4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
95 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
104 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
109 * Helpers for converting nanosecond timing to jiffy resolution
111 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
113 #define NICE_0_LOAD SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
117 * These are the 'tuning knobs' of the scheduler:
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
122 #define DEF_TIMESLICE (100 * HZ / 1000)
125 * single value that denotes runtime == period, ie unlimited time.
127 #define RUNTIME_INF ((u64)~0ULL)
129 static inline int rt_policy(int policy
)
131 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
136 static inline int task_has_rt_policy(struct task_struct
*p
)
138 return rt_policy(p
->policy
);
142 * This is the priority-queue data structure of the RT scheduling class:
144 struct rt_prio_array
{
145 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
146 struct list_head queue
[MAX_RT_PRIO
];
149 struct rt_bandwidth
{
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock
;
154 struct hrtimer rt_period_timer
;
157 static struct rt_bandwidth def_rt_bandwidth
;
159 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
161 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
163 struct rt_bandwidth
*rt_b
=
164 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
170 now
= hrtimer_cb_get_time(timer
);
171 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
176 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
179 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
183 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
185 rt_b
->rt_period
= ns_to_ktime(period
);
186 rt_b
->rt_runtime
= runtime
;
188 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
190 hrtimer_init(&rt_b
->rt_period_timer
,
191 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
192 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
195 static inline int rt_bandwidth_enabled(void)
197 return sysctl_sched_rt_runtime
>= 0;
200 static void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
203 ktime_t soft
, hard
, now
;
206 if (hrtimer_active(period_timer
))
209 now
= hrtimer_cb_get_time(period_timer
);
210 hrtimer_forward(period_timer
, now
, period
);
212 soft
= hrtimer_get_softexpires(period_timer
);
213 hard
= hrtimer_get_expires(period_timer
);
214 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
215 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
216 HRTIMER_MODE_ABS_PINNED
, 0);
220 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
222 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 raw_spin_lock(&rt_b
->rt_runtime_lock
);
229 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
230 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
236 hrtimer_cancel(&rt_b
->rt_period_timer
);
241 * sched_domains_mutex serializes calls to init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
244 static DEFINE_MUTEX(sched_domains_mutex
);
246 #ifdef CONFIG_CGROUP_SCHED
248 #include <linux/cgroup.h>
252 static LIST_HEAD(task_groups
);
254 struct cfs_bandwidth
{
255 #ifdef CONFIG_CFS_BANDWIDTH
259 s64 hierarchal_quota
;
262 int idle
, timer_active
;
263 struct hrtimer period_timer
, slack_timer
;
264 struct list_head throttled_cfs_rq
;
267 int nr_periods
, nr_throttled
;
272 /* task group related information */
274 struct cgroup_subsys_state css
;
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity
**se
;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq
**cfs_rq
;
281 unsigned long shares
;
283 atomic_t load_weight
;
286 #ifdef CONFIG_RT_GROUP_SCHED
287 struct sched_rt_entity
**rt_se
;
288 struct rt_rq
**rt_rq
;
290 struct rt_bandwidth rt_bandwidth
;
294 struct list_head list
;
296 struct task_group
*parent
;
297 struct list_head siblings
;
298 struct list_head children
;
300 #ifdef CONFIG_SCHED_AUTOGROUP
301 struct autogroup
*autogroup
;
304 struct cfs_bandwidth cfs_bandwidth
;
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock
);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
312 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
325 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group root_task_group
;
333 #endif /* CONFIG_CGROUP_SCHED */
335 /* CFS-related fields in a runqueue */
337 struct load_weight load
;
338 unsigned long nr_running
, h_nr_running
;
343 u64 min_vruntime_copy
;
346 struct rb_root tasks_timeline
;
347 struct rb_node
*rb_leftmost
;
349 struct list_head tasks
;
350 struct list_head
*balance_iterator
;
353 * 'curr' points to currently running entity on this cfs_rq.
354 * It is set to NULL otherwise (i.e when none are currently running).
356 struct sched_entity
*curr
, *next
, *last
, *skip
;
358 #ifdef CONFIG_SCHED_DEBUG
359 unsigned int nr_spread_over
;
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
366 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368 * (like users, containers etc.)
370 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371 * list is used during load balance.
