USB: mos7720: fix message timeouts
[linux/fpc-iii.git] / kernel / sched.c
blobd93369a977d18d492f26afaeb60bcedd62b3a15a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
81 #endif
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
93 * and back.
95 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
104 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
109 * Helpers for converting nanosecond timing to jiffy resolution
111 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
113 #define NICE_0_LOAD SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
117 * These are the 'tuning knobs' of the scheduler:
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
122 #define DEF_TIMESLICE (100 * HZ / 1000)
125 * single value that denotes runtime == period, ie unlimited time.
127 #define RUNTIME_INF ((u64)~0ULL)
129 static inline int rt_policy(int policy)
131 if (policy == SCHED_FIFO || policy == SCHED_RR)
132 return 1;
133 return 0;
136 static inline int task_has_rt_policy(struct task_struct *p)
138 return rt_policy(p->policy);
142 * This is the priority-queue data structure of the RT scheduling class:
144 struct rt_prio_array {
145 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
146 struct list_head queue[MAX_RT_PRIO];
149 struct rt_bandwidth {
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock;
152 ktime_t rt_period;
153 u64 rt_runtime;
154 struct hrtimer rt_period_timer;
157 static struct rt_bandwidth def_rt_bandwidth;
159 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
161 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
163 struct rt_bandwidth *rt_b =
164 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 ktime_t now;
166 int overrun;
167 int idle = 0;
169 for (;;) {
170 now = hrtimer_cb_get_time(timer);
171 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
173 if (!overrun)
174 break;
176 idle = do_sched_rt_period_timer(rt_b, overrun);
179 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
182 static
183 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
185 rt_b->rt_period = ns_to_ktime(period);
186 rt_b->rt_runtime = runtime;
188 raw_spin_lock_init(&rt_b->rt_runtime_lock);
190 hrtimer_init(&rt_b->rt_period_timer,
191 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
192 rt_b->rt_period_timer.function = sched_rt_period_timer;
195 static inline int rt_bandwidth_enabled(void)
197 return sysctl_sched_rt_runtime >= 0;
200 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
202 unsigned long delta;
203 ktime_t soft, hard, now;
205 for (;;) {
206 if (hrtimer_active(period_timer))
207 break;
209 now = hrtimer_cb_get_time(period_timer);
210 hrtimer_forward(period_timer, now, period);
212 soft = hrtimer_get_softexpires(period_timer);
213 hard = hrtimer_get_expires(period_timer);
214 delta = ktime_to_ns(ktime_sub(hard, soft));
215 __hrtimer_start_range_ns(period_timer, soft, delta,
216 HRTIMER_MODE_ABS_PINNED, 0);
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 raw_spin_lock(&rt_b->rt_runtime_lock);
229 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
230 raw_spin_unlock(&rt_b->rt_runtime_lock);
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
236 hrtimer_cancel(&rt_b->rt_period_timer);
238 #endif
241 * sched_domains_mutex serializes calls to init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
244 static DEFINE_MUTEX(sched_domains_mutex);
246 #ifdef CONFIG_CGROUP_SCHED
248 #include <linux/cgroup.h>
250 struct cfs_rq;
252 static LIST_HEAD(task_groups);
254 struct cfs_bandwidth {
255 #ifdef CONFIG_CFS_BANDWIDTH
256 raw_spinlock_t lock;
257 ktime_t period;
258 u64 quota, runtime;
259 s64 hierarchal_quota;
260 u64 runtime_expires;
262 int idle, timer_active;
263 struct hrtimer period_timer, slack_timer;
264 struct list_head throttled_cfs_rq;
266 /* statistics */
267 int nr_periods, nr_throttled;
268 u64 throttled_time;
269 #endif
272 /* task group related information */
273 struct task_group {
274 struct cgroup_subsys_state css;
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
283 atomic_t load_weight;
284 #endif
286 #ifdef CONFIG_RT_GROUP_SCHED
287 struct sched_rt_entity **rt_se;
288 struct rt_rq **rt_rq;
290 struct rt_bandwidth rt_bandwidth;
291 #endif
293 struct rcu_head rcu;
294 struct list_head list;
296 struct task_group *parent;
297 struct list_head siblings;
298 struct list_head children;
300 #ifdef CONFIG_SCHED_AUTOGROUP
301 struct autogroup *autogroup;
302 #endif
304 struct cfs_bandwidth cfs_bandwidth;
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
312 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
325 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group root_task_group;
333 #endif /* CONFIG_CGROUP_SCHED */
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned long nr_running, h_nr_running;
340 u64 exec_clock;
341 u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344 #endif
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
349 struct list_head tasks;
350 struct list_head *balance_iterator;
353 * 'curr' points to currently running entity on this cfs_rq.
354 * It is set to NULL otherwise (i.e when none are currently running).
356 struct sched_entity *curr, *next, *last, *skip;
358 #ifdef CONFIG_SCHED_DEBUG
359 unsigned int nr_spread_over;
360 #endif
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
366 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368 * (like users, containers etc.)
370 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371 * list is used during load balance.
373 int on_list;
374 struct list_head leaf_cfs_rq_list;
375 struct task_group *tg; /* group that "owns" this runqueue */
377 #ifdef CONFIG_SMP
379 * the part of load.weight contributed by tasks
381 unsigned long task_weight;
384 * h_load = weight * f(tg)
386 * Where f(tg) is the recursive weight fraction assigned to
387 * this group.
389 unsigned long h_load;
392 * Maintaining per-cpu shares distribution for group scheduling
394 * load_stamp is the last time we updated the load average
395 * load_last is the last time we updated the load average and saw load
396 * load_unacc_exec_time is currently unaccounted execution time
398 u64 load_avg;
399 u64 load_period;
400 u64 load_stamp, load_last, load_unacc_exec_time;
402 unsigned long load_contribution;
403 #endif
404 #ifdef CONFIG_CFS_BANDWIDTH
405 int runtime_enabled;
406 u64 runtime_expires;
407 s64 runtime_remaining;
409 u64 throttled_timestamp;
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412 #endif
413 #endif
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
420 return &tg->cfs_bandwidth;
423 static inline u64 default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
427 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
429 struct cfs_bandwidth *cfs_b =
430 container_of(timer, struct cfs_bandwidth, slack_timer);
431 do_sched_cfs_slack_timer(cfs_b);
433 return HRTIMER_NORESTART;
436 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
438 struct cfs_bandwidth *cfs_b =
439 container_of(timer, struct cfs_bandwidth, period_timer);
440 ktime_t now;
441 int overrun;
442 int idle = 0;
444 for (;;) {
445 now = hrtimer_cb_get_time(timer);
446 overrun = hrtimer_forward(timer, now, cfs_b->period);
448 if (!overrun)
449 break;
451 idle = do_sched_cfs_period_timer(cfs_b, overrun);
454 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
457 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
459 raw_spin_lock_init(&cfs_b->lock);
460 cfs_b->runtime = 0;
461 cfs_b->quota = RUNTIME_INF;
462 cfs_b->period = ns_to_ktime(default_cfs_period());
464 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
465 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
466 cfs_b->period_timer.function = sched_cfs_period_timer;
467 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
468 cfs_b->slack_timer.function = sched_cfs_slack_timer;
471 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
473 cfs_rq->runtime_enabled = 0;
474 INIT_LIST_HEAD(&cfs_rq->throttled_list);
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
481 * The timer may be active because we're trying to set a new bandwidth
482 * period or because we're racing with the tear-down path
483 * (timer_active==0 becomes visible before the hrtimer call-back
484 * terminates). In either case we ensure that it's re-programmed
486 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
487 raw_spin_unlock(&cfs_b->lock);
488 /* ensure cfs_b->lock is available while we wait */
489 hrtimer_cancel(&cfs_b->period_timer);
491 raw_spin_lock(&cfs_b->lock);
492 /* if someone else restarted the timer then we're done */
493 if (cfs_b->timer_active)
494 return;
497 cfs_b->timer_active = 1;
498 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
503 hrtimer_cancel(&cfs_b->period_timer);
504 hrtimer_cancel(&cfs_b->slack_timer);
506 #else
507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
511 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
513 return NULL;
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
518 /* Real-Time classes' related field in a runqueue: */
519 struct rt_rq {
520 struct rt_prio_array active;
521 unsigned long rt_nr_running;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
523 struct {
524 int curr; /* highest queued rt task prio */
525 #ifdef CONFIG_SMP
526 int next; /* next highest */
527 #endif
528 } highest_prio;
529 #endif
530 #ifdef CONFIG_SMP
531 unsigned long rt_nr_migratory;
532 unsigned long rt_nr_total;
533 int overloaded;
534 struct plist_head pushable_tasks;
535 #endif
536 int rt_throttled;
537 u64 rt_time;
538 u64 rt_runtime;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock;
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted;
545 struct rq *rq;
546 struct list_head leaf_rt_rq_list;
547 struct task_group *tg;
548 #endif
551 #ifdef CONFIG_SMP
554 * We add the notion of a root-domain which will be used to define per-domain
555 * variables. Each exclusive cpuset essentially defines an island domain by
556 * fully partitioning the member cpus from any other cpuset. Whenever a new
557 * exclusive cpuset is created, we also create and attach a new root-domain
558 * object.
561 struct root_domain {
562 atomic_t refcount;
563 atomic_t rto_count;
564 struct rcu_head rcu;
565 cpumask_var_t span;
566 cpumask_var_t online;
569 * The "RT overload" flag: it gets set if a CPU has more than
570 * one runnable RT task.
572 cpumask_var_t rto_mask;
573 struct cpupri cpupri;
577 * By default the system creates a single root-domain with all cpus as
578 * members (mimicking the global state we have today).
580 static struct root_domain def_root_domain;
582 #endif /* CONFIG_SMP */
585 * This is the main, per-CPU runqueue data structure.
587 * Locking rule: those places that want to lock multiple runqueues
588 * (such as the load balancing or the thread migration code), lock
589 * acquire operations must be ordered by ascending &runqueue.
591 struct rq {
592 /* runqueue lock: */
593 raw_spinlock_t lock;
596 * nr_running and cpu_load should be in the same cacheline because
597 * remote CPUs use both these fields when doing load calculation.
599 unsigned long nr_running;
600 #define CPU_LOAD_IDX_MAX 5
601 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
602 unsigned long last_load_update_tick;
603 #ifdef CONFIG_NO_HZ
604 u64 nohz_stamp;
605 unsigned char nohz_balance_kick;
606 #endif
607 int skip_clock_update;
609 /* capture load from *all* tasks on this cpu: */
610 struct load_weight load;
611 unsigned long nr_load_updates;
612 u64 nr_switches;
614 struct cfs_rq cfs;
615 struct rt_rq rt;
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618 /* list of leaf cfs_rq on this cpu: */
619 struct list_head leaf_cfs_rq_list;
620 #endif
621 #ifdef CONFIG_RT_GROUP_SCHED
622 struct list_head leaf_rt_rq_list;
623 #endif
626 * This is part of a global counter where only the total sum
627 * over all CPUs matters. A task can increase this counter on
628 * one CPU and if it got migrated afterwards it may decrease
629 * it on another CPU. Always updated under the runqueue lock:
631 unsigned long nr_uninterruptible;
633 struct task_struct *curr, *idle, *stop;
634 unsigned long next_balance;
635 struct mm_struct *prev_mm;
637 u64 clock;
638 u64 clock_task;
640 atomic_t nr_iowait;
642 #ifdef CONFIG_SMP
643 struct root_domain *rd;
644 struct sched_domain *sd;
646 unsigned long cpu_power;
648 unsigned char idle_balance;
649 /* For active balancing */
650 int post_schedule;
651 int active_balance;
652 int push_cpu;
653 struct cpu_stop_work active_balance_work;
654 /* cpu of this runqueue: */
655 int cpu;
656 int online;
658 u64 rt_avg;
659 u64 age_stamp;
660 u64 idle_stamp;
661 u64 avg_idle;
662 #endif
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
665 u64 prev_irq_time;
666 #endif
667 #ifdef CONFIG_PARAVIRT
668 u64 prev_steal_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671 u64 prev_steal_time_rq;
672 #endif
674 /* calc_load related fields */
675 unsigned long calc_load_update;
676 long calc_load_active;
678 #ifdef CONFIG_SCHED_HRTICK
679 #ifdef CONFIG_SMP
680 int hrtick_csd_pending;
681 struct call_single_data hrtick_csd;
682 #endif
683 struct hrtimer hrtick_timer;
684 #endif
686 #ifdef CONFIG_SCHEDSTATS
687 /* latency stats */
688 struct sched_info rq_sched_info;
689 unsigned long long rq_cpu_time;
690 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
692 /* sys_sched_yield() stats */
693 unsigned int yld_count;
695 /* schedule() stats */
696 unsigned int sched_switch;
697 unsigned int sched_count;
698 unsigned int sched_goidle;
700 /* try_to_wake_up() stats */
701 unsigned int ttwu_count;
702 unsigned int ttwu_local;
703 #endif
705 #ifdef CONFIG_SMP
706 struct llist_head wake_list;
707 #endif
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
713 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
715 static inline int cpu_of(struct rq *rq)
717 #ifdef CONFIG_SMP
718 return rq->cpu;
719 #else
720 return 0;
721 #endif
724 #define rcu_dereference_check_sched_domain(p) \
725 rcu_dereference_check((p), \
726 lockdep_is_held(&sched_domains_mutex))
729 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730 * See detach_destroy_domains: synchronize_sched for details.
732 * The domain tree of any CPU may only be accessed from within
733 * preempt-disabled sections.
735 #define for_each_domain(cpu, __sd) \
736 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
738 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
739 #define this_rq() (&__get_cpu_var(runqueues))
740 #define task_rq(p) cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
742 #define raw_rq() (&__raw_get_cpu_var(runqueues))
744 #ifdef CONFIG_CGROUP_SCHED
747 * Return the group to which this tasks belongs.
749 * We cannot use task_subsys_state() and friends because the cgroup
750 * subsystem changes that value before the cgroup_subsys::attach() method
751 * is called, therefore we cannot pin it and might observe the wrong value.
753 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
754 * core changes this before calling sched_move_task().
756 * Instead we use a 'copy' which is updated from sched_move_task() while
757 * holding both task_struct::pi_lock and rq::lock.
759 static inline struct task_group *task_group(struct task_struct *p)
761 return p->sched_task_group;
764 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
765 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
767 #ifdef CONFIG_FAIR_GROUP_SCHED
768 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
769 p->se.parent = task_group(p)->se[cpu];
770 #endif
772 #ifdef CONFIG_RT_GROUP_SCHED
773 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
774 p->rt.parent = task_group(p)->rt_se[cpu];
775 #endif
778 #else /* CONFIG_CGROUP_SCHED */
780 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
781 static inline struct task_group *task_group(struct task_struct *p)
783 return NULL;
786 #endif /* CONFIG_CGROUP_SCHED */
788 static void update_rq_clock_task(struct rq *rq, s64 delta);
790 static void update_rq_clock(struct rq *rq)
792 s64 delta;
794 if (rq->skip_clock_update > 0)
795 return;
797 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
798 rq->clock += delta;
799 update_rq_clock_task(rq, delta);
803 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
805 #ifdef CONFIG_SCHED_DEBUG
806 # define const_debug __read_mostly
807 #else
808 # define const_debug static const
809 #endif
812 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
813 * @cpu: the processor in question.
815 * This interface allows printk to be called with the runqueue lock
816 * held and know whether or not it is OK to wake up the klogd.
818 int runqueue_is_locked(int cpu)
820 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
824 * Debugging: various feature bits
827 #define SCHED_FEAT(name, enabled) \
828 __SCHED_FEAT_##name ,
830 enum {
831 #include "sched_features.h"
834 #undef SCHED_FEAT
836 #define SCHED_FEAT(name, enabled) \
837 (1UL << __SCHED_FEAT_##name) * enabled |
839 const_debug unsigned int sysctl_sched_features =
840 #include "sched_features.h"
843 #undef SCHED_FEAT
845 #ifdef CONFIG_SCHED_DEBUG
846 #define SCHED_FEAT(name, enabled) \
847 #name ,
849 static __read_mostly char *sched_feat_names[] = {
850 #include "sched_features.h"
851 NULL
854 #undef SCHED_FEAT
856 static int sched_feat_show(struct seq_file *m, void *v)
858 int i;
860 for (i = 0; sched_feat_names[i]; i++) {
861 if (!(sysctl_sched_features & (1UL << i)))
862 seq_puts(m, "NO_");
863 seq_printf(m, "%s ", sched_feat_names[i]);
865 seq_puts(m, "\n");
867 return 0;
870 static ssize_t
871 sched_feat_write(struct file *filp, const char __user *ubuf,
872 size_t cnt, loff_t *ppos)
874 char buf[64];
875 char *cmp;
876 int neg = 0;
877 int i;
879 if (cnt > 63)
880 cnt = 63;
882 if (copy_from_user(&buf, ubuf, cnt))
883 return -EFAULT;
885 buf[cnt] = 0;
886 cmp = strstrip(buf);
888 if (strncmp(cmp, "NO_", 3) == 0) {
889 neg = 1;
890 cmp += 3;
893 for (i = 0; sched_feat_names[i]; i++) {
894 if (strcmp(cmp, sched_feat_names[i]) == 0) {
895 if (neg)
896 sysctl_sched_features &= ~(1UL << i);
897 else
898 sysctl_sched_features |= (1UL << i);
899 break;
903 if (!sched_feat_names[i])
904 return -EINVAL;
906 *ppos += cnt;
908 return cnt;
911 static int sched_feat_open(struct inode *inode, struct file *filp)
913 return single_open(filp, sched_feat_show, NULL);
916 static const struct file_operations sched_feat_fops = {
917 .open = sched_feat_open,
918 .write = sched_feat_write,
919 .read = seq_read,
920 .llseek = seq_lseek,
921 .release = single_release,
924 static __init int sched_init_debug(void)
926 debugfs_create_file("sched_features", 0644, NULL, NULL,
927 &sched_feat_fops);
929 return 0;
931 late_initcall(sched_init_debug);
933 #endif
935 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938 * Number of tasks to iterate in a single balance run.
939 * Limited because this is done with IRQs disabled.
941 const_debug unsigned int sysctl_sched_nr_migrate = 32;
944 * period over which we average the RT time consumption, measured
945 * in ms.
947 * default: 1s
949 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952 * period over which we measure -rt task cpu usage in us.
953 * default: 1s
955 unsigned int sysctl_sched_rt_period = 1000000;
957 static __read_mostly int scheduler_running;
960 * part of the period that we allow rt tasks to run in us.
961 * default: 0.95s
963 int sysctl_sched_rt_runtime = 950000;
965 static inline u64 global_rt_period(void)
967 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970 static inline u64 global_rt_runtime(void)
972 if (sysctl_sched_rt_runtime < 0)
973 return RUNTIME_INF;
975 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978 #ifndef prepare_arch_switch
979 # define prepare_arch_switch(next) do { } while (0)
980 #endif
981 #ifndef finish_arch_switch
982 # define finish_arch_switch(prev) do { } while (0)
983 #endif
985 static inline int task_current(struct rq *rq, struct task_struct *p)
987 return rq->curr == p;
990 static inline int task_running(struct rq *rq, struct task_struct *p)
992 #ifdef CONFIG_SMP
993 return p->on_cpu;
994 #else
995 return task_current(rq, p);
996 #endif
999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1000 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1002 #ifdef CONFIG_SMP
1004 * We can optimise this out completely for !SMP, because the
1005 * SMP rebalancing from interrupt is the only thing that cares
1006 * here.
1008 next->on_cpu = 1;
1009 #endif
1012 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1014 #ifdef CONFIG_SMP
1016 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1017 * We must ensure this doesn't happen until the switch is completely
1018 * finished.
1020 smp_wmb();
1021 prev->on_cpu = 0;
1022 #endif
1023 #ifdef CONFIG_DEBUG_SPINLOCK
1024 /* this is a valid case when another task releases the spinlock */
1025 rq->lock.owner = current;
1026 #endif
1028 * If we are tracking spinlock dependencies then we have to
1029 * fix up the runqueue lock - which gets 'carried over' from
1030 * prev into current:
1032 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1034 raw_spin_unlock_irq(&rq->lock);
1037 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1038 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1040 #ifdef CONFIG_SMP
1042 * We can optimise this out completely for !SMP, because the
1043 * SMP rebalancing from interrupt is the only thing that cares
1044 * here.
1046 next->on_cpu = 1;
1047 #endif
1048 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1049 raw_spin_unlock_irq(&rq->lock);
1050 #else
1051 raw_spin_unlock(&rq->lock);
1052 #endif
1055 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1057 #ifdef CONFIG_SMP
1059 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1060 * We must ensure this doesn't happen until the switch is completely
1061 * finished.
1063 smp_wmb();
1064 prev->on_cpu = 0;
1065 #endif
1066 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 local_irq_enable();
1068 #endif
1070 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073 * __task_rq_lock - lock the rq @p resides on.
1075 static inline struct rq *__task_rq_lock(struct task_struct *p)
1076 __acquires(rq->lock)
1078 struct rq *rq;
1080 lockdep_assert_held(&p->pi_lock);
1082 for (;;) {
1083 rq = task_rq(p);
1084 raw_spin_lock(&rq->lock);
1085 if (likely(rq == task_rq(p)))
1086 return rq;
1087 raw_spin_unlock(&rq->lock);
1092 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1094 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1095 __acquires(p->pi_lock)
1096 __acquires(rq->lock)
1098 struct rq *rq;
1100 for (;;) {
1101 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1102 rq = task_rq(p);
1103 raw_spin_lock(&rq->lock);
1104 if (likely(rq == task_rq(p)))
1105 return rq;
1106 raw_spin_unlock(&rq->lock);
1107 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1111 static void __task_rq_unlock(struct rq *rq)
1112 __releases(rq->lock)
1114 raw_spin_unlock(&rq->lock);
1117 static inline void
1118 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1119 __releases(rq->lock)
1120 __releases(p->pi_lock)
1122 raw_spin_unlock(&rq->lock);
1123 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1127 * this_rq_lock - lock this runqueue and disable interrupts.
1129 static struct rq *this_rq_lock(void)
1130 __acquires(rq->lock)
1132 struct rq *rq;
1134 local_irq_disable();
1135 rq = this_rq();
1136 raw_spin_lock(&rq->lock);
1138 return rq;
1141 #ifdef CONFIG_SCHED_HRTICK
1143 * Use HR-timers to deliver accurate preemption points.
1145 * Its all a bit involved since we cannot program an hrt while holding the
1146 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1147 * reschedule event.
1149 * When we get rescheduled we reprogram the hrtick_timer outside of the
1150 * rq->lock.
1154 * Use hrtick when:
1155 * - enabled by features
1156 * - hrtimer is actually high res
1158 static inline int hrtick_enabled(struct rq *rq)
1160 if (!sched_feat(HRTICK))
1161 return 0;
1162 if (!cpu_active(cpu_of(rq)))
1163 return 0;
1164 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167 static void hrtick_clear(struct rq *rq)
1169 if (hrtimer_active(&rq->hrtick_timer))
1170 hrtimer_cancel(&rq->hrtick_timer);
1174 * High-resolution timer tick.
1175 * Runs from hardirq context with interrupts disabled.
1177 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1179 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1181 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1183 raw_spin_lock(&rq->lock);
1184 update_rq_clock(rq);
1185 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1186 raw_spin_unlock(&rq->lock);
1188 return HRTIMER_NORESTART;
1191 #ifdef CONFIG_SMP
1193 * called from hardirq (IPI) context
1195 static void __hrtick_start(void *arg)
1197 struct rq *rq = arg;
1199 raw_spin_lock(&rq->lock);
1200 hrtimer_restart(&rq->hrtick_timer);
1201 rq->hrtick_csd_pending = 0;
1202 raw_spin_unlock(&rq->lock);
1206 * Called to set the hrtick timer state.
1208 * called with rq->lock held and irqs disabled
1210 static void hrtick_start(struct rq *rq, u64 delay)
1212 struct hrtimer *timer = &rq->hrtick_timer;
1213 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1215 hrtimer_set_expires(timer, time);
1217 if (rq == this_rq()) {
1218 hrtimer_restart(timer);
1219 } else if (!rq->hrtick_csd_pending) {
1220 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1221 rq->hrtick_csd_pending = 1;
1225 static int
1226 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1228 int cpu = (int)(long)hcpu;
1230 switch (action) {
1231 case CPU_UP_CANCELED:
1232 case CPU_UP_CANCELED_FROZEN:
1233 case CPU_DOWN_PREPARE:
1234 case CPU_DOWN_PREPARE_FROZEN:
1235 case CPU_DEAD:
1236 case CPU_DEAD_FROZEN:
1237 hrtick_clear(cpu_rq(cpu));
1238 return NOTIFY_OK;
1241 return NOTIFY_DONE;
1244 static __init void init_hrtick(void)
1246 hotcpu_notifier(hotplug_hrtick, 0);
1248 #else
1250 * Called to set the hrtick timer state.
1252 * called with rq->lock held and irqs disabled
1254 static void hrtick_start(struct rq *rq, u64 delay)
1256 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1257 HRTIMER_MODE_REL_PINNED, 0);
1260 static inline void init_hrtick(void)
1263 #endif /* CONFIG_SMP */
1265 static void init_rq_hrtick(struct rq *rq)
1267 #ifdef CONFIG_SMP
1268 rq->hrtick_csd_pending = 0;
1270 rq->hrtick_csd.flags = 0;
1271 rq->hrtick_csd.func = __hrtick_start;
1272 rq->hrtick_csd.info = rq;
1273 #endif
1275 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1276 rq->hrtick_timer.function = hrtick;
1278 #else /* CONFIG_SCHED_HRTICK */
1279 static inline void hrtick_clear(struct rq *rq)
1283 static inline void init_rq_hrtick(struct rq *rq)
1287 static inline void init_hrtick(void)
1290 #endif /* CONFIG_SCHED_HRTICK */
1293 * resched_task - mark a task 'to be rescheduled now'.
1295 * On UP this means the setting of the need_resched flag, on SMP it
1296 * might also involve a cross-CPU call to trigger the scheduler on
1297 * the target CPU.
1299 #ifdef CONFIG_SMP
1301 #ifndef tsk_is_polling
1302 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1303 #endif
1305 static void resched_task(struct task_struct *p)
1307 int cpu;
1309 assert_raw_spin_locked(&task_rq(p)->lock);
1311 if (test_tsk_need_resched(p))
1312 return;
1314 set_tsk_need_resched(p);
1316 cpu = task_cpu(p);
1317 if (cpu == smp_processor_id())
1318 return;
1320 /* NEED_RESCHED must be visible before we test polling */
1321 smp_mb();
1322 if (!tsk_is_polling(p))
1323 smp_send_reschedule(cpu);
1326 static void resched_cpu(int cpu)
1328 struct rq *rq = cpu_rq(cpu);
1329 unsigned long flags;
1331 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1332 return;
1333 resched_task(cpu_curr(cpu));
1334 raw_spin_unlock_irqrestore(&rq->lock, flags);
1337 #ifdef CONFIG_NO_HZ
1339 * In the semi idle case, use the nearest busy cpu for migrating timers
1340 * from an idle cpu. This is good for power-savings.
1342 * We don't do similar optimization for completely idle system, as
1343 * selecting an idle cpu will add more delays to the timers than intended
1344 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1346 int get_nohz_timer_target(void)
1348 int cpu = smp_processor_id();
1349 int i;
1350 struct sched_domain *sd;
1352 rcu_read_lock();
1353 for_each_domain(cpu, sd) {
1354 for_each_cpu(i, sched_domain_span(sd)) {
1355 if (!idle_cpu(i)) {
1356 cpu = i;
1357 goto unlock;
1361 unlock:
1362 rcu_read_unlock();
1363 return cpu;
1366 * When add_timer_on() enqueues a timer into the timer wheel of an
1367 * idle CPU then this timer might expire before the next timer event
1368 * which is scheduled to wake up that CPU. In case of a completely
1369 * idle system the next event might even be infinite time into the
1370 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1371 * leaves the inner idle loop so the newly added timer is taken into
1372 * account when the CPU goes back to idle and evaluates the timer
1373 * wheel for the next timer event.
1375 void wake_up_idle_cpu(int cpu)
1377 struct rq *rq = cpu_rq(cpu);
1379 if (cpu == smp_processor_id())
1380 return;
1383 * This is safe, as this function is called with the timer
1384 * wheel base lock of (cpu) held. When the CPU is on the way
1385 * to idle and has not yet set rq->curr to idle then it will
1386 * be serialized on the timer wheel base lock and take the new
1387 * timer into account automatically.
1389 if (rq->curr != rq->idle)
1390 return;
1393 * We can set TIF_RESCHED on the idle task of the other CPU
1394 * lockless. The worst case is that the other CPU runs the
1395 * idle task through an additional NOOP schedule()
1397 set_tsk_need_resched(rq->idle);
1399 /* NEED_RESCHED must be visible before we test polling */
1400 smp_mb();
1401 if (!tsk_is_polling(rq->idle))
1402 smp_send_reschedule(cpu);
1405 static inline bool got_nohz_idle_kick(void)
1407 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410 #else /* CONFIG_NO_HZ */
1412 static inline bool got_nohz_idle_kick(void)
1414 return false;
1417 #endif /* CONFIG_NO_HZ */
1419 static u64 sched_avg_period(void)
1421 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424 static void sched_avg_update(struct rq *rq)
1426 s64 period = sched_avg_period();
1428 while ((s64)(rq->clock - rq->age_stamp) > period) {
1430 * Inline assembly required to prevent the compiler
1431 * optimising this loop into a divmod call.
1432 * See __iter_div_u64_rem() for another example of this.
