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1005 struct vm_area_struct
*vma
)
1007 pgd_t
*src_pgd
, *dst_pgd
;
1009 unsigned long addr
= vma
->vm_start
;
1010 unsigned long end
= vma
->vm_end
;
1011 unsigned long mmun_start
; /* For mmu_notifiers */
1012 unsigned long mmun_end
; /* For mmu_notifiers */
1017 * Don't copy ptes where a page fault will fill them correctly.
1018 * Fork becomes much lighter when there are big shared or private
1019 * readonly mappings. The tradeoff is that copy_page_range is more
1020 * efficient than faulting.
1022 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1023 VM_PFNMAP
| VM_MIXEDMAP
))) {
1028 if (is_vm_hugetlb_page(vma
))
1029 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1031 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1036 ret
= track_pfn_copy(vma
);
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1047 is_cow
= is_cow_mapping(vma
->vm_flags
);
1051 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1055 dst_pgd
= pgd_offset(dst_mm
, addr
);
1056 src_pgd
= pgd_offset(src_mm
, addr
);
1058 next
= pgd_addr_end(addr
, end
);
1059 if (pgd_none_or_clear_bad(src_pgd
))
1061 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1062 vma
, addr
, next
))) {
1066 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1069 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1073 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1074 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1075 unsigned long addr
, unsigned long end
,
1076 struct zap_details
*details
)
1078 struct mm_struct
*mm
= tlb
->mm
;
1079 int force_flush
= 0;
1080 int rss
[NR_MM_COUNTERS
];
1087 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1089 arch_enter_lazy_mmu_mode();
1092 if (pte_none(ptent
)) {
1096 if (pte_present(ptent
)) {
1099 page
= vm_normal_page(vma
, addr
, ptent
);
1100 if (unlikely(details
) && page
) {
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1106 if (details
->check_mapping
&&
1107 details
->check_mapping
!= page
->mapping
)
1110 * Each page->index must be checked when
1111 * invalidating or truncating nonlinear.
1113 if (details
->nonlinear_vma
&&
1114 (page
->index
< details
->first_index
||
1115 page
->index
> details
->last_index
))
1118 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1120 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1121 if (unlikely(!page
))
1123 if (unlikely(details
) && details
->nonlinear_vma
1124 && linear_page_index(details
->nonlinear_vma
,
1125 addr
) != page
->index
) {
1126 pte_t ptfile
= pgoff_to_pte(page
->index
);
1127 if (pte_soft_dirty(ptent
))
1128 pte_file_mksoft_dirty(ptfile
);
1129 set_pte_at(mm
, addr
, pte
, ptfile
);
1132 rss
[MM_ANONPAGES
]--;
1134 if (pte_dirty(ptent
)) {
1136 set_page_dirty(page
);
1138 if (pte_young(ptent
) &&
1139 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1140 mark_page_accessed(page
);
1141 rss
[MM_FILEPAGES
]--;
1143 page_remove_rmap(page
);
1144 if (unlikely(page_mapcount(page
) < 0))
1145 print_bad_pte(vma
, addr
, ptent
, page
);
1146 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1153 * If details->check_mapping, we leave swap entries;
1154 * if details->nonlinear_vma, we leave file entries.
1156 if (unlikely(details
))
1158 if (pte_file(ptent
)) {
1159 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1160 print_bad_pte(vma
, addr
, ptent
, NULL
);
1162 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1164 if (!non_swap_entry(entry
))
1166 else if (is_migration_entry(entry
)) {
1169 page
= migration_entry_to_page(entry
);
1172 rss
[MM_ANONPAGES
]--;
1174 rss
[MM_FILEPAGES
]--;
1176 if (unlikely(!free_swap_and_cache(entry
)))
1177 print_bad_pte(vma
, addr
, ptent
, NULL
);
1179 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1180 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1182 add_mm_rss_vec(mm
, rss
);
1183 arch_leave_lazy_mmu_mode();
1185 /* Do the actual TLB flush before dropping ptl */
1187 unsigned long old_end
;
1190 * Flush the TLB just for the previous segment,
1191 * then update the range to be the remaining
1196 tlb_flush_mmu_tlbonly(tlb
);
1200 pte_unmap_unlock(start_pte
, ptl
);
1203 * If we forced a TLB flush (either due to running out of
1204 * batch buffers or because we needed to flush dirty TLB
1205 * entries before releasing the ptl), free the batched
1206 * memory too. Restart if we didn't do everything.
1210 tlb_flush_mmu_free(tlb
);
1219 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1220 struct vm_area_struct
*vma
, pud_t
*pud
,
1221 unsigned long addr
, unsigned long end
,
1222 struct zap_details
*details
)
1227 pmd
= pmd_offset(pud
, addr
);
1229 next
= pmd_addr_end(addr
, end
);
1230 if (pmd_trans_huge(*pmd
)) {
1231 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1232 #ifdef CONFIG_DEBUG_VM
1233 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1234 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235 __func__
, addr
, end
,
1241 split_huge_page_pmd(vma
, addr
, pmd
);
1242 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1247 * Here there can be other concurrent MADV_DONTNEED or
1248 * trans huge page faults running, and if the pmd is
1249 * none or trans huge it can change under us. This is
1250 * because MADV_DONTNEED holds the mmap_sem in read
1253 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1255 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1258 } while (pmd
++, addr
= next
, addr
!= end
);
1263 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1264 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1265 unsigned long addr
, unsigned long end
,
1266 struct zap_details
*details
)
1271 pud
= pud_offset(pgd
, addr
);
1273 next
= pud_addr_end(addr
, end
);
1274 if (pud_none_or_clear_bad(pud
))
1276 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1277 } while (pud
++, addr
= next
, addr
!= end
);
1282 static void unmap_page_range(struct mmu_gather
*tlb
,
1283 struct vm_area_struct
*vma
,
1284 unsigned long addr
, unsigned long end
,
1285 struct zap_details
*details
)
1290 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1293 BUG_ON(addr
>= end
);
1294 tlb_start_vma(tlb
, vma
);
1295 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1297 next
= pgd_addr_end(addr
, end
);
1298 if (pgd_none_or_clear_bad(pgd
))
1300 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1301 } while (pgd
++, addr
= next
, addr
!= end
);
1302 tlb_end_vma(tlb
, vma
);
1306 static void unmap_single_vma(struct mmu_gather
*tlb
,
1307 struct vm_area_struct
*vma
, unsigned long start_addr
,
1308 unsigned long end_addr
,
1309 struct zap_details
*details
)
1311 unsigned long start
= max(vma
->vm_start
, start_addr
);
1314 if (start
>= vma
->vm_end
)
1316 end
= min(vma
->vm_end
, end_addr
);
1317 if (end
<= vma
->vm_start
)
1321 uprobe_munmap(vma
, start
, end
);
1323 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1324 untrack_pfn(vma
, 0, 0);
1327 if (unlikely(is_vm_hugetlb_page(vma
))) {
1329 * It is undesirable to test vma->vm_file as it
1330 * should be non-null for valid hugetlb area.
1331 * However, vm_file will be NULL in the error
1332 * cleanup path of mmap_region. When
1333 * hugetlbfs ->mmap method fails,
1334 * mmap_region() nullifies vma->vm_file
1335 * before calling this function to clean up.
1336 * Since no pte has actually been setup, it is
1337 * safe to do nothing in this case.
1340 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1341 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1342 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1345 unmap_page_range(tlb
, vma
, start
, end
, details
);
1350 * unmap_vmas - unmap a range of memory covered by a list of vma's
1351 * @tlb: address of the caller's struct mmu_gather
1352 * @vma: the starting vma
1353 * @start_addr: virtual address at which to start unmapping
1354 * @end_addr: virtual address at which to end unmapping
1356 * Unmap all pages in the vma list.
1358 * Only addresses between `start' and `end' will be unmapped.
1360 * The VMA list must be sorted in ascending virtual address order.
1362 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1363 * range after unmap_vmas() returns. So the only responsibility here is to
1364 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1365 * drops the lock and schedules.