374 struct list_head leaf_cfs_rq_list
;
375 struct task_group
*tg
; /* group that "owns" this runqueue */
379 * the part of load.weight contributed by tasks
381 unsigned long task_weight
;
384 * h_load = weight * f(tg)
386 * Where f(tg) is the recursive weight fraction assigned to
389 unsigned long h_load
;
392 * Maintaining per-cpu shares distribution for group scheduling
394 * load_stamp is the last time we updated the load average
395 * load_last is the last time we updated the load average and saw load
396 * load_unacc_exec_time is currently unaccounted execution time
400 u64 load_stamp
, load_last
, load_unacc_exec_time
;
402 unsigned long load_contribution
;
404 #ifdef CONFIG_CFS_BANDWIDTH
407 s64 runtime_remaining
;
409 u64 throttled_timestamp
;
410 int throttled
, throttle_count
;
411 struct list_head throttled_list
;
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
420 return &tg
->cfs_bandwidth
;
423 static inline u64
default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
);
427 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
429 struct cfs_bandwidth
*cfs_b
=
430 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
431 do_sched_cfs_slack_timer(cfs_b
);
433 return HRTIMER_NORESTART
;
436 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
438 struct cfs_bandwidth
*cfs_b
=
439 container_of(timer
, struct cfs_bandwidth
, period_timer
);
445 now
= hrtimer_cb_get_time(timer
);
446 overrun
= hrtimer_forward(timer
, now
, cfs_b
->period
);
451 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
454 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
457 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
459 raw_spin_lock_init(&cfs_b
->lock
);
461 cfs_b
->quota
= RUNTIME_INF
;
462 cfs_b
->period
= ns_to_ktime(default_cfs_period());
464 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
465 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
466 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
467 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
468 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
471 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
473 cfs_rq
->runtime_enabled
= 0;
474 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
481 * The timer may be active because we're trying to set a new bandwidth
482 * period or because we're racing with the tear-down path
483 * (timer_active==0 becomes visible before the hrtimer call-back
484 * terminates). In either case we ensure that it's re-programmed
486 while (unlikely(hrtimer_active(&cfs_b
->period_timer
))) {
487 raw_spin_unlock(&cfs_b
->lock
);
488 /* ensure cfs_b->lock is available while we wait */
489 hrtimer_cancel(&cfs_b
->period_timer
);
491 raw_spin_lock(&cfs_b
->lock
);
492 /* if someone else restarted the timer then we're done */
493 if (cfs_b
->timer_active
)
497 cfs_b
->timer_active
= 1;
498 start_bandwidth_timer(&cfs_b
->period_timer
, cfs_b
->period
);
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
503 hrtimer_cancel(&cfs_b
->period_timer
);
504 hrtimer_cancel(&cfs_b
->slack_timer
);
507 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
511 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
518 /* Real-Time classes' related field in a runqueue: */
520 struct rt_prio_array active
;
521 unsigned long rt_nr_running
;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
524 int curr
; /* highest queued rt task prio */
526 int next
; /* next highest */
531 unsigned long rt_nr_migratory
;
532 unsigned long rt_nr_total
;
534 struct plist_head pushable_tasks
;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock
;
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted
;
546 struct list_head leaf_rt_rq_list
;
547 struct task_group
*tg
;
554 * We add the notion of a root-domain which will be used to define per-domain
555 * variables. Each exclusive cpuset essentially defines an island domain by
556 * fully partitioning the member cpus from any other cpuset. Whenever a new
557 * exclusive cpuset is created, we also create and attach a new root-domain
566 cpumask_var_t online
;
569 * The "RT overload" flag: it gets set if a CPU has more than
570 * one runnable RT task.
572 cpumask_var_t rto_mask
;
573 struct cpupri cpupri
;
577 * By default the system creates a single root-domain with all cpus as
578 * members (mimicking the global state we have today).
580 static struct root_domain def_root_domain
;
582 #endif /* CONFIG_SMP */
585 * This is the main, per-CPU runqueue data structure.
587 * Locking rule: those places that want to lock multiple runqueues
588 * (such as the load balancing or the thread migration code), lock
589 * acquire operations must be ordered by ascending &runqueue.
596 * nr_running and cpu_load should be in the same cacheline because
597 * remote CPUs use both these fields when doing load calculation.