1434 asm("" : "+rm" (rq->age_stamp));
1435 rq->age_stamp += period;
1436 rq->rt_avg /= 2;
1440 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442 rq->rt_avg += rt_delta;
1443 sched_avg_update(rq);
1446 #else /* !CONFIG_SMP */
1447 static void resched_task(struct task_struct *p)
1449 assert_raw_spin_locked(&task_rq(p)->lock);
1450 set_tsk_need_resched(p);
1453 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1457 static void sched_avg_update(struct rq *rq)
1460 #endif /* CONFIG_SMP */
1462 #if BITS_PER_LONG == 32
1463 # define WMULT_CONST (~0UL)
1464 #else
1465 # define WMULT_CONST (1UL << 32)
1466 #endif
1468 #define WMULT_SHIFT 32
1471 * Shift right and round:
1473 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476 * delta *= weight / lw
1478 static unsigned long
1479 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1480 struct load_weight *lw)
1482 u64 tmp;
1485 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1486 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1487 * 2^SCHED_LOAD_RESOLUTION.
1489 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1490 tmp = (u64)delta_exec * scale_load_down(weight);
1491 else
1492 tmp = (u64)delta_exec;
1494 if (!lw->inv_weight) {
1495 unsigned long w = scale_load_down(lw->weight);
1497 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1498 lw->inv_weight = 1;
1499 else if (unlikely(!w))
1500 lw->inv_weight = WMULT_CONST;
1501 else
1502 lw->inv_weight = WMULT_CONST / w;
1506 * Check whether we'd overflow the 64-bit multiplication:
1508 if (unlikely(tmp > WMULT_CONST))
1509 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1510 WMULT_SHIFT/2);
1511 else
1512 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1514 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1519 lw->weight += inc;
1520 lw->inv_weight = 0;
1523 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1525 lw->weight -= dec;
1526 lw->inv_weight = 0;
1529 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1531 lw->weight = w;
1532 lw->inv_weight = 0;
1536 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1537 * of tasks with abnormal "nice" values across CPUs the contribution that
1538 * each task makes to its run queue's load is weighted according to its
1539 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1540 * scaled version of the new time slice allocation that they receive on time
1541 * slice expiry etc.
1544 #define WEIGHT_IDLEPRIO 3
1545 #define WMULT_IDLEPRIO 1431655765
1548 * Nice levels are multiplicative, with a gentle 10% change for every
1549 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1550 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1551 * that remained on nice 0.
1553 * The "10% effect" is relative and cumulative: from _any_ nice level,
1554 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1555 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1556 * If a task goes up by ~10% and another task goes down by ~10% then
1557 * the relative distance between them is ~25%.)
1559 static const int prio_to_weight[40] = {
1560 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1561 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1562 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1563 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1564 /* 0 */ 1024, 820, 655, 526, 423,
1565 /* 5 */ 335, 272, 215, 172, 137,
1566 /* 10 */ 110, 87, 70, 56, 45,
1567 /* 15 */ 36, 29, 23, 18, 15,
1571 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1573 * In cases where the weight does not change often, we can use the
1574 * precalculated inverse to speed up arithmetics by turning divisions
1575 * into multiplications:
1577 static const u32 prio_to_wmult[40] = {
1578 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1579 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1580 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1581 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1582 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1583 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1584 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1585 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 /* Time spent by the tasks of the cpu accounting group executing in ... */
1589 enum cpuacct_stat_index {
1590 CPUACCT_STAT_USER, /* ... user mode */
1591 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1593 CPUACCT_STAT_NSTATS,
1596 #ifdef CONFIG_CGROUP_CPUACCT
1597 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1598 static void cpuacct_update_stats(struct task_struct *tsk,
1599 enum cpuacct_stat_index idx, cputime_t val);
1600 #else
1601 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1602 static inline void cpuacct_update_stats(struct task_struct *tsk,
1603 enum cpuacct_stat_index idx, cputime_t val) {}
1604 #endif
1606 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1608 update_load_add(&rq->load, load);
1611 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1613 update_load_sub(&rq->load, load);
1616 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1617 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1618 typedef int (*tg_visitor)(struct task_group *, void *);
1621 * Iterate task_group tree rooted at *from, calling @down when first entering a
1622 * node and @up when leaving it for the final time.
1624 * Caller must hold rcu_lock or sufficient equivalent.
1626 static int walk_tg_tree_from(struct task_group *from,
1627 tg_visitor down, tg_visitor up, void *data)
1629 struct task_group *parent, *child;
1630 int ret;
1632 parent = from;
1634 down:
1635 ret = (*down)(parent, data);
1636 if (ret)
1637 goto out;
1638 list_for_each_entry_rcu(child, &parent->children, siblings) {
1639 parent = child;
1640 goto down;
1643 continue;
1645 ret = (*up)(parent, data);
1646 if (ret || parent == from)
1647 goto out;
1649 child = parent;
1650 parent = parent->parent;
1651 if (parent)
1652 goto up;
1653 out:
1654 return ret;
1658 * Iterate the full tree, calling @down when first entering a node and @up when
1659 * leaving it for the final time.
1661 * Caller must hold rcu_lock or sufficient equivalent.
1664 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1666 return walk_tg_tree_from(&root_task_group, down, up, data);
1669 static int tg_nop(struct task_group *tg, void *data)
1671 return 0;
1673 #endif
1675 #ifdef CONFIG_SMP
1676 /* Used instead of source_load when we know the type == 0 */
1677 static unsigned long weighted_cpuload(const int cpu)
1679 return cpu_rq(cpu)->load.weight;
1683 * Return a low guess at the load of a migration-source cpu weighted
1684 * according to the scheduling class and "nice" value.
1686 * We want to under-estimate the load of migration sources, to
1687 * balance conservatively.
1689 static unsigned long source_load(int cpu, int type)
1691 struct rq *rq = cpu_rq(cpu);
1692 unsigned long total = weighted_cpuload(cpu);
1694 if (type == 0 || !sched_feat(LB_BIAS))
1695 return total;
1697 return min(rq->cpu_load[type-1], total);
1701 * Return a high guess at the load of a migration-target cpu weighted
1702 * according to the scheduling class and "nice" value.
1704 static unsigned long target_load(int cpu, int type)
1706 struct rq *rq = cpu_rq(cpu);
1707 unsigned long total = weighted_cpuload(cpu);
1709 if (type == 0 || !sched_feat(LB_BIAS))
1710 return total;
1712 return max(rq->cpu_load[type-1], total);
1715 static unsigned long power_of(int cpu)
1717 return cpu_rq(cpu)->cpu_power;
1720 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1722 static unsigned long cpu_avg_load_per_task(int cpu)
1724 struct rq *rq = cpu_rq(cpu);
1725 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1727 if (nr_running)
1728 return rq->load.weight / nr_running;
1730 return 0;
1733 #ifdef CONFIG_PREEMPT
1735 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1739 * way at the expense of forcing extra atomic operations in all
1740 * invocations. This assures that the double_lock is acquired using the
1741 * same underlying policy as the spinlock_t on this architecture, which
1742 * reduces latency compared to the unfair variant below. However, it
1743 * also adds more overhead and therefore may reduce throughput.
1745 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(this_rq->lock)
1747 __acquires(busiest->lock)
1748 __acquires(this_rq->lock)
1750 raw_spin_unlock(&this_rq->lock);
1751 double_rq_lock(this_rq, busiest);
1753 return 1;
1756 #else
1758 * Unfair double_lock_balance: Optimizes throughput at the expense of
1759 * latency by eliminating extra atomic operations when the locks are
1760 * already in proper order on entry. This favors lower cpu-ids and will
1761 * grant the double lock to lower cpus over higher ids under contention,
1762 * regardless of entry order into the function.
1764 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1765 __releases(this_rq->lock)
1766 __acquires(busiest->lock)
1767 __acquires(this_rq->lock)
1769 int ret = 0;
1771 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1772 if (busiest < this_rq) {
1773 raw_spin_unlock(&this_rq->lock);
1774 raw_spin_lock(&busiest->lock);
1775 raw_spin_lock_nested(&this_rq->lock,
1776 SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 raw_spin_lock_nested(&busiest->lock,
1780 SINGLE_DEPTH_NESTING);
1782 return ret;
1785 #endif /* CONFIG_PREEMPT */
1788 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 if (unlikely(!irqs_disabled())) {
1793 /* printk() doesn't work good under rq->lock */
1794 raw_spin_unlock(&this_rq->lock);
1795 BUG_ON(1);
1798 return _double_lock_balance(this_rq, busiest);
1801 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1802 __releases(busiest->lock)
1804 raw_spin_unlock(&busiest->lock);
1805 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 * double_rq_lock - safely lock two runqueues
1811 * Note this does not disable interrupts like task_rq_lock,
1812 * you need to do so manually before calling.
1814 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1815 __acquires(rq1->lock)
1816 __acquires(rq2->lock)
1818 BUG_ON(!irqs_disabled());
1819 if (rq1 == rq2) {
1820 raw_spin_lock(&rq1->lock);
1821 __acquire(rq2->lock); /* Fake it out ;) */
1822 } else {
1823 if (rq1 < rq2) {
1824 raw_spin_lock(&rq1->lock);
1825 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1826 } else {
1827 raw_spin_lock(&rq2->lock);
1828 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1834 * double_rq_unlock - safely unlock two runqueues
1836 * Note this does not restore interrupts like task_rq_unlock,
1837 * you need to do so manually after calling.
1839 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1840 __releases(rq1->lock)
1841 __releases(rq2->lock)
1843 raw_spin_unlock(&rq1->lock);
1844 if (rq1 != rq2)
1845 raw_spin_unlock(&rq2->lock);
1846 else
1847 __release(rq2->lock);
1850 #else /* CONFIG_SMP */
1853 * double_rq_lock - safely lock two runqueues
1855 * Note this does not disable interrupts like task_rq_lock,
1856 * you need to do so manually before calling.
1858 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1859 __acquires(rq1->lock)
1860 __acquires(rq2->lock)
1862 BUG_ON(!irqs_disabled());
1863 BUG_ON(rq1 != rq2);
1864 raw_spin_lock(&rq1->lock);
1865 __acquire(rq2->lock); /* Fake it out ;) */
1869 * double_rq_unlock - safely unlock two runqueues
1871 * Note this does not restore interrupts like task_rq_unlock,
1872 * you need to do so manually after calling.
1874 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1875 __releases(rq1->lock)
1876 __releases(rq2->lock)
1878 BUG_ON(rq1 != rq2);
1879 raw_spin_unlock(&rq1->lock);
1880 __release(rq2->lock);
1883 #endif
1885 static void update_sysctl(void);
1886 static int get_update_sysctl_factor(void);
1887 static void update_idle_cpu_load(struct rq *this_rq);
1889 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 set_task_rq(p, cpu);
1892 #ifdef CONFIG_SMP
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfully executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1898 smp_wmb();
1899 task_thread_info(p)->cpu = cpu;
1900 #endif
1903 static const struct sched_class rt_sched_class;
1905 #define sched_class_highest (&stop_sched_class)
1906 #define for_each_class(class) \
1907 for (class = sched_class_highest; class; class = class->next)
1909 #include "sched_stats.h"
1911 static void inc_nr_running(struct rq *rq)
1913 rq->nr_running++;
1916 static void dec_nr_running(struct rq *rq)
1918 rq->nr_running--;
1921 static void set_load_weight(struct task_struct *p)
1923 int prio = p->static_prio - MAX_RT_PRIO;
1924 struct load_weight *load = &p->se.load;
1927 * SCHED_IDLE tasks get minimal weight:
1929 if (p->policy == SCHED_IDLE) {
1930 load->weight = scale_load(WEIGHT_IDLEPRIO);
1931 load->inv_weight = WMULT_IDLEPRIO;
1932 return;
1935 load->weight = scale_load(prio_to_weight[prio]);
1936 load->inv_weight = prio_to_wmult[prio];
1939 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1941 update_rq_clock(rq);
1942 sched_info_queued(p);
1943 p->sched_class->enqueue_task(rq, p, flags);
1946 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1948 update_rq_clock(rq);
1949 sched_info_dequeued(p);
1950 p->sched_class->dequeue_task(rq, p, flags);
1954 * activate_task - move a task to the runqueue.
1956 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1958 if (task_contributes_to_load(p))
1959 rq->nr_uninterruptible--;
1961 enqueue_task(rq, p, flags);
1965 * deactivate_task - remove a task from the runqueue.
1967 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1969 if (task_contributes_to_load(p))
1970 rq->nr_uninterruptible++;
1972 dequeue_task(rq, p, flags);
1975 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1978 * There are no locks covering percpu hardirq/softirq time.
1979 * They are only modified in account_system_vtime, on corresponding CPU
1980 * with interrupts disabled. So, writes are safe.
1981 * They are read and saved off onto struct rq in update_rq_clock().
1982 * This may result in other CPU reading this CPU's irq time and can
1983 * race with irq/account_system_vtime on this CPU. We would either get old
1984 * or new value with a side effect of accounting a slice of irq time to wrong
1985 * task when irq is in progress while we read rq->clock. That is a worthy
1986 * compromise in place of having locks on each irq in account_system_time.
1988 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1989 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1991 static DEFINE_PER_CPU(u64, irq_start_time);
1992 static int sched_clock_irqtime;
1994 void enable_sched_clock_irqtime(void)
1996 sched_clock_irqtime = 1;
1999 void disable_sched_clock_irqtime(void)
2001 sched_clock_irqtime = 0;
2004 #ifndef CONFIG_64BIT
2005 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2007 static inline void irq_time_write_begin(void)
2009 __this_cpu_inc(irq_time_seq.sequence);
2010 smp_wmb();
2013 static inline void irq_time_write_end(void)
2015 smp_wmb();
2016 __this_cpu_inc(irq_time_seq.sequence);
2019 static inline u64 irq_time_read(int cpu)
2021 u64 irq_time;
2022 unsigned seq;
2024 do {
2025 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2026 irq_time = per_cpu(cpu_softirq_time, cpu) +
2027 per_cpu(cpu_hardirq_time, cpu);
2028 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2030 return irq_time;
2032 #else /* CONFIG_64BIT */
2033 static inline void irq_time_write_begin(void)
2037 static inline void irq_time_write_end(void)
2041 static inline u64 irq_time_read(int cpu)
2043 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2045 #endif /* CONFIG_64BIT */
2048 * Called before incrementing preempt_count on {soft,}irq_enter
2049 * and before decrementing preempt_count on {soft,}irq_exit.
2051 void account_system_vtime(struct task_struct *curr)
2053 unsigned long flags;
2054 s64 delta;
2055 int cpu;
2057 if (!sched_clock_irqtime)
2058 return;
2060 local_irq_save(flags);
2062 cpu = smp_processor_id();
2063 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2064 __this_cpu_add(irq_start_time, delta);
2066 irq_time_write_begin();
2068 * We do not account for softirq time from ksoftirqd here.
2069 * We want to continue accounting softirq time to ksoftirqd thread
2070 * in that case, so as not to confuse scheduler with a special task
2071 * that do not consume any time, but still wants to run.
2073 if (hardirq_count())
2074 __this_cpu_add(cpu_hardirq_time, delta);
2075 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2076 __this_cpu_add(cpu_softirq_time, delta);
2078 irq_time_write_end();
2079 local_irq_restore(flags);
2081 EXPORT_SYMBOL_GPL(account_system_vtime);
2083 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2085 #ifdef CONFIG_PARAVIRT
2086 static inline u64 steal_ticks(u64 steal)
2088 if (unlikely(steal > NSEC_PER_SEC))
2089 return div_u64(steal, TICK_NSEC);
2091 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2093 #endif
2095 static void update_rq_clock_task(struct rq *rq, s64 delta)
2098 * In theory, the compile should just see 0 here, and optimize out the call
2099 * to sched_rt_avg_update. But I don't trust it...
2101 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2102 s64 steal = 0, irq_delta = 0;
2103 #endif
2104 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2105 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2108 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2109 * this case when a previous update_rq_clock() happened inside a
2110 * {soft,}irq region.
2112 * When this happens, we stop ->clock_task and only update the
2113 * prev_irq_time stamp to account for the part that fit, so that a next
2114 * update will consume the rest. This ensures ->clock_task is
2115 * monotonic.
2117 * It does however cause some slight miss-attribution of {soft,}irq
2118 * time, a more accurate solution would be to update the irq_time using
2119 * the current rq->clock timestamp, except that would require using
2120 * atomic ops.
2122 if (irq_delta > delta)
2123 irq_delta = delta;
2125 rq->prev_irq_time += irq_delta;
2126 delta -= irq_delta;
2127 #endif
2128 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2129 if (static_branch((&paravirt_steal_rq_enabled))) {
2130 u64 st;
2132 steal = paravirt_steal_clock(cpu_of(rq));
2133 steal -= rq->prev_steal_time_rq;
2135 if (unlikely(steal > delta))
2136 steal = delta;
2138 st = steal_ticks(steal);
2139 steal = st * TICK_NSEC;
2141 rq->prev_steal_time_rq += steal;
2143 delta -= steal;
2145 #endif
2147 rq->clock_task += delta;
2149 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2150 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2151 sched_rt_avg_update(rq, irq_delta + steal);
2152 #endif
2155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2156 static int irqtime_account_hi_update(void)
2158 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2159 unsigned long flags;
2160 u64 latest_ns;
2161 int ret = 0;
2163 local_irq_save(flags);
2164 latest_ns = this_cpu_read(cpu_hardirq_time);
2165 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2166 ret = 1;
2167 local_irq_restore(flags);
2168 return ret;
2171 static int irqtime_account_si_update(void)
2173 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2174 unsigned long flags;
2175 u64 latest_ns;
2176 int ret = 0;
2178 local_irq_save(flags);
2179 latest_ns = this_cpu_read(cpu_softirq_time);
2180 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2181 ret = 1;
2182 local_irq_restore(flags);
2183 return ret;
2186 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2188 #define sched_clock_irqtime (0)
2190 #endif
2192 #include "sched_idletask.c"
2193 #include "sched_fair.c"
2194 #include "sched_rt.c"
2195 #include "sched_autogroup.c"
2196 #include "sched_stoptask.c"
2197 #ifdef CONFIG_SCHED_DEBUG
2198 # include "sched_debug.c"
2199 #endif
2201 void sched_set_stop_task(int cpu, struct task_struct *stop)
2203 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2204 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2206 if (stop) {
2208 * Make it appear like a SCHED_FIFO task, its something
2209 * userspace knows about and won't get confused about.
2211 * Also, it will make PI more or less work without too
2212 * much confusion -- but then, stop work should not
2213 * rely on PI working anyway.
2215 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2217 stop->sched_class = &stop_sched_class;
2220 cpu_rq(cpu)->stop = stop;
2222 if (old_stop) {
2224 * Reset it back to a normal scheduling class so that
2225 * it can die in pieces.
2227 old_stop->sched_class = &rt_sched_class;
2232 * __normal_prio - return the priority that is based on the static prio
2234 static inline int __normal_prio(struct task_struct *p)
2236 return p->static_prio;
2240 * Calculate the expected normal priority: i.e. priority
2241 * without taking RT-inheritance into account. Might be
2242 * boosted by interactivity modifiers. Changes upon fork,
2243 * setprio syscalls, and whenever the interactivity
2244 * estimator recalculates.
2246 static inline int normal_prio(struct task_struct *p)
2248 int prio;
2250 if (task_has_rt_policy(p))
2251 prio = MAX_RT_PRIO-1 - p->rt_priority;
2252 else
2253 prio = __normal_prio(p);
2254 return prio;
2258 * Calculate the current priority, i.e. the priority
2259 * taken into account by the scheduler. This value might
2260 * be boosted by RT tasks, or might be boosted by
2261 * interactivity modifiers. Will be RT if the task got
2262 * RT-boosted. If not then it returns p->normal_prio.
2264 static int effective_prio(struct task_struct *p)
2266 p->normal_prio = normal_prio(p);
2268 * If we are RT tasks or we were boosted to RT priority,
2269 * keep the priority unchanged. Otherwise, update priority
2270 * to the normal priority:
2272 if (!rt_prio(p->prio))
2273 return p->normal_prio;
2274 return p->prio;
2278 * task_curr - is this task currently executing on a CPU?
2279 * @p: the task in question.
2281 inline int task_curr(const struct task_struct *p)
2283 return cpu_curr(task_cpu(p)) == p;
2286 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2287 const struct sched_class *prev_class,
2288 int oldprio)
2290 if (prev_class != p->sched_class) {
2291 if (prev_class->switched_from)
2292 prev_class->switched_from(rq, p);
2293 p->sched_class->switched_to(rq, p);
2294 } else if (oldprio != p->prio)
2295 p->sched_class->prio_changed(rq, p, oldprio);
2298 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2300 const struct sched_class *class;
2302 if (p->sched_class == rq->curr->sched_class) {
2303 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2304 } else {
2305 for_each_class(class) {
2306 if (class == rq->curr->sched_class)
2307 break;
2308 if (class == p->sched_class) {
2309 resched_task(rq->curr);
2310 break;
2316 * A queue event has occurred, and we're going to schedule. In
2317 * this case, we can save a useless back to back clock update.
2319 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2320 rq->skip_clock_update = 1;
2323 #ifdef CONFIG_SMP
2325 * Is this task likely cache-hot:
2327 static int
2328 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2330 s64 delta;
2332 if (p->sched_class != &fair_sched_class)
2333 return 0;
2335 if (unlikely(p->policy == SCHED_IDLE))
2336 return 0;
2339 * Buddy candidates are cache hot:
2341 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2342 (&p->se == cfs_rq_of(&p->se)->next ||
2343 &p->se == cfs_rq_of(&p->se)->last))
2344 return 1;
2346 if (sysctl_sched_migration_cost == -1)
2347 return 1;
2348 if (sysctl_sched_migration_cost == 0)
2349 return 0;
2351 delta = now - p->se.exec_start;
2353 return delta < (s64)sysctl_sched_migration_cost;
2356 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2358 #ifdef CONFIG_SCHED_DEBUG
2360 * We should never call set_task_cpu() on a blocked task,
2361 * ttwu() will sort out the placement.
2363 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2364 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2366 #ifdef CONFIG_LOCKDEP
2368 * The caller should hold either p->pi_lock or rq->lock, when changing
2369 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2371 * sched_move_task() holds both and thus holding either pins the cgroup,
2372 * see task_group().
2374 * Furthermore, all task_rq users should acquire both locks, see
2375 * task_rq_lock().
2377 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2378 lockdep_is_held(&task_rq(p)->lock)));
2379 #endif
2380 #endif
2382 trace_sched_migrate_task(p, new_cpu);
2384 if (task_cpu(p) != new_cpu) {
2385 p->se.nr_migrations++;
2386 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2389 __set_task_cpu(p, new_cpu);
2392 struct migration_arg {
2393 struct task_struct *task;
2394 int dest_cpu;
2397 static int migration_cpu_stop(void *data);
2400 * wait_task_inactive - wait for a thread to unschedule.
2402 * If @match_state is nonzero, it's the @p->state value just checked and
2403 * not expected to change. If it changes, i.e. @p might have woken up,
2404 * then return zero. When we succeed in waiting for @p to be off its CPU,
2405 * we return a positive number (its total switch count). If a second call
2406 * a short while later returns the same number, the caller can be sure that
2407 * @p has remained unscheduled the whole time.
2409 * The caller must ensure that the task *will* unschedule sometime soon,
2410 * else this function might spin for a *long* time. This function can't
2411 * be called with interrupts off, or it may introduce deadlock with
2412 * smp_call_function() if an IPI is sent by the same process we are
2413 * waiting to become inactive.
2415 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2417 unsigned long flags;
2418 int running, on_rq;
2419 unsigned long ncsw;
2420 struct rq *rq;
2422 for (;;) {
2424 * We do the initial early heuristics without holding
2425 * any task-queue locks at all. We'll only try to get
2426 * the runqueue lock when things look like they will
2427 * work out!
2429 rq = task_rq(p);
2432 * If the task is actively running on another CPU
2433 * still, just relax and busy-wait without holding
2434 * any locks.
2436 * NOTE! Since we don't hold any locks, it's not
2437 * even sure that "rq" stays as the right runqueue!
2438 * But we don't care, since "task_running()" will
2439 * return false if the runqueue has changed and p
2440 * is actually now running somewhere else!
2442 while (task_running(rq, p)) {
2443 if (match_state && unlikely(p->state != match_state))
2444 return 0;
2445 cpu_relax();
2449 * Ok, time to look more closely! We need the rq
2450 * lock now, to be *sure*. If we're wrong, we'll
2451 * just go back and repeat.
2453 rq = task_rq_lock(p, &flags);
2454 trace_sched_wait_task(p);
2455 running = task_running(rq, p);
2456 on_rq = p->on_rq;
2457 ncsw = 0;
2458 if (!match_state || p->state == match_state)
2459 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2460 task_rq_unlock(rq, p, &flags);
2463 * If it changed from the expected state, bail out now.
2465 if (unlikely(!ncsw))
2466 break;
2469 * Was it really running after all now that we
2470 * checked with the proper locks actually held?
2472 * Oops. Go back and try again..
2474 if (unlikely(running)) {
2475 cpu_relax();
2476 continue;
2480 * It's not enough that it's not actively running,
2481 * it must be off the runqueue _entirely_, and not
2482 * preempted!
2484 * So if it was still runnable (but just not actively
2485 * running right now), it's preempted, and we should
2486 * yield - it could be a while.
2488 if (unlikely(on_rq)) {
2489 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2491 set_current_state(TASK_UNINTERRUPTIBLE);
2492 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2493 continue;
2497 * Ahh, all good. It wasn't running, and it wasn't
2498 * runnable, which means that it will never become
2499 * running in the future either. We're all done!
2501 break;
2504 return ncsw;
2507 /***
2508 * kick_process - kick a running thread to enter/exit the kernel
2509 * @p: the to-be-kicked thread
2511 * Cause a process which is running on another CPU to enter
2512 * kernel-mode, without any delay. (to get signals handled.)
2514 * NOTE: this function doesn't have to take the runqueue lock,
2515 * because all it wants to ensure is that the remote task enters
2516 * the kernel. If the IPI races and the task has been migrated
2517 * to another CPU then no harm is done and the purpose has been
2518 * achieved as well.
2520 void kick_process(struct task_struct *p)
2522 int cpu;
2524 preempt_disable();
2525 cpu = task_cpu(p);
2526 if ((cpu != smp_processor_id()) && task_curr(p))
2527 smp_send_reschedule(cpu);
2528 preempt_enable();
2530 EXPORT_SYMBOL_GPL(kick_process);
2531 #endif /* CONFIG_SMP */
2533 #ifdef CONFIG_SMP
2535 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2537 static int select_fallback_rq(int cpu, struct task_struct *p)
2539 int dest_cpu;
2540 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2542 /* Look for allowed, online CPU in same node. */
2543 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2544 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2545 return dest_cpu;
2547 /* Any allowed, online CPU? */
2548 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2549 if (dest_cpu < nr_cpu_ids)
2550 return dest_cpu;
2552 /* No more Mr. Nice Guy. */
2553 dest_cpu = cpuset_cpus_allowed_fallback(p);
2555 * Don't tell them about moving exiting tasks or
2556 * kernel threads (both mm NULL), since they never
2557 * leave kernel.
2559 if (p->mm && printk_ratelimit()) {
2560 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2561 task_pid_nr(p), p->comm, cpu);
2564 return dest_cpu;
2568 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2570 static inline
2571 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2573 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2576 * In order not to call set_task_cpu() on a blocking task we need
2577 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2578 * cpu.
2580 * Since this is common to all placement strategies, this lives here.
2582 * [ this allows ->select_task() to simply return task_cpu(p) and
2583 * not worry about this generic constraint ]
2585 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2586 !cpu_online(cpu)))
2587 cpu = select_fallback_rq(task_cpu(p), p);
2589 return cpu;
2592 static void update_avg(u64 *avg, u64 sample)
2594 s64 diff = sample - *avg;
2595 *avg += diff >> 3;
2597 #endif
2599 static void
2600 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2602 #ifdef CONFIG_SCHEDSTATS
2603 struct rq *rq = this_rq();
2605 #ifdef CONFIG_SMP
2606 int this_cpu = smp_processor_id();
2608 if (cpu == this_cpu) {
2609 schedstat_inc(rq, ttwu_local);
2610 schedstat_inc(p, se.statistics.nr_wakeups_local);
2611 } else {
2612 struct sched_domain *sd;
2614 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2615 rcu_read_lock();
2616 for_each_domain(this_cpu, sd) {
2617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2618 schedstat_inc(sd, ttwu_wake_remote);
2619 break;
2622 rcu_read_unlock();
2625 if (wake_flags & WF_MIGRATED)
2626 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2628 #endif /* CONFIG_SMP */
2630 schedstat_inc(rq, ttwu_count);
2631 schedstat_inc(p, se.statistics.nr_wakeups);
2633 if (wake_flags & WF_SYNC)
2634 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2636 #endif /* CONFIG_SCHEDSTATS */
2639 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2641 activate_task(rq, p, en_flags);
2642 p->on_rq = 1;
2644 /* if a worker is waking up, notify workqueue */
2645 if (p->flags & PF_WQ_WORKER)
2646 wq_worker_waking_up(p, cpu_of(rq));
2650 * Mark the task runnable and perform wakeup-preemption.
2652 static void
2653 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2655 trace_sched_wakeup(p, true);
2656 check_preempt_curr(rq, p, wake_flags);
2658 p->state = TASK_RUNNING;
2659 #ifdef CONFIG_SMP
2660 if (p->sched_class->task_woken)
2661 p->sched_class->task_woken(rq, p);
2663 if (rq->idle_stamp) {
2664 u64 delta = rq->clock - rq->idle_stamp;
2665 u64 max = 2*sysctl_sched_migration_cost;
2667 if (delta > max)
2668 rq->avg_idle = max;
2669 else
2670 update_avg(&rq->avg_idle, delta);
2671 rq->idle_stamp = 0;
2673 #endif
2676 static void
2677 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2679 #ifdef CONFIG_SMP
2680 if (p->sched_contributes_to_load)
2681 rq->nr_uninterruptible--;
2682 #endif
2684 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2685 ttwu_do_wakeup(rq, p, wake_flags);
2689 * Called in case the task @p isn't fully descheduled from its runqueue,
2690 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2691 * since all we need to do is flip p->state to TASK_RUNNING, since
2692 * the task is still ->on_rq.