1367 void unmap_vmas(struct mmu_gather
*tlb
,
1368 struct vm_area_struct
*vma
, unsigned long start_addr
,
1369 unsigned long end_addr
)
1371 struct mm_struct
*mm
= vma
->vm_mm
;
1373 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1374 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1375 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1376 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1380 * zap_page_range - remove user pages in a given range
1381 * @vma: vm_area_struct holding the applicable pages
1382 * @start: starting address of pages to zap
1383 * @size: number of bytes to zap
1384 * @details: details of nonlinear truncation or shared cache invalidation
1386 * Caller must protect the VMA list
1388 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1389 unsigned long size
, struct zap_details
*details
)
1391 struct mm_struct
*mm
= vma
->vm_mm
;
1392 struct mmu_gather tlb
;
1393 unsigned long end
= start
+ size
;
1396 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1397 update_hiwater_rss(mm
);
1398 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1399 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1400 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1401 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1402 tlb_finish_mmu(&tlb
, start
, end
);
1406 * zap_page_range_single - remove user pages in a given range
1407 * @vma: vm_area_struct holding the applicable pages
1408 * @address: starting address of pages to zap
1409 * @size: number of bytes to zap
1410 * @details: details of nonlinear truncation or shared cache invalidation
1412 * The range must fit into one VMA.
1414 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1415 unsigned long size
, struct zap_details
*details
)
1417 struct mm_struct
*mm
= vma
->vm_mm
;
1418 struct mmu_gather tlb
;
1419 unsigned long end
= address
+ size
;
1422 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1423 update_hiwater_rss(mm
);
1424 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1425 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1426 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1427 tlb_finish_mmu(&tlb
, address
, end
);
1431 * zap_vma_ptes - remove ptes mapping the vma
1432 * @vma: vm_area_struct holding ptes to be zapped
1433 * @address: starting address of pages to zap
1434 * @size: number of bytes to zap
1436 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1438 * The entire address range must be fully contained within the vma.
1440 * Returns 0 if successful.
1442 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1445 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1446 !(vma
->vm_flags
& VM_PFNMAP
))
1448 zap_page_range_single(vma
, address
, size
, NULL
);
1451 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1453 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1456 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1457 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1459 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1461 VM_BUG_ON(pmd_trans_huge(*pmd
));
1462 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1469 * This is the old fallback for page remapping.
1471 * For historical reasons, it only allows reserved pages. Only
1472 * old drivers should use this, and they needed to mark their
1473 * pages reserved for the old functions anyway.
1475 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1476 struct page
*page
, pgprot_t prot
)
1478 struct mm_struct
*mm
= vma
->vm_mm
;
1487 flush_dcache_page(page
);
1488 pte
= get_locked_pte(mm
, addr
, &ptl
);
1492 if (!pte_none(*pte
))
1495 /* Ok, finally just insert the thing.. */
1497 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1498 page_add_file_rmap(page
);
1499 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1502 pte_unmap_unlock(pte
, ptl
);
1505 pte_unmap_unlock(pte
, ptl
);
1511 * vm_insert_page - insert single page into user vma
1512 * @vma: user vma to map to
1513 * @addr: target user address of this page
1514 * @page: source kernel page
1516 * This allows drivers to insert individual pages they've allocated
1519 * The page has to be a nice clean _individual_ kernel allocation.
1520 * If you allocate a compound page, you need to have marked it as
1521 * such (__GFP_COMP), or manually just split the page up yourself
1522 * (see split_page()).
1524 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525 * took an arbitrary page protection parameter. This doesn't allow
1526 * that. Your vma protection will have to be set up correctly, which
1527 * means that if you want a shared writable mapping, you'd better
1528 * ask for a shared writable mapping!
1530 * The page does not need to be reserved.
1532 * Usually this function is called from f_op->mmap() handler
1533 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1534 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1535 * function from other places, for example from page-fault handler.
1537 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1540 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1542 if (!page_count(page
))
1544 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1545 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1546 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1547 vma
->vm_flags
|= VM_MIXEDMAP
;
1549 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1551 EXPORT_SYMBOL(vm_insert_page
);
1553 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1554 unsigned long pfn
, pgprot_t prot
)
1556 struct mm_struct
*mm
= vma
->vm_mm
;
1562 pte
= get_locked_pte(mm
, addr
, &ptl
);
1566 if (!pte_none(*pte
))
1569 /* Ok, finally just insert the thing.. */
1570 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1571 set_pte_at(mm
, addr
, pte
, entry
);
1572 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1576 pte_unmap_unlock(pte
, ptl
);
1582 * vm_insert_pfn - insert single pfn into user vma
1583 * @vma: user vma to map to
1584 * @addr: target user address of this page
1585 * @pfn: source kernel pfn
1587 * Similar to vm_insert_page, this allows drivers to insert individual pages
1588 * they've allocated into a user vma. Same comments apply.
1590 * This function should only be called from a vm_ops->fault handler, and
1591 * in that case the handler should return NULL.
1593 * vma cannot be a COW mapping.
1595 * As this is called only for pages that do not currently exist, we
1596 * do not need to flush old virtual caches or the TLB.
1598 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1602 pgprot_t pgprot
= vma
->vm_page_prot
;
1604 * Technically, architectures with pte_special can avoid all these
1605 * restrictions (same for remap_pfn_range). However we would like
1606 * consistency in testing and feature parity among all, so we should
1607 * try to keep these invariants in place for everybody.
1609 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1610 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1611 (VM_PFNMAP
|VM_MIXEDMAP
));
1612 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1613 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1615 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1617 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1620 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1624 EXPORT_SYMBOL(vm_insert_pfn
);
1626 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1629 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1631 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1635 * If we don't have pte special, then we have to use the pfn_valid()
1636 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1637 * refcount the page if pfn_valid is true (hence insert_page rather
1638 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1639 * without pte special, it would there be refcounted as a normal page.
1641 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1644 page
= pfn_to_page(pfn
);
1645 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1647 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1649 EXPORT_SYMBOL(vm_insert_mixed
);
1652 * maps a range of physical memory into the requested pages. the old
1653 * mappings are removed. any references to nonexistent pages results
1654 * in null mappings (currently treated as "copy-on-access")
1656 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1657 unsigned long addr
, unsigned long end
,
1658 unsigned long pfn
, pgprot_t prot
)
1663 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1666 arch_enter_lazy_mmu_mode();
1668 BUG_ON(!pte_none(*pte
));
1669 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1671 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1672 arch_leave_lazy_mmu_mode();
1673 pte_unmap_unlock(pte
- 1, ptl
);
1677 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1678 unsigned long addr
, unsigned long end
,
1679 unsigned long pfn
, pgprot_t prot
)
1684 pfn
-= addr
>> PAGE_SHIFT
;
1685 pmd
= pmd_alloc(mm
, pud
, addr
);
1688 VM_BUG_ON(pmd_trans_huge(*pmd
));
1690 next
= pmd_addr_end(addr
, end
);
1691 if (remap_pte_range(mm
, pmd
, addr
, next
,
1692 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1694 } while (pmd
++, addr
= next
, addr
!= end
);
1698 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1699 unsigned long addr
, unsigned long end
,
1700 unsigned long pfn
, pgprot_t prot
)
1705 pfn
-= addr
>> PAGE_SHIFT
;
1706 pud
= pud_alloc(mm
, pgd
, addr
);
1710 next
= pud_addr_end(addr
, end
);
1711 if (remap_pmd_range(mm
, pud
, addr
, next
,
1712 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1714 } while (pud
++, addr
= next
, addr
!= end
);
1719 * remap_pfn_range - remap kernel memory to userspace
1720 * @vma: user vma to map to
1721 * @addr: target user address to start at
1722 * @pfn: physical address of kernel memory
1723 * @size: size of map area
1724 * @prot: page protection flags for this mapping
1726 * Note: this is only safe if the mm semaphore is held when called.