599 unsigned long nr_running
;
600 #define CPU_LOAD_IDX_MAX 5
601 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
602 unsigned long last_load_update_tick
;
605 unsigned char nohz_balance_kick
;
607 int skip_clock_update
;
609 /* capture load from *all* tasks on this cpu: */
610 struct load_weight load
;
611 unsigned long nr_load_updates
;
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618 /* list of leaf cfs_rq on this cpu: */
619 struct list_head leaf_cfs_rq_list
;
621 #ifdef CONFIG_RT_GROUP_SCHED
622 struct list_head leaf_rt_rq_list
;
626 * This is part of a global counter where only the total sum
627 * over all CPUs matters. A task can increase this counter on
628 * one CPU and if it got migrated afterwards it may decrease
629 * it on another CPU. Always updated under the runqueue lock:
631 unsigned long nr_uninterruptible
;
633 struct task_struct
*curr
, *idle
, *stop
;
634 unsigned long next_balance
;
635 struct mm_struct
*prev_mm
;
643 struct root_domain
*rd
;
644 struct sched_domain
*sd
;
646 unsigned long cpu_power
;
648 unsigned char idle_balance
;
649 /* For active balancing */
653 struct cpu_stop_work active_balance_work
;
654 /* cpu of this runqueue: */
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
667 #ifdef CONFIG_PARAVIRT
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671 u64 prev_steal_time_rq
;
674 /* calc_load related fields */
675 unsigned long calc_load_update
;
676 long calc_load_active
;
678 #ifdef CONFIG_SCHED_HRTICK
680 int hrtick_csd_pending
;
681 struct call_single_data hrtick_csd
;
683 struct hrtimer hrtick_timer
;
686 #ifdef CONFIG_SCHEDSTATS
688 struct sched_info rq_sched_info
;
689 unsigned long long rq_cpu_time
;
690 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
692 /* sys_sched_yield() stats */
693 unsigned int yld_count
;
695 /* schedule() stats */
696 unsigned int sched_switch
;
697 unsigned int sched_count
;
698 unsigned int sched_goidle
;
700 /* try_to_wake_up() stats */
701 unsigned int ttwu_count
;
702 unsigned int ttwu_local
;
706 struct llist_head wake_list
;
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
713 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
715 static inline int cpu_of(struct rq
*rq
)
724 #define rcu_dereference_check_sched_domain(p) \
725 rcu_dereference_check((p), \
726 lockdep_is_held(&sched_domains_mutex))
729 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730 * See detach_destroy_domains: synchronize_sched for details.
732 * The domain tree of any CPU may only be accessed from within
733 * preempt-disabled sections.
735 #define for_each_domain(cpu, __sd) \
736 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
738 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
739 #define this_rq() (&__get_cpu_var(runqueues))
740 #define task_rq(p) cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
742 #define raw_rq() (&__raw_get_cpu_var(runqueues))
744 #ifdef CONFIG_CGROUP_SCHED
747 * Return the group to which this tasks belongs.
749 * We cannot use task_subsys_state() and friends because the cgroup
750 * subsystem changes that value before the cgroup_subsys::attach() method
751 * is called, therefore we cannot pin it and might observe the wrong value.
753 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
754 * core changes this before calling sched_move_task().
756 * Instead we use a 'copy' which is updated from sched_move_task() while
757 * holding both task_struct::pi_lock and rq::lock.
759 static inline struct task_group
*task_group(struct task_struct
*p
)
761 return p
->sched_task_group
;
764 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
765 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
767 #ifdef CONFIG_FAIR_GROUP_SCHED
768 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
769 p
->se
.parent
= task_group(p
)->se
[cpu
];
772 #ifdef CONFIG_RT_GROUP_SCHED
773 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
774 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
778 #else /* CONFIG_CGROUP_SCHED */
780 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
781 static inline struct task_group
*task_group(struct task_struct
*p
)
786 #endif /* CONFIG_CGROUP_SCHED */
788 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
790 static void update_rq_clock(struct rq
*rq
)
794 if (rq
->skip_clock_update
> 0)
797 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
799 update_rq_clock_task(rq
, delta
);
803 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
805 #ifdef CONFIG_SCHED_DEBUG
806 # define const_debug __read_mostly
808 # define const_debug static const
812 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
813 * @cpu: the processor in question.
815 * This interface allows printk to be called with the runqueue lock
816 * held and know whether or not it is OK to wake up the klogd.