2694 static int ttwu_remote(struct task_struct *p, int wake_flags)
2696 struct rq *rq;
2697 int ret = 0;
2699 rq = __task_rq_lock(p);
2700 if (p->on_rq) {
2701 ttwu_do_wakeup(rq, p, wake_flags);
2702 ret = 1;
2704 __task_rq_unlock(rq);
2706 return ret;
2709 #ifdef CONFIG_SMP
2710 static void sched_ttwu_pending(void)
2712 struct rq *rq = this_rq();
2713 struct llist_node *llist = llist_del_all(&rq->wake_list);
2714 struct task_struct *p;
2716 raw_spin_lock(&rq->lock);
2718 while (llist) {
2719 p = llist_entry(llist, struct task_struct, wake_entry);
2720 llist = llist_next(llist);
2721 ttwu_do_activate(rq, p, 0);
2724 raw_spin_unlock(&rq->lock);
2727 void scheduler_ipi(void)
2729 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2730 return;
2733 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2734 * traditionally all their work was done from the interrupt return
2735 * path. Now that we actually do some work, we need to make sure
2736 * we do call them.
2738 * Some archs already do call them, luckily irq_enter/exit nest
2739 * properly.
2741 * Arguably we should visit all archs and update all handlers,
2742 * however a fair share of IPIs are still resched only so this would
2743 * somewhat pessimize the simple resched case.
2745 irq_enter();
2746 sched_ttwu_pending();
2749 * Check if someone kicked us for doing the nohz idle load balance.
2751 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2752 this_rq()->idle_balance = 1;
2753 raise_softirq_irqoff(SCHED_SOFTIRQ);
2755 irq_exit();
2758 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2760 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2761 smp_send_reschedule(cpu);
2764 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2765 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2767 struct rq *rq;
2768 int ret = 0;
2770 rq = __task_rq_lock(p);
2771 if (p->on_cpu) {
2772 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2773 ttwu_do_wakeup(rq, p, wake_flags);
2774 ret = 1;
2776 __task_rq_unlock(rq);
2778 return ret;
2781 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2782 #endif /* CONFIG_SMP */
2784 static void ttwu_queue(struct task_struct *p, int cpu)
2786 struct rq *rq = cpu_rq(cpu);
2788 #if defined(CONFIG_SMP)
2789 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2790 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2791 ttwu_queue_remote(p, cpu);
2792 return;
2794 #endif
2796 raw_spin_lock(&rq->lock);
2797 ttwu_do_activate(rq, p, 0);
2798 raw_spin_unlock(&rq->lock);
2802 * try_to_wake_up - wake up a thread
2803 * @p: the thread to be awakened
2804 * @state: the mask of task states that can be woken
2805 * @wake_flags: wake modifier flags (WF_*)
2807 * Put it on the run-queue if it's not already there. The "current"
2808 * thread is always on the run-queue (except when the actual
2809 * re-schedule is in progress), and as such you're allowed to do
2810 * the simpler "current->state = TASK_RUNNING" to mark yourself
2811 * runnable without the overhead of this.
2813 * Returns %true if @p was woken up, %false if it was already running
2814 * or @state didn't match @p's state.
2816 static int
2817 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2819 unsigned long flags;
2820 int cpu, success = 0;
2822 smp_wmb();
2823 raw_spin_lock_irqsave(&p->pi_lock, flags);
2824 if (!(p->state & state))
2825 goto out;
2827 success = 1; /* we're going to change ->state */
2828 cpu = task_cpu(p);
2830 if (p->on_rq && ttwu_remote(p, wake_flags))
2831 goto stat;
2833 #ifdef CONFIG_SMP
2835 * If the owning (remote) cpu is still in the middle of schedule() with
2836 * this task as prev, wait until its done referencing the task.
2838 while (p->on_cpu) {
2839 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2841 * In case the architecture enables interrupts in
2842 * context_switch(), we cannot busy wait, since that
2843 * would lead to deadlocks when an interrupt hits and
2844 * tries to wake up @prev. So bail and do a complete
2845 * remote wakeup.
2847 if (ttwu_activate_remote(p, wake_flags))
2848 goto stat;
2849 #else
2850 cpu_relax();
2851 #endif
2854 * Pairs with the smp_wmb() in finish_lock_switch().
2856 smp_rmb();
2858 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2859 p->state = TASK_WAKING;
2861 if (p->sched_class->task_waking)
2862 p->sched_class->task_waking(p);
2864 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2865 if (task_cpu(p) != cpu) {
2866 wake_flags |= WF_MIGRATED;
2867 set_task_cpu(p, cpu);
2869 #endif /* CONFIG_SMP */
2871 ttwu_queue(p, cpu);
2872 stat:
2873 ttwu_stat(p, cpu, wake_flags);
2874 out:
2875 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2877 return success;
2881 * try_to_wake_up_local - try to wake up a local task with rq lock held
2882 * @p: the thread to be awakened
2884 * Put @p on the run-queue if it's not already there. The caller must
2885 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2886 * the current task.
2888 static void try_to_wake_up_local(struct task_struct *p)
2890 struct rq *rq = task_rq(p);
2892 if (WARN_ON_ONCE(rq != this_rq()) ||
2893 WARN_ON_ONCE(p == current))
2894 return;
2896 lockdep_assert_held(&rq->lock);
2898 if (!raw_spin_trylock(&p->pi_lock)) {
2899 raw_spin_unlock(&rq->lock);
2900 raw_spin_lock(&p->pi_lock);
2901 raw_spin_lock(&rq->lock);
2904 if (!(p->state & TASK_NORMAL))
2905 goto out;
2907 if (!p->on_rq)
2908 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2910 ttwu_do_wakeup(rq, p, 0);
2911 ttwu_stat(p, smp_processor_id(), 0);
2912 out:
2913 raw_spin_unlock(&p->pi_lock);
2917 * wake_up_process - Wake up a specific process
2918 * @p: The process to be woken up.
2920 * Attempt to wake up the nominated process and move it to the set of runnable
2921 * processes. Returns 1 if the process was woken up, 0 if it was already
2922 * running.
2924 * It may be assumed that this function implies a write memory barrier before
2925 * changing the task state if and only if any tasks are woken up.
2927 int wake_up_process(struct task_struct *p)
2929 WARN_ON(task_is_stopped_or_traced(p));
2930 return try_to_wake_up(p, TASK_NORMAL, 0);
2932 EXPORT_SYMBOL(wake_up_process);
2934 int wake_up_state(struct task_struct *p, unsigned int state)
2936 return try_to_wake_up(p, state, 0);
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2943 * __sched_fork() is basic setup used by init_idle() too:
2945 static void __sched_fork(struct task_struct *p)
2947 p->on_rq = 0;
2949 p->se.on_rq = 0;
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
2952 p->se.prev_sum_exec_runtime = 0;
2953 p->se.nr_migrations = 0;
2954 p->se.vruntime = 0;
2955 INIT_LIST_HEAD(&p->se.group_node);
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2959 #endif
2961 INIT_LIST_HEAD(&p->rt.run_list);
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965 #endif
2969 * fork()/clone()-time setup:
2971 void sched_fork(struct task_struct *p)
2973 unsigned long flags;
2974 int cpu = get_cpu();
2976 __sched_fork(p);
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2982 p->state = TASK_RUNNING;
2985 * Make sure we do not leak PI boosting priority to the child.
2987 p->prio = current->normal_prio;
2990 * Revert to default priority/policy on fork if requested.
2992 if (unlikely(p->sched_reset_on_fork)) {
2993 if (task_has_rt_policy(p)) {
2994 p->policy = SCHED_NORMAL;
2995 p->static_prio = NICE_TO_PRIO(0);
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3007 p->sched_reset_on_fork = 0;
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3021 * Silence PROVE_RCU.
3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
3024 set_task_cpu(p, cpu);
3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
3030 #endif
3031 #if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
3033 #endif
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p)->preempt_count = 1;
3037 #endif
3038 #ifdef CONFIG_SMP
3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3040 #endif
3042 put_cpu();
3046 * wake_up_new_task - wake up a newly created task for the first time.
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3052 void wake_up_new_task(struct task_struct *p)
3054 unsigned long flags;
3055 struct rq *rq;
3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
3058 #ifdef CONFIG_SMP
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3065 #endif
3067 rq = __task_rq_lock(p);
3068 activate_task(rq, p, 0);
3069 p->on_rq = 1;
3070 trace_sched_wakeup_new(p, true);
3071 check_preempt_curr(rq, p, WF_FORK);
3072 #ifdef CONFIG_SMP
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
3075 #endif
3076 task_rq_unlock(rq, p, &flags);
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3085 void preempt_notifier_register(struct preempt_notifier *notifier)
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3095 * This is safe to call from within a preemption notifier.
3097 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3099 hlist_del(&notifier->link);
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3103 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3112 static void
3113 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3125 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3129 static void
3130 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3150 static inline void
3151 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
3156 fire_sched_out_preempt_notifiers(prev, next);
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
3159 trace_sched_switch(prev, next);
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3177 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3178 __releases(rq->lock)
3180 struct mm_struct *mm = rq->prev_mm;
3181 long prev_state;
3183 rq->prev_mm = NULL;
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3196 prev_state = prev->state;
3197 finish_arch_switch(prev);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev, current);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq, prev);
3207 fire_sched_in_preempt_notifiers(current);
3208 if (mm)
3209 mmdrop(mm);
3210 if (unlikely(prev_state == TASK_DEAD)) {
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3215 kprobe_flush_task(prev);
3216 put_task_struct(prev);
3220 #ifdef CONFIG_SMP
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq *rq)
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3235 raw_spin_lock_irqsave(&rq->lock, flags);
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3240 rq->post_schedule = 0;
3244 #else
3246 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3250 static inline void post_schedule(struct rq *rq)
3254 #endif
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3260 asmlinkage void schedule_tail(struct task_struct *prev)
3261 __releases(rq->lock)
3263 struct rq *rq = this_rq();
3265 finish_task_switch(rq, prev);
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3271 post_schedule(rq);
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276 #endif
3277 if (current->set_child_tid)
3278 put_user(task_pid_vnr(current), current->set_child_tid);
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3285 static inline void
3286 context_switch(struct rq *rq, struct task_struct *prev,
3287 struct task_struct *next)
3289 struct mm_struct *mm, *oldmm;
3291 prepare_task_switch(rq, prev, next);
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3300 arch_start_context_switch(prev);
3302 if (!mm) {
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3309 if (!prev->mm) {
3310 prev->active_mm = NULL;
3311 rq->prev_mm = oldmm;
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3321 #endif
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3326 barrier();
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3332 finish_task_switch(this_rq(), prev);
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3342 unsigned long nr_running(void)
3344 unsigned long i, sum = 0;
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3349 return sum;
3352 unsigned long nr_uninterruptible(void)
3354 unsigned long i, sum = 0;
3356 for_each_possible_cpu(i)
3357 sum += cpu_rq(i)->nr_uninterruptible;
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
3366 return sum;
3369 unsigned long long nr_context_switches(void)
3371 int i;
3372 unsigned long long sum = 0;
3374 for_each_possible_cpu(i)
3375 sum += cpu_rq(i)->nr_switches;
3377 return sum;
3380 unsigned long nr_iowait(void)
3382 unsigned long i, sum = 0;
3384 for_each_possible_cpu(i)
3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3387 return sum;
3390 unsigned long nr_iowait_cpu(int cpu)
3392 struct rq *this = cpu_rq(cpu);
3393 return atomic_read(&this->nr_iowait);
3396 unsigned long this_cpu_load(void)
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3404 * Global load-average calculations
3406 * We take a distributed and async approach to calculating the global load-avg
3407 * in order to minimize overhead.
3409 * The global load average is an exponentially decaying average of nr_running +
3410 * nr_uninterruptible.
3412 * Once every LOAD_FREQ:
3414 * nr_active = 0;
3415 * for_each_possible_cpu(cpu)
3416 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
3418 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
3420 * Due to a number of reasons the above turns in the mess below:
3422 * - for_each_possible_cpu() is prohibitively expensive on machines with
3423 * serious number of cpus, therefore we need to take a distributed approach
3424 * to calculating nr_active.
3426 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
3427 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
3429 * So assuming nr_active := 0 when we start out -- true per definition, we
3430 * can simply take per-cpu deltas and fold those into a global accumulate
3431 * to obtain the same result. See calc_load_fold_active().
3433 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
3434 * across the machine, we assume 10 ticks is sufficient time for every
3435 * cpu to have completed this task.
3437 * This places an upper-bound on the IRQ-off latency of the machine. Then
3438 * again, being late doesn't loose the delta, just wrecks the sample.
3440 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
3441 * this would add another cross-cpu cacheline miss and atomic operation
3442 * to the wakeup path. Instead we increment on whatever cpu the task ran
3443 * when it went into uninterruptible state and decrement on whatever cpu
3444 * did the wakeup. This means that only the sum of nr_uninterruptible over
3445 * all cpus yields the correct result.
3447 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
3450 /* Variables and functions for calc_load */
3451 static atomic_long_t calc_load_tasks;
3452 static unsigned long calc_load_update;
3453 unsigned long avenrun[3];
3454 EXPORT_SYMBOL(avenrun); /* should be removed */
3457 * get_avenrun - get the load average array
3458 * @loads: pointer to dest load array
3459 * @offset: offset to add
3460 * @shift: shift count to shift the result left
3462 * These values are estimates at best, so no need for locking.
3464 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3466 loads[0] = (avenrun[0] + offset) << shift;
3467 loads[1] = (avenrun[1] + offset) << shift;
3468 loads[2] = (avenrun[2] + offset) << shift;
3471 static long calc_load_fold_active(struct rq *this_rq)
3473 long nr_active, delta = 0;
3475 nr_active = this_rq->nr_running;
3476 nr_active += (long) this_rq->nr_uninterruptible;
3478 if (nr_active != this_rq->calc_load_active) {
3479 delta = nr_active - this_rq->calc_load_active;
3480 this_rq->calc_load_active = nr_active;
3483 return delta;
3487 * a1 = a0 * e + a * (1 - e)
3489 static unsigned long
3490 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3492 load *= exp;
3493 load += active * (FIXED_1 - exp);
3494 load += 1UL << (FSHIFT - 1);
3495 return load >> FSHIFT;
3498 #ifdef CONFIG_NO_HZ
3500 * Handle NO_HZ for the global load-average.
3502 * Since the above described distributed algorithm to compute the global
3503 * load-average relies on per-cpu sampling from the tick, it is affected by
3504 * NO_HZ.
3506 * The basic idea is to fold the nr_active delta into a global idle-delta upon
3507 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
3508 * when we read the global state.
3510 * Obviously reality has to ruin such a delightfully simple scheme:
3512 * - When we go NO_HZ idle during the window, we can negate our sample
3513 * contribution, causing under-accounting.
3515 * We avoid this by keeping two idle-delta counters and flipping them
3516 * when the window starts, thus separating old and new NO_HZ load.
3518 * The only trick is the slight shift in index flip for read vs write.
3520 * 0s 5s 10s 15s
3521 * +10 +10 +10 +10
3522 * |-|-----------|-|-----------|-|-----------|-|
3523 * r:0 0 1 1 0 0 1 1 0
3524 * w:0 1 1 0 0 1 1 0 0
3526 * This ensures we'll fold the old idle contribution in this window while
3527 * accumlating the new one.
3529 * - When we wake up from NO_HZ idle during the window, we push up our
3530 * contribution, since we effectively move our sample point to a known
3531 * busy state.
3533 * This is solved by pushing the window forward, and thus skipping the
3534 * sample, for this cpu (effectively using the idle-delta for this cpu which
3535 * was in effect at the time the window opened). This also solves the issue
3536 * of having to deal with a cpu having been in NOHZ idle for multiple
3537 * LOAD_FREQ intervals.
3539 * When making the ILB scale, we should try to pull this in as well.
3541 static atomic_long_t calc_load_idle[2];
3542 static int calc_load_idx;
3544 static inline int calc_load_write_idx(void)
3546 int idx = calc_load_idx;
3549 * See calc_global_nohz(), if we observe the new index, we also
3550 * need to observe the new update time.
3552 smp_rmb();
3555 * If the folding window started, make sure we start writing in the
3556 * next idle-delta.
3558 if (!time_before(jiffies, calc_load_update))
3559 idx++;
3561 return idx & 1;
3564 static inline int calc_load_read_idx(void)
3566 return calc_load_idx & 1;
3569 void calc_load_enter_idle(void)
3571 struct rq *this_rq = this_rq();
3572 long delta;
3575 * We're going into NOHZ mode, if there's any pending delta, fold it
3576 * into the pending idle delta.
3578 delta = calc_load_fold_active(this_rq);
3579 if (delta) {
3580 int idx = calc_load_write_idx();
3581 atomic_long_add(delta, &calc_load_idle[idx]);
3585 void calc_load_exit_idle(void)
3587 struct rq *this_rq = this_rq();
3590 * If we're still before the sample window, we're done.
3592 if (time_before(jiffies, this_rq->calc_load_update))
3593 return;
3596 * We woke inside or after the sample window, this means we're already
3597 * accounted through the nohz accounting, so skip the entire deal and
3598 * sync up for the next window.
3600 this_rq->calc_load_update = calc_load_update;
3601 if (time_before(jiffies, this_rq->calc_load_update + 10))
3602 this_rq->calc_load_update += LOAD_FREQ;
3605 static long calc_load_fold_idle(void)
3607 int idx = calc_load_read_idx();
3608 long delta = 0;
3610 if (atomic_long_read(&calc_load_idle[idx]))
3611 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
3613 return delta;
3617 * fixed_power_int - compute: x^n, in O(log n) time
3619 * @x: base of the power
3620 * @frac_bits: fractional bits of @x
3621 * @n: power to raise @x to.
3623 * By exploiting the relation between the definition of the natural power
3624 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3625 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3626 * (where: n_i \elem {0, 1}, the binary vector representing n),
3627 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3628 * of course trivially computable in O(log_2 n), the length of our binary
3629 * vector.
3631 static unsigned long
3632 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3634 unsigned long result = 1UL << frac_bits;
3636 if (n) for (;;) {
3637 if (n & 1) {
3638 result *= x;
3639 result += 1UL << (frac_bits - 1);
3640 result >>= frac_bits;
3642 n >>= 1;
3643 if (!n)
3644 break;
3645 x *= x;
3646 x += 1UL << (frac_bits - 1);
3647 x >>= frac_bits;
3650 return result;
3654 * a1 = a0 * e + a * (1 - e)
3656 * a2 = a1 * e + a * (1 - e)
3657 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3658 * = a0 * e^2 + a * (1 - e) * (1 + e)
3660 * a3 = a2 * e + a * (1 - e)
3661 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3662 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3664 * ...
3666 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3667 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3668 * = a0 * e^n + a * (1 - e^n)
3670 * [1] application of the geometric series:
3672 * n 1 - x^(n+1)
3673 * S_n := \Sum x^i = -------------
3674 * i=0 1 - x
3676 static unsigned long
3677 calc_load_n(unsigned long load, unsigned long exp,
3678 unsigned long active, unsigned int n)
3681 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3685 * NO_HZ can leave us missing all per-cpu ticks calling
3686 * calc_load_account_active(), but since an idle CPU folds its delta into
3687 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3688 * in the pending idle delta if our idle period crossed a load cycle boundary.
3690 * Once we've updated the global active value, we need to apply the exponential
3691 * weights adjusted to the number of cycles missed.
3693 static void calc_global_nohz(void)
3695 long delta, active, n;
3697 if (!time_before(jiffies, calc_load_update + 10)) {
3699 * Catch-up, fold however many we are behind still
3701 delta = jiffies - calc_load_update - 10;
3702 n = 1 + (delta / LOAD_FREQ);
3704 active = atomic_long_read(&calc_load_tasks);
3705 active = active > 0 ? active * FIXED_1 : 0;
3707 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3708 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3709 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3711 calc_load_update += n * LOAD_FREQ;
3715 * Flip the idle index...
3717 * Make sure we first write the new time then flip the index, so that
3718 * calc_load_write_idx() will see the new time when it reads the new
3719 * index, this avoids a double flip messing things up.
3721 smp_wmb();
3722 calc_load_idx++;
3724 #else /* !CONFIG_NO_HZ */
3726 static inline long calc_load_fold_idle(void) { return 0; }
3727 static inline void calc_global_nohz(void) { }
3729 #endif /* CONFIG_NO_HZ */
3732 * calc_load - update the avenrun load estimates 10 ticks after the
3733 * CPUs have updated calc_load_tasks.
3735 void calc_global_load(unsigned long ticks)
3737 long active, delta;
3739 if (time_before(jiffies, calc_load_update + 10))
3740 return;
3743 * Fold the 'old' idle-delta to include all NO_HZ cpus.
3745 delta = calc_load_fold_idle();
3746 if (delta)
3747 atomic_long_add(delta, &calc_load_tasks);
3749 active = atomic_long_read(&calc_load_tasks);
3750 active = active > 0 ? active * FIXED_1 : 0;
3752 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3753 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3754 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3756 calc_load_update += LOAD_FREQ;
3759 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
3761 calc_global_nohz();
3765 * Called from update_cpu_load() to periodically update this CPU's
3766 * active count.
3768 static void calc_load_account_active(struct rq *this_rq)
3770 long delta;
3772 if (time_before(jiffies, this_rq->calc_load_update))
3773 return;
3775 delta = calc_load_fold_active(this_rq);
3776 if (delta)
3777 atomic_long_add(delta, &calc_load_tasks);
3779 this_rq->calc_load_update += LOAD_FREQ;
3783 * End of global load-average stuff
3787 * The exact cpuload at various idx values, calculated at every tick would be
3788 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3790 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3791 * on nth tick when cpu may be busy, then we have:
3792 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3793 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3795 * decay_load_missed() below does efficient calculation of
3796 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3797 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3799 * The calculation is approximated on a 128 point scale.
3800 * degrade_zero_ticks is the number of ticks after which load at any
3801 * particular idx is approximated to be zero.
3802 * degrade_factor is a precomputed table, a row for each load idx.
3803 * Each column corresponds to degradation factor for a power of two ticks,
3804 * based on 128 point scale.
3805 * Example:
3806 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3807 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3809 * With this power of 2 load factors, we can degrade the load n times
3810 * by looking at 1 bits in n and doing as many mult/shift instead of
3811 * n mult/shifts needed by the exact degradation.
3813 #define DEGRADE_SHIFT 7
3814 static const unsigned char
3815 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3816 static const unsigned char
3817 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3818 {0, 0, 0, 0, 0, 0, 0, 0},
3819 {64, 32, 8, 0, 0, 0, 0, 0},
3820 {96, 72, 40, 12, 1, 0, 0},
3821 {112, 98, 75, 43, 15, 1, 0},
3822 {120, 112, 98, 76, 45, 16, 2} };
3825 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3826 * would be when CPU is idle and so we just decay the old load without
3827 * adding any new load.
3829 static unsigned long
3830 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3832 int j = 0;
3834 if (!missed_updates)
3835 return load;
3837 if (missed_updates >= degrade_zero_ticks[idx])
3838 return 0;
3840 if (idx == 1)
3841 return load >> missed_updates;
3843 while (missed_updates) {
3844 if (missed_updates % 2)
3845 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3847 missed_updates >>= 1;
3848 j++;
3850 return load;
3854 * Update rq->cpu_load[] statistics. This function is usually called every
3855 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3856 * every tick. We fix it up based on jiffies.
3858 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
3859 unsigned long pending_updates)
3861 int i, scale;
3863 this_rq->nr_load_updates++;
3865 /* Update our load: */
3866 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3867 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3868 unsigned long old_load, new_load;
3870 /* scale is effectively 1 << i now, and >> i divides by scale */
3872 old_load = this_rq->cpu_load[i];
3873 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3874 new_load = this_load;
3876 * Round up the averaging division if load is increasing. This
3877 * prevents us from getting stuck on 9 if the load is 10, for
3878 * example.
3880 if (new_load > old_load)
3881 new_load += scale - 1;
3883 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3886 sched_avg_update(this_rq);
3889 #ifdef CONFIG_NO_HZ
3891 * There is no sane way to deal with nohz on smp when using jiffies because the
3892 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
3893 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
3895 * Therefore we cannot use the delta approach from the regular tick since that
3896 * would seriously skew the load calculation. However we'll make do for those
3897 * updates happening while idle (nohz_idle_balance) or coming out of idle
3898 * (tick_nohz_idle_exit).
3900 * This means we might still be one tick off for nohz periods.
3904 * Called from nohz_idle_balance() to update the load ratings before doing the
3905 * idle balance.
3907 static void update_idle_cpu_load(struct rq *this_rq)
3909 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
3910 unsigned long load = this_rq->load.weight;
3911 unsigned long pending_updates;
3914 * bail if there's load or we're actually up-to-date.
3916 if (load || curr_jiffies == this_rq->last_load_update_tick)
3917 return;
3919 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3920 this_rq->last_load_update_tick = curr_jiffies;
3922 __update_cpu_load(this_rq, load, pending_updates);
3926 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
3928 void update_cpu_load_nohz(void)
3930 struct rq *this_rq = this_rq();
3931 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
3932 unsigned long pending_updates;
3934 if (curr_jiffies == this_rq->last_load_update_tick)
3935 return;
3937 raw_spin_lock(&this_rq->lock);
3938 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3939 if (pending_updates) {
3940 this_rq->last_load_update_tick = curr_jiffies;
3942 * We were idle, this means load 0, the current load might be
3943 * !0 due to remote wakeups and the sort.
3945 __update_cpu_load(this_rq, 0, pending_updates);
3947 raw_spin_unlock(&this_rq->lock);
3949 #endif /* CONFIG_NO_HZ */
3952 * Called from scheduler_tick()
3954 static void update_cpu_load_active(struct rq *this_rq)
3957 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
3959 this_rq->last_load_update_tick = jiffies;
3960 __update_cpu_load(this_rq, this_rq->load.weight, 1);
3962 calc_load_account_active(this_rq);
3965 #ifdef CONFIG_SMP
3968 * sched_exec - execve() is a valuable balancing opportunity, because at
3969 * this point the task has the smallest effective memory and cache footprint.
3971 void sched_exec(void)
3973 struct task_struct *p = current;
3974 unsigned long flags;
3975 int dest_cpu;
3977 raw_spin_lock_irqsave(&p->pi_lock, flags);
3978 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3979 if (dest_cpu == smp_processor_id())
3980 goto unlock;
3982 if (likely(cpu_active(dest_cpu))) {
3983 struct migration_arg arg = { p, dest_cpu };
3985 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3986 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3987 return;
3989 unlock:
3990 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3993 #endif
3995 DEFINE_PER_CPU(struct kernel_stat, kstat);
3997 EXPORT_PER_CPU_SYMBOL(kstat);
4000 * Return any ns on the sched_clock that have not yet been accounted in
4001 * @p in case that task is currently running.
4003 * Called with task_rq_lock() held on @rq.
4005 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4007 u64 ns = 0;
4009 if (task_current(rq, p)) {
4010 update_rq_clock(rq);
4011 ns = rq->clock_task - p->se.exec_start;
4012 if ((s64)ns < 0)
4013 ns = 0;
4016 return ns;
4019 unsigned long long task_delta_exec(struct task_struct *p)
4021 unsigned long flags;
4022 struct rq *rq;
4023 u64 ns = 0;
4025 rq = task_rq_lock(p, &flags);
4026 ns = do_task_delta_exec(p, rq);
4027 task_rq_unlock(rq, p, &flags);
4029 return ns;
4033 * Return accounted runtime for the task.
4034 * In case the task is currently running, return the runtime plus current's
4035 * pending runtime that have not been accounted yet.
4037 unsigned long long task_sched_runtime(struct task_struct *p)
4039 unsigned long flags;
4040 struct rq *rq;
4041 u64 ns = 0;
4043 rq = task_rq_lock(p, &flags);
4044 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4045 task_rq_unlock(rq, p, &flags);
4047 return ns;
4051 * Account user cpu time to a process.
4052 * @p: the process that the cpu time gets accounted to
4053 * @cputime: the cpu time spent in user space since the last update
4054 * @cputime_scaled: cputime scaled by cpu frequency
4056 void account_user_time(struct task_struct *p, cputime_t cputime,
4057 cputime_t cputime_scaled)
4059 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4060 cputime64_t tmp;
4062 /* Add user time to process. */
4063 p->utime = cputime_add(p->utime, cputime);
4064 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4065 account_group_user_time(p, cputime);
4067 /* Add user time to cpustat. */
4068 tmp = cputime_to_cputime64(cputime);
4069 if (TASK_NICE(p) > 0)
4070 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4071 else
4072 cpustat->user = cputime64_add(cpustat->user, tmp);
4074 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4075 /* Account for user time used */
4076 acct_update_integrals(p);
4080 * Account guest cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in virtual machine since the last update
4083 * @cputime_scaled: cputime scaled by cpu frequency
4085 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4086 cputime_t cputime_scaled)
4088 cputime64_t tmp;
4089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4091 tmp = cputime_to_cputime64(cputime);
4093 /* Add guest time to process. */
4094 p->utime = cputime_add(p->utime, cputime);
4095 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4096 account_group_user_time(p, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime);
4099 /* Add guest time to cpustat. */
4100 if (TASK_NICE(p) > 0) {
4101 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4102 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
4103 } else {
4104 cpustat->user = cputime64_add(cpustat->user, tmp);
4105 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4110 * Account system cpu time to a process and desired cpustat field
4111 * @p: the process that the cpu time gets accounted to
4112 * @cputime: the cpu time spent in kernel space since the last update
4113 * @cputime_scaled: cputime scaled by cpu frequency
4114 * @target_cputime64: pointer to cpustat field that has to be updated
4116 static inline
4117 void __account_system_time(struct task_struct *p, cputime_t cputime,
4118 cputime_t cputime_scaled, cputime64_t *target_cputime64)
4120 cputime64_t tmp = cputime_to_cputime64(cputime);
4122 /* Add system time to process. */
4123 p->stime = cputime_add(p->stime, cputime);
4124 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4125 account_group_system_time(p, cputime);
4127 /* Add system time to cpustat. */
4128 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
4129 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4131 /* Account for system time used */
4132 acct_update_integrals(p);
4136 * Account system cpu time to a process.