1728 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1729 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1733 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1734 struct mm_struct
*mm
= vma
->vm_mm
;
1738 * Physically remapped pages are special. Tell the
1739 * rest of the world about it:
1740 * VM_IO tells people not to look at these pages
1741 * (accesses can have side effects).
1742 * VM_PFNMAP tells the core MM that the base pages are just
1743 * raw PFN mappings, and do not have a "struct page" associated
1746 * Disable vma merging and expanding with mremap().
1748 * Omit vma from core dump, even when VM_IO turned off.
1750 * There's a horrible special case to handle copy-on-write
1751 * behaviour that some programs depend on. We mark the "original"
1752 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1753 * See vm_normal_page() for details.
1755 if (is_cow_mapping(vma
->vm_flags
)) {
1756 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1758 vma
->vm_pgoff
= pfn
;
1761 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1765 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1767 BUG_ON(addr
>= end
);
1768 pfn
-= addr
>> PAGE_SHIFT
;
1769 pgd
= pgd_offset(mm
, addr
);
1770 flush_cache_range(vma
, addr
, end
);
1772 next
= pgd_addr_end(addr
, end
);
1773 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1774 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1777 } while (pgd
++, addr
= next
, addr
!= end
);
1780 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1784 EXPORT_SYMBOL(remap_pfn_range
);
1787 * vm_iomap_memory - remap memory to userspace
1788 * @vma: user vma to map to
1789 * @start: start of area
1790 * @len: size of area
1792 * This is a simplified io_remap_pfn_range() for common driver use. The
1793 * driver just needs to give us the physical memory range to be mapped,
1794 * we'll figure out the rest from the vma information.
1796 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1797 * whatever write-combining details or similar.
1799 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1801 unsigned long vm_len
, pfn
, pages
;
1803 /* Check that the physical memory area passed in looks valid */
1804 if (start
+ len
< start
)
1807 * You *really* shouldn't map things that aren't page-aligned,
1808 * but we've historically allowed it because IO memory might
1809 * just have smaller alignment.
1811 len
+= start
& ~PAGE_MASK
;
1812 pfn
= start
>> PAGE_SHIFT
;
1813 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1814 if (pfn
+ pages
< pfn
)
1817 /* We start the mapping 'vm_pgoff' pages into the area */
1818 if (vma
->vm_pgoff
> pages
)
1820 pfn
+= vma
->vm_pgoff
;
1821 pages
-= vma
->vm_pgoff
;
1823 /* Can we fit all of the mapping? */
1824 vm_len
= vma
->vm_end
- vma
->vm_start
;
1825 if (vm_len
>> PAGE_SHIFT
> pages
)
1828 /* Ok, let it rip */
1829 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1831 EXPORT_SYMBOL(vm_iomap_memory
);
1833 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1834 unsigned long addr
, unsigned long end
,
1835 pte_fn_t fn
, void *data
)
1840 spinlock_t
*uninitialized_var(ptl
);
1842 pte
= (mm
== &init_mm
) ?
1843 pte_alloc_kernel(pmd
, addr
) :
1844 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1848 BUG_ON(pmd_huge(*pmd
));
1850 arch_enter_lazy_mmu_mode();
1852 token
= pmd_pgtable(*pmd
);
1855 err
= fn(pte
++, token
, addr
, data
);
1858 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1860 arch_leave_lazy_mmu_mode();
1863 pte_unmap_unlock(pte
-1, ptl
);
1867 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1868 unsigned long addr
, unsigned long end
,
1869 pte_fn_t fn
, void *data
)
1875 BUG_ON(pud_huge(*pud
));
1877 pmd
= pmd_alloc(mm
, pud
, addr
);
1881 next
= pmd_addr_end(addr
, end
);
1882 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1885 } while (pmd
++, addr
= next
, addr
!= end
);
1889 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1890 unsigned long addr
, unsigned long end
,
1891 pte_fn_t fn
, void *data
)
1897 pud
= pud_alloc(mm
, pgd
, addr
);
1901 next
= pud_addr_end(addr
, end
);
1902 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1905 } while (pud
++, addr
= next
, addr
!= end
);
1910 * Scan a region of virtual memory, filling in page tables as necessary
1911 * and calling a provided function on each leaf page table.
1913 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1914 unsigned long size
, pte_fn_t fn
, void *data
)
1918 unsigned long end
= addr
+ size
;
1921 BUG_ON(addr
>= end
);
1922 pgd
= pgd_offset(mm
, addr
);
1924 next
= pgd_addr_end(addr
, end
);
1925 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1928 } while (pgd
++, addr
= next
, addr
!= end
);
1932 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1935 * handle_pte_fault chooses page fault handler according to an entry
1936 * which was read non-atomically. Before making any commitment, on
1937 * those architectures or configurations (e.g. i386 with PAE) which
1938 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1939 * must check under lock before unmapping the pte and proceeding
1940 * (but do_wp_page is only called after already making such a check;
1941 * and do_anonymous_page can safely check later on).
1943 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1944 pte_t
*page_table
, pte_t orig_pte
)
1947 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1948 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1949 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1951 same
= pte_same(*page_table
, orig_pte
);
1955 pte_unmap(page_table
);
1959 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1961 debug_dma_assert_idle(src
);
1964 * If the source page was a PFN mapping, we don't have
1965 * a "struct page" for it. We do a best-effort copy by
1966 * just copying from the original user address. If that
1967 * fails, we just zero-fill it. Live with it.
1969 if (unlikely(!src
)) {
1970 void *kaddr
= kmap_atomic(dst
);
1971 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1974 * This really shouldn't fail, because the page is there
1975 * in the page tables. But it might just be unreadable,
1976 * in which case we just give up and fill the result with
1979 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1981 kunmap_atomic(kaddr
);
1982 flush_dcache_page(dst
);
1984 copy_user_highpage(dst
, src
, va
, vma
);
1988 * Notify the address space that the page is about to become writable so that
1989 * it can prohibit this or wait for the page to get into an appropriate state.
1991 * We do this without the lock held, so that it can sleep if it needs to.
1993 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1994 unsigned long address
)
1996 struct vm_fault vmf
;
1999 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2000 vmf
.pgoff
= page
->index
;
2001 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2004 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2005 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2007 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2009 if (!page
->mapping
) {
2011 return 0; /* retry */
2013 ret
|= VM_FAULT_LOCKED
;
2015 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2020 * This routine handles present pages, when users try to write
2021 * to a shared page. It is done by copying the page to a new address
2022 * and decrementing the shared-page counter for the old page.
2024 * Note that this routine assumes that the protection checks have been
2025 * done by the caller (the low-level page fault routine in most cases).
2026 * Thus we can safely just mark it writable once we've done any necessary
2029 * We also mark the page dirty at this point even though the page will
2030 * change only once the write actually happens. This avoids a few races,
2031 * and potentially makes it more efficient.
2033 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2034 * but allow concurrent faults), with pte both mapped and locked.
2035 * We return with mmap_sem still held, but pte unmapped and unlocked.
2037 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2038 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2039 spinlock_t
*ptl
, pte_t orig_pte
)
2042 struct page
*old_page
, *new_page
= NULL
;
2045 int page_mkwrite
= 0;
2046 struct page
*dirty_page
= NULL
;
2047 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2048 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2049 struct mem_cgroup
*memcg
;
2051 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2054 * VM_MIXEDMAP !pfn_valid() case
2056 * We should not cow pages in a shared writeable mapping.
2057 * Just mark the pages writable as we can't do any dirty
2058 * accounting on raw pfn maps.
2060 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2061 (VM_WRITE
|VM_SHARED
))
2067 * Take out anonymous pages first, anonymous shared vmas are
2068 * not dirty accountable.
2070 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2071 if (!trylock_page(old_page
)) {
2072 page_cache_get(old_page
);
2073 pte_unmap_unlock(page_table
, ptl
);
2074 lock_page(old_page
);
2075 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2077 if (!pte_same(*page_table
, orig_pte
)) {
2078 unlock_page(old_page
);
2081 page_cache_release(old_page
);
2083 if (reuse_swap_page(old_page
)) {
2085 * The page is all ours. Move it to our anon_vma so
2086 * the rmap code will not search our parent or siblings.