818 int runqueue_is_locked(int cpu
)
820 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
824 * Debugging: various feature bits
827 #define SCHED_FEAT(name, enabled) \
828 __SCHED_FEAT_##name ,
831 #include "sched_features.h"
836 #define SCHED_FEAT(name, enabled) \
837 (1UL << __SCHED_FEAT_##name) * enabled |
839 const_debug
unsigned int sysctl_sched_features
=
840 #include "sched_features.h"
845 #ifdef CONFIG_SCHED_DEBUG
846 #define SCHED_FEAT(name, enabled) \
849 static __read_mostly
char *sched_feat_names
[] = {
850 #include "sched_features.h"
856 static int sched_feat_show(struct seq_file
*m
, void *v
)
860 for (i
= 0; sched_feat_names
[i
]; i
++) {
861 if (!(sysctl_sched_features
& (1UL << i
)))
863 seq_printf(m
, "%s ", sched_feat_names
[i
]);
871 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
872 size_t cnt
, loff_t
*ppos
)
882 if (copy_from_user(&buf
, ubuf
, cnt
))
888 if (strncmp(cmp
, "NO_", 3) == 0) {
893 for (i
= 0; sched_feat_names
[i
]; i
++) {
894 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
896 sysctl_sched_features
&= ~(1UL << i
);
898 sysctl_sched_features
|= (1UL << i
);
903 if (!sched_feat_names
[i
])
911 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
913 return single_open(filp
, sched_feat_show
, NULL
);
916 static const struct file_operations sched_feat_fops
= {
917 .open
= sched_feat_open
,
918 .write
= sched_feat_write
,
921 .release
= single_release
,
924 static __init
int sched_init_debug(void)
926 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
931 late_initcall(sched_init_debug
);
935 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938 * Number of tasks to iterate in a single balance run.
939 * Limited because this is done with IRQs disabled.
941 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
944 * period over which we average the RT time consumption, measured
949 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
952 * period over which we measure -rt task cpu usage in us.
955 unsigned int sysctl_sched_rt_period
= 1000000;
957 static __read_mostly
int scheduler_running
;
960 * part of the period that we allow rt tasks to run in us.
963 int sysctl_sched_rt_runtime
= 950000;
965 static inline u64
global_rt_period(void)
967 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
970 static inline u64
global_rt_runtime(void)
972 if (sysctl_sched_rt_runtime
< 0)
975 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
978 #ifndef prepare_arch_switch
979 # define prepare_arch_switch(next) do { } while (0)
981 #ifndef finish_arch_switch
982 # define finish_arch_switch(prev) do { } while (0)
985 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
987 return rq
->curr
== p
;
990 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
995 return task_current(rq
, p
);
999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1000 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1004 * We can optimise this out completely for !SMP, because the
1005 * SMP rebalancing from interrupt is the only thing that cares
1012 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1016 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1017 * We must ensure this doesn't happen until the switch is completely
1023 #ifdef CONFIG_DEBUG_SPINLOCK
1024 /* this is a valid case when another task releases the spinlock */
1025 rq
->lock
.owner
= current
;
1028 * If we are tracking spinlock dependencies then we have to
1029 * fix up the runqueue lock - which gets 'carried over' from
1030 * prev into current:
1032 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1034 raw_spin_unlock_irq(&rq
->lock
);
1037 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1038 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1042 * We can optimise this out completely for !SMP, because the
1043 * SMP rebalancing from interrupt is the only thing that cares
1048 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1049 raw_spin_unlock_irq(&rq
->lock
);
1051 raw_spin_unlock(&rq
->lock
);
1055 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1059 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1060 * We must ensure this doesn't happen until the switch is completely
1066 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073 * __task_rq_lock - lock the rq @p resides on.
1075 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1076 __acquires(rq
->lock
)
1080 lockdep_assert_held(&p
->pi_lock
);
1084 raw_spin_lock(&rq
->lock
);
1085 if (likely(rq
== task_rq(p
)))
1087 raw_spin_unlock(&rq
->lock
);
1092 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1094 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1095 __acquires(p
->pi_lock
)
1096 __acquires(rq
->lock
)
1101 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
1103 raw_spin_lock(&rq
->lock
);
1104 if (likely(rq
== task_rq(p
)))
1106 raw_spin_unlock(&rq
->lock
);
1107 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1111 static void __task_rq_unlock(struct rq
*rq
)
1112 __releases(rq
->lock
)
1114 raw_spin_unlock(&rq
->lock
);
1118 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
1119 __releases(rq
->lock
)
1120 __releases(p
->pi_lock
)
1122 raw_spin_unlock(&rq
->lock
);
1123 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1127 * this_rq_lock - lock this runqueue and disable interrupts.
1129 static struct rq
*this_rq_lock(void)
1130 __acquires(rq
->lock
)
1134 local_irq_disable();
1136 raw_spin_lock(&rq
->lock
);
1141 #ifdef CONFIG_SCHED_HRTICK
1143 * Use HR-timers to deliver accurate preemption points.
1145 * Its all a bit involved since we cannot program an hrt while holding the
1146 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * When we get rescheduled we reprogram the hrtick_timer outside of the
1155 * - enabled by features
1156 * - hrtimer is actually high res
1158 static inline int hrtick_enabled(struct rq
*rq
)
1160 if (!sched_feat(HRTICK
))
1162 if (!cpu_active(cpu_of(rq