4137 * @p: the process that the cpu time gets accounted to
4138 * @hardirq_offset: the offset to subtract from hardirq_count()
4139 * @cputime: the cpu time spent in kernel space since the last update
4140 * @cputime_scaled: cputime scaled by cpu frequency
4142 void account_system_time(struct task_struct *p, int hardirq_offset,
4143 cputime_t cputime, cputime_t cputime_scaled)
4145 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4146 cputime64_t *target_cputime64;
4148 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4149 account_guest_time(p, cputime, cputime_scaled);
4150 return;
4153 if (hardirq_count() - hardirq_offset)
4154 target_cputime64 = &cpustat->irq;
4155 else if (in_serving_softirq())
4156 target_cputime64 = &cpustat->softirq;
4157 else
4158 target_cputime64 = &cpustat->system;
4160 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
4164 * Account for involuntary wait time.
4165 * @cputime: the cpu time spent in involuntary wait
4167 void account_steal_time(cputime_t cputime)
4169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4170 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4172 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4176 * Account for idle time.
4177 * @cputime: the cpu time spent in idle wait
4179 void account_idle_time(cputime_t cputime)
4181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4182 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4183 struct rq *rq = this_rq();
4185 if (atomic_read(&rq->nr_iowait) > 0)
4186 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4187 else
4188 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4191 static __always_inline bool steal_account_process_tick(void)
4193 #ifdef CONFIG_PARAVIRT
4194 if (static_branch(&paravirt_steal_enabled)) {
4195 u64 steal, st = 0;
4197 steal = paravirt_steal_clock(smp_processor_id());
4198 steal -= this_rq()->prev_steal_time;
4200 st = steal_ticks(steal);
4201 this_rq()->prev_steal_time += st * TICK_NSEC;
4203 account_steal_time(st);
4204 return st;
4206 #endif
4207 return false;
4210 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4212 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4214 * Account a tick to a process and cpustat
4215 * @p: the process that the cpu time gets accounted to
4216 * @user_tick: is the tick from userspace
4217 * @rq: the pointer to rq
4219 * Tick demultiplexing follows the order
4220 * - pending hardirq update
4221 * - pending softirq update
4222 * - user_time
4223 * - idle_time
4224 * - system time
4225 * - check for guest_time
4226 * - else account as system_time
4228 * Check for hardirq is done both for system and user time as there is
4229 * no timer going off while we are on hardirq and hence we may never get an
4230 * opportunity to update it solely in system time.
4231 * p->stime and friends are only updated on system time and not on irq
4232 * softirq as those do not count in task exec_runtime any more.
4234 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4235 struct rq *rq)
4237 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4238 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4241 if (steal_account_process_tick())
4242 return;
4244 if (irqtime_account_hi_update()) {
4245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4246 } else if (irqtime_account_si_update()) {
4247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4248 } else if (this_cpu_ksoftirqd() == p) {
4250 * ksoftirqd time do not get accounted in cpu_softirq_time.
4251 * So, we have to handle it separately here.
4252 * Also, p->stime needs to be updated for ksoftirqd.
4254 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4255 &cpustat->softirq);
4256 } else if (user_tick) {
4257 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4258 } else if (p == rq->idle) {
4259 account_idle_time(cputime_one_jiffy);
4260 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4261 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4262 } else {
4263 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4264 &cpustat->system);
4268 static void irqtime_account_idle_ticks(int ticks)
4270 int i;
4271 struct rq *rq = this_rq();
4273 for (i = 0; i < ticks; i++)
4274 irqtime_account_process_tick(current, 0, rq);
4276 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4277 static void irqtime_account_idle_ticks(int ticks) {}
4278 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4279 struct rq *rq) {}
4280 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4283 * Account a single tick of cpu time.
4284 * @p: the process that the cpu time gets accounted to
4285 * @user_tick: indicates if the tick is a user or a system tick
4287 void account_process_tick(struct task_struct *p, int user_tick)
4289 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4290 struct rq *rq = this_rq();
4292 if (sched_clock_irqtime) {
4293 irqtime_account_process_tick(p, user_tick, rq);
4294 return;
4297 if (steal_account_process_tick())
4298 return;
4300 if (user_tick)
4301 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4302 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4303 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4304 one_jiffy_scaled);
4305 else
4306 account_idle_time(cputime_one_jiffy);
4310 * Account multiple ticks of steal time.
4311 * @p: the process from which the cpu time has been stolen
4312 * @ticks: number of stolen ticks
4314 void account_steal_ticks(unsigned long ticks)
4316 account_steal_time(jiffies_to_cputime(ticks));
4320 * Account multiple ticks of idle time.
4321 * @ticks: number of stolen ticks
4323 void account_idle_ticks(unsigned long ticks)
4326 if (sched_clock_irqtime) {
4327 irqtime_account_idle_ticks(ticks);
4328 return;
4331 account_idle_time(jiffies_to_cputime(ticks));
4334 #endif
4337 * Use precise platform statistics if available:
4339 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4340 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4342 *ut = p->utime;
4343 *st = p->stime;
4346 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4348 struct task_cputime cputime;
4350 thread_group_cputime(p, &cputime);
4352 *ut = cputime.utime;
4353 *st = cputime.stime;
4355 #else
4357 #ifndef nsecs_to_cputime
4358 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4359 #endif
4361 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
4363 u64 temp = (__force u64) rtime;
4365 temp *= (__force u64) utime;
4367 if (sizeof(cputime_t) == 4)
4368 temp = div_u64(temp, (__force u32) total);
4369 else
4370 temp = div64_u64(temp, (__force u64) total);
4372 return (__force cputime_t) temp;
4375 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4377 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4380 * Use CFS's precise accounting:
4382 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4384 if (total)
4385 utime = scale_utime(utime, rtime, total);
4386 else
4387 utime = rtime;
4390 * Compare with previous values, to keep monotonicity:
4392 p->prev_utime = max(p->prev_utime, utime);
4393 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4395 *ut = p->prev_utime;
4396 *st = p->prev_stime;
4400 * Must be called with siglock held.
4402 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4404 struct signal_struct *sig = p->signal;
4405 struct task_cputime cputime;
4406 cputime_t rtime, utime, total;
4408 thread_group_cputime(p, &cputime);
4410 total = cputime_add(cputime.utime, cputime.stime);
4411 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4413 if (total)
4414 utime = scale_utime(cputime.utime, rtime, total);
4415 else
4416 utime = rtime;
4418 sig->prev_utime = max(sig->prev_utime, utime);
4419 sig->prev_stime = max(sig->prev_stime,
4420 cputime_sub(rtime, sig->prev_utime));
4422 *ut = sig->prev_utime;
4423 *st = sig->prev_stime;
4425 #endif
4428 * This function gets called by the timer code, with HZ frequency.
4429 * We call it with interrupts disabled.
4431 void scheduler_tick(void)
4433 int cpu = smp_processor_id();
4434 struct rq *rq = cpu_rq(cpu);
4435 struct task_struct *curr = rq->curr;
4437 sched_clock_tick();
4439 raw_spin_lock(&rq->lock);
4440 update_rq_clock(rq);
4441 update_cpu_load_active(rq);
4442 curr->sched_class->task_tick(rq, curr, 0);
4443 raw_spin_unlock(&rq->lock);
4445 perf_event_task_tick();
4447 #ifdef CONFIG_SMP
4448 rq->idle_balance = idle_cpu(cpu);
4449 trigger_load_balance(rq, cpu);
4450 #endif
4453 notrace unsigned long get_parent_ip(unsigned long addr)
4455 if (in_lock_functions(addr)) {
4456 addr = CALLER_ADDR2;
4457 if (in_lock_functions(addr))
4458 addr = CALLER_ADDR3;
4460 return addr;
4463 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4464 defined(CONFIG_PREEMPT_TRACER))
4466 void __kprobes add_preempt_count(int val)
4468 #ifdef CONFIG_DEBUG_PREEMPT
4470 * Underflow?
4472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4473 return;
4474 #endif
4475 preempt_count() += val;
4476 #ifdef CONFIG_DEBUG_PREEMPT
4478 * Spinlock count overflowing soon?
4480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4481 PREEMPT_MASK - 10);
4482 #endif
4483 if (preempt_count() == val)
4484 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4486 EXPORT_SYMBOL(add_preempt_count);
4488 void __kprobes sub_preempt_count(int val)
4490 #ifdef CONFIG_DEBUG_PREEMPT
4492 * Underflow?
4494 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4495 return;
4497 * Is the spinlock portion underflowing?
4499 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4500 !(preempt_count() & PREEMPT_MASK)))
4501 return;
4502 #endif
4504 if (preempt_count() == val)
4505 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4506 preempt_count() -= val;
4508 EXPORT_SYMBOL(sub_preempt_count);
4510 #endif
4513 * Print scheduling while atomic bug:
4515 static noinline void __schedule_bug(struct task_struct *prev)
4517 struct pt_regs *regs = get_irq_regs();
4519 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4520 prev->comm, prev->pid, preempt_count());
4522 debug_show_held_locks(prev);
4523 print_modules();
4524 if (irqs_disabled())
4525 print_irqtrace_events(prev);
4527 if (regs)
4528 show_regs(regs);
4529 else
4530 dump_stack();
4534 * Various schedule()-time debugging checks and statistics:
4536 static inline void schedule_debug(struct task_struct *prev)
4539 * Test if we are atomic. Since do_exit() needs to call into
4540 * schedule() atomically, we ignore that path for now.
4541 * Otherwise, whine if we are scheduling when we should not be.
4543 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4544 __schedule_bug(prev);
4545 rcu_sleep_check();
4547 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4549 schedstat_inc(this_rq(), sched_count);
4552 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4554 if (prev->on_rq || rq->skip_clock_update < 0)
4555 update_rq_clock(rq);
4556 prev->sched_class->put_prev_task(rq, prev);
4560 * Pick up the highest-prio task:
4562 static inline struct task_struct *
4563 pick_next_task(struct rq *rq)
4565 const struct sched_class *class;
4566 struct task_struct *p;
4569 * Optimization: we know that if all tasks are in
4570 * the fair class we can call that function directly:
4572 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4573 p = fair_sched_class.pick_next_task(rq);
4574 if (likely(p))
4575 return p;
4578 for_each_class(class) {
4579 p = class->pick_next_task(rq);
4580 if (p)
4581 return p;
4584 BUG(); /* the idle class will always have a runnable task */
4588 * __schedule() is the main scheduler function.
4590 static void __sched __schedule(void)
4592 struct task_struct *prev, *next;
4593 unsigned long *switch_count;
4594 struct rq *rq;
4595 int cpu;
4597 need_resched:
4598 preempt_disable();
4599 cpu = smp_processor_id();
4600 rq = cpu_rq(cpu);
4601 rcu_note_context_switch(cpu);
4602 prev = rq->curr;
4604 schedule_debug(prev);
4606 if (sched_feat(HRTICK))
4607 hrtick_clear(rq);
4609 raw_spin_lock_irq(&rq->lock);
4611 switch_count = &prev->nivcsw;
4612 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4613 if (unlikely(signal_pending_state(prev->state, prev))) {
4614 prev->state = TASK_RUNNING;
4615 } else {
4616 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4617 prev->on_rq = 0;
4620 * If a worker went to sleep, notify and ask workqueue
4621 * whether it wants to wake up a task to maintain
4622 * concurrency.
4624 if (prev->flags & PF_WQ_WORKER) {
4625 struct task_struct *to_wakeup;
4627 to_wakeup = wq_worker_sleeping(prev, cpu);
4628 if (to_wakeup)
4629 try_to_wake_up_local(to_wakeup);
4632 switch_count = &prev->nvcsw;
4635 pre_schedule(rq, prev);
4637 if (unlikely(!rq->nr_running))
4638 idle_balance(cpu, rq);
4640 put_prev_task(rq, prev);
4641 next = pick_next_task(rq);
4642 clear_tsk_need_resched(prev);
4643 rq->skip_clock_update = 0;
4645 if (likely(prev != next)) {
4646 rq->nr_switches++;
4647 rq->curr = next;
4648 ++*switch_count;
4650 context_switch(rq, prev, next); /* unlocks the rq */
4652 * The context switch have flipped the stack from under us
4653 * and restored the local variables which were saved when
4654 * this task called schedule() in the past. prev == current
4655 * is still correct, but it can be moved to another cpu/rq.
4657 cpu = smp_processor_id();
4658 rq = cpu_rq(cpu);
4659 } else
4660 raw_spin_unlock_irq(&rq->lock);
4662 post_schedule(rq);
4664 preempt_enable_no_resched();
4665 if (need_resched())
4666 goto need_resched;
4669 static inline void sched_submit_work(struct task_struct *tsk)
4671 if (!tsk->state)
4672 return;
4674 * If we are going to sleep and we have plugged IO queued,
4675 * make sure to submit it to avoid deadlocks.
4677 if (blk_needs_flush_plug(tsk))
4678 blk_schedule_flush_plug(tsk);
4681 asmlinkage void __sched schedule(void)
4683 struct task_struct *tsk = current;
4685 sched_submit_work(tsk);
4686 __schedule();
4688 EXPORT_SYMBOL(schedule);
4690 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4692 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4694 if (lock->owner != owner)
4695 return false;
4698 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4699 * lock->owner still matches owner, if that fails, owner might
4700 * point to free()d memory, if it still matches, the rcu_read_lock()
4701 * ensures the memory stays valid.
4703 barrier();
4705 return owner->on_cpu;
4709 * Look out! "owner" is an entirely speculative pointer
4710 * access and not reliable.
4712 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4714 if (!sched_feat(OWNER_SPIN))
4715 return 0;
4717 rcu_read_lock();
4718 while (owner_running(lock, owner)) {
4719 if (need_resched())
4720 break;
4722 arch_mutex_cpu_relax();
4724 rcu_read_unlock();
4727 * We break out the loop above on need_resched() and when the
4728 * owner changed, which is a sign for heavy contention. Return
4729 * success only when lock->owner is NULL.
4731 return lock->owner == NULL;
4733 #endif
4735 #ifdef CONFIG_PREEMPT
4737 * this is the entry point to schedule() from in-kernel preemption
4738 * off of preempt_enable. Kernel preemptions off return from interrupt
4739 * occur there and call schedule directly.
4741 asmlinkage void __sched notrace preempt_schedule(void)
4743 struct thread_info *ti = current_thread_info();
4746 * If there is a non-zero preempt_count or interrupts are disabled,
4747 * we do not want to preempt the current task. Just return..
4749 if (likely(ti->preempt_count || irqs_disabled()))
4750 return;
4752 do {
4753 add_preempt_count_notrace(PREEMPT_ACTIVE);
4754 __schedule();
4755 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4758 * Check again in case we missed a preemption opportunity
4759 * between schedule and now.
4761 barrier();
4762 } while (need_resched());
4764 EXPORT_SYMBOL(preempt_schedule);
4767 * this is the entry point to schedule() from kernel preemption
4768 * off of irq context.
4769 * Note, that this is called and return with irqs disabled. This will
4770 * protect us against recursive calling from irq.
4772 asmlinkage void __sched preempt_schedule_irq(void)
4774 struct thread_info *ti = current_thread_info();
4776 /* Catch callers which need to be fixed */
4777 BUG_ON(ti->preempt_count || !irqs_disabled());
4779 do {
4780 add_preempt_count(PREEMPT_ACTIVE);
4781 local_irq_enable();
4782 __schedule();
4783 local_irq_disable();
4784 sub_preempt_count(PREEMPT_ACTIVE);
4787 * Check again in case we missed a preemption opportunity
4788 * between schedule and now.
4790 barrier();
4791 } while (need_resched());
4794 #endif /* CONFIG_PREEMPT */
4796 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4797 void *key)
4799 return try_to_wake_up(curr->private, mode, wake_flags);
4801 EXPORT_SYMBOL(default_wake_function);
4804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4806 * number) then we wake all the non-exclusive tasks and one exclusive task.
4808 * There are circumstances in which we can try to wake a task which has already
4809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4812 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4813 int nr_exclusive, int wake_flags, void *key)
4815 wait_queue_t *curr, *next;
4817 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4818 unsigned flags = curr->flags;
4820 if (curr->func(curr, mode, wake_flags, key) &&
4821 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4822 break;
4827 * __wake_up - wake up threads blocked on a waitqueue.
4828 * @q: the waitqueue
4829 * @mode: which threads
4830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4831 * @key: is directly passed to the wakeup function
4833 * It may be assumed that this function implies a write memory barrier before
4834 * changing the task state if and only if any tasks are woken up.
4836 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4837 int nr_exclusive, void *key)
4839 unsigned long flags;
4841 spin_lock_irqsave(&q->lock, flags);
4842 __wake_up_common(q, mode, nr_exclusive, 0, key);
4843 spin_unlock_irqrestore(&q->lock, flags);
4845 EXPORT_SYMBOL(__wake_up);
4848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4850 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4852 __wake_up_common(q, mode, 1, 0, NULL);
4854 EXPORT_SYMBOL_GPL(__wake_up_locked);
4856 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4858 __wake_up_common(q, mode, 1, 0, key);
4860 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4863 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4864 * @q: the waitqueue
4865 * @mode: which threads
4866 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4867 * @key: opaque value to be passed to wakeup targets
4869 * The sync wakeup differs that the waker knows that it will schedule
4870 * away soon, so while the target thread will be woken up, it will not
4871 * be migrated to another CPU - ie. the two threads are 'synchronized'
4872 * with each other. This can prevent needless bouncing between CPUs.
4874 * On UP it can prevent extra preemption.
4876 * It may be assumed that this function implies a write memory barrier before
4877 * changing the task state if and only if any tasks are woken up.
4879 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4880 int nr_exclusive, void *key)
4882 unsigned long flags;
4883 int wake_flags = WF_SYNC;
4885 if (unlikely(!q))
4886 return;
4888 if (unlikely(!nr_exclusive))
4889 wake_flags = 0;
4891 spin_lock_irqsave(&q->lock, flags);
4892 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4893 spin_unlock_irqrestore(&q->lock, flags);
4895 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4898 * __wake_up_sync - see __wake_up_sync_key()
4900 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4902 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4904 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4907 * complete: - signals a single thread waiting on this completion
4908 * @x: holds the state of this particular completion
4910 * This will wake up a single thread waiting on this completion. Threads will be
4911 * awakened in the same order in which they were queued.
4913 * See also complete_all(), wait_for_completion() and related routines.
4915 * It may be assumed that this function implies a write memory barrier before
4916 * changing the task state if and only if any tasks are woken up.
4918 void complete(struct completion *x)
4920 unsigned long flags;
4922 spin_lock_irqsave(&x->wait.lock, flags);
4923 x->done++;
4924 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4925 spin_unlock_irqrestore(&x->wait.lock, flags);
4927 EXPORT_SYMBOL(complete);
4930 * complete_all: - signals all threads waiting on this completion
4931 * @x: holds the state of this particular completion
4933 * This will wake up all threads waiting on this particular completion event.
4935 * It may be assumed that this function implies a write memory barrier before
4936 * changing the task state if and only if any tasks are woken up.
4938 void complete_all(struct completion *x)
4940 unsigned long flags;
4942 spin_lock_irqsave(&x->wait.lock, flags);
4943 x->done += UINT_MAX/2;
4944 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4945 spin_unlock_irqrestore(&x->wait.lock, flags);
4947 EXPORT_SYMBOL(complete_all);
4949 static inline long __sched
4950 do_wait_for_common(struct completion *x, long timeout, int state)
4952 if (!x->done) {
4953 DECLARE_WAITQUEUE(wait, current);
4955 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4956 do {
4957 if (signal_pending_state(state, current)) {
4958 timeout = -ERESTARTSYS;
4959 break;
4961 __set_current_state(state);
4962 spin_unlock_irq(&x->wait.lock);
4963 timeout = schedule_timeout(timeout);
4964 spin_lock_irq(&x->wait.lock);
4965 } while (!x->done && timeout);
4966 __remove_wait_queue(&x->wait, &wait);
4967 if (!x->done)
4968 return timeout;
4970 x->done--;
4971 return timeout ?: 1;
4974 static long __sched
4975 wait_for_common(struct completion *x, long timeout, int state)
4977 might_sleep();
4979 spin_lock_irq(&x->wait.lock);
4980 timeout = do_wait_for_common(x, timeout, state);
4981 spin_unlock_irq(&x->wait.lock);
4982 return timeout;
4986 * wait_for_completion: - waits for completion of a task
4987 * @x: holds the state of this particular completion
4989 * This waits to be signaled for completion of a specific task. It is NOT
4990 * interruptible and there is no timeout.
4992 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4993 * and interrupt capability. Also see complete().
4995 void __sched wait_for_completion(struct completion *x)
4997 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4999 EXPORT_SYMBOL(wait_for_completion);
5002 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5003 * @x: holds the state of this particular completion
5004 * @timeout: timeout value in jiffies
5006 * This waits for either a completion of a specific task to be signaled or for a
5007 * specified timeout to expire. The timeout is in jiffies. It is not
5008 * interruptible.
5010 * The return value is 0 if timed out, and positive (at least 1, or number of
5011 * jiffies left till timeout) if completed.
5013 unsigned long __sched
5014 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5016 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5018 EXPORT_SYMBOL(wait_for_completion_timeout);
5021 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5022 * @x: holds the state of this particular completion
5024 * This waits for completion of a specific task to be signaled. It is
5025 * interruptible.
5027 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5029 int __sched wait_for_completion_interruptible(struct completion *x)
5031 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5032 if (t == -ERESTARTSYS)
5033 return t;
5034 return 0;
5036 EXPORT_SYMBOL(wait_for_completion_interruptible);
5039 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5040 * @x: holds the state of this particular completion
5041 * @timeout: timeout value in jiffies
5043 * This waits for either a completion of a specific task to be signaled or for a
5044 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5046 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5047 * positive (at least 1, or number of jiffies left till timeout) if completed.
5049 long __sched
5050 wait_for_completion_interruptible_timeout(struct completion *x,
5051 unsigned long timeout)
5053 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5055 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5058 * wait_for_completion_killable: - waits for completion of a task (killable)
5059 * @x: holds the state of this particular completion
5061 * This waits to be signaled for completion of a specific task. It can be
5062 * interrupted by a kill signal.
5064 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5066 int __sched wait_for_completion_killable(struct completion *x)
5068 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5069 if (t == -ERESTARTSYS)
5070 return t;
5071 return 0;
5073 EXPORT_SYMBOL(wait_for_completion_killable);
5076 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
5077 * @x: holds the state of this particular completion
5078 * @timeout: timeout value in jiffies
5080 * This waits for either a completion of a specific task to be
5081 * signaled or for a specified timeout to expire. It can be
5082 * interrupted by a kill signal. The timeout is in jiffies.
5084 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5085 * positive (at least 1, or number of jiffies left till timeout) if completed.
5087 long __sched
5088 wait_for_completion_killable_timeout(struct completion *x,
5089 unsigned long timeout)
5091 return wait_for_common(x, timeout, TASK_KILLABLE);
5093 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
5096 * try_wait_for_completion - try to decrement a completion without blocking
5097 * @x: completion structure
5099 * Returns: 0 if a decrement cannot be done without blocking
5100 * 1 if a decrement succeeded.
5102 * If a completion is being used as a counting completion,
5103 * attempt to decrement the counter without blocking. This
5104 * enables us to avoid waiting if the resource the completion
5105 * is protecting is not available.
5107 bool try_wait_for_completion(struct completion *x)
5109 unsigned long flags;
5110 int ret = 1;
5112 spin_lock_irqsave(&x->wait.lock, flags);
5113 if (!x->done)
5114 ret = 0;
5115 else
5116 x->done--;
5117 spin_unlock_irqrestore(&x->wait.lock, flags);
5118 return ret;
5120 EXPORT_SYMBOL(try_wait_for_completion);
5123 * completion_done - Test to see if a completion has any waiters
5124 * @x: completion structure
5126 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5127 * 1 if there are no waiters.
5130 bool completion_done(struct completion *x)
5132 unsigned long flags;
5133 int ret = 1;
5135 spin_lock_irqsave(&x->wait.lock, flags);
5136 if (!x->done)
5137 ret = 0;
5138 spin_unlock_irqrestore(&x->wait.lock, flags);
5139 return ret;
5141 EXPORT_SYMBOL(completion_done);
5143 static long __sched
5144 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5146 unsigned long flags;
5147 wait_queue_t wait;
5149 init_waitqueue_entry(&wait, current);
5151 __set_current_state(state);
5153 spin_lock_irqsave(&q->lock, flags);
5154 __add_wait_queue(q, &wait);
5155 spin_unlock(&q->lock);
5156 timeout = schedule_timeout(timeout);
5157 spin_lock_irq(&q->lock);
5158 __remove_wait_queue(q, &wait);
5159 spin_unlock_irqrestore(&q->lock, flags);
5161 return timeout;
5164 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5166 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5168 EXPORT_SYMBOL(interruptible_sleep_on);
5170 long __sched
5171 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5173 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5175 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5177 void __sched sleep_on(wait_queue_head_t *q)
5179 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5181 EXPORT_SYMBOL(sleep_on);
5183 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5185 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5187 EXPORT_SYMBOL(sleep_on_timeout);
5189 #ifdef CONFIG_RT_MUTEXES
5192 * rt_mutex_setprio - set the current priority of a task
5193 * @p: task
5194 * @prio: prio value (kernel-internal form)
5196 * This function changes the 'effective' priority of a task. It does
5197 * not touch ->normal_prio like __setscheduler().
5199 * Used by the rt_mutex code to implement priority inheritance logic.
5201 void rt_mutex_setprio(struct task_struct *p, int prio)
5203 int oldprio, on_rq, running;
5204 struct rq *rq;
5205 const struct sched_class *prev_class;
5207 BUG_ON(prio < 0 || prio > MAX_PRIO);
5209 rq = __task_rq_lock(p);
5211 trace_sched_pi_setprio(p, prio);
5212 oldprio = p->prio;
5213 prev_class = p->sched_class;
5214 on_rq = p->on_rq;
5215 running = task_current(rq, p);
5216 if (on_rq)
5217 dequeue_task(rq, p, 0);
5218 if (running)
5219 p->sched_class->put_prev_task(rq, p);
5221 if (rt_prio(prio))
5222 p->sched_class = &rt_sched_class;
5223 else
5224 p->sched_class = &fair_sched_class;
5226 p->prio = prio;
5228 if (running)
5229 p->sched_class->set_curr_task(rq);
5230 if (on_rq)
5231 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5233 check_class_changed(rq, p, prev_class, oldprio);
5234 __task_rq_unlock(rq);
5237 #endif
5239 void set_user_nice(struct task_struct *p, long nice)
5241 int old_prio, delta, on_rq;
5242 unsigned long flags;
5243 struct rq *rq;
5245 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5246 return;
5248 * We have to be careful, if called from sys_setpriority(),
5249 * the task might be in the middle of scheduling on another CPU.
5251 rq = task_rq_lock(p, &flags);
5253 * The RT priorities are set via sched_setscheduler(), but we still
5254 * allow the 'normal' nice value to be set - but as expected
5255 * it wont have any effect on scheduling until the task is
5256 * SCHED_FIFO/SCHED_RR:
5258 if (task_has_rt_policy(p)) {
5259 p->static_prio = NICE_TO_PRIO(nice);
5260 goto out_unlock;
5262 on_rq = p->on_rq;
5263 if (on_rq)
5264 dequeue_task(rq, p, 0);
5266 p->static_prio = NICE_TO_PRIO(nice);
5267 set_load_weight(p);
5268 old_prio = p->prio;
5269 p->prio = effective_prio(p);
5270 delta = p->prio - old_prio;
5272 if (on_rq) {
5273 enqueue_task(rq, p, 0);
5275 * If the task increased its priority or is running and
5276 * lowered its priority, then reschedule its CPU:
5278 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5279 resched_task(rq->curr);
5281 out_unlock:
5282 task_rq_unlock(rq, p, &flags);
5284 EXPORT_SYMBOL(set_user_nice);
5287 * can_nice - check if a task can reduce its nice value
5288 * @p: task
5289 * @nice: nice value
5291 int can_nice(const struct task_struct *p, const int nice)
5293 /* convert nice value [19,-20] to rlimit style value [1,40] */
5294 int nice_rlim = 20 - nice;
5296 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5297 capable(CAP_SYS_NICE));
5300 #ifdef __ARCH_WANT_SYS_NICE
5303 * sys_nice - change the priority of the current process.
5304 * @increment: priority increment
5306 * sys_setpriority is a more generic, but much slower function that
5307 * does similar things.
5309 SYSCALL_DEFINE1(nice, int, increment)
5311 long nice, retval;
5314 * Setpriority might change our priority at the same moment.
5315 * We don't have to worry. Conceptually one call occurs first
5316 * and we have a single winner.