2087 * Protected against the rmap code by the page lock.
2089 page_move_anon_rmap(old_page
, vma
, address
);
2090 unlock_page(old_page
);
2093 unlock_page(old_page
);
2094 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2095 (VM_WRITE
|VM_SHARED
))) {
2097 * Only catch write-faults on shared writable pages,
2098 * read-only shared pages can get COWed by
2099 * get_user_pages(.write=1, .force=1).
2101 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2103 page_cache_get(old_page
);
2104 pte_unmap_unlock(page_table
, ptl
);
2105 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2106 if (unlikely(!tmp
|| (tmp
&
2107 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2108 page_cache_release(old_page
);
2112 * Since we dropped the lock we need to revalidate
2113 * the PTE as someone else may have changed it. If
2114 * they did, we just return, as we can count on the
2115 * MMU to tell us if they didn't also make it writable.
2117 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2119 if (!pte_same(*page_table
, orig_pte
)) {
2120 unlock_page(old_page
);
2126 dirty_page
= old_page
;
2127 get_page(dirty_page
);
2131 * Clear the pages cpupid information as the existing
2132 * information potentially belongs to a now completely
2133 * unrelated process.
2136 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2138 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2139 entry
= pte_mkyoung(orig_pte
);
2140 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2141 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2142 update_mmu_cache(vma
, address
, page_table
);
2143 pte_unmap_unlock(page_table
, ptl
);
2144 ret
|= VM_FAULT_WRITE
;
2150 * Yes, Virginia, this is actually required to prevent a race
2151 * with clear_page_dirty_for_io() from clearing the page dirty
2152 * bit after it clear all dirty ptes, but before a racing
2153 * do_wp_page installs a dirty pte.
2155 * do_shared_fault is protected similarly.
2157 if (!page_mkwrite
) {
2158 wait_on_page_locked(dirty_page
);
2159 set_page_dirty_balance(dirty_page
);
2160 /* file_update_time outside page_lock */
2162 file_update_time(vma
->vm_file
);
2164 put_page(dirty_page
);
2166 struct address_space
*mapping
= dirty_page
->mapping
;
2168 set_page_dirty(dirty_page
);
2169 unlock_page(dirty_page
);
2170 page_cache_release(dirty_page
);
2173 * Some device drivers do not set page.mapping
2174 * but still dirty their pages
2176 balance_dirty_pages_ratelimited(mapping
);
2184 * Ok, we need to copy. Oh, well..
2186 page_cache_get(old_page
);
2188 pte_unmap_unlock(page_table
, ptl
);
2190 if (unlikely(anon_vma_prepare(vma
)))
2193 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2194 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2198 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2201 cow_user_page(new_page
, old_page
, address
, vma
);
2203 __SetPageUptodate(new_page
);
2205 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2208 mmun_start
= address
& PAGE_MASK
;
2209 mmun_end
= mmun_start
+ PAGE_SIZE
;
2210 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2213 * Re-check the pte - we dropped the lock
2215 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2216 if (likely(pte_same(*page_table
, orig_pte
))) {
2218 if (!PageAnon(old_page
)) {
2219 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2220 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2223 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2224 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2225 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2226 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2228 * Clear the pte entry and flush it first, before updating the
2229 * pte with the new entry. This will avoid a race condition
2230 * seen in the presence of one thread doing SMC and another
2233 ptep_clear_flush(vma
, address
, page_table
);
2234 page_add_new_anon_rmap(new_page
, vma
, address
);
2235 mem_cgroup_commit_charge(new_page
, memcg
, false);
2236 lru_cache_add_active_or_unevictable(new_page
, vma
);
2238 * We call the notify macro here because, when using secondary
2239 * mmu page tables (such as kvm shadow page tables), we want the
2240 * new page to be mapped directly into the secondary page table.
2242 set_pte_at_notify(mm
, address
, page_table
, entry
);
2243 update_mmu_cache(vma
, address
, page_table
);
2246 * Only after switching the pte to the new page may
2247 * we remove the mapcount here. Otherwise another
2248 * process may come and find the rmap count decremented
2249 * before the pte is switched to the new page, and
2250 * "reuse" the old page writing into it while our pte
2251 * here still points into it and can be read by other
2254 * The critical issue is to order this
2255 * page_remove_rmap with the ptp_clear_flush above.
2256 * Those stores are ordered by (if nothing else,)
2257 * the barrier present in the atomic_add_negative
2258 * in page_remove_rmap.
2260 * Then the TLB flush in ptep_clear_flush ensures that
2261 * no process can access the old page before the
2262 * decremented mapcount is visible. And the old page
2263 * cannot be reused until after the decremented
2264 * mapcount is visible. So transitively, TLBs to
2265 * old page will be flushed before it can be reused.
2267 page_remove_rmap(old_page
);
2270 /* Free the old page.. */
2271 new_page
= old_page
;
2272 ret
|= VM_FAULT_WRITE
;
2274 mem_cgroup_cancel_charge(new_page
, memcg
);
2277 page_cache_release(new_page
);
2279 pte_unmap_unlock(page_table
, ptl
);
2280 if (mmun_end
> mmun_start
)
2281 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2284 * Don't let another task, with possibly unlocked vma,
2285 * keep the mlocked page.
2287 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2288 lock_page(old_page
); /* LRU manipulation */
2289 munlock_vma_page(old_page
);
2290 unlock_page(old_page
);
2292 page_cache_release(old_page
);
2296 page_cache_release(new_page
);
2299 page_cache_release(old_page
);
2300 return VM_FAULT_OOM
;
2303 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2304 unsigned long start_addr
, unsigned long end_addr
,
2305 struct zap_details
*details
)
2307 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2310 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2311 struct zap_details
*details
)
2313 struct vm_area_struct
*vma
;
2314 pgoff_t vba
, vea
, zba
, zea
;
2316 vma_interval_tree_foreach(vma
, root
,
2317 details
->first_index
, details
->last_index
) {
2319 vba
= vma
->vm_pgoff
;
2320 vea
= vba
+ vma_pages(vma
) - 1;
2321 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322 zba
= details
->first_index
;
2325 zea
= details
->last_index
;
2329 unmap_mapping_range_vma(vma
,
2330 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2331 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2336 static inline void unmap_mapping_range_list(struct list_head
*head
,
2337 struct zap_details
*details
)
2339 struct vm_area_struct
*vma
;
2342 * In nonlinear VMAs there is no correspondence between virtual address
2343 * offset and file offset. So we must perform an exhaustive search
2344 * across *all* the pages in each nonlinear VMA, not just the pages
2345 * whose virtual address lies outside the file truncation point.
2347 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2348 details
->nonlinear_vma
= vma
;
2349 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2354 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355 * @mapping: the address space containing mmaps to be unmapped.
2356 * @holebegin: byte in first page to unmap, relative to the start of
2357 * the underlying file. This will be rounded down to a PAGE_SIZE
2358 * boundary. Note that this is different from truncate_pagecache(), which
2359 * must keep the partial page. In contrast, we must get rid of
2361 * @holelen: size of prospective hole in bytes. This will be rounded
2362 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2364 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365 * but 0 when invalidating pagecache, don't throw away private data.
2367 void unmap_mapping_range(struct address_space
*mapping
,
2368 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2370 struct zap_details details
;
2371 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2372 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2374 /* Check for overflow. */
2375 if (sizeof(holelen
) > sizeof(hlen
)) {
2377 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2378 if (holeend
& ~(long long)ULONG_MAX
)
2379 hlen
= ULONG_MAX
- hba
+ 1;
2382 details
.check_mapping
= even_cows
? NULL
: mapping
;
2383 details
.nonlinear_vma
= NULL
;
2384 details
.first_index
= hba
;
2385 details
.last_index
= hba
+ hlen
- 1;
2386 if (details
.last_index
< details
.first_index
)
2387 details
.last_index
= ULONG_MAX
;
2390 mutex_lock(&mapping
->i_mmap_mutex
);
2391 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2392 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2393 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2394 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2395 mutex_unlock(&mapping
->i_mmap_mutex
);
2397 EXPORT_SYMBOL(unmap_mapping_range
);
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with pte unmapped and unlocked.