5318 if (increment < -40)
5319 increment = -40;
5320 if (increment > 40)
5321 increment = 40;
5323 nice = TASK_NICE(current) + increment;
5324 if (nice < -20)
5325 nice = -20;
5326 if (nice > 19)
5327 nice = 19;
5329 if (increment < 0 && !can_nice(current, nice))
5330 return -EPERM;
5332 retval = security_task_setnice(current, nice);
5333 if (retval)
5334 return retval;
5336 set_user_nice(current, nice);
5337 return 0;
5340 #endif
5343 * task_prio - return the priority value of a given task.
5344 * @p: the task in question.
5346 * This is the priority value as seen by users in /proc.
5347 * RT tasks are offset by -200. Normal tasks are centered
5348 * around 0, value goes from -16 to +15.
5350 int task_prio(const struct task_struct *p)
5352 return p->prio - MAX_RT_PRIO;
5356 * task_nice - return the nice value of a given task.
5357 * @p: the task in question.
5359 int task_nice(const struct task_struct *p)
5361 return TASK_NICE(p);
5363 EXPORT_SYMBOL(task_nice);
5366 * idle_cpu - is a given cpu idle currently?
5367 * @cpu: the processor in question.
5369 int idle_cpu(int cpu)
5371 struct rq *rq = cpu_rq(cpu);
5373 if (rq->curr != rq->idle)
5374 return 0;
5376 if (rq->nr_running)
5377 return 0;
5379 #ifdef CONFIG_SMP
5380 if (!llist_empty(&rq->wake_list))
5381 return 0;
5382 #endif
5384 return 1;
5388 * idle_task - return the idle task for a given cpu.
5389 * @cpu: the processor in question.
5391 struct task_struct *idle_task(int cpu)
5393 return cpu_rq(cpu)->idle;
5397 * find_process_by_pid - find a process with a matching PID value.
5398 * @pid: the pid in question.
5400 static struct task_struct *find_process_by_pid(pid_t pid)
5402 return pid ? find_task_by_vpid(pid) : current;
5405 /* Actually do priority change: must hold rq lock. */
5406 static void
5407 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5409 p->policy = policy;
5410 p->rt_priority = prio;
5411 p->normal_prio = normal_prio(p);
5412 /* we are holding p->pi_lock already */
5413 p->prio = rt_mutex_getprio(p);
5414 if (rt_prio(p->prio))
5415 p->sched_class = &rt_sched_class;
5416 else
5417 p->sched_class = &fair_sched_class;
5418 set_load_weight(p);
5422 * check the target process has a UID that matches the current process's
5424 static bool check_same_owner(struct task_struct *p)
5426 const struct cred *cred = current_cred(), *pcred;
5427 bool match;
5429 rcu_read_lock();
5430 pcred = __task_cred(p);
5431 if (cred->user->user_ns == pcred->user->user_ns)
5432 match = (cred->euid == pcred->euid ||
5433 cred->euid == pcred->uid);
5434 else
5435 match = false;
5436 rcu_read_unlock();
5437 return match;
5440 static int __sched_setscheduler(struct task_struct *p, int policy,
5441 const struct sched_param *param, bool user)
5443 int retval, oldprio, oldpolicy = -1, on_rq, running;
5444 unsigned long flags;
5445 const struct sched_class *prev_class;
5446 struct rq *rq;
5447 int reset_on_fork;
5449 /* may grab non-irq protected spin_locks */
5450 BUG_ON(in_interrupt());
5451 recheck:
5452 /* double check policy once rq lock held */
5453 if (policy < 0) {
5454 reset_on_fork = p->sched_reset_on_fork;
5455 policy = oldpolicy = p->policy;
5456 } else {
5457 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5458 policy &= ~SCHED_RESET_ON_FORK;
5460 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5461 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5462 policy != SCHED_IDLE)
5463 return -EINVAL;
5467 * Valid priorities for SCHED_FIFO and SCHED_RR are
5468 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5469 * SCHED_BATCH and SCHED_IDLE is 0.
5471 if (param->sched_priority < 0 ||
5472 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5473 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5474 return -EINVAL;
5475 if (rt_policy(policy) != (param->sched_priority != 0))
5476 return -EINVAL;
5479 * Allow unprivileged RT tasks to decrease priority:
5481 if (user && !capable(CAP_SYS_NICE)) {
5482 if (rt_policy(policy)) {
5483 unsigned long rlim_rtprio =
5484 task_rlimit(p, RLIMIT_RTPRIO);
5486 /* can't set/change the rt policy */
5487 if (policy != p->policy && !rlim_rtprio)
5488 return -EPERM;
5490 /* can't increase priority */
5491 if (param->sched_priority > p->rt_priority &&
5492 param->sched_priority > rlim_rtprio)
5493 return -EPERM;
5497 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5498 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5500 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5501 if (!can_nice(p, TASK_NICE(p)))
5502 return -EPERM;
5505 /* can't change other user's priorities */
5506 if (!check_same_owner(p))
5507 return -EPERM;
5509 /* Normal users shall not reset the sched_reset_on_fork flag */
5510 if (p->sched_reset_on_fork && !reset_on_fork)
5511 return -EPERM;
5514 if (user) {
5515 retval = security_task_setscheduler(p);
5516 if (retval)
5517 return retval;
5521 * make sure no PI-waiters arrive (or leave) while we are
5522 * changing the priority of the task:
5524 * To be able to change p->policy safely, the appropriate
5525 * runqueue lock must be held.
5527 rq = task_rq_lock(p, &flags);
5530 * Changing the policy of the stop threads its a very bad idea
5532 if (p == rq->stop) {
5533 task_rq_unlock(rq, p, &flags);
5534 return -EINVAL;
5538 * If not changing anything there's no need to proceed further:
5540 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5541 param->sched_priority == p->rt_priority))) {
5543 __task_rq_unlock(rq);
5544 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5545 return 0;
5548 #ifdef CONFIG_RT_GROUP_SCHED
5549 if (user) {
5551 * Do not allow realtime tasks into groups that have no runtime
5552 * assigned.
5554 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5555 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5556 !task_group_is_autogroup(task_group(p))) {
5557 task_rq_unlock(rq, p, &flags);
5558 return -EPERM;
5561 #endif
5563 /* recheck policy now with rq lock held */
5564 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5565 policy = oldpolicy = -1;
5566 task_rq_unlock(rq, p, &flags);
5567 goto recheck;
5569 on_rq = p->on_rq;
5570 running = task_current(rq, p);
5571 if (on_rq)
5572 deactivate_task(rq, p, 0);
5573 if (running)
5574 p->sched_class->put_prev_task(rq, p);
5576 p->sched_reset_on_fork = reset_on_fork;
5578 oldprio = p->prio;
5579 prev_class = p->sched_class;
5580 __setscheduler(rq, p, policy, param->sched_priority);
5582 if (running)
5583 p->sched_class->set_curr_task(rq);
5584 if (on_rq)
5585 activate_task(rq, p, 0);
5587 check_class_changed(rq, p, prev_class, oldprio);
5588 task_rq_unlock(rq, p, &flags);
5590 rt_mutex_adjust_pi(p);
5592 return 0;
5596 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5597 * @p: the task in question.
5598 * @policy: new policy.
5599 * @param: structure containing the new RT priority.
5601 * NOTE that the task may be already dead.
5603 int sched_setscheduler(struct task_struct *p, int policy,
5604 const struct sched_param *param)
5606 return __sched_setscheduler(p, policy, param, true);
5608 EXPORT_SYMBOL_GPL(sched_setscheduler);
5611 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5612 * @p: the task in question.
5613 * @policy: new policy.
5614 * @param: structure containing the new RT priority.
5616 * Just like sched_setscheduler, only don't bother checking if the
5617 * current context has permission. For example, this is needed in
5618 * stop_machine(): we create temporary high priority worker threads,
5619 * but our caller might not have that capability.
5621 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5622 const struct sched_param *param)
5624 return __sched_setscheduler(p, policy, param, false);
5627 static int
5628 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5630 struct sched_param lparam;
5631 struct task_struct *p;
5632 int retval;
5634 if (!param || pid < 0)
5635 return -EINVAL;
5636 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5637 return -EFAULT;
5639 rcu_read_lock();
5640 retval = -ESRCH;
5641 p = find_process_by_pid(pid);
5642 if (p != NULL)
5643 retval = sched_setscheduler(p, policy, &lparam);
5644 rcu_read_unlock();
5646 return retval;
5650 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5651 * @pid: the pid in question.
5652 * @policy: new policy.
5653 * @param: structure containing the new RT priority.
5655 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5656 struct sched_param __user *, param)
5658 /* negative values for policy are not valid */
5659 if (policy < 0)
5660 return -EINVAL;
5662 return do_sched_setscheduler(pid, policy, param);
5666 * sys_sched_setparam - set/change the RT priority of a thread
5667 * @pid: the pid in question.
5668 * @param: structure containing the new RT priority.
5670 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5672 return do_sched_setscheduler(pid, -1, param);
5676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5677 * @pid: the pid in question.
5679 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5681 struct task_struct *p;
5682 int retval;
5684 if (pid < 0)
5685 return -EINVAL;
5687 retval = -ESRCH;
5688 rcu_read_lock();
5689 p = find_process_by_pid(pid);
5690 if (p) {
5691 retval = security_task_getscheduler(p);
5692 if (!retval)
5693 retval = p->policy
5694 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5696 rcu_read_unlock();
5697 return retval;
5701 * sys_sched_getparam - get the RT priority of a thread
5702 * @pid: the pid in question.
5703 * @param: structure containing the RT priority.
5705 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5707 struct sched_param lp;
5708 struct task_struct *p;
5709 int retval;
5711 if (!param || pid < 0)
5712 return -EINVAL;
5714 rcu_read_lock();
5715 p = find_process_by_pid(pid);
5716 retval = -ESRCH;
5717 if (!p)
5718 goto out_unlock;
5720 retval = security_task_getscheduler(p);
5721 if (retval)
5722 goto out_unlock;
5724 lp.sched_priority = p->rt_priority;
5725 rcu_read_unlock();
5728 * This one might sleep, we cannot do it with a spinlock held ...
5730 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5732 return retval;
5734 out_unlock:
5735 rcu_read_unlock();
5736 return retval;
5739 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5741 cpumask_var_t cpus_allowed, new_mask;
5742 struct task_struct *p;
5743 int retval;
5745 get_online_cpus();
5746 rcu_read_lock();
5748 p = find_process_by_pid(pid);
5749 if (!p) {
5750 rcu_read_unlock();
5751 put_online_cpus();
5752 return -ESRCH;
5755 /* Prevent p going away */
5756 get_task_struct(p);
5757 rcu_read_unlock();
5759 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5760 retval = -ENOMEM;
5761 goto out_put_task;
5763 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5764 retval = -ENOMEM;
5765 goto out_free_cpus_allowed;
5767 retval = -EPERM;
5768 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5769 goto out_unlock;
5771 retval = security_task_setscheduler(p);
5772 if (retval)
5773 goto out_unlock;
5775 cpuset_cpus_allowed(p, cpus_allowed);
5776 cpumask_and(new_mask, in_mask, cpus_allowed);
5777 again:
5778 retval = set_cpus_allowed_ptr(p, new_mask);
5780 if (!retval) {
5781 cpuset_cpus_allowed(p, cpus_allowed);
5782 if (!cpumask_subset(new_mask, cpus_allowed)) {
5784 * We must have raced with a concurrent cpuset
5785 * update. Just reset the cpus_allowed to the
5786 * cpuset's cpus_allowed
5788 cpumask_copy(new_mask, cpus_allowed);
5789 goto again;
5792 out_unlock:
5793 free_cpumask_var(new_mask);
5794 out_free_cpus_allowed:
5795 free_cpumask_var(cpus_allowed);
5796 out_put_task:
5797 put_task_struct(p);
5798 put_online_cpus();
5799 return retval;
5802 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5803 struct cpumask *new_mask)
5805 if (len < cpumask_size())
5806 cpumask_clear(new_mask);
5807 else if (len > cpumask_size())
5808 len = cpumask_size();
5810 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5814 * sys_sched_setaffinity - set the cpu affinity of a process
5815 * @pid: pid of the process
5816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5817 * @user_mask_ptr: user-space pointer to the new cpu mask
5819 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5820 unsigned long __user *, user_mask_ptr)
5822 cpumask_var_t new_mask;
5823 int retval;
5825 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5826 return -ENOMEM;
5828 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5829 if (retval == 0)
5830 retval = sched_setaffinity(pid, new_mask);
5831 free_cpumask_var(new_mask);
5832 return retval;
5835 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5837 struct task_struct *p;
5838 unsigned long flags;
5839 int retval;
5841 get_online_cpus();
5842 rcu_read_lock();
5844 retval = -ESRCH;
5845 p = find_process_by_pid(pid);
5846 if (!p)
5847 goto out_unlock;
5849 retval = security_task_getscheduler(p);
5850 if (retval)
5851 goto out_unlock;
5853 raw_spin_lock_irqsave(&p->pi_lock, flags);
5854 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5855 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5857 out_unlock:
5858 rcu_read_unlock();
5859 put_online_cpus();
5861 return retval;
5865 * sys_sched_getaffinity - get the cpu affinity of a process
5866 * @pid: pid of the process
5867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5870 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5871 unsigned long __user *, user_mask_ptr)
5873 int ret;
5874 cpumask_var_t mask;
5876 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5877 return -EINVAL;
5878 if (len & (sizeof(unsigned long)-1))
5879 return -EINVAL;
5881 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5882 return -ENOMEM;
5884 ret = sched_getaffinity(pid, mask);
5885 if (ret == 0) {
5886 size_t retlen = min_t(size_t, len, cpumask_size());
5888 if (copy_to_user(user_mask_ptr, mask, retlen))
5889 ret = -EFAULT;
5890 else
5891 ret = retlen;
5893 free_cpumask_var(mask);
5895 return ret;
5899 * sys_sched_yield - yield the current processor to other threads.
5901 * This function yields the current CPU to other tasks. If there are no
5902 * other threads running on this CPU then this function will return.
5904 SYSCALL_DEFINE0(sched_yield)
5906 struct rq *rq = this_rq_lock();
5908 schedstat_inc(rq, yld_count);
5909 current->sched_class->yield_task(rq);
5912 * Since we are going to call schedule() anyway, there's
5913 * no need to preempt or enable interrupts:
5915 __release(rq->lock);
5916 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5917 do_raw_spin_unlock(&rq->lock);
5918 preempt_enable_no_resched();
5920 schedule();
5922 return 0;
5925 static inline int should_resched(void)
5927 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5930 static void __cond_resched(void)
5932 add_preempt_count(PREEMPT_ACTIVE);
5933 __schedule();
5934 sub_preempt_count(PREEMPT_ACTIVE);
5937 int __sched _cond_resched(void)
5939 if (should_resched()) {
5940 __cond_resched();
5941 return 1;
5943 return 0;
5945 EXPORT_SYMBOL(_cond_resched);
5948 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5949 * call schedule, and on return reacquire the lock.
5951 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5952 * operations here to prevent schedule() from being called twice (once via
5953 * spin_unlock(), once by hand).
5955 int __cond_resched_lock(spinlock_t *lock)
5957 int resched = should_resched();
5958 int ret = 0;
5960 lockdep_assert_held(lock);
5962 if (spin_needbreak(lock) || resched) {
5963 spin_unlock(lock);
5964 if (resched)
5965 __cond_resched();
5966 else
5967 cpu_relax();
5968 ret = 1;
5969 spin_lock(lock);
5971 return ret;
5973 EXPORT_SYMBOL(__cond_resched_lock);
5975 int __sched __cond_resched_softirq(void)
5977 BUG_ON(!in_softirq());
5979 if (should_resched()) {
5980 local_bh_enable();
5981 __cond_resched();
5982 local_bh_disable();
5983 return 1;
5985 return 0;
5987 EXPORT_SYMBOL(__cond_resched_softirq);
5990 * yield - yield the current processor to other threads.
5992 * This is a shortcut for kernel-space yielding - it marks the
5993 * thread runnable and calls sys_sched_yield().
5995 void __sched yield(void)
5997 set_current_state(TASK_RUNNING);
5998 sys_sched_yield();
6000 EXPORT_SYMBOL(yield);
6003 * yield_to - yield the current processor to another thread in
6004 * your thread group, or accelerate that thread toward the
6005 * processor it's on.
6006 * @p: target task
6007 * @preempt: whether task preemption is allowed or not
6009 * It's the caller's job to ensure that the target task struct
6010 * can't go away on us before we can do any checks.
6012 * Returns true if we indeed boosted the target task.
6014 bool __sched yield_to(struct task_struct *p, bool preempt)
6016 struct task_struct *curr = current;
6017 struct rq *rq, *p_rq;
6018 unsigned long flags;
6019 bool yielded = 0;
6021 local_irq_save(flags);
6022 rq = this_rq();
6024 again:
6025 p_rq = task_rq(p);
6026 double_rq_lock(rq, p_rq);
6027 while (task_rq(p) != p_rq) {
6028 double_rq_unlock(rq, p_rq);
6029 goto again;
6032 if (!curr->sched_class->yield_to_task)
6033 goto out;
6035 if (curr->sched_class != p->sched_class)
6036 goto out;
6038 if (task_running(p_rq, p) || p->state)
6039 goto out;
6041 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6042 if (yielded) {
6043 schedstat_inc(rq, yld_count);
6045 * Make p's CPU reschedule; pick_next_entity takes care of
6046 * fairness.
6048 if (preempt && rq != p_rq)
6049 resched_task(p_rq->curr);
6052 out:
6053 double_rq_unlock(rq, p_rq);
6054 local_irq_restore(flags);
6056 if (yielded)
6057 schedule();
6059 return yielded;
6061 EXPORT_SYMBOL_GPL(yield_to);
6064 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6065 * that process accounting knows that this is a task in IO wait state.
6067 void __sched io_schedule(void)
6069 struct rq *rq = raw_rq();
6071 delayacct_blkio_start();
6072 atomic_inc(&rq->nr_iowait);
6073 blk_flush_plug(current);
6074 current->in_iowait = 1;
6075 schedule();
6076 current->in_iowait = 0;
6077 atomic_dec(&rq->nr_iowait);
6078 delayacct_blkio_end();
6080 EXPORT_SYMBOL(io_schedule);
6082 long __sched io_schedule_timeout(long timeout)
6084 struct rq *rq = raw_rq();
6085 long ret;
6087 delayacct_blkio_start();
6088 atomic_inc(&rq->nr_iowait);
6089 blk_flush_plug(current);
6090 current->in_iowait = 1;
6091 ret = schedule_timeout(timeout);
6092 current->in_iowait = 0;
6093 atomic_dec(&rq->nr_iowait);
6094 delayacct_blkio_end();
6095 return ret;
6099 * sys_sched_get_priority_max - return maximum RT priority.
6100 * @policy: scheduling class.
6102 * this syscall returns the maximum rt_priority that can be used
6103 * by a given scheduling class.
6105 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6107 int ret = -EINVAL;
6109 switch (policy) {
6110 case SCHED_FIFO:
6111 case SCHED_RR:
6112 ret = MAX_USER_RT_PRIO-1;
6113 break;
6114 case SCHED_NORMAL:
6115 case SCHED_BATCH:
6116 case SCHED_IDLE:
6117 ret = 0;
6118 break;
6120 return ret;
6124 * sys_sched_get_priority_min - return minimum RT priority.
6125 * @policy: scheduling class.
6127 * this syscall returns the minimum rt_priority that can be used
6128 * by a given scheduling class.
6130 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6132 int ret = -EINVAL;
6134 switch (policy) {
6135 case SCHED_FIFO:
6136 case SCHED_RR:
6137 ret = 1;
6138 break;
6139 case SCHED_NORMAL:
6140 case SCHED_BATCH:
6141 case SCHED_IDLE:
6142 ret = 0;
6144 return ret;
6148 * sys_sched_rr_get_interval - return the default timeslice of a process.
6149 * @pid: pid of the process.
6150 * @interval: userspace pointer to the timeslice value.
6152 * this syscall writes the default timeslice value of a given process
6153 * into the user-space timespec buffer. A value of '0' means infinity.
6155 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6156 struct timespec __user *, interval)
6158 struct task_struct *p;
6159 unsigned int time_slice;
6160 unsigned long flags;
6161 struct rq *rq;
6162 int retval;
6163 struct timespec t;
6165 if (pid < 0)
6166 return -EINVAL;
6168 retval = -ESRCH;
6169 rcu_read_lock();
6170 p = find_process_by_pid(pid);
6171 if (!p)
6172 goto out_unlock;
6174 retval = security_task_getscheduler(p);
6175 if (retval)
6176 goto out_unlock;
6178 rq = task_rq_lock(p, &flags);
6179 time_slice = p->sched_class->get_rr_interval(rq, p);
6180 task_rq_unlock(rq, p, &flags);
6182 rcu_read_unlock();
6183 jiffies_to_timespec(time_slice, &t);
6184 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6185 return retval;
6187 out_unlock:
6188 rcu_read_unlock();
6189 return retval;
6192 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6194 void sched_show_task(struct task_struct *p)
6196 unsigned long free = 0;
6197 unsigned state;
6199 state = p->state ? __ffs(p->state) + 1 : 0;
6200 printk(KERN_INFO "%-15.15s %c", p->comm,
6201 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6202 #if BITS_PER_LONG == 32
6203 if (state == TASK_RUNNING)
6204 printk(KERN_CONT " running ");
6205 else
6206 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6207 #else
6208 if (state == TASK_RUNNING)
6209 printk(KERN_CONT " running task ");
6210 else
6211 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6212 #endif
6213 #ifdef CONFIG_DEBUG_STACK_USAGE
6214 free = stack_not_used(p);
6215 #endif
6216 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6217 task_pid_nr(p), task_pid_nr(p->real_parent),
6218 (unsigned long)task_thread_info(p)->flags);
6220 show_stack(p, NULL);
6223 void show_state_filter(unsigned long state_filter)
6225 struct task_struct *g, *p;
6227 #if BITS_PER_LONG == 32
6228 printk(KERN_INFO
6229 " task PC stack pid father\n");
6230 #else
6231 printk(KERN_INFO
6232 " task PC stack pid father\n");
6233 #endif
6234 rcu_read_lock();
6235 do_each_thread(g, p) {
6237 * reset the NMI-timeout, listing all files on a slow
6238 * console might take a lot of time:
6240 touch_nmi_watchdog();
6241 if (!state_filter || (p->state & state_filter))
6242 sched_show_task(p);
6243 } while_each_thread(g, p);
6245 touch_all_softlockup_watchdogs();
6247 #ifdef CONFIG_SCHED_DEBUG
6248 sysrq_sched_debug_show();
6249 #endif
6250 rcu_read_unlock();
6252 * Only show locks if all tasks are dumped:
6254 if (!state_filter)
6255 debug_show_all_locks();
6258 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6260 idle->sched_class = &idle_sched_class;
6264 * init_idle - set up an idle thread for a given CPU
6265 * @idle: task in question
6266 * @cpu: cpu the idle task belongs to
6268 * NOTE: this function does not set the idle thread's NEED_RESCHED
6269 * flag, to make booting more robust.
6271 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6273 struct rq *rq = cpu_rq(cpu);
6274 unsigned long flags;
6276 raw_spin_lock_irqsave(&rq->lock, flags);
6278 __sched_fork(idle);
6279 idle->state = TASK_RUNNING;
6280 idle->se.exec_start = sched_clock();
6282 do_set_cpus_allowed(idle, cpumask_of(cpu));
6284 * We're having a chicken and egg problem, even though we are
6285 * holding rq->lock, the cpu isn't yet set to this cpu so the
6286 * lockdep check in task_group() will fail.
6288 * Similar case to sched_fork(). / Alternatively we could
6289 * use task_rq_lock() here and obtain the other rq->lock.
6291 * Silence PROVE_RCU
6293 rcu_read_lock();
6294 __set_task_cpu(idle, cpu);
6295 rcu_read_unlock();
6297 rq->curr = rq->idle = idle;
6298 #if defined(CONFIG_SMP)
6299 idle->on_cpu = 1;
6300 #endif
6301 raw_spin_unlock_irqrestore(&rq->lock, flags);
6303 /* Set the preempt count _outside_ the spinlocks! */
6304 task_thread_info(idle)->preempt_count = 0;
6307 * The idle tasks have their own, simple scheduling class:
6309 idle->sched_class = &idle_sched_class;
6310 ftrace_graph_init_idle_task(idle, cpu);
6311 #if defined(CONFIG_SMP)
6312 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6313 #endif
6317 * Increase the granularity value when there are more CPUs,
6318 * because with more CPUs the 'effective latency' as visible
6319 * to users decreases. But the relationship is not linear,
6320 * so pick a second-best guess by going with the log2 of the
6321 * number of CPUs.
6323 * This idea comes from the SD scheduler of Con Kolivas:
6325 static int get_update_sysctl_factor(void)
6327 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6328 unsigned int factor;
6330 switch (sysctl_sched_tunable_scaling) {
6331 case SCHED_TUNABLESCALING_NONE:
6332 factor = 1;
6333 break;
6334 case SCHED_TUNABLESCALING_LINEAR:
6335 factor = cpus;
6336 break;
6337 case SCHED_TUNABLESCALING_LOG:
6338 default:
6339 factor = 1 + ilog2(cpus);
6340 break;
6343 return factor;
6346 static void update_sysctl(void)
6348 unsigned int factor = get_update_sysctl_factor();
6350 #define SET_SYSCTL(name) \
6351 (sysctl_##name = (factor) * normalized_sysctl_##name)
6352 SET_SYSCTL(sched_min_granularity);
6353 SET_SYSCTL(sched_latency);
6354 SET_SYSCTL(sched_wakeup_granularity);
6355 #undef SET_SYSCTL
6358 static inline void sched_init_granularity(void)
6360 update_sysctl();
6363 #ifdef CONFIG_SMP
6364 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6366 if (p->sched_class && p->sched_class->set_cpus_allowed)
6367 p->sched_class->set_cpus_allowed(p, new_mask);
6369 cpumask_copy(&p->cpus_allowed, new_mask);
6370 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6374 * This is how migration works:
6376 * 1) we invoke migration_cpu_stop() on the target CPU using
6377 * stop_one_cpu().
6378 * 2) stopper starts to run (implicitly forcing the migrated thread
6379 * off the CPU)
6380 * 3) it checks whether the migrated task is still in the wrong runqueue.
6381 * 4) if it's in the wrong runqueue then the migration thread removes
6382 * it and puts it into the right queue.
6383 * 5) stopper completes and stop_one_cpu() returns and the migration
6384 * is done.
6388 * Change a given task's CPU affinity. Migrate the thread to a
6389 * proper CPU and schedule it away if the CPU it's executing on
6390 * is removed from the allowed bitmask.
6392 * NOTE: the caller must have a valid reference to the task, the
6393 * task must not exit() & deallocate itself prematurely. The
6394 * call is not atomic; no spinlocks may be held.
6396 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6398 unsigned long flags;
6399 struct rq *rq;
6400 unsigned int dest_cpu;
6401 int ret = 0;
6403 rq = task_rq_lock(p, &flags);
6405 if (cpumask_equal(&p->cpus_allowed, new_mask))
6406 goto out;
6408 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6409 ret = -EINVAL;
6410 goto out;
6413 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6414 ret = -EINVAL;
6415 goto out;
6418 do_set_cpus_allowed(p, new_mask);
6420 /* Can the task run on the task's current CPU? If so, we're done */
6421 if (cpumask_test_cpu(task_cpu(p), new_mask))
6422 goto out;
6424 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6425 if (p->on_rq) {
6426 struct migration_arg arg = { p, dest_cpu };
6427 /* Need help from migration thread: drop lock and wait. */
6428 task_rq_unlock(rq, p, &flags);
6429 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6430 tlb_migrate_finish(p->mm);
6431 return 0;
6433 out:
6434 task_rq_unlock(rq, p, &flags);
6436 return ret;
6438 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6441 * Move (not current) task off this cpu, onto dest cpu. We're doing
6442 * this because either it can't run here any more (set_cpus_allowed()
6443 * away from this CPU, or CPU going down), or because we're
6444 * attempting to rebalance this task on exec (sched_exec).
6446 * So we race with normal scheduler movements, but that's OK, as long
6447 * as the task is no longer on this CPU.
6449 * Returns non-zero if task was successfully migrated.
6451 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6453 struct rq *rq_dest, *rq_src;
6454 int ret = 0;
6456 if (unlikely(!cpu_active(dest_cpu)))
6457 return ret;
6459 rq_src = cpu_rq(src_cpu);
6460 rq_dest = cpu_rq(dest_cpu);
6462 raw_spin_lock(&p->pi_lock);
6463 double_rq_lock(rq_src, rq_dest);
6464 /* Already moved. */
6465 if (task_cpu(p) != src_cpu)
6466 goto done;
6467 /* Affinity changed (again). */
6468 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
6469 goto fail;
6472 * If we're not on a rq, the next wake-up will ensure we're
6473 * placed properly.
6475 if (p->on_rq) {
6476 deactivate_task(rq_src, p, 0);
6477 set_task_cpu(p, dest_cpu);
6478 activate_task(rq_dest, p, 0);
6479 check_preempt_curr(rq_dest, p, 0);
6481 done:
6482 ret = 1;
6483 fail:
6484 double_rq_unlock(rq_src, rq_dest);
6485 raw_spin_unlock(&p->pi_lock);
6486 return ret;
6490 * migration_cpu_stop - this will be executed by a highprio stopper thread
6491 * and performs thread migration by bumping thread off CPU then
6492 * 'pushing' onto another runqueue.
6494 static int migration_cpu_stop(void *data)
6496 struct migration_arg *arg = data;
6499 * The original target cpu might have gone down and we might
6500 * be on another cpu but it doesn't matter.