2404 * We return with the mmap_sem locked or unlocked in the same cases
2405 * as does filemap_fault().
2407 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2408 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2409 unsigned int flags
, pte_t orig_pte
)
2412 struct page
*page
, *swapcache
;
2413 struct mem_cgroup
*memcg
;
2420 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2423 entry
= pte_to_swp_entry(orig_pte
);
2424 if (unlikely(non_swap_entry(entry
))) {
2425 if (is_migration_entry(entry
)) {
2426 migration_entry_wait(mm
, pmd
, address
);
2427 } else if (is_hwpoison_entry(entry
)) {
2428 ret
= VM_FAULT_HWPOISON
;
2430 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2431 ret
= VM_FAULT_SIGBUS
;
2435 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2436 page
= lookup_swap_cache(entry
);
2438 page
= swapin_readahead(entry
,
2439 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2442 * Back out if somebody else faulted in this pte
2443 * while we released the pte lock.
2445 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2446 if (likely(pte_same(*page_table
, orig_pte
)))
2448 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2452 /* Had to read the page from swap area: Major fault */
2453 ret
= VM_FAULT_MAJOR
;
2454 count_vm_event(PGMAJFAULT
);
2455 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2456 } else if (PageHWPoison(page
)) {
2458 * hwpoisoned dirty swapcache pages are kept for killing
2459 * owner processes (which may be unknown at hwpoison time)
2461 ret
= VM_FAULT_HWPOISON
;
2462 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2468 locked
= lock_page_or_retry(page
, mm
, flags
);
2470 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2472 ret
|= VM_FAULT_RETRY
;
2477 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2478 * release the swapcache from under us. The page pin, and pte_same
2479 * test below, are not enough to exclude that. Even if it is still
2480 * swapcache, we need to check that the page's swap has not changed.
2482 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2485 page
= ksm_might_need_to_copy(page
, vma
, address
);
2486 if (unlikely(!page
)) {
2492 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2498 * Back out if somebody else already faulted in this pte.
2500 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2501 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2504 if (unlikely(!PageUptodate(page
))) {
2505 ret
= VM_FAULT_SIGBUS
;
2510 * The page isn't present yet, go ahead with the fault.
2512 * Be careful about the sequence of operations here.
2513 * To get its accounting right, reuse_swap_page() must be called
2514 * while the page is counted on swap but not yet in mapcount i.e.
2515 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2516 * must be called after the swap_free(), or it will never succeed.
2519 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2520 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2521 pte
= mk_pte(page
, vma
->vm_page_prot
);
2522 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2523 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2524 flags
&= ~FAULT_FLAG_WRITE
;
2525 ret
|= VM_FAULT_WRITE
;
2528 flush_icache_page(vma
, page
);
2529 if (pte_swp_soft_dirty(orig_pte
))
2530 pte
= pte_mksoft_dirty(pte
);
2531 set_pte_at(mm
, address
, page_table
, pte
);
2532 if (page
== swapcache
) {
2533 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2534 mem_cgroup_commit_charge(page
, memcg
, true);
2535 } else { /* ksm created a completely new copy */
2536 page_add_new_anon_rmap(page
, vma
, address
);
2537 mem_cgroup_commit_charge(page
, memcg
, false);
2538 lru_cache_add_active_or_unevictable(page
, vma
);
2542 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2543 try_to_free_swap(page
);
2545 if (page
!= swapcache
) {
2547 * Hold the lock to avoid the swap entry to be reused
2548 * until we take the PT lock for the pte_same() check
2549 * (to avoid false positives from pte_same). For
2550 * further safety release the lock after the swap_free
2551 * so that the swap count won't change under a
2552 * parallel locked swapcache.
2554 unlock_page(swapcache
);
2555 page_cache_release(swapcache
);
2558 if (flags
& FAULT_FLAG_WRITE
) {
2559 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2560 if (ret
& VM_FAULT_ERROR
)
2561 ret
&= VM_FAULT_ERROR
;
2565 /* No need to invalidate - it was non-present before */
2566 update_mmu_cache(vma
, address
, page_table
);
2568 pte_unmap_unlock(page_table
, ptl
);
2572 mem_cgroup_cancel_charge(page
, memcg
);
2573 pte_unmap_unlock(page_table
, ptl
);
2577 page_cache_release(page
);
2578 if (page
!= swapcache
) {
2579 unlock_page(swapcache
);
2580 page_cache_release(swapcache
);
2586 * This is like a special single-page "expand_{down|up}wards()",
2587 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2588 * doesn't hit another vma.
2590 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2592 address
&= PAGE_MASK
;
2593 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2594 struct vm_area_struct
*prev
= vma
->vm_prev
;
2597 * Is there a mapping abutting this one below?
2599 * That's only ok if it's the same stack mapping
2600 * that has gotten split..
2602 if (prev
&& prev
->vm_end
== address
)
2603 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2605 expand_downwards(vma
, address
- PAGE_SIZE
);
2607 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2608 struct vm_area_struct
*next
= vma
->vm_next
;
2610 /* As VM_GROWSDOWN but s/below/above/ */
2611 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2612 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2614 expand_upwards(vma
, address
+ PAGE_SIZE
);
2620 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621 * but allow concurrent faults), and pte mapped but not yet locked.
2622 * We return with mmap_sem still held, but pte unmapped and unlocked.
2624 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2625 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2628 struct mem_cgroup
*memcg
;
2633 pte_unmap(page_table
);
2635 /* Check if we need to add a guard page to the stack */
2636 if (check_stack_guard_page(vma
, address
) < 0)
2637 return VM_FAULT_SIGBUS
;
2639 /* Use the zero-page for reads */
2640 if (!(flags
& FAULT_FLAG_WRITE
)) {
2641 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2642 vma
->vm_page_prot
));
2643 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2644 if (!pte_none(*page_table
))
2649 /* Allocate our own private page. */
2650 if (unlikely(anon_vma_prepare(vma
)))
2652 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2656 * The memory barrier inside __SetPageUptodate makes sure that
2657 * preceeding stores to the page contents become visible before
2658 * the set_pte_at() write.
2660 __SetPageUptodate(page
);
2662 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2665 entry
= mk_pte(page
, vma
->vm_page_prot
);
2666 if (vma
->vm_flags
& VM_WRITE
)
2667 entry
= pte_mkwrite(pte_mkdirty(entry
));
2669 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2670 if (!pte_none(*page_table
))
2673 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2674 page_add_new_anon_rmap(page
, vma
, address
);
2675 mem_cgroup_commit_charge(page
, memcg
, false);
2676 lru_cache_add_active_or_unevictable(page
, vma
);
2678 set_pte_at(mm
, address
, page_table
, entry
);
2680 /* No need to invalidate - it was non-present before */
2681 update_mmu_cache(vma
, address
, page_table
);
2683 pte_unmap_unlock(page_table
, ptl
);
2686 mem_cgroup_cancel_charge(page
, memcg
);
2687 page_cache_release(page
);
2690 page_cache_release(page
);
2692 return VM_FAULT_OOM
;
2696 * The mmap_sem must have been held on entry, and may have been
2697 * released depending on flags and vma->vm_ops->fault() return value.
2698 * See filemap_fault() and __lock_page_retry().