6502 local_irq_disable();
6503 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6504 local_irq_enable();
6505 return 0;
6508 #ifdef CONFIG_HOTPLUG_CPU
6511 * Ensures that the idle task is using init_mm right before its cpu goes
6512 * offline.
6514 void idle_task_exit(void)
6516 struct mm_struct *mm = current->active_mm;
6518 BUG_ON(cpu_online(smp_processor_id()));
6520 if (mm != &init_mm)
6521 switch_mm(mm, &init_mm, current);
6522 mmdrop(mm);
6526 * While a dead CPU has no uninterruptible tasks queued at this point,
6527 * it might still have a nonzero ->nr_uninterruptible counter, because
6528 * for performance reasons the counter is not stricly tracking tasks to
6529 * their home CPUs. So we just add the counter to another CPU's counter,
6530 * to keep the global sum constant after CPU-down:
6532 static void migrate_nr_uninterruptible(struct rq *rq_src)
6534 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6536 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6537 rq_src->nr_uninterruptible = 0;
6541 * remove the tasks which were accounted by rq from calc_load_tasks.
6543 static void calc_global_load_remove(struct rq *rq)
6545 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6546 rq->calc_load_active = 0;
6549 #ifdef CONFIG_CFS_BANDWIDTH
6550 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6552 struct cfs_rq *cfs_rq;
6554 for_each_leaf_cfs_rq(rq, cfs_rq) {
6555 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6557 if (!cfs_rq->runtime_enabled)
6558 continue;
6561 * clock_task is not advancing so we just need to make sure
6562 * there's some valid quota amount
6564 cfs_rq->runtime_remaining = cfs_b->quota;
6565 if (cfs_rq_throttled(cfs_rq))
6566 unthrottle_cfs_rq(cfs_rq);
6569 #else
6570 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6571 #endif
6574 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6575 * try_to_wake_up()->select_task_rq().
6577 * Called with rq->lock held even though we'er in stop_machine() and
6578 * there's no concurrency possible, we hold the required locks anyway
6579 * because of lock validation efforts.
6581 static void migrate_tasks(unsigned int dead_cpu)
6583 struct rq *rq = cpu_rq(dead_cpu);
6584 struct task_struct *next, *stop = rq->stop;
6585 int dest_cpu;
6588 * Fudge the rq selection such that the below task selection loop
6589 * doesn't get stuck on the currently eligible stop task.
6591 * We're currently inside stop_machine() and the rq is either stuck
6592 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6593 * either way we should never end up calling schedule() until we're
6594 * done here.
6596 rq->stop = NULL;
6598 /* Ensure any throttled groups are reachable by pick_next_task */
6599 unthrottle_offline_cfs_rqs(rq);
6601 for ( ; ; ) {
6603 * There's this thread running, bail when that's the only
6604 * remaining thread.
6606 if (rq->nr_running == 1)
6607 break;
6609 next = pick_next_task(rq);
6610 BUG_ON(!next);
6611 next->sched_class->put_prev_task(rq, next);
6613 /* Find suitable destination for @next, with force if needed. */
6614 dest_cpu = select_fallback_rq(dead_cpu, next);
6615 raw_spin_unlock(&rq->lock);
6617 __migrate_task(next, dead_cpu, dest_cpu);
6619 raw_spin_lock(&rq->lock);
6622 rq->stop = stop;
6625 #endif /* CONFIG_HOTPLUG_CPU */
6627 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6629 static struct ctl_table sd_ctl_dir[] = {
6631 .procname = "sched_domain",
6632 .mode = 0555,
6637 static struct ctl_table sd_ctl_root[] = {
6639 .procname = "kernel",
6640 .mode = 0555,
6641 .child = sd_ctl_dir,
6646 static struct ctl_table *sd_alloc_ctl_entry(int n)
6648 struct ctl_table *entry =
6649 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6651 return entry;
6654 static void sd_free_ctl_entry(struct ctl_table **tablep)
6656 struct ctl_table *entry;
6659 * In the intermediate directories, both the child directory and
6660 * procname are dynamically allocated and could fail but the mode
6661 * will always be set. In the lowest directory the names are
6662 * static strings and all have proc handlers.
6664 for (entry = *tablep; entry->mode; entry++) {
6665 if (entry->child)
6666 sd_free_ctl_entry(&entry->child);
6667 if (entry->proc_handler == NULL)
6668 kfree(entry->procname);
6671 kfree(*tablep);
6672 *tablep = NULL;
6675 static int min_load_idx = 0;
6676 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
6678 static void
6679 set_table_entry(struct ctl_table *entry,
6680 const char *procname, void *data, int maxlen,
6681 mode_t mode, proc_handler *proc_handler,
6682 bool load_idx)
6684 entry->procname = procname;
6685 entry->data = data;
6686 entry->maxlen = maxlen;
6687 entry->mode = mode;
6688 entry->proc_handler = proc_handler;
6690 if (load_idx) {
6691 entry->extra1 = &min_load_idx;
6692 entry->extra2 = &max_load_idx;
6696 static struct ctl_table *
6697 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6699 struct ctl_table *table = sd_alloc_ctl_entry(13);
6701 if (table == NULL)
6702 return NULL;
6704 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6705 sizeof(long), 0644, proc_doulongvec_minmax, false);
6706 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6707 sizeof(long), 0644, proc_doulongvec_minmax, false);
6708 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6709 sizeof(int), 0644, proc_dointvec_minmax, true);
6710 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6711 sizeof(int), 0644, proc_dointvec_minmax, true);
6712 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6713 sizeof(int), 0644, proc_dointvec_minmax, true);
6714 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6715 sizeof(int), 0644, proc_dointvec_minmax, true);
6716 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6717 sizeof(int), 0644, proc_dointvec_minmax, true);
6718 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6719 sizeof(int), 0644, proc_dointvec_minmax, false);
6720 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6721 sizeof(int), 0644, proc_dointvec_minmax, false);
6722 set_table_entry(&table[9], "cache_nice_tries",
6723 &sd->cache_nice_tries,
6724 sizeof(int), 0644, proc_dointvec_minmax, false);
6725 set_table_entry(&table[10], "flags", &sd->flags,
6726 sizeof(int), 0644, proc_dointvec_minmax, false);
6727 set_table_entry(&table[11], "name", sd->name,
6728 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
6729 /* &table[12] is terminator */
6731 return table;
6734 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6736 struct ctl_table *entry, *table;
6737 struct sched_domain *sd;
6738 int domain_num = 0, i;
6739 char buf[32];
6741 for_each_domain(cpu, sd)
6742 domain_num++;
6743 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6744 if (table == NULL)
6745 return NULL;
6747 i = 0;
6748 for_each_domain(cpu, sd) {
6749 snprintf(buf, 32, "domain%d", i);
6750 entry->procname = kstrdup(buf, GFP_KERNEL);
6751 entry->mode = 0555;
6752 entry->child = sd_alloc_ctl_domain_table(sd);
6753 entry++;
6754 i++;
6756 return table;
6759 static struct ctl_table_header *sd_sysctl_header;
6760 static void register_sched_domain_sysctl(void)
6762 int i, cpu_num = num_possible_cpus();
6763 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6764 char buf[32];
6766 WARN_ON(sd_ctl_dir[0].child);
6767 sd_ctl_dir[0].child = entry;
6769 if (entry == NULL)
6770 return;
6772 for_each_possible_cpu(i) {
6773 snprintf(buf, 32, "cpu%d", i);
6774 entry->procname = kstrdup(buf, GFP_KERNEL);
6775 entry->mode = 0555;
6776 entry->child = sd_alloc_ctl_cpu_table(i);
6777 entry++;
6780 WARN_ON(sd_sysctl_header);
6781 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6784 /* may be called multiple times per register */
6785 static void unregister_sched_domain_sysctl(void)
6787 if (sd_sysctl_header)
6788 unregister_sysctl_table(sd_sysctl_header);
6789 sd_sysctl_header = NULL;
6790 if (sd_ctl_dir[0].child)
6791 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6793 #else
6794 static void register_sched_domain_sysctl(void)
6797 static void unregister_sched_domain_sysctl(void)
6800 #endif
6802 static void set_rq_online(struct rq *rq)
6804 if (!rq->online) {
6805 const struct sched_class *class;
6807 cpumask_set_cpu(rq->cpu, rq->rd->online);
6808 rq->online = 1;
6810 for_each_class(class) {
6811 if (class->rq_online)
6812 class->rq_online(rq);
6817 static void set_rq_offline(struct rq *rq)
6819 if (rq->online) {
6820 const struct sched_class *class;
6822 for_each_class(class) {
6823 if (class->rq_offline)
6824 class->rq_offline(rq);
6827 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6828 rq->online = 0;
6833 * migration_call - callback that gets triggered when a CPU is added.
6834 * Here we can start up the necessary migration thread for the new CPU.
6836 static int __cpuinit
6837 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6839 int cpu = (long)hcpu;
6840 unsigned long flags;
6841 struct rq *rq = cpu_rq(cpu);
6843 switch (action & ~CPU_TASKS_FROZEN) {
6845 case CPU_UP_PREPARE:
6846 rq->calc_load_update = calc_load_update;
6847 break;
6849 case CPU_ONLINE:
6850 /* Update our root-domain */
6851 raw_spin_lock_irqsave(&rq->lock, flags);
6852 if (rq->rd) {
6853 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6855 set_rq_online(rq);
6857 raw_spin_unlock_irqrestore(&rq->lock, flags);
6858 break;
6860 #ifdef CONFIG_HOTPLUG_CPU
6861 case CPU_DYING:
6862 sched_ttwu_pending();
6863 /* Update our root-domain */
6864 raw_spin_lock_irqsave(&rq->lock, flags);
6865 if (rq->rd) {
6866 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6867 set_rq_offline(rq);
6869 migrate_tasks(cpu);
6870 BUG_ON(rq->nr_running != 1); /* the migration thread */
6871 raw_spin_unlock_irqrestore(&rq->lock, flags);
6873 migrate_nr_uninterruptible(rq);
6874 calc_global_load_remove(rq);
6875 break;
6876 #endif
6879 update_max_interval();
6881 return NOTIFY_OK;
6885 * Register at high priority so that task migration (migrate_all_tasks)
6886 * happens before everything else. This has to be lower priority than
6887 * the notifier in the perf_event subsystem, though.
6889 static struct notifier_block __cpuinitdata migration_notifier = {
6890 .notifier_call = migration_call,
6891 .priority = CPU_PRI_MIGRATION,
6894 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6895 unsigned long action, void *hcpu)
6897 switch (action & ~CPU_TASKS_FROZEN) {
6898 case CPU_ONLINE:
6899 case CPU_DOWN_FAILED:
6900 set_cpu_active((long)hcpu, true);
6901 return NOTIFY_OK;
6902 default:
6903 return NOTIFY_DONE;
6907 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6908 unsigned long action, void *hcpu)
6910 switch (action & ~CPU_TASKS_FROZEN) {
6911 case CPU_DOWN_PREPARE:
6912 set_cpu_active((long)hcpu, false);
6913 return NOTIFY_OK;
6914 default:
6915 return NOTIFY_DONE;
6919 static int __init migration_init(void)
6921 void *cpu = (void *)(long)smp_processor_id();
6922 int err;
6924 /* Initialize migration for the boot CPU */
6925 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6926 BUG_ON(err == NOTIFY_BAD);
6927 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6928 register_cpu_notifier(&migration_notifier);
6930 /* Register cpu active notifiers */
6931 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6932 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6934 return 0;
6936 early_initcall(migration_init);
6937 #endif
6939 #ifdef CONFIG_SMP
6941 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6943 #ifdef CONFIG_SCHED_DEBUG
6945 static __read_mostly int sched_domain_debug_enabled;
6947 static int __init sched_domain_debug_setup(char *str)
6949 sched_domain_debug_enabled = 1;
6951 return 0;
6953 early_param("sched_debug", sched_domain_debug_setup);
6955 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6956 struct cpumask *groupmask)
6958 struct sched_group *group = sd->groups;
6959 char str[256];
6961 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6962 cpumask_clear(groupmask);
6964 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6966 if (!(sd->flags & SD_LOAD_BALANCE)) {
6967 printk("does not load-balance\n");
6968 if (sd->parent)
6969 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6970 " has parent");
6971 return -1;
6974 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6976 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6977 printk(KERN_ERR "ERROR: domain->span does not contain "
6978 "CPU%d\n", cpu);
6980 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6981 printk(KERN_ERR "ERROR: domain->groups does not contain"
6982 " CPU%d\n", cpu);
6985 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6986 do {
6987 if (!group) {
6988 printk("\n");
6989 printk(KERN_ERR "ERROR: group is NULL\n");
6990 break;
6993 if (!group->sgp->power) {
6994 printk(KERN_CONT "\n");
6995 printk(KERN_ERR "ERROR: domain->cpu_power not "
6996 "set\n");
6997 break;
7000 if (!cpumask_weight(sched_group_cpus(group))) {
7001 printk(KERN_CONT "\n");
7002 printk(KERN_ERR "ERROR: empty group\n");
7003 break;
7006 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7007 printk(KERN_CONT "\n");
7008 printk(KERN_ERR "ERROR: repeated CPUs\n");
7009 break;
7012 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7014 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7016 printk(KERN_CONT " %s", str);
7017 if (group->sgp->power != SCHED_POWER_SCALE) {
7018 printk(KERN_CONT " (cpu_power = %d)",
7019 group->sgp->power);
7022 group = group->next;
7023 } while (group != sd->groups);
7024 printk(KERN_CONT "\n");
7026 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7027 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7029 if (sd->parent &&
7030 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7031 printk(KERN_ERR "ERROR: parent span is not a superset "
7032 "of domain->span\n");
7033 return 0;
7036 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7038 int level = 0;
7040 if (!sched_domain_debug_enabled)
7041 return;
7043 if (!sd) {
7044 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7045 return;
7048 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7050 for (;;) {
7051 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
7052 break;
7053 level++;
7054 sd = sd->parent;
7055 if (!sd)
7056 break;
7059 #else /* !CONFIG_SCHED_DEBUG */
7060 # define sched_domain_debug(sd, cpu) do { } while (0)
7061 #endif /* CONFIG_SCHED_DEBUG */
7063 static int sd_degenerate(struct sched_domain *sd)
7065 if (cpumask_weight(sched_domain_span(sd)) == 1)
7066 return 1;
7068 /* Following flags need at least 2 groups */
7069 if (sd->flags & (SD_LOAD_BALANCE |
7070 SD_BALANCE_NEWIDLE |
7071 SD_BALANCE_FORK |
7072 SD_BALANCE_EXEC |
7073 SD_SHARE_CPUPOWER |
7074 SD_SHARE_PKG_RESOURCES)) {
7075 if (sd->groups != sd->groups->next)
7076 return 0;
7079 /* Following flags don't use groups */
7080 if (sd->flags & (SD_WAKE_AFFINE))
7081 return 0;
7083 return 1;
7086 static int
7087 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7089 unsigned long cflags = sd->flags, pflags = parent->flags;
7091 if (sd_degenerate(parent))
7092 return 1;
7094 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7095 return 0;
7097 /* Flags needing groups don't count if only 1 group in parent */
7098 if (parent->groups == parent->groups->next) {
7099 pflags &= ~(SD_LOAD_BALANCE |
7100 SD_BALANCE_NEWIDLE |
7101 SD_BALANCE_FORK |
7102 SD_BALANCE_EXEC |
7103 SD_SHARE_CPUPOWER |
7104 SD_SHARE_PKG_RESOURCES);
7105 if (nr_node_ids == 1)
7106 pflags &= ~SD_SERIALIZE;
7108 if (~cflags & pflags)
7109 return 0;
7111 return 1;
7114 static void free_rootdomain(struct rcu_head *rcu)
7116 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
7118 cpupri_cleanup(&rd->cpupri);
7119 free_cpumask_var(rd->rto_mask);
7120 free_cpumask_var(rd->online);
7121 free_cpumask_var(rd->span);
7122 kfree(rd);
7125 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7127 struct root_domain *old_rd = NULL;
7128 unsigned long flags;
7130 raw_spin_lock_irqsave(&rq->lock, flags);
7132 if (rq->rd) {
7133 old_rd = rq->rd;
7135 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7136 set_rq_offline(rq);
7138 cpumask_clear_cpu(rq->cpu, old_rd->span);
7141 * If we dont want to free the old_rt yet then
7142 * set old_rd to NULL to skip the freeing later
7143 * in this function:
7145 if (!atomic_dec_and_test(&old_rd->refcount))
7146 old_rd = NULL;
7149 atomic_inc(&rd->refcount);
7150 rq->rd = rd;
7152 cpumask_set_cpu(rq->cpu, rd->span);
7153 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7154 set_rq_online(rq);
7156 raw_spin_unlock_irqrestore(&rq->lock, flags);
7158 if (old_rd)
7159 call_rcu_sched(&old_rd->rcu, free_rootdomain);
7162 static int init_rootdomain(struct root_domain *rd)
7164 memset(rd, 0, sizeof(*rd));
7166 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7167 goto out;
7168 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7169 goto free_span;
7170 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7171 goto free_online;
7173 if (cpupri_init(&rd->cpupri) != 0)
7174 goto free_rto_mask;
7175 return 0;
7177 free_rto_mask:
7178 free_cpumask_var(rd->rto_mask);
7179 free_online:
7180 free_cpumask_var(rd->online);
7181 free_span:
7182 free_cpumask_var(rd->span);
7183 out:
7184 return -ENOMEM;
7187 static void init_defrootdomain(void)
7189 init_rootdomain(&def_root_domain);
7191 atomic_set(&def_root_domain.refcount, 1);
7194 static struct root_domain *alloc_rootdomain(void)
7196 struct root_domain *rd;
7198 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7199 if (!rd)
7200 return NULL;
7202 if (init_rootdomain(rd) != 0) {
7203 kfree(rd);
7204 return NULL;
7207 return rd;
7210 static void free_sched_groups(struct sched_group *sg, int free_sgp)
7212 struct sched_group *tmp, *first;
7214 if (!sg)
7215 return;
7217 first = sg;
7218 do {
7219 tmp = sg->next;
7221 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7222 kfree(sg->sgp);
7224 kfree(sg);
7225 sg = tmp;
7226 } while (sg != first);
7229 static void free_sched_domain(struct rcu_head *rcu)
7231 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7234 * If its an overlapping domain it has private groups, iterate and
7235 * nuke them all.
7237 if (sd->flags & SD_OVERLAP) {
7238 free_sched_groups(sd->groups, 1);
7239 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7240 kfree(sd->groups->sgp);
7241 kfree(sd->groups);
7243 kfree(sd);
7246 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7248 call_rcu(&sd->rcu, free_sched_domain);
7251 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7253 for (; sd; sd = sd->parent)
7254 destroy_sched_domain(sd, cpu);
7258 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7259 * hold the hotplug lock.
7261 static void
7262 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7264 struct rq *rq = cpu_rq(cpu);
7265 struct sched_domain *tmp;
7267 /* Remove the sched domains which do not contribute to scheduling. */
7268 for (tmp = sd; tmp; ) {
7269 struct sched_domain *parent = tmp->parent;
7270 if (!parent)
7271 break;
7273 if (sd_parent_degenerate(tmp, parent)) {
7274 tmp->parent = parent->parent;
7275 if (parent->parent)
7276 parent->parent->child = tmp;
7277 destroy_sched_domain(parent, cpu);
7278 } else
7279 tmp = tmp->parent;
7282 if (sd && sd_degenerate(sd)) {
7283 tmp = sd;
7284 sd = sd->parent;
7285 destroy_sched_domain(tmp, cpu);
7286 if (sd)
7287 sd->child = NULL;
7290 sched_domain_debug(sd, cpu);
7292 rq_attach_root(rq, rd);
7293 tmp = rq->sd;
7294 rcu_assign_pointer(rq->sd, sd);
7295 destroy_sched_domains(tmp, cpu);
7298 /* cpus with isolated domains */
7299 static cpumask_var_t cpu_isolated_map;
7301 /* Setup the mask of cpus configured for isolated domains */
7302 static int __init isolated_cpu_setup(char *str)
7304 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7305 cpulist_parse(str, cpu_isolated_map);
7306 return 1;
7309 __setup("isolcpus=", isolated_cpu_setup);
7311 #ifdef CONFIG_NUMA
7314 * find_next_best_node - find the next node to include in a sched_domain
7315 * @node: node whose sched_domain we're building
7316 * @used_nodes: nodes already in the sched_domain
7318 * Find the next node to include in a given scheduling domain. Simply
7319 * finds the closest node not already in the @used_nodes map.
7321 * Should use nodemask_t.
7323 static int find_next_best_node(int node, nodemask_t *used_nodes)
7325 int i, n, val, min_val, best_node = -1;
7327 min_val = INT_MAX;
7329 for (i = 0; i < nr_node_ids; i++) {
7330 /* Start at @node */
7331 n = (node + i) % nr_node_ids;
7333 if (!nr_cpus_node(n))
7334 continue;
7336 /* Skip already used nodes */
7337 if (node_isset(n, *used_nodes))
7338 continue;
7340 /* Simple min distance search */
7341 val = node_distance(node, n);
7343 if (val < min_val) {
7344 min_val = val;
7345 best_node = n;
7349 if (best_node != -1)
7350 node_set(best_node, *used_nodes);
7351 return best_node;
7355 * sched_domain_node_span - get a cpumask for a node's sched_domain
7356 * @node: node whose cpumask we're constructing
7357 * @span: resulting cpumask
7359 * Given a node, construct a good cpumask for its sched_domain to span. It
7360 * should be one that prevents unnecessary balancing, but also spreads tasks
7361 * out optimally.
7363 static void sched_domain_node_span(int node, struct cpumask *span)
7365 nodemask_t used_nodes;
7366 int i;
7368 cpumask_clear(span);
7369 nodes_clear(used_nodes);
7371 cpumask_or(span, span, cpumask_of_node(node));
7372 node_set(node, used_nodes);
7374 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7375 int next_node = find_next_best_node(node, &used_nodes);
7376 if (next_node < 0)
7377 break;
7378 cpumask_or(span, span, cpumask_of_node(next_node));
7382 static const struct cpumask *cpu_node_mask(int cpu)
7384 lockdep_assert_held(&sched_domains_mutex);
7386 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7388 return sched_domains_tmpmask;
7391 static const struct cpumask *cpu_allnodes_mask(int cpu)
7393 return cpu_possible_mask;
7395 #endif /* CONFIG_NUMA */
7397 static const struct cpumask *cpu_cpu_mask(int cpu)
7399 return cpumask_of_node(cpu_to_node(cpu));
7402 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7404 struct sd_data {
7405 struct sched_domain **__percpu sd;
7406 struct sched_group **__percpu sg;
7407 struct sched_group_power **__percpu sgp;
7410 struct s_data {
7411 struct sched_domain ** __percpu sd;
7412 struct root_domain *rd;
7415 enum s_alloc {
7416 sa_rootdomain,
7417 sa_sd,
7418 sa_sd_storage,
7419 sa_none,
7422 struct sched_domain_topology_level;
7424 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7425 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7427 #define SDTL_OVERLAP 0x01
7429 struct sched_domain_topology_level {
7430 sched_domain_init_f init;
7431 sched_domain_mask_f mask;
7432 int flags;
7433 struct sd_data data;
7436 static int
7437 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7439 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7440 const struct cpumask *span = sched_domain_span(sd);
7441 struct cpumask *covered = sched_domains_tmpmask;
7442 struct sd_data *sdd = sd->private;
7443 struct sched_domain *child;
7444 int i;
7446 cpumask_clear(covered);
7448 for_each_cpu(i, span) {
7449 struct cpumask *sg_span;
7451 if (cpumask_test_cpu(i, covered))
7452 continue;
7454 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7455 GFP_KERNEL, cpu_to_node(i));
7457 if (!sg)
7458 goto fail;
7460 sg_span = sched_group_cpus(sg);
7462 child = *per_cpu_ptr(sdd->sd, i);
7463 if (child->child) {
7464 child = child->child;
7465 cpumask_copy(sg_span, sched_domain_span(child));
7466 } else
7467 cpumask_set_cpu(i, sg_span);
7469 cpumask_or(covered, covered, sg_span);
7471 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7472 atomic_inc(&sg->sgp->ref);
7474 if (cpumask_test_cpu(cpu, sg_span))
7475 groups = sg;
7477 if (!first)
7478 first = sg;
7479 if (last)
7480 last->next = sg;
7481 last = sg;
7482 last->next = first;
7484 sd->groups = groups;
7486 return 0;
7488 fail:
7489 free_sched_groups(first, 0);
7491 return -ENOMEM;
7494 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7496 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7497 struct sched_domain *child = sd->child;
7499 if (child)
7500 cpu = cpumask_first(sched_domain_span(child));
7502 if (sg) {
7503 *sg = *per_cpu_ptr(sdd->sg, cpu);
7504 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7505 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7508 return cpu;
7512 * build_sched_groups will build a circular linked list of the groups
7513 * covered by the given span, and will set each group's ->cpumask correctly,
7514 * and ->cpu_power to 0.
7516 * Assumes the sched_domain tree is fully constructed
7518 static int
7519 build_sched_groups(struct sched_domain *sd, int cpu)
7521 struct sched_group *first = NULL, *last = NULL;
7522 struct sd_data *sdd = sd->private;
7523 const struct cpumask *span = sched_domain_span(sd);
7524 struct cpumask *covered;
7525 int i;
7527 get_group(cpu, sdd, &sd->groups);
7528 atomic_inc(&sd->groups->ref);
7530 if (cpu != cpumask_first(sched_domain_span(sd)))
7531 return 0;
7533 lockdep_assert_held(&sched_domains_mutex);
7534 covered = sched_domains_tmpmask;
7536 cpumask_clear(covered);
7538 for_each_cpu(i, span) {
7539 struct sched_group *sg;
7540 int group = get_group(i, sdd, &sg);
7541 int j;
7543 if (cpumask_test_cpu(i, covered))
7544 continue;
7546 cpumask_clear(sched_group_cpus(sg));
7547 sg->sgp->power = 0;
7549 for_each_cpu(j, span) {
7550 if (get_group(j, sdd, NULL) != group)
7551 continue;
7553 cpumask_set_cpu(j, covered);
7554 cpumask_set_cpu(j, sched_group_cpus(sg));
7557 if (!first)
7558 first = sg;
7559 if (last)
7560 last->next = sg;
7561 last = sg;
7563 last->next = first;
7565 return 0;
7569 * Initialize sched groups cpu_power.
7571 * cpu_power indicates the capacity of sched group, which is used while
7572 * distributing the load between different sched groups in a sched domain.
7573 * Typically cpu_power for all the groups in a sched domain will be same unless
7574 * there are asymmetries in the topology. If there are asymmetries, group
7575 * having more cpu_power will pickup more load compared to the group having
7576 * less cpu_power.
7578 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7580 struct sched_group *sg = sd->groups;
7582 WARN_ON(!sd || !sg);
7584 do {
7585 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7586 sg = sg->next;
7587 } while (sg != sd->groups);
7589 if (cpu != group_first_cpu(sg))
7590 return;
7592 update_group_power(sd, cpu);
7596 * Initializers for schedule domains
7597 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7600 #ifdef CONFIG_SCHED_DEBUG
7601 # define SD_INIT_NAME(sd, type) sd->name = #type
7602 #else
7603 # define SD_INIT_NAME(sd, type) do { } while (0)
7604 #endif
7606 #define SD_INIT_FUNC(type) \
7607 static noinline struct sched_domain * \
7608 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7610 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7611 *sd = SD_##type##_INIT; \
7612 SD_INIT_NAME(sd, type); \
7613 sd->private = &tl->data; \
7614 return sd; \
7617 SD_INIT_FUNC(CPU)
7618 #ifdef CONFIG_NUMA
7619 SD_INIT_FUNC(ALLNODES)
7620 SD_INIT_FUNC(NODE)
7621 #endif
7622 #ifdef CONFIG_SCHED_SMT
7623 SD_INIT_FUNC(SIBLING)
7624 #endif
7625 #ifdef CONFIG_SCHED_MC
7626 SD_INIT_FUNC(MC)
7627 #endif
7628 #ifdef CONFIG_SCHED_BOOK
7629 SD_INIT_FUNC(BOOK)
7630 #endif
7632 static int default_relax_domain_level = -1;
7633 int sched_domain_level_max;
7635 static int __init setup_relax_domain_level(char *str)
7637 if (kstrtoint(str, 0, &default_relax_domain_level))
7638 pr_warn("Unable to set relax_domain_level\n");
7640 return 1;
7642 __setup("relax_domain_level=", setup_relax_domain_level);
7644 static void set_domain_attribute(struct sched_domain *sd,
7645 struct sched_domain_attr *attr)
7647 int request;
7649 if (!attr || attr->relax_domain_level < 0) {
7650 if (default_relax_domain_level < 0)
7651 return;
7652 else
7653 request = default_relax_domain_level;
7654 } else
7655 request = attr->relax_domain_level;
7656 if (request < sd->level) {
7657 /* turn off idle balance on this domain */
7658 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7659 } else {
7660 /* turn on idle balance on this domain */
7661 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7665 static void __sdt_free(const struct cpumask *cpu_map);
7666 static int __sdt_alloc(const struct cpumask *cpu_map);
7668 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7669 const struct cpumask *cpu_map)
7671 switch (what) {
7672 case sa_rootdomain:
7673 if (!atomic_read(&d->rd->refcount))
7674 free_rootdomain(&d->rd->rcu); /* fall through */
7675 case sa_sd:
7676 free_percpu(d->sd); /* fall through */
7677 case sa_sd_storage:
7678 __sdt_free(cpu_map); /* fall through */
7679 case sa_none:
7680 break;
7684 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7685 const struct cpumask *cpu_map)
7687 memset(d, 0, sizeof(*d));
7689 if (__sdt_alloc(cpu_map))
7690 return sa_sd_storage;
7691 d->sd = alloc_percpu(struct sched_domain *);
7692 if (!d->sd)
7693 return sa_sd_storage;
7694 d->rd = alloc_rootdomain();
7695 if (!d->rd)
7696 return sa_sd;
7697 return sa_rootdomain;
7701 * NULL the sd_data elements we've used to build the sched_domain and
7702 * sched_group structure so that the subsequent __free_domain_allocs()
7703 * will not free the data we're using.