2700 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2701 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2703 struct vm_fault vmf
;
2706 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2711 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2712 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2715 if (unlikely(PageHWPoison(vmf
.page
))) {
2716 if (ret
& VM_FAULT_LOCKED
)
2717 unlock_page(vmf
.page
);
2718 page_cache_release(vmf
.page
);
2719 return VM_FAULT_HWPOISON
;
2722 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2723 lock_page(vmf
.page
);
2725 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2732 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2734 * @vma: virtual memory area
2735 * @address: user virtual address
2736 * @page: page to map
2737 * @pte: pointer to target page table entry
2738 * @write: true, if new entry is writable
2739 * @anon: true, if it's anonymous page
2741 * Caller must hold page table lock relevant for @pte.
2743 * Target users are page handler itself and implementations of
2744 * vm_ops->map_pages.
2746 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2747 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2751 flush_icache_page(vma
, page
);
2752 entry
= mk_pte(page
, vma
->vm_page_prot
);
2754 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2755 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
2756 entry
= pte_mksoft_dirty(entry
);
2758 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2759 page_add_new_anon_rmap(page
, vma
, address
);
2761 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2762 page_add_file_rmap(page
);
2764 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2766 /* no need to invalidate: a not-present page won't be cached */
2767 update_mmu_cache(vma
, address
, pte
);
2770 static unsigned long fault_around_bytes __read_mostly
=
2771 rounddown_pow_of_two(65536);
2773 #ifdef CONFIG_DEBUG_FS
2774 static int fault_around_bytes_get(void *data
, u64
*val
)
2776 *val
= fault_around_bytes
;
2781 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2782 * rounded down to nearest page order. It's what do_fault_around() expects to
2785 static int fault_around_bytes_set(void *data
, u64 val
)
2787 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2789 if (val
> PAGE_SIZE
)
2790 fault_around_bytes
= rounddown_pow_of_two(val
);
2792 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2795 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2796 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2798 static int __init
fault_around_debugfs(void)
2802 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2803 &fault_around_bytes_fops
);
2805 pr_warn("Failed to create fault_around_bytes in debugfs");
2808 late_initcall(fault_around_debugfs
);
2812 * do_fault_around() tries to map few pages around the fault address. The hope
2813 * is that the pages will be needed soon and this will lower the number of
2816 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2817 * not ready to be mapped: not up-to-date, locked, etc.
2819 * This function is called with the page table lock taken. In the split ptlock
2820 * case the page table lock only protects only those entries which belong to
2821 * the page table corresponding to the fault address.
2823 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2826 * fault_around_pages() defines how many pages we'll try to map.
2827 * do_fault_around() expects it to return a power of two less than or equal to
2830 * The virtual address of the area that we map is naturally aligned to the
2831 * fault_around_pages() value (and therefore to page order). This way it's
2832 * easier to guarantee that we don't cross page table boundaries.
2834 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2835 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2837 unsigned long start_addr
, nr_pages
, mask
;
2839 struct vm_fault vmf
;
2842 nr_pages
= ACCESS_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2843 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2845 start_addr
= max(address
& mask
, vma
->vm_start
);
2846 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2851 * max_pgoff is either end of page table or end of vma
2852 * or fault_around_pages() from pgoff, depending what is nearest.
2854 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2856 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2857 pgoff
+ nr_pages
- 1);
2859 /* Check if it makes any sense to call ->map_pages */
2860 while (!pte_none(*pte
)) {
2861 if (++pgoff
> max_pgoff
)
2863 start_addr
+= PAGE_SIZE
;
2864 if (start_addr
>= vma
->vm_end
)
2869 vmf
.virtual_address
= (void __user
*) start_addr
;
2872 vmf
.max_pgoff
= max_pgoff
;
2874 vma
->vm_ops
->map_pages(vma
, &vmf
);
2877 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2878 unsigned long address
, pmd_t
*pmd
,
2879 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2881 struct page
*fault_page
;
2887 * Let's call ->map_pages() first and use ->fault() as fallback
2888 * if page by the offset is not ready to be mapped (cold cache or
2891 if (vma
->vm_ops
->map_pages
&& !(flags
& FAULT_FLAG_NONLINEAR
) &&
2892 fault_around_bytes
>> PAGE_SHIFT
> 1) {
2893 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2894 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2895 if (!pte_same(*pte
, orig_pte
))
2897 pte_unmap_unlock(pte
, ptl
);
2900 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2901 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2904 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2905 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2906 pte_unmap_unlock(pte
, ptl
);
2907 unlock_page(fault_page
);
2908 page_cache_release(fault_page
);
2911 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2912 unlock_page(fault_page
);
2914 pte_unmap_unlock(pte
, ptl
);
2918 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2919 unsigned long address
, pmd_t
*pmd
,
2920 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2922 struct page
*fault_page
, *new_page
;
2923 struct mem_cgroup
*memcg
;
2928 if (unlikely(anon_vma_prepare(vma
)))
2929 return VM_FAULT_OOM
;
2931 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2933 return VM_FAULT_OOM
;
2935 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2936 page_cache_release(new_page
);
2937 return VM_FAULT_OOM
;
2940 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2941 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2944 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2945 __SetPageUptodate(new_page
);
2947 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2948 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2949 pte_unmap_unlock(pte
, ptl
);
2950 unlock_page(fault_page
);
2951 page_cache_release(fault_page
);
2954 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2955 mem_cgroup_commit_charge(new_page
, memcg
, false);
2956 lru_cache_add_active_or_unevictable(new_page
, vma
);
2957 pte_unmap_unlock(pte
, ptl
);
2958 unlock_page(fault_page
);
2959 page_cache_release(fault_page
);
2962 mem_cgroup_cancel_charge(new_page
, memcg
);
2963 page_cache_release(new_page
);
2967 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2968 unsigned long address
, pmd_t
*pmd
,
2969 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2971 struct page
*fault_page
;
2972 struct address_space
*mapping
;
2978 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2979 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2983 * Check if the backing address space wants to know that the page is
2984 * about to become writable
2986 if (vma
->vm_ops
->page_mkwrite
) {
2987 unlock_page(fault_page
);
2988 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2989 if (unlikely(!tmp
||
2990 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2991 page_cache_release(fault_page
);
2996 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2997 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2998 pte_unmap_unlock(pte
, ptl
);
2999 unlock_page(fault_page
);
3000 page_cache_release(fault_page
);
3003 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3004 pte_unmap_unlock(pte
, ptl
);
3006 if (set_page_dirty(fault_page
))
3008 mapping
= fault_page
->mapping
;
3009 unlock_page(fault_page
);
3010 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3012 * Some device drivers do not set page.mapping but still
3015 balance_dirty_pages_ratelimited(mapping
);
3018 /* file_update_time outside page_lock */
3019 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3020 file_update_time(vma
->vm_file
);
3026 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3027 * but allow concurrent faults).
3028 * The mmap_sem may have been released depending on flags and our
3029 * return value. See filemap_fault() and __lock_page_or_retry().
3031 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3032 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3033 unsigned int flags
, pte_t orig_pte
)
3035 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3036 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3038 pte_unmap(page_table
);
3039 if (!(flags
& FAULT_FLAG_WRITE
))
3040 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3042 if (!(vma
->vm_flags
& VM_SHARED
))
3043 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3045 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3049 * Fault of a previously existing named mapping. Repopulate the pte
3050 * from the encoded file_pte if possible. This enables swappable
3053 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054 * but allow concurrent faults), and pte mapped but not yet locked.
3055 * We return with pte unmapped and unlocked.
3056 * The mmap_sem may have been released depending on flags and our
3057 * return value. See filemap_fault() and __lock_page_or_retry().
3059 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3060 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3061 unsigned int flags
, pte_t orig_pte
)
3065 flags
|= FAULT_FLAG_NONLINEAR
;
3067 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3070 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3072 * Page table corrupted: show pte and kill process.
3074 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3075 return VM_FAULT_SIGBUS
;
3078 pgoff
= pte_to_pgoff(orig_pte
);
3079 if (!(flags
& FAULT_FLAG_WRITE
))
3080 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3082 if (!(vma
->vm_flags
& VM_SHARED
))
3083 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3085 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3088 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3089 unsigned long addr
, int page_nid
,
3094 count_vm_numa_event(NUMA_HINT_FAULTS
);
3095 if (page_nid
== numa_node_id()) {
3096 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3097 *flags
|= TNF_FAULT_LOCAL
;
3100 return mpol_misplaced(page
, vma
, addr
);
3103 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3104 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3106 struct page
*page
= NULL
;
3111 bool migrated
= false;
3115 * The "pte" at this point cannot be used safely without
3116 * validation through pte_unmap_same(). It's of NUMA type but
3117 * the pfn may be screwed if the read is non atomic.
3119 * ptep_modify_prot_start is not called as this is clearing
3120 * the _PAGE_NUMA bit and it is not really expected that there
3121 * would be concurrent hardware modifications to the PTE.
3123 ptl
= pte_lockptr(mm
, pmd
);
3125 if (unlikely(!pte_same(*ptep
, pte
))) {
3126 pte_unmap_unlock(ptep
, ptl
);
3130 pte
= pte_mknonnuma(pte
);
3131 set_pte_at(mm
, addr
, ptep
, pte
);
3132 update_mmu_cache(vma
, addr
, ptep
);
3134 page
= vm_normal_page(vma
, addr
, pte
);
3136 pte_unmap_unlock(ptep
, ptl
);
3139 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3142 * Avoid grouping on DSO/COW pages in specific and RO pages
3143 * in general, RO pages shouldn't hurt as much anyway since
3144 * they can be in shared cache state.
3146 if (!pte_write(pte
))
3147 flags
|= TNF_NO_GROUP
;
3150 * Flag if the page is shared between multiple address spaces. This
3151 * is later used when determining whether to group tasks together
3153 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3154 flags
|= TNF_SHARED
;
3156 last_cpupid
= page_cpupid_last(page
);
3157 page_nid
= page_to_nid(page
);
3158 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3159 pte_unmap_unlock(ptep
, ptl
);
3160 if (target_nid
== -1) {
3165 /* Migrate to the requested node */
3166 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3168 page_nid
= target_nid
;
3169 flags
|= TNF_MIGRATED
;
3174 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3179 * These routines also need to handle stuff like marking pages dirty
3180 * and/or accessed for architectures that don't do it in hardware (most
3181 * RISC architectures). The early dirtying is also good on the i386.
3183 * There is also a hook called "update_mmu_cache()" that architectures
3184 * with external mmu caches can use to update those (ie the Sparc or
3185 * PowerPC hashed page tables that act as extended TLBs).
3187 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3188 * but allow concurrent faults), and pte mapped but not yet locked.
3189 * We return with pte unmapped and unlocked.
3191 * The mmap_sem may have been released depending on flags and our
3192 * return value. See filemap_fault() and __lock_page_or_retry().
3194 static int handle_pte_fault(struct mm_struct
*mm
,
3195 struct vm_area_struct
*vma
, unsigned long address
,
3196 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3201 entry
= ACCESS_ONCE(*pte
);
3202 if (!pte_present(entry
)) {
3203 if (pte_none(entry
)) {
3205 if (likely(vma
->vm_ops
->fault
))
3206 return do_linear_fault(mm
, vma
, address
,
3207 pte
, pmd
, flags
, entry
);
3209 return do_anonymous_page(mm
, vma
, address
,
3212 if (pte_file(entry
))
3213 return do_nonlinear_fault(mm
, vma
, address
,
3214 pte
, pmd
, flags
, entry
);
3215 return do_swap_page(mm
, vma
, address
,
3216 pte
, pmd
, flags
, entry
);
3219 if (pte_numa(entry
))
3220 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3222 ptl
= pte_lockptr(mm
, pmd
);
3224 if (unlikely(!pte_same(*pte
, entry
)))
3226 if (flags
& FAULT_FLAG_WRITE
) {
3227 if (!pte_write(entry
))
3228 return do_wp_page(mm
, vma
, address
,
3229 pte
, pmd
, ptl
, entry
);
3230 entry
= pte_mkdirty(entry
);
3232 entry
= pte_mkyoung(entry
);
3233 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3234 update_mmu_cache(vma
, address
, pte
);
3237 * This is needed only for protection faults but the arch code
3238 * is not yet telling us if this is a protection fault or not.
3239 * This still avoids useless tlb flushes for .text page faults
3242 if (flags
& FAULT_FLAG_WRITE
)
3243 flush_tlb_fix_spurious_fault(vma
, address
);
3246 pte_unmap_unlock(pte
, ptl
);
3251 * By the time we get here, we already hold the mm semaphore
3253 * The mmap_sem may have been released depending on flags and our
3254 * return value. See filemap_fault() and __lock_page_or_retry().
3256 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3257 unsigned long address
, unsigned int flags
)
3264 if (unlikely(is_vm_hugetlb_page(vma
)))
3265 return hugetlb_fault(mm
, vma
, address
, flags
);
3267 pgd
= pgd_offset(mm
, address
);
3268 pud
= pud_alloc(mm
, pgd
, address
);
3270 return VM_FAULT_OOM
;
3271 pmd
= pmd_alloc(mm
, pud
, address
);
3273 return VM_FAULT_OOM
;
3274 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3275 int ret
= VM_FAULT_FALLBACK
;
3277 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3279 if (!(ret
& VM_FAULT_FALLBACK
))
3282 pmd_t orig_pmd
= *pmd
;
3286 if (pmd_trans_huge(orig_pmd
)) {
3287 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3290 * If the pmd is splitting, return and retry the
3291 * the fault. Alternative: wait until the split
3292 * is done, and goto retry.
3294 if (pmd_trans_splitting(orig_pmd
))
3297 if (pmd_numa(orig_pmd
))
3298 return do_huge_pmd_numa_page(mm
, vma
, address
,
3301 if (dirty
&& !pmd_write(orig_pmd
)) {
3302 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3304 if (!(ret
& VM_FAULT_FALLBACK
))
3307 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3315 * Use __pte_alloc instead of pte_alloc_map, because we can't
3316 * run pte_offset_map on the pmd, if an huge pmd could
3317 * materialize from under us from a different thread.
3319 if (unlikely(pmd_none(*pmd
)) &&
3320 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3321 return VM_FAULT_OOM
;
3322 /* if an huge pmd materialized from under us just retry later */
3323 if (unlikely(pmd_trans_huge(*pmd
)))
3326 * A regular pmd is established and it can't morph into a huge pmd
3327 * from under us anymore at this point because we hold the mmap_sem
3328 * read mode and khugepaged takes it in write mode. So now it's
3329 * safe to run pte_offset_map().
3331 pte
= pte_offset_map(pmd
, address
);
3333 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3337 * By the time we get here, we already hold the mm semaphore
3339 * The mmap_sem may have been released depending on flags and our
3340 * return value. See filemap_fault() and __lock_page_or_retry().
3342 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3343 unsigned long address
, unsigned int flags
)
3347 __set_current_state(TASK_RUNNING
);
3349 count_vm_event(PGFAULT
);
3350 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3352 /* do counter updates before entering really critical section. */
3353 check_sync_rss_stat(current
);
3356 * Enable the memcg OOM handling for faults triggered in user
3357 * space. Kernel faults are handled more gracefully.
3359 if (flags
& FAULT_FLAG_USER
)
3360 mem_cgroup_oom_enable();
3362 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3364 if (flags
& FAULT_FLAG_USER
) {
3365 mem_cgroup_oom_disable();
3367 * The task may have entered a memcg OOM situation but
3368 * if the allocation error was handled gracefully (no
3369 * VM_FAULT_OOM), there is no need to kill anything.
3370 * Just clean up the OOM state peacefully.
3372 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3373 mem_cgroup_oom_synchronize(false);
3379 #ifndef __PAGETABLE_PUD_FOLDED
3381 * Allocate page upper directory.
3382 * We've already handled the fast-path in-line.