7705 static void claim_allocations(int cpu, struct sched_domain *sd)
7707 struct sd_data *sdd = sd->private;
7709 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7710 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7712 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7713 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7715 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7716 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7719 #ifdef CONFIG_SCHED_SMT
7720 static const struct cpumask *cpu_smt_mask(int cpu)
7722 return topology_thread_cpumask(cpu);
7724 #endif
7727 * Topology list, bottom-up.
7729 static struct sched_domain_topology_level default_topology[] = {
7730 #ifdef CONFIG_SCHED_SMT
7731 { sd_init_SIBLING, cpu_smt_mask, },
7732 #endif
7733 #ifdef CONFIG_SCHED_MC
7734 { sd_init_MC, cpu_coregroup_mask, },
7735 #endif
7736 #ifdef CONFIG_SCHED_BOOK
7737 { sd_init_BOOK, cpu_book_mask, },
7738 #endif
7739 { sd_init_CPU, cpu_cpu_mask, },
7740 #ifdef CONFIG_NUMA
7741 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7742 { sd_init_ALLNODES, cpu_allnodes_mask, },
7743 #endif
7744 { NULL, },
7747 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7749 static int __sdt_alloc(const struct cpumask *cpu_map)
7751 struct sched_domain_topology_level *tl;
7752 int j;
7754 for (tl = sched_domain_topology; tl->init; tl++) {
7755 struct sd_data *sdd = &tl->data;
7757 sdd->sd = alloc_percpu(struct sched_domain *);
7758 if (!sdd->sd)
7759 return -ENOMEM;
7761 sdd->sg = alloc_percpu(struct sched_group *);
7762 if (!sdd->sg)
7763 return -ENOMEM;
7765 sdd->sgp = alloc_percpu(struct sched_group_power *);
7766 if (!sdd->sgp)
7767 return -ENOMEM;
7769 for_each_cpu(j, cpu_map) {
7770 struct sched_domain *sd;
7771 struct sched_group *sg;
7772 struct sched_group_power *sgp;
7774 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7775 GFP_KERNEL, cpu_to_node(j));
7776 if (!sd)
7777 return -ENOMEM;
7779 *per_cpu_ptr(sdd->sd, j) = sd;
7781 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7782 GFP_KERNEL, cpu_to_node(j));
7783 if (!sg)
7784 return -ENOMEM;
7786 *per_cpu_ptr(sdd->sg, j) = sg;
7788 sgp = kzalloc_node(sizeof(struct sched_group_power),
7789 GFP_KERNEL, cpu_to_node(j));
7790 if (!sgp)
7791 return -ENOMEM;
7793 *per_cpu_ptr(sdd->sgp, j) = sgp;
7797 return 0;
7800 static void __sdt_free(const struct cpumask *cpu_map)
7802 struct sched_domain_topology_level *tl;
7803 int j;
7805 for (tl = sched_domain_topology; tl->init; tl++) {
7806 struct sd_data *sdd = &tl->data;
7808 for_each_cpu(j, cpu_map) {
7809 struct sched_domain *sd;
7811 if (sdd->sd) {
7812 sd = *per_cpu_ptr(sdd->sd, j);
7813 if (sd && (sd->flags & SD_OVERLAP))
7814 free_sched_groups(sd->groups, 0);
7815 kfree(*per_cpu_ptr(sdd->sd, j));
7818 if (sdd->sg)
7819 kfree(*per_cpu_ptr(sdd->sg, j));
7820 if (sdd->sgp)
7821 kfree(*per_cpu_ptr(sdd->sgp, j));
7823 free_percpu(sdd->sd);
7824 sdd->sd = NULL;
7825 free_percpu(sdd->sg);
7826 sdd->sg = NULL;
7827 free_percpu(sdd->sgp);
7828 sdd->sgp = NULL;
7832 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7833 struct s_data *d, const struct cpumask *cpu_map,
7834 struct sched_domain_attr *attr, struct sched_domain *child,
7835 int cpu)
7837 struct sched_domain *sd = tl->init(tl, cpu);
7838 if (!sd)
7839 return child;
7841 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7842 if (child) {
7843 sd->level = child->level + 1;
7844 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7845 child->parent = sd;
7847 sd->child = child;
7848 set_domain_attribute(sd, attr);
7850 return sd;
7854 * Build sched domains for a given set of cpus and attach the sched domains
7855 * to the individual cpus
7857 static int build_sched_domains(const struct cpumask *cpu_map,
7858 struct sched_domain_attr *attr)
7860 enum s_alloc alloc_state = sa_none;
7861 struct sched_domain *sd;
7862 struct s_data d;
7863 int i, ret = -ENOMEM;
7865 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7866 if (alloc_state != sa_rootdomain)
7867 goto error;
7869 /* Set up domains for cpus specified by the cpu_map. */
7870 for_each_cpu(i, cpu_map) {
7871 struct sched_domain_topology_level *tl;
7873 sd = NULL;
7874 for (tl = sched_domain_topology; tl->init; tl++) {
7875 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7876 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7877 sd->flags |= SD_OVERLAP;
7878 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7879 break;
7882 while (sd->child)
7883 sd = sd->child;
7885 *per_cpu_ptr(d.sd, i) = sd;
7888 /* Build the groups for the domains */
7889 for_each_cpu(i, cpu_map) {
7890 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7891 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7892 if (sd->flags & SD_OVERLAP) {
7893 if (build_overlap_sched_groups(sd, i))
7894 goto error;
7895 } else {
7896 if (build_sched_groups(sd, i))
7897 goto error;
7902 /* Calculate CPU power for physical packages and nodes */
7903 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7904 if (!cpumask_test_cpu(i, cpu_map))
7905 continue;
7907 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7908 claim_allocations(i, sd);
7909 init_sched_groups_power(i, sd);
7913 /* Attach the domains */
7914 rcu_read_lock();
7915 for_each_cpu(i, cpu_map) {
7916 sd = *per_cpu_ptr(d.sd, i);
7917 cpu_attach_domain(sd, d.rd, i);
7919 rcu_read_unlock();
7921 ret = 0;
7922 error:
7923 __free_domain_allocs(&d, alloc_state, cpu_map);
7924 return ret;
7927 static cpumask_var_t *doms_cur; /* current sched domains */
7928 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7929 static struct sched_domain_attr *dattr_cur;
7930 /* attribues of custom domains in 'doms_cur' */
7933 * Special case: If a kmalloc of a doms_cur partition (array of
7934 * cpumask) fails, then fallback to a single sched domain,
7935 * as determined by the single cpumask fallback_doms.
7937 static cpumask_var_t fallback_doms;
7940 * arch_update_cpu_topology lets virtualized architectures update the
7941 * cpu core maps. It is supposed to return 1 if the topology changed
7942 * or 0 if it stayed the same.
7944 int __attribute__((weak)) arch_update_cpu_topology(void)
7946 return 0;
7949 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7951 int i;
7952 cpumask_var_t *doms;
7954 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7955 if (!doms)
7956 return NULL;
7957 for (i = 0; i < ndoms; i++) {
7958 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7959 free_sched_domains(doms, i);
7960 return NULL;
7963 return doms;
7966 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7968 unsigned int i;
7969 for (i = 0; i < ndoms; i++)
7970 free_cpumask_var(doms[i]);
7971 kfree(doms);
7975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7976 * For now this just excludes isolated cpus, but could be used to
7977 * exclude other special cases in the future.
7979 static int init_sched_domains(const struct cpumask *cpu_map)
7981 int err;
7983 arch_update_cpu_topology();
7984 ndoms_cur = 1;
7985 doms_cur = alloc_sched_domains(ndoms_cur);
7986 if (!doms_cur)
7987 doms_cur = &fallback_doms;
7988 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7989 dattr_cur = NULL;
7990 err = build_sched_domains(doms_cur[0], NULL);
7991 register_sched_domain_sysctl();
7993 return err;
7997 * Detach sched domains from a group of cpus specified in cpu_map
7998 * These cpus will now be attached to the NULL domain
8000 static void detach_destroy_domains(const struct cpumask *cpu_map)
8002 int i;
8004 rcu_read_lock();
8005 for_each_cpu(i, cpu_map)
8006 cpu_attach_domain(NULL, &def_root_domain, i);
8007 rcu_read_unlock();
8010 /* handle null as "default" */
8011 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8012 struct sched_domain_attr *new, int idx_new)
8014 struct sched_domain_attr tmp;
8016 /* fast path */
8017 if (!new && !cur)
8018 return 1;
8020 tmp = SD_ATTR_INIT;
8021 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8022 new ? (new + idx_new) : &tmp,
8023 sizeof(struct sched_domain_attr));
8027 * Partition sched domains as specified by the 'ndoms_new'
8028 * cpumasks in the array doms_new[] of cpumasks. This compares
8029 * doms_new[] to the current sched domain partitioning, doms_cur[].
8030 * It destroys each deleted domain and builds each new domain.
8032 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8033 * The masks don't intersect (don't overlap.) We should setup one
8034 * sched domain for each mask. CPUs not in any of the cpumasks will
8035 * not be load balanced. If the same cpumask appears both in the
8036 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8037 * it as it is.
8039 * The passed in 'doms_new' should be allocated using
8040 * alloc_sched_domains. This routine takes ownership of it and will
8041 * free_sched_domains it when done with it. If the caller failed the
8042 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8043 * and partition_sched_domains() will fallback to the single partition
8044 * 'fallback_doms', it also forces the domains to be rebuilt.
8046 * If doms_new == NULL it will be replaced with cpu_online_mask.
8047 * ndoms_new == 0 is a special case for destroying existing domains,
8048 * and it will not create the default domain.
8050 * Call with hotplug lock held
8052 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8053 struct sched_domain_attr *dattr_new)
8055 int i, j, n;
8056 int new_topology;
8058 mutex_lock(&sched_domains_mutex);
8060 /* always unregister in case we don't destroy any domains */
8061 unregister_sched_domain_sysctl();
8063 /* Let architecture update cpu core mappings. */
8064 new_topology = arch_update_cpu_topology();
8066 n = doms_new ? ndoms_new : 0;
8068 /* Destroy deleted domains */
8069 for (i = 0; i < ndoms_cur; i++) {
8070 for (j = 0; j < n && !new_topology; j++) {
8071 if (cpumask_equal(doms_cur[i], doms_new[j])
8072 && dattrs_equal(dattr_cur, i, dattr_new, j))
8073 goto match1;
8075 /* no match - a current sched domain not in new doms_new[] */
8076 detach_destroy_domains(doms_cur[i]);
8077 match1:
8081 if (doms_new == NULL) {
8082 ndoms_cur = 0;
8083 doms_new = &fallback_doms;
8084 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
8085 WARN_ON_ONCE(dattr_new);
8088 /* Build new domains */
8089 for (i = 0; i < ndoms_new; i++) {
8090 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8091 if (cpumask_equal(doms_new[i], doms_cur[j])
8092 && dattrs_equal(dattr_new, i, dattr_cur, j))
8093 goto match2;
8095 /* no match - add a new doms_new */
8096 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
8097 match2:
8101 /* Remember the new sched domains */
8102 if (doms_cur != &fallback_doms)
8103 free_sched_domains(doms_cur, ndoms_cur);
8104 kfree(dattr_cur); /* kfree(NULL) is safe */
8105 doms_cur = doms_new;
8106 dattr_cur = dattr_new;
8107 ndoms_cur = ndoms_new;
8109 register_sched_domain_sysctl();
8111 mutex_unlock(&sched_domains_mutex);
8114 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8115 static void reinit_sched_domains(void)
8117 get_online_cpus();
8119 /* Destroy domains first to force the rebuild */
8120 partition_sched_domains(0, NULL, NULL);
8122 rebuild_sched_domains();
8123 put_online_cpus();
8126 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8128 unsigned int level = 0;
8130 if (sscanf(buf, "%u", &level) != 1)
8131 return -EINVAL;
8134 * level is always be positive so don't check for
8135 * level < POWERSAVINGS_BALANCE_NONE which is 0
8136 * What happens on 0 or 1 byte write,
8137 * need to check for count as well?
8140 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8141 return -EINVAL;
8143 if (smt)
8144 sched_smt_power_savings = level;
8145 else
8146 sched_mc_power_savings = level;
8148 reinit_sched_domains();
8150 return count;
8153 #ifdef CONFIG_SCHED_MC
8154 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8155 struct sysdev_class_attribute *attr,
8156 char *page)
8158 return sprintf(page, "%u\n", sched_mc_power_savings);
8160 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8161 struct sysdev_class_attribute *attr,
8162 const char *buf, size_t count)
8164 return sched_power_savings_store(buf, count, 0);
8166 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8167 sched_mc_power_savings_show,
8168 sched_mc_power_savings_store);
8169 #endif
8171 #ifdef CONFIG_SCHED_SMT
8172 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8173 struct sysdev_class_attribute *attr,
8174 char *page)
8176 return sprintf(page, "%u\n", sched_smt_power_savings);
8178 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8179 struct sysdev_class_attribute *attr,
8180 const char *buf, size_t count)
8182 return sched_power_savings_store(buf, count, 1);
8184 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8185 sched_smt_power_savings_show,
8186 sched_smt_power_savings_store);
8187 #endif
8189 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8191 int err = 0;
8193 #ifdef CONFIG_SCHED_SMT
8194 if (smt_capable())
8195 err = sysfs_create_file(&cls->kset.kobj,
8196 &attr_sched_smt_power_savings.attr);
8197 #endif
8198 #ifdef CONFIG_SCHED_MC
8199 if (!err && mc_capable())
8200 err = sysfs_create_file(&cls->kset.kobj,
8201 &attr_sched_mc_power_savings.attr);
8202 #endif
8203 return err;
8205 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8207 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
8210 * Update cpusets according to cpu_active mask. If cpusets are
8211 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8212 * around partition_sched_domains().
8214 * If we come here as part of a suspend/resume, don't touch cpusets because we
8215 * want to restore it back to its original state upon resume anyway.
8217 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
8218 void *hcpu)
8220 switch (action) {
8221 case CPU_ONLINE_FROZEN:
8222 case CPU_DOWN_FAILED_FROZEN:
8225 * num_cpus_frozen tracks how many CPUs are involved in suspend
8226 * resume sequence. As long as this is not the last online
8227 * operation in the resume sequence, just build a single sched
8228 * domain, ignoring cpusets.
8230 num_cpus_frozen--;
8231 if (likely(num_cpus_frozen)) {
8232 partition_sched_domains(1, NULL, NULL);
8233 break;
8237 * This is the last CPU online operation. So fall through and
8238 * restore the original sched domains by considering the
8239 * cpuset configurations.
8242 case CPU_ONLINE:
8243 case CPU_DOWN_FAILED:
8244 cpuset_update_active_cpus();
8245 break;
8246 default:
8247 return NOTIFY_DONE;
8249 return NOTIFY_OK;
8252 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8253 void *hcpu)
8255 switch (action) {
8256 case CPU_DOWN_PREPARE:
8257 cpuset_update_active_cpus();
8258 break;
8259 case CPU_DOWN_PREPARE_FROZEN:
8260 num_cpus_frozen++;
8261 partition_sched_domains(1, NULL, NULL);
8262 break;
8263 default:
8264 return NOTIFY_DONE;
8266 return NOTIFY_OK;
8269 static int update_runtime(struct notifier_block *nfb,
8270 unsigned long action, void *hcpu)
8272 int cpu = (int)(long)hcpu;
8274 switch (action) {
8275 case CPU_DOWN_PREPARE:
8276 case CPU_DOWN_PREPARE_FROZEN:
8277 disable_runtime(cpu_rq(cpu));
8278 return NOTIFY_OK;
8280 case CPU_DOWN_FAILED:
8281 case CPU_DOWN_FAILED_FROZEN:
8282 case CPU_ONLINE:
8283 case CPU_ONLINE_FROZEN:
8284 enable_runtime(cpu_rq(cpu));
8285 return NOTIFY_OK;
8287 default:
8288 return NOTIFY_DONE;
8292 void __init sched_init_smp(void)
8294 cpumask_var_t non_isolated_cpus;
8296 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8297 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8299 get_online_cpus();
8300 mutex_lock(&sched_domains_mutex);
8301 init_sched_domains(cpu_active_mask);
8302 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8303 if (cpumask_empty(non_isolated_cpus))
8304 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8305 mutex_unlock(&sched_domains_mutex);
8306 put_online_cpus();
8308 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8309 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8311 /* RT runtime code needs to handle some hotplug events */
8312 hotcpu_notifier(update_runtime, 0);
8314 init_hrtick();
8316 /* Move init over to a non-isolated CPU */
8317 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8318 BUG();
8319 sched_init_granularity();
8320 free_cpumask_var(non_isolated_cpus);
8322 init_sched_rt_class();
8324 #else
8325 void __init sched_init_smp(void)
8327 sched_init_granularity();
8329 #endif /* CONFIG_SMP */
8331 const_debug unsigned int sysctl_timer_migration = 1;
8333 int in_sched_functions(unsigned long addr)
8335 return in_lock_functions(addr) ||
8336 (addr >= (unsigned long)__sched_text_start
8337 && addr < (unsigned long)__sched_text_end);
8340 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8342 cfs_rq->tasks_timeline = RB_ROOT;
8343 INIT_LIST_HEAD(&cfs_rq->tasks);
8344 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8345 #ifndef CONFIG_64BIT
8346 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8347 #endif
8350 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8352 struct rt_prio_array *array;
8353 int i;
8355 array = &rt_rq->active;
8356 for (i = 0; i < MAX_RT_PRIO; i++) {
8357 INIT_LIST_HEAD(array->queue + i);
8358 __clear_bit(i, array->bitmap);
8360 /* delimiter for bitsearch: */
8361 __set_bit(MAX_RT_PRIO, array->bitmap);
8363 #if defined CONFIG_SMP
8364 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8365 rt_rq->highest_prio.next = MAX_RT_PRIO;
8366 rt_rq->rt_nr_migratory = 0;
8367 rt_rq->overloaded = 0;
8368 plist_head_init(&rt_rq->pushable_tasks);
8369 #endif
8371 rt_rq->rt_time = 0;
8372 rt_rq->rt_throttled = 0;
8373 rt_rq->rt_runtime = 0;
8374 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8379 struct sched_entity *se, int cpu,
8380 struct sched_entity *parent)
8382 struct rq *rq = cpu_rq(cpu);
8384 cfs_rq->tg = tg;
8385 cfs_rq->rq = rq;
8386 #ifdef CONFIG_SMP
8387 /* allow initial update_cfs_load() to truncate */
8388 cfs_rq->load_stamp = 1;
8389 #endif
8390 init_cfs_rq_runtime(cfs_rq);
8392 tg->cfs_rq[cpu] = cfs_rq;
8393 tg->se[cpu] = se;
8395 /* se could be NULL for root_task_group */
8396 if (!se)
8397 return;
8399 if (!parent)
8400 se->cfs_rq = &rq->cfs;
8401 else
8402 se->cfs_rq = parent->my_q;
8404 se->my_q = cfs_rq;
8405 update_load_set(&se->load, 0);
8406 se->parent = parent;
8408 #endif
8410 #ifdef CONFIG_RT_GROUP_SCHED
8411 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8412 struct sched_rt_entity *rt_se, int cpu,
8413 struct sched_rt_entity *parent)
8415 struct rq *rq = cpu_rq(cpu);
8417 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8418 rt_rq->rt_nr_boosted = 0;
8419 rt_rq->rq = rq;
8420 rt_rq->tg = tg;
8422 tg->rt_rq[cpu] = rt_rq;
8423 tg->rt_se[cpu] = rt_se;
8425 if (!rt_se)
8426 return;
8428 if (!parent)
8429 rt_se->rt_rq = &rq->rt;
8430 else
8431 rt_se->rt_rq = parent->my_q;
8433 rt_se->my_q = rt_rq;
8434 rt_se->parent = parent;
8435 INIT_LIST_HEAD(&rt_se->run_list);
8437 #endif
8439 void __init sched_init(void)
8441 int i, j;
8442 unsigned long alloc_size = 0, ptr;
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8446 #endif
8447 #ifdef CONFIG_RT_GROUP_SCHED
8448 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8449 #endif
8450 #ifdef CONFIG_CPUMASK_OFFSTACK
8451 alloc_size += num_possible_cpus() * cpumask_size();
8452 #endif
8453 if (alloc_size) {
8454 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8456 #ifdef CONFIG_FAIR_GROUP_SCHED
8457 root_task_group.se = (struct sched_entity **)ptr;
8458 ptr += nr_cpu_ids * sizeof(void **);
8460 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8461 ptr += nr_cpu_ids * sizeof(void **);
8463 #endif /* CONFIG_FAIR_GROUP_SCHED */
8464 #ifdef CONFIG_RT_GROUP_SCHED
8465 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8466 ptr += nr_cpu_ids * sizeof(void **);
8468 root_task_group.rt_rq = (struct rt_rq **)ptr;
8469 ptr += nr_cpu_ids * sizeof(void **);
8471 #endif /* CONFIG_RT_GROUP_SCHED */
8472 #ifdef CONFIG_CPUMASK_OFFSTACK
8473 for_each_possible_cpu(i) {
8474 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8475 ptr += cpumask_size();
8477 #endif /* CONFIG_CPUMASK_OFFSTACK */
8480 #ifdef CONFIG_SMP
8481 init_defrootdomain();
8482 #endif
8484 init_rt_bandwidth(&def_rt_bandwidth,
8485 global_rt_period(), global_rt_runtime());
8487 #ifdef CONFIG_RT_GROUP_SCHED
8488 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8489 global_rt_period(), global_rt_runtime());
8490 #endif /* CONFIG_RT_GROUP_SCHED */
8492 #ifdef CONFIG_CGROUP_SCHED
8493 list_add(&root_task_group.list, &task_groups);
8494 INIT_LIST_HEAD(&root_task_group.children);
8495 autogroup_init(&init_task);
8496 #endif /* CONFIG_CGROUP_SCHED */
8498 for_each_possible_cpu(i) {
8499 struct rq *rq;
8501 rq = cpu_rq(i);
8502 raw_spin_lock_init(&rq->lock);
8503 rq->nr_running = 0;
8504 rq->calc_load_active = 0;
8505 rq->calc_load_update = jiffies + LOAD_FREQ;
8506 init_cfs_rq(&rq->cfs);
8507 init_rt_rq(&rq->rt, rq);
8508 #ifdef CONFIG_FAIR_GROUP_SCHED
8509 root_task_group.shares = root_task_group_load;
8510 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8512 * How much cpu bandwidth does root_task_group get?
8514 * In case of task-groups formed thr' the cgroup filesystem, it
8515 * gets 100% of the cpu resources in the system. This overall
8516 * system cpu resource is divided among the tasks of
8517 * root_task_group and its child task-groups in a fair manner,
8518 * based on each entity's (task or task-group's) weight
8519 * (se->load.weight).
8521 * In other words, if root_task_group has 10 tasks of weight
8522 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8523 * then A0's share of the cpu resource is:
8525 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8527 * We achieve this by letting root_task_group's tasks sit
8528 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8530 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8531 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8532 #endif /* CONFIG_FAIR_GROUP_SCHED */
8534 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8535 #ifdef CONFIG_RT_GROUP_SCHED
8536 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8537 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8538 #endif
8540 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8541 rq->cpu_load[j] = 0;
8543 rq->last_load_update_tick = jiffies;
8545 #ifdef CONFIG_SMP
8546 rq->sd = NULL;
8547 rq->rd = NULL;
8548 rq->cpu_power = SCHED_POWER_SCALE;
8549 rq->post_schedule = 0;
8550 rq->active_balance = 0;
8551 rq->next_balance = jiffies;
8552 rq->push_cpu = 0;
8553 rq->cpu = i;
8554 rq->online = 0;
8555 rq->idle_stamp = 0;
8556 rq->avg_idle = 2*sysctl_sched_migration_cost;
8557 rq_attach_root(rq, &def_root_domain);
8558 #ifdef CONFIG_NO_HZ
8559 rq->nohz_balance_kick = 0;
8560 #endif
8561 #endif
8562 init_rq_hrtick(rq);
8563 atomic_set(&rq->nr_iowait, 0);
8566 set_load_weight(&init_task);
8568 #ifdef CONFIG_PREEMPT_NOTIFIERS
8569 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8570 #endif
8572 #ifdef CONFIG_SMP
8573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8574 #endif
8576 #ifdef CONFIG_RT_MUTEXES
8577 plist_head_init(&init_task.pi_waiters);
8578 #endif
8581 * The boot idle thread does lazy MMU switching as well:
8583 atomic_inc(&init_mm.mm_count);
8584 enter_lazy_tlb(&init_mm, current);
8587 * Make us the idle thread. Technically, schedule() should not be
8588 * called from this thread, however somewhere below it might be,
8589 * but because we are the idle thread, we just pick up running again
8590 * when this runqueue becomes "idle".
8592 init_idle(current, smp_processor_id());
8594 calc_load_update = jiffies + LOAD_FREQ;
8597 * During early bootup we pretend to be a normal task:
8599 current->sched_class = &fair_sched_class;
8601 #ifdef CONFIG_SMP
8602 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8603 #ifdef CONFIG_NO_HZ
8604 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8605 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8606 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8607 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8608 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8609 #endif
8610 /* May be allocated at isolcpus cmdline parse time */
8611 if (cpu_isolated_map == NULL)
8612 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8613 #endif /* SMP */
8615 scheduler_running = 1;
8618 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8619 static inline int preempt_count_equals(int preempt_offset)
8621 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8623 return (nested == preempt_offset);
8626 void __might_sleep(const char *file, int line, int preempt_offset)
8628 static unsigned long prev_jiffy; /* ratelimiting */
8630 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8631 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8632 system_state != SYSTEM_RUNNING || oops_in_progress)
8633 return;
8634 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8635 return;
8636 prev_jiffy = jiffies;
8638 printk(KERN_ERR
8639 "BUG: sleeping function called from invalid context at %s:%d\n",
8640 file, line);
8641 printk(KERN_ERR
8642 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8643 in_atomic(), irqs_disabled(),
8644 current->pid, current->comm);
8646 debug_show_held_locks(current);
8647 if (irqs_disabled())
8648 print_irqtrace_events(current);
8649 dump_stack();
8651 EXPORT_SYMBOL(__might_sleep);
8652 #endif
8654 #ifdef CONFIG_MAGIC_SYSRQ
8655 static void normalize_task(struct rq *rq, struct task_struct *p)
8657 const struct sched_class *prev_class = p->sched_class;
8658 int old_prio = p->prio;
8659 int on_rq;
8661 on_rq = p->on_rq;
8662 if (on_rq)
8663 deactivate_task(rq, p, 0);
8664 __setscheduler(rq, p, SCHED_NORMAL, 0);
8665 if (on_rq) {
8666 activate_task(rq, p, 0);
8667 resched_task(rq->curr);
8670 check_class_changed(rq, p, prev_class, old_prio);
8673 void normalize_rt_tasks(void)
8675 struct task_struct *g, *p;
8676 unsigned long flags;
8677 struct rq *rq;
8679 read_lock_irqsave(&tasklist_lock, flags);
8680 do_each_thread(g, p) {
8682 * Only normalize user tasks:
8684 if (!p->mm)
8685 continue;
8687 p->se.exec_start = 0;
8688 #ifdef CONFIG_SCHEDSTATS
8689 p->se.statistics.wait_start = 0;
8690 p->se.statistics.sleep_start = 0;
8691 p->se.statistics.block_start = 0;
8692 #endif
8694 if (!rt_task(p)) {
8696 * Renice negative nice level userspace
8697 * tasks back to 0:
8699 if (TASK_NICE(p) < 0 && p->mm)
8700 set_user_nice(p, 0);
8701 continue;
8704 raw_spin_lock(&p->pi_lock);
8705 rq = __task_rq_lock(p);
8707 normalize_task(rq, p);
8709 __task_rq_unlock(rq);
8710 raw_spin_unlock(&p->pi_lock);
8711 } while_each_thread(g, p);
8713 read_unlock_irqrestore(&tasklist_lock, flags);
8716 #endif /* CONFIG_MAGIC_SYSRQ */
8718 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8720 * These functions are only useful for the IA64 MCA handling, or kdb.
8722 * They can only be called when the whole system has been
8723 * stopped - every CPU needs to be quiescent, and no scheduling
8724 * activity can take place. Using them for anything else would
8725 * be a serious bug, and as a result, they aren't even visible
8726 * under any other configuration.
8730 * curr_task - return the current task for a given cpu.
8731 * @cpu: the processor in question.
8733 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8735 struct task_struct *curr_task(int cpu)
8737 return cpu_curr(cpu);
8740 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8742 #ifdef CONFIG_IA64
8744 * set_curr_task - set the current task for a given cpu.
8745 * @cpu: the processor in question.
8746 * @p: the task pointer to set.
8748 * Description: This function must only be used when non-maskable interrupts
8749 * are serviced on a separate stack. It allows the architecture to switch the
8750 * notion of the current task on a cpu in a non-blocking manner. This function
8751 * must be called with all CPU's synchronized, and interrupts disabled, the
8752 * and caller must save the original value of the current task (see
8753 * curr_task() above) and restore that value before reenabling interrupts and
8754 * re-starting the system.