3384 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3386 pud_t
*new = pud_alloc_one(mm
, address
);
3390 smp_wmb(); /* See comment in __pte_alloc */
3392 spin_lock(&mm
->page_table_lock
);
3393 if (pgd_present(*pgd
)) /* Another has populated it */
3396 pgd_populate(mm
, pgd
, new);
3397 spin_unlock(&mm
->page_table_lock
);
3400 #endif /* __PAGETABLE_PUD_FOLDED */
3402 #ifndef __PAGETABLE_PMD_FOLDED
3404 * Allocate page middle directory.
3405 * We've already handled the fast-path in-line.
3407 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3409 pmd_t
*new = pmd_alloc_one(mm
, address
);
3413 smp_wmb(); /* See comment in __pte_alloc */
3415 spin_lock(&mm
->page_table_lock
);
3416 #ifndef __ARCH_HAS_4LEVEL_HACK
3417 if (pud_present(*pud
)) /* Another has populated it */
3420 pud_populate(mm
, pud
, new);
3422 if (pgd_present(*pud
)) /* Another has populated it */
3425 pgd_populate(mm
, pud
, new);
3426 #endif /* __ARCH_HAS_4LEVEL_HACK */
3427 spin_unlock(&mm
->page_table_lock
);
3430 #endif /* __PAGETABLE_PMD_FOLDED */
3432 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3433 pte_t
**ptepp
, spinlock_t
**ptlp
)
3440 pgd
= pgd_offset(mm
, address
);
3441 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3444 pud
= pud_offset(pgd
, address
);
3445 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3448 pmd
= pmd_offset(pud
, address
);
3449 VM_BUG_ON(pmd_trans_huge(*pmd
));
3450 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3453 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3457 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3460 if (!pte_present(*ptep
))
3465 pte_unmap_unlock(ptep
, *ptlp
);
3470 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3471 pte_t
**ptepp
, spinlock_t
**ptlp
)
3475 /* (void) is needed to make gcc happy */
3476 (void) __cond_lock(*ptlp
,
3477 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3482 * follow_pfn - look up PFN at a user virtual address
3483 * @vma: memory mapping
3484 * @address: user virtual address
3485 * @pfn: location to store found PFN
3487 * Only IO mappings and raw PFN mappings are allowed.
3489 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3491 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3498 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3501 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3504 *pfn
= pte_pfn(*ptep
);
3505 pte_unmap_unlock(ptep
, ptl
);
3508 EXPORT_SYMBOL(follow_pfn
);
3510 #ifdef CONFIG_HAVE_IOREMAP_PROT
3511 int follow_phys(struct vm_area_struct
*vma
,
3512 unsigned long address
, unsigned int flags
,
3513 unsigned long *prot
, resource_size_t
*phys
)
3519 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3522 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3526 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3529 *prot
= pgprot_val(pte_pgprot(pte
));
3530 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3534 pte_unmap_unlock(ptep
, ptl
);
3539 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3540 void *buf
, int len
, int write
)
3542 resource_size_t phys_addr
;
3543 unsigned long prot
= 0;
3544 void __iomem
*maddr
;
3545 int offset
= addr
& (PAGE_SIZE
-1);
3547 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3550 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3552 memcpy_toio(maddr
+ offset
, buf
, len
);
3554 memcpy_fromio(buf
, maddr
+ offset
, len
);
3559 EXPORT_SYMBOL_GPL(generic_access_phys
);
3563 * Access another process' address space as given in mm. If non-NULL, use the
3564 * given task for page fault accounting.
3566 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3567 unsigned long addr
, void *buf
, int len
, int write
)
3569 struct vm_area_struct
*vma
;
3570 void *old_buf
= buf
;
3572 down_read(&mm
->mmap_sem
);
3573 /* ignore errors, just check how much was successfully transferred */
3575 int bytes
, ret
, offset
;
3577 struct page
*page
= NULL
;
3579 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3580 write
, 1, &page
, &vma
);
3582 #ifndef CONFIG_HAVE_IOREMAP_PROT
3586 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3587 * we can access using slightly different code.
3589 vma
= find_vma(mm
, addr
);
3590 if (!vma
|| vma
->vm_start
> addr
)
3592 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3593 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3601 offset
= addr
& (PAGE_SIZE
-1);
3602 if (bytes
> PAGE_SIZE
-offset
)
3603 bytes
= PAGE_SIZE
-offset
;
3607 copy_to_user_page(vma
, page
, addr
,
3608 maddr
+ offset
, buf
, bytes
);
3609 set_page_dirty_lock(page
);
3611 copy_from_user_page(vma
, page
, addr
,
3612 buf
, maddr
+ offset
, bytes
);
3615 page_cache_release(page
);
3621 up_read(&mm
->mmap_sem
);
3623 return buf
- old_buf
;
3627 * access_remote_vm - access another process' address space
3628 * @mm: the mm_struct of the target address space
3629 * @addr: start address to access
3630 * @buf: source or destination buffer
3631 * @len: number of bytes to transfer
3632 * @write: whether the access is a write
3634 * The caller must hold a reference on @mm.
3636 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3637 void *buf
, int len
, int write
)
3639 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3643 * Access another process' address space.
3644 * Source/target buffer must be kernel space,
3645 * Do not walk the page table directly, use get_user_pages
3647 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3648 void *buf
, int len
, int write
)
3650 struct mm_struct
*mm
;
3653 mm
= get_task_mm(tsk
);
3657 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3664 * Print the name of a VMA.
3666 void print_vma_addr(char *prefix
, unsigned long ip
)
3668 struct mm_struct
*mm
= current
->mm
;
3669 struct vm_area_struct
*vma
;
3672 * Do not print if we are in atomic
3673 * contexts (in exception stacks, etc.):
3675 if (preempt_count())
3678 down_read(&mm
->mmap_sem
);
3679 vma
= find_vma(mm
, ip
);
3680 if (vma
&& vma
->vm_file
) {
3681 struct file
*f
= vma
->vm_file
;
3682 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3686 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3689 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3691 vma
->vm_end
- vma
->vm_start
);
3692 free_page((unsigned long)buf
);
3695 up_read(&mm
->mmap_sem
);
3698 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3699 void might_fault(void)
3702 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3703 * holding the mmap_sem, this is safe because kernel memory doesn't
3704 * get paged out, therefore we'll never actually fault, and the
3705 * below annotations will generate false positives.
3707 if (segment_eq(get_fs(), KERNEL_DS
))
3711 * it would be nicer only to annotate paths which are not under
3712 * pagefault_disable, however that requires a larger audit and
3713 * providing helpers like get_user_atomic.
3718 __might_sleep(__FILE__
, __LINE__
, 0);
3721 might_lock_read(¤t
->mm
->mmap_sem
);
3723 EXPORT_SYMBOL(might_fault
);
3726 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3727 static void clear_gigantic_page(struct page
*page
,
3729 unsigned int pages_per_huge_page
)
3732 struct page
*p
= page
;
3735 for (i
= 0; i
< pages_per_huge_page
;
3736 i
++, p
= mem_map_next(p
, page
, i
)) {
3738 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3741 void clear_huge_page(struct page
*page
,
3742 unsigned long addr
, unsigned int pages_per_huge_page
)
3746 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3747 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3752 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3754 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3758 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3760 struct vm_area_struct
*vma
,
3761 unsigned int pages_per_huge_page
)
3764 struct page
*dst_base
= dst
;
3765 struct page
*src_base
= src
;
3767 for (i
= 0; i
< pages_per_huge_page
; ) {
3769 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3772 dst
= mem_map_next(dst
, dst_base
, i
);
3773 src
= mem_map_next(src
, src_base
, i
);
3777 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3778 unsigned long addr
, struct vm_area_struct
*vma
,
3779 unsigned int pages_per_huge_page
)
3783 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3784 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3785 pages_per_huge_page
);
3790 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3792 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3797 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3799 static struct kmem_cache
*page_ptl_cachep
;
3801 void __init
ptlock_cache_init(void)
3803 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3807 bool ptlock_alloc(struct page
*page
)
3811 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3818 void ptlock_free(struct page
*page
)
3820 kmem_cache_free(page_ptl_cachep
, page
->ptl
);