8756 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8758 void set_curr_task(int cpu, struct task_struct *p)
8760 cpu_curr(cpu) = p;
8763 #endif
8765 #ifdef CONFIG_FAIR_GROUP_SCHED
8766 static void free_fair_sched_group(struct task_group *tg)
8768 int i;
8770 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8772 for_each_possible_cpu(i) {
8773 if (tg->cfs_rq)
8774 kfree(tg->cfs_rq[i]);
8775 if (tg->se)
8776 kfree(tg->se[i]);
8779 kfree(tg->cfs_rq);
8780 kfree(tg->se);
8783 static
8784 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8786 struct cfs_rq *cfs_rq;
8787 struct sched_entity *se;
8788 int i;
8790 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8791 if (!tg->cfs_rq)
8792 goto err;
8793 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8794 if (!tg->se)
8795 goto err;
8797 tg->shares = NICE_0_LOAD;
8799 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8801 for_each_possible_cpu(i) {
8802 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8803 GFP_KERNEL, cpu_to_node(i));
8804 if (!cfs_rq)
8805 goto err;
8807 se = kzalloc_node(sizeof(struct sched_entity),
8808 GFP_KERNEL, cpu_to_node(i));
8809 if (!se)
8810 goto err_free_rq;
8812 init_cfs_rq(cfs_rq);
8813 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8816 return 1;
8818 err_free_rq:
8819 kfree(cfs_rq);
8820 err:
8821 return 0;
8824 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8826 struct rq *rq = cpu_rq(cpu);
8827 unsigned long flags;
8830 * Only empty task groups can be destroyed; so we can speculatively
8831 * check on_list without danger of it being re-added.
8833 if (!tg->cfs_rq[cpu]->on_list)
8834 return;
8836 raw_spin_lock_irqsave(&rq->lock, flags);
8837 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8838 raw_spin_unlock_irqrestore(&rq->lock, flags);
8840 #else /* !CONFIG_FAIR_GROUP_SCHED */
8841 static inline void free_fair_sched_group(struct task_group *tg)
8845 static inline
8846 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8848 return 1;
8851 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8854 #endif /* CONFIG_FAIR_GROUP_SCHED */
8856 #ifdef CONFIG_RT_GROUP_SCHED
8857 static void free_rt_sched_group(struct task_group *tg)
8859 int i;
8861 if (tg->rt_se)
8862 destroy_rt_bandwidth(&tg->rt_bandwidth);
8864 for_each_possible_cpu(i) {
8865 if (tg->rt_rq)
8866 kfree(tg->rt_rq[i]);
8867 if (tg->rt_se)
8868 kfree(tg->rt_se[i]);
8871 kfree(tg->rt_rq);
8872 kfree(tg->rt_se);
8875 static
8876 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8878 struct rt_rq *rt_rq;
8879 struct sched_rt_entity *rt_se;
8880 int i;
8882 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8883 if (!tg->rt_rq)
8884 goto err;
8885 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8886 if (!tg->rt_se)
8887 goto err;
8889 init_rt_bandwidth(&tg->rt_bandwidth,
8890 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8892 for_each_possible_cpu(i) {
8893 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8894 GFP_KERNEL, cpu_to_node(i));
8895 if (!rt_rq)
8896 goto err;
8898 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8899 GFP_KERNEL, cpu_to_node(i));
8900 if (!rt_se)
8901 goto err_free_rq;
8903 init_rt_rq(rt_rq, cpu_rq(i));
8904 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8905 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8908 return 1;
8910 err_free_rq:
8911 kfree(rt_rq);
8912 err:
8913 return 0;
8915 #else /* !CONFIG_RT_GROUP_SCHED */
8916 static inline void free_rt_sched_group(struct task_group *tg)
8920 static inline
8921 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8923 return 1;
8925 #endif /* CONFIG_RT_GROUP_SCHED */
8927 #ifdef CONFIG_CGROUP_SCHED
8928 static void free_sched_group(struct task_group *tg)
8930 free_fair_sched_group(tg);
8931 free_rt_sched_group(tg);
8932 autogroup_free(tg);
8933 kfree(tg);
8936 /* allocate runqueue etc for a new task group */
8937 struct task_group *sched_create_group(struct task_group *parent)
8939 struct task_group *tg;
8940 unsigned long flags;
8942 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8943 if (!tg)
8944 return ERR_PTR(-ENOMEM);
8946 if (!alloc_fair_sched_group(tg, parent))
8947 goto err;
8949 if (!alloc_rt_sched_group(tg, parent))
8950 goto err;
8952 spin_lock_irqsave(&task_group_lock, flags);
8953 list_add_rcu(&tg->list, &task_groups);
8955 WARN_ON(!parent); /* root should already exist */
8957 tg->parent = parent;
8958 INIT_LIST_HEAD(&tg->children);
8959 list_add_rcu(&tg->siblings, &parent->children);
8960 spin_unlock_irqrestore(&task_group_lock, flags);
8962 return tg;
8964 err:
8965 free_sched_group(tg);
8966 return ERR_PTR(-ENOMEM);
8969 /* rcu callback to free various structures associated with a task group */
8970 static void free_sched_group_rcu(struct rcu_head *rhp)
8972 /* now it should be safe to free those cfs_rqs */
8973 free_sched_group(container_of(rhp, struct task_group, rcu));
8976 /* Destroy runqueue etc associated with a task group */
8977 void sched_destroy_group(struct task_group *tg)
8979 unsigned long flags;
8980 int i;
8982 /* end participation in shares distribution */
8983 for_each_possible_cpu(i)
8984 unregister_fair_sched_group(tg, i);
8986 spin_lock_irqsave(&task_group_lock, flags);
8987 list_del_rcu(&tg->list);
8988 list_del_rcu(&tg->siblings);
8989 spin_unlock_irqrestore(&task_group_lock, flags);
8991 /* wait for possible concurrent references to cfs_rqs complete */
8992 call_rcu(&tg->rcu, free_sched_group_rcu);
8995 /* change task's runqueue when it moves between groups.
8996 * The caller of this function should have put the task in its new group
8997 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8998 * reflect its new group.
9000 void sched_move_task(struct task_struct *tsk)
9002 struct task_group *tg;
9003 int on_rq, running;
9004 unsigned long flags;
9005 struct rq *rq;
9007 rq = task_rq_lock(tsk, &flags);
9009 running = task_current(rq, tsk);
9010 on_rq = tsk->on_rq;
9012 if (on_rq)
9013 dequeue_task(rq, tsk, 0);
9014 if (unlikely(running))
9015 tsk->sched_class->put_prev_task(rq, tsk);
9017 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
9018 lockdep_is_held(&tsk->sighand->siglock)),
9019 struct task_group, css);
9020 tg = autogroup_task_group(tsk, tg);
9021 tsk->sched_task_group = tg;
9023 #ifdef CONFIG_FAIR_GROUP_SCHED
9024 if (tsk->sched_class->task_move_group)
9025 tsk->sched_class->task_move_group(tsk, on_rq);
9026 else
9027 #endif
9028 set_task_rq(tsk, task_cpu(tsk));
9030 if (unlikely(running))
9031 tsk->sched_class->set_curr_task(rq);
9032 if (on_rq)
9033 enqueue_task(rq, tsk, 0);
9035 task_rq_unlock(rq, tsk, &flags);
9037 #endif /* CONFIG_CGROUP_SCHED */
9039 #ifdef CONFIG_FAIR_GROUP_SCHED
9040 static DEFINE_MUTEX(shares_mutex);
9042 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9044 int i;
9045 unsigned long flags;
9048 * We can't change the weight of the root cgroup.
9050 if (!tg->se[0])
9051 return -EINVAL;
9053 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9055 mutex_lock(&shares_mutex);
9056 if (tg->shares == shares)
9057 goto done;
9059 tg->shares = shares;
9060 for_each_possible_cpu(i) {
9061 struct rq *rq = cpu_rq(i);
9062 struct sched_entity *se;
9064 se = tg->se[i];
9065 /* Propagate contribution to hierarchy */
9066 raw_spin_lock_irqsave(&rq->lock, flags);
9067 for_each_sched_entity(se)
9068 update_cfs_shares(group_cfs_rq(se));
9069 raw_spin_unlock_irqrestore(&rq->lock, flags);
9072 done:
9073 mutex_unlock(&shares_mutex);
9074 return 0;
9077 unsigned long sched_group_shares(struct task_group *tg)
9079 return tg->shares;
9081 #endif
9083 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9084 static unsigned long to_ratio(u64 period, u64 runtime)
9086 if (runtime == RUNTIME_INF)
9087 return 1ULL << 20;
9089 return div64_u64(runtime << 20, period);
9091 #endif
9093 #ifdef CONFIG_RT_GROUP_SCHED
9095 * Ensure that the real time constraints are schedulable.
9097 static DEFINE_MUTEX(rt_constraints_mutex);
9099 /* Must be called with tasklist_lock held */
9100 static inline int tg_has_rt_tasks(struct task_group *tg)
9102 struct task_struct *g, *p;
9104 do_each_thread(g, p) {
9105 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9106 return 1;
9107 } while_each_thread(g, p);
9109 return 0;
9112 struct rt_schedulable_data {
9113 struct task_group *tg;
9114 u64 rt_period;
9115 u64 rt_runtime;
9118 static int tg_rt_schedulable(struct task_group *tg, void *data)
9120 struct rt_schedulable_data *d = data;
9121 struct task_group *child;
9122 unsigned long total, sum = 0;
9123 u64 period, runtime;
9125 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9126 runtime = tg->rt_bandwidth.rt_runtime;
9128 if (tg == d->tg) {
9129 period = d->rt_period;
9130 runtime = d->rt_runtime;
9134 * Cannot have more runtime than the period.
9136 if (runtime > period && runtime != RUNTIME_INF)
9137 return -EINVAL;
9140 * Ensure we don't starve existing RT tasks.
9142 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9143 return -EBUSY;
9145 total = to_ratio(period, runtime);
9148 * Nobody can have more than the global setting allows.
9150 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9151 return -EINVAL;
9154 * The sum of our children's runtime should not exceed our own.
9156 list_for_each_entry_rcu(child, &tg->children, siblings) {
9157 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9158 runtime = child->rt_bandwidth.rt_runtime;
9160 if (child == d->tg) {
9161 period = d->rt_period;
9162 runtime = d->rt_runtime;
9165 sum += to_ratio(period, runtime);
9168 if (sum > total)
9169 return -EINVAL;
9171 return 0;
9174 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9176 int ret;
9178 struct rt_schedulable_data data = {
9179 .tg = tg,
9180 .rt_period = period,
9181 .rt_runtime = runtime,
9184 rcu_read_lock();
9185 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
9186 rcu_read_unlock();
9188 return ret;
9191 static int tg_set_rt_bandwidth(struct task_group *tg,
9192 u64 rt_period, u64 rt_runtime)
9194 int i, err = 0;
9196 mutex_lock(&rt_constraints_mutex);
9197 read_lock(&tasklist_lock);
9198 err = __rt_schedulable(tg, rt_period, rt_runtime);
9199 if (err)
9200 goto unlock;
9202 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9203 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9204 tg->rt_bandwidth.rt_runtime = rt_runtime;
9206 for_each_possible_cpu(i) {
9207 struct rt_rq *rt_rq = tg->rt_rq[i];
9209 raw_spin_lock(&rt_rq->rt_runtime_lock);
9210 rt_rq->rt_runtime = rt_runtime;
9211 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9213 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9214 unlock:
9215 read_unlock(&tasklist_lock);
9216 mutex_unlock(&rt_constraints_mutex);
9218 return err;
9221 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9223 u64 rt_runtime, rt_period;
9225 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9226 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9227 if (rt_runtime_us < 0)
9228 rt_runtime = RUNTIME_INF;
9230 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9233 long sched_group_rt_runtime(struct task_group *tg)
9235 u64 rt_runtime_us;
9237 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9238 return -1;
9240 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9241 do_div(rt_runtime_us, NSEC_PER_USEC);
9242 return rt_runtime_us;
9245 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9247 u64 rt_runtime, rt_period;
9249 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9250 rt_runtime = tg->rt_bandwidth.rt_runtime;
9252 if (rt_period == 0)
9253 return -EINVAL;
9255 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9258 long sched_group_rt_period(struct task_group *tg)
9260 u64 rt_period_us;
9262 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9263 do_div(rt_period_us, NSEC_PER_USEC);
9264 return rt_period_us;
9267 static int sched_rt_global_constraints(void)
9269 u64 runtime, period;
9270 int ret = 0;
9272 if (sysctl_sched_rt_period <= 0)
9273 return -EINVAL;
9275 runtime = global_rt_runtime();
9276 period = global_rt_period();
9279 * Sanity check on the sysctl variables.
9281 if (runtime > period && runtime != RUNTIME_INF)
9282 return -EINVAL;
9284 mutex_lock(&rt_constraints_mutex);
9285 read_lock(&tasklist_lock);
9286 ret = __rt_schedulable(NULL, 0, 0);
9287 read_unlock(&tasklist_lock);
9288 mutex_unlock(&rt_constraints_mutex);
9290 return ret;
9293 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9295 /* Don't accept realtime tasks when there is no way for them to run */
9296 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9297 return 0;
9299 return 1;
9302 #else /* !CONFIG_RT_GROUP_SCHED */
9303 static int sched_rt_global_constraints(void)
9305 unsigned long flags;
9306 int i;
9308 if (sysctl_sched_rt_period <= 0)
9309 return -EINVAL;
9312 * There's always some RT tasks in the root group
9313 * -- migration, kstopmachine etc..
9315 if (sysctl_sched_rt_runtime == 0)
9316 return -EBUSY;
9318 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9319 for_each_possible_cpu(i) {
9320 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9322 raw_spin_lock(&rt_rq->rt_runtime_lock);
9323 rt_rq->rt_runtime = global_rt_runtime();
9324 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9326 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9328 return 0;
9330 #endif /* CONFIG_RT_GROUP_SCHED */
9332 int sched_rt_handler(struct ctl_table *table, int write,
9333 void __user *buffer, size_t *lenp,
9334 loff_t *ppos)
9336 int ret;
9337 int old_period, old_runtime;
9338 static DEFINE_MUTEX(mutex);
9340 mutex_lock(&mutex);
9341 old_period = sysctl_sched_rt_period;
9342 old_runtime = sysctl_sched_rt_runtime;
9344 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9346 if (!ret && write) {
9347 ret = sched_rt_global_constraints();
9348 if (ret) {
9349 sysctl_sched_rt_period = old_period;
9350 sysctl_sched_rt_runtime = old_runtime;
9351 } else {
9352 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9353 def_rt_bandwidth.rt_period =
9354 ns_to_ktime(global_rt_period());
9357 mutex_unlock(&mutex);
9359 return ret;
9362 #ifdef CONFIG_CGROUP_SCHED
9364 /* return corresponding task_group object of a cgroup */
9365 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9367 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9368 struct task_group, css);
9371 static struct cgroup_subsys_state *
9372 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9374 struct task_group *tg, *parent;
9376 if (!cgrp->parent) {
9377 /* This is early initialization for the top cgroup */
9378 return &root_task_group.css;
9381 parent = cgroup_tg(cgrp->parent);
9382 tg = sched_create_group(parent);
9383 if (IS_ERR(tg))
9384 return ERR_PTR(-ENOMEM);
9386 return &tg->css;
9389 static void
9390 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9392 struct task_group *tg = cgroup_tg(cgrp);
9394 sched_destroy_group(tg);
9397 static int
9398 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9400 #ifdef CONFIG_RT_GROUP_SCHED
9401 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9402 return -EINVAL;
9403 #else
9404 /* We don't support RT-tasks being in separate groups */
9405 if (tsk->sched_class != &fair_sched_class)
9406 return -EINVAL;
9407 #endif
9408 return 0;
9411 static void
9412 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9414 sched_move_task(tsk);
9417 static void
9418 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9419 struct cgroup *old_cgrp, struct task_struct *task)
9422 * cgroup_exit() is called in the copy_process() failure path.
9423 * Ignore this case since the task hasn't ran yet, this avoids
9424 * trying to poke a half freed task state from generic code.
9426 if (!(task->flags & PF_EXITING))
9427 return;
9429 sched_move_task(task);
9432 #ifdef CONFIG_FAIR_GROUP_SCHED
9433 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9434 u64 shareval)
9436 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9439 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9441 struct task_group *tg = cgroup_tg(cgrp);
9443 return (u64) scale_load_down(tg->shares);
9446 #ifdef CONFIG_CFS_BANDWIDTH
9447 static DEFINE_MUTEX(cfs_constraints_mutex);
9449 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9450 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9452 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9454 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9456 int i, ret = 0, runtime_enabled;
9457 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9459 if (tg == &root_task_group)
9460 return -EINVAL;
9463 * Ensure we have at some amount of bandwidth every period. This is
9464 * to prevent reaching a state of large arrears when throttled via
9465 * entity_tick() resulting in prolonged exit starvation.
9467 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9468 return -EINVAL;
9471 * Likewise, bound things on the otherside by preventing insane quota
9472 * periods. This also allows us to normalize in computing quota
9473 * feasibility.
9475 if (period > max_cfs_quota_period)
9476 return -EINVAL;
9478 mutex_lock(&cfs_constraints_mutex);
9479 ret = __cfs_schedulable(tg, period, quota);
9480 if (ret)
9481 goto out_unlock;
9483 runtime_enabled = quota != RUNTIME_INF;
9484 raw_spin_lock_irq(&cfs_b->lock);
9485 cfs_b->period = ns_to_ktime(period);
9486 cfs_b->quota = quota;
9488 __refill_cfs_bandwidth_runtime(cfs_b);
9489 /* restart the period timer (if active) to handle new period expiry */
9490 if (runtime_enabled && cfs_b->timer_active) {
9491 /* force a reprogram */
9492 cfs_b->timer_active = 0;
9493 __start_cfs_bandwidth(cfs_b);
9495 raw_spin_unlock_irq(&cfs_b->lock);
9497 for_each_possible_cpu(i) {
9498 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9499 struct rq *rq = rq_of(cfs_rq);
9501 raw_spin_lock_irq(&rq->lock);
9502 cfs_rq->runtime_enabled = runtime_enabled;
9503 cfs_rq->runtime_remaining = 0;
9505 if (cfs_rq_throttled(cfs_rq))
9506 unthrottle_cfs_rq(cfs_rq);
9507 raw_spin_unlock_irq(&rq->lock);
9509 out_unlock:
9510 mutex_unlock(&cfs_constraints_mutex);
9512 return ret;
9515 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9517 u64 quota, period;
9519 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9520 if (cfs_quota_us < 0)
9521 quota = RUNTIME_INF;
9522 else
9523 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9525 return tg_set_cfs_bandwidth(tg, period, quota);
9528 long tg_get_cfs_quota(struct task_group *tg)
9530 u64 quota_us;
9532 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9533 return -1;
9535 quota_us = tg_cfs_bandwidth(tg)->quota;
9536 do_div(quota_us, NSEC_PER_USEC);
9538 return quota_us;
9541 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9543 u64 quota, period;
9545 period = (u64)cfs_period_us * NSEC_PER_USEC;
9546 quota = tg_cfs_bandwidth(tg)->quota;
9548 if (period <= 0)
9549 return -EINVAL;
9551 return tg_set_cfs_bandwidth(tg, period, quota);
9554 long tg_get_cfs_period(struct task_group *tg)
9556 u64 cfs_period_us;
9558 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9559 do_div(cfs_period_us, NSEC_PER_USEC);
9561 return cfs_period_us;
9564 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9566 return tg_get_cfs_quota(cgroup_tg(cgrp));
9569 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9570 s64 cfs_quota_us)
9572 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9575 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9577 return tg_get_cfs_period(cgroup_tg(cgrp));
9580 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9581 u64 cfs_period_us)
9583 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9586 struct cfs_schedulable_data {
9587 struct task_group *tg;
9588 u64 period, quota;
9592 * normalize group quota/period to be quota/max_period
9593 * note: units are usecs
9595 static u64 normalize_cfs_quota(struct task_group *tg,
9596 struct cfs_schedulable_data *d)
9598 u64 quota, period;
9600 if (tg == d->tg) {
9601 period = d->period;
9602 quota = d->quota;
9603 } else {
9604 period = tg_get_cfs_period(tg);
9605 quota = tg_get_cfs_quota(tg);
9608 /* note: these should typically be equivalent */
9609 if (quota == RUNTIME_INF || quota == -1)
9610 return RUNTIME_INF;
9612 return to_ratio(period, quota);
9615 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9617 struct cfs_schedulable_data *d = data;
9618 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9619 s64 quota = 0, parent_quota = -1;
9621 if (!tg->parent) {
9622 quota = RUNTIME_INF;
9623 } else {
9624 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9626 quota = normalize_cfs_quota(tg, d);
9627 parent_quota = parent_b->hierarchal_quota;
9630 * ensure max(child_quota) <= parent_quota, inherit when no
9631 * limit is set
9633 if (quota == RUNTIME_INF)
9634 quota = parent_quota;
9635 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9636 return -EINVAL;
9638 cfs_b->hierarchal_quota = quota;
9640 return 0;
9643 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9645 int ret;
9646 struct cfs_schedulable_data data = {
9647 .tg = tg,
9648 .period = period,
9649 .quota = quota,
9652 if (quota != RUNTIME_INF) {
9653 do_div(data.period, NSEC_PER_USEC);
9654 do_div(data.quota, NSEC_PER_USEC);
9657 rcu_read_lock();
9658 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9659 rcu_read_unlock();
9661 return ret;
9664 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9665 struct cgroup_map_cb *cb)
9667 struct task_group *tg = cgroup_tg(cgrp);
9668 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9670 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9671 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9672 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9674 return 0;
9676 #endif /* CONFIG_CFS_BANDWIDTH */
9677 #endif /* CONFIG_FAIR_GROUP_SCHED */
9679 #ifdef CONFIG_RT_GROUP_SCHED
9680 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9681 s64 val)
9683 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9686 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9688 return sched_group_rt_runtime(cgroup_tg(cgrp));
9691 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9692 u64 rt_period_us)
9694 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9697 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9699 return sched_group_rt_period(cgroup_tg(cgrp));
9701 #endif /* CONFIG_RT_GROUP_SCHED */
9703 static struct cftype cpu_files[] = {
9704 #ifdef CONFIG_FAIR_GROUP_SCHED
9706 .name = "shares",
9707 .read_u64 = cpu_shares_read_u64,
9708 .write_u64 = cpu_shares_write_u64,
9710 #endif
9711 #ifdef CONFIG_CFS_BANDWIDTH
9713 .name = "cfs_quota_us",
9714 .read_s64 = cpu_cfs_quota_read_s64,
9715 .write_s64 = cpu_cfs_quota_write_s64,
9718 .name = "cfs_period_us",
9719 .read_u64 = cpu_cfs_period_read_u64,
9720 .write_u64 = cpu_cfs_period_write_u64,
9723 .name = "stat",
9724 .read_map = cpu_stats_show,
9726 #endif
9727 #ifdef CONFIG_RT_GROUP_SCHED
9729 .name = "rt_runtime_us",
9730 .read_s64 = cpu_rt_runtime_read,
9731 .write_s64 = cpu_rt_runtime_write,
9734 .name = "rt_period_us",
9735 .read_u64 = cpu_rt_period_read_uint,
9736 .write_u64 = cpu_rt_period_write_uint,
9738 #endif
9741 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9743 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9746 struct cgroup_subsys cpu_cgroup_subsys = {
9747 .name = "cpu",
9748 .create = cpu_cgroup_create,
9749 .destroy = cpu_cgroup_destroy,
9750 .can_attach_task = cpu_cgroup_can_attach_task,
9751 .attach_task = cpu_cgroup_attach_task,
9752 .exit = cpu_cgroup_exit,
9753 .populate = cpu_cgroup_populate,
9754 .subsys_id = cpu_cgroup_subsys_id,
9755 .early_init = 1,
9758 #endif /* CONFIG_CGROUP_SCHED */
9760 #ifdef CONFIG_CGROUP_CPUACCT
9763 * CPU accounting code for task groups.
9765 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9766 * (balbir@in.ibm.com).
9769 /* track cpu usage of a group of tasks and its child groups */
9770 struct cpuacct {
9771 struct cgroup_subsys_state css;
9772 /* cpuusage holds pointer to a u64-type object on every cpu */
9773 u64 __percpu *cpuusage;
9774 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9775 struct cpuacct *parent;
9778 struct cgroup_subsys cpuacct_subsys;
9780 /* return cpu accounting group corresponding to this container */
9781 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9783 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9784 struct cpuacct, css);
9787 /* return cpu accounting group to which this task belongs */
9788 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9790 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9791 struct cpuacct, css);
9794 /* create a new cpu accounting group */
9795 static struct cgroup_subsys_state *cpuacct_create(
9796 struct cgroup_subsys *ss, struct cgroup *cgrp)
9798 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9799 int i;
9801 if (!ca)
9802 goto out;
9804 ca->cpuusage = alloc_percpu(u64);
9805 if (!ca->cpuusage)
9806 goto out_free_ca;
9808 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9809 if (percpu_counter_init(&ca->cpustat[i], 0))
9810 goto out_free_counters;
9812 if (cgrp->parent)
9813 ca->parent = cgroup_ca(cgrp->parent);
9815 return &ca->css;
9817 out_free_counters:
9818 while (--i >= 0)
9819 percpu_counter_destroy(&ca->cpustat[i]);
9820 free_percpu(ca->cpuusage);
9821 out_free_ca:
9822 kfree(ca);
9823 out:
9824 return ERR_PTR(-ENOMEM);
9827 /* destroy an existing cpu accounting group */
9828 static void
9829 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9831 struct cpuacct *ca = cgroup_ca(cgrp);
9832 int i;
9834 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9835 percpu_counter_destroy(&ca->cpustat[i]);
9836 free_percpu(ca->cpuusage);
9837 kfree(ca);
9840 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9842 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9843 u64 data;
9845 #ifndef CONFIG_64BIT
9847 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9849 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9850 data = *cpuusage;
9851 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9852 #else
9853 data = *cpuusage;
9854 #endif
9856 return data;
9859 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9861 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9863 #ifndef CONFIG_64BIT
9865 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9867 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9868 *cpuusage = val;
9869 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9870 #else
9871 *cpuusage = val;
9872 #endif
9875 /* return total cpu usage (in nanoseconds) of a group */
9876 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9878 struct cpuacct *ca = cgroup_ca(cgrp);
9879 u64 totalcpuusage = 0;
9880 int i;
9882 for_each_present_cpu(i)
9883 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9885 return totalcpuusage;
9888 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9889 u64 reset)
9891 struct cpuacct *ca = cgroup_ca(cgrp);
9892 int err = 0;
9893 int i;
9895 if (reset) {
9896 err = -EINVAL;
9897 goto out;
9900 for_each_present_cpu(i)
9901 cpuacct_cpuusage_write(ca, i, 0);
9903 out:
9904 return err;
9907 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9908 struct seq_file *m)
9910 struct cpuacct *ca = cgroup_ca(cgroup);
9911 u64 percpu;
9912 int i;
9914 for_each_present_cpu(i) {
9915 percpu = cpuacct_cpuusage_read(ca, i);
9916 seq_printf(m, "%llu ", (unsigned long long) percpu);
9918 seq_printf(m, "\n");
9919 return 0;
9922 static const char *cpuacct_stat_desc[] = {
9923 [CPUACCT_STAT_USER] = "user",
9924 [CPUACCT_STAT_SYSTEM] = "system",
9927 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9928 struct cgroup_map_cb *cb)
9930 struct cpuacct *ca = cgroup_ca(cgrp);
9931 int i;
9933 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9934 s64 val = percpu_counter_read(&ca->cpustat[i]);
9935 val = cputime64_to_clock_t(val);
9936 cb->fill(cb, cpuacct_stat_desc[i], val);
9938 return 0;
9941 static struct cftype files[] = {
9943 .name = "usage",
9944 .read_u64 = cpuusage_read,
9945 .write_u64 = cpuusage_write,
9948 .name = "usage_percpu",
9949 .read_seq_string = cpuacct_percpu_seq_read,
9952 .name = "stat",
9953 .read_map = cpuacct_stats_show,
9957 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9959 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9963 * charge this task's execution time to its accounting group.
9965 * called with rq->lock held.
9967 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9969 struct cpuacct *ca;
9970 int cpu;
9972 if (unlikely(!cpuacct_subsys.active))
9973 return;
9975 cpu = task_cpu(tsk);
9977 rcu_read_lock();
9979 ca = task_ca(tsk);
9981 for (; ca; ca = ca->parent) {
9982 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9983 *cpuusage += cputime;
9986 rcu_read_unlock();
9990 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9991 * in cputime_t units. As a result, cpuacct_update_stats calls
9992 * percpu_counter_add with values large enough to always overflow the
9993 * per cpu batch limit causing bad SMP scalability.
9995 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9996 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9997 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9999 #ifdef CONFIG_SMP
10000 #define CPUACCT_BATCH \
10001 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
10002 #else
10003 #define CPUACCT_BATCH 0
10004 #endif
10007 * Charge the system/user time to the task's accounting group.
10009 static void cpuacct_update_stats(struct task_struct *tsk,
10010 enum cpuacct_stat_index idx, cputime_t val)
10012 struct cpuacct *ca;
10013 int batch = CPUACCT_BATCH;
10015 if (unlikely(!cpuacct_subsys.active))
10016 return;
10018 rcu_read_lock();
10019 ca = task_ca(tsk);
10021 do {
10022 __percpu_counter_add(&ca->cpustat[idx], val, batch);
10023 ca = ca->parent;
10024 } while (ca);
10025 rcu_read_unlock();
10028 struct cgroup_subsys cpuacct_subsys = {
10029 .name = "cpuacct",
10030 .create = cpuacct_create,
10031 .destroy = cpuacct_destroy,
10032 .populate = cpuacct_populate,
10033 .subsys_id = cpuacct_subsys_id,
10035 #endif /* CONFIG_CGROUP_CPUACCT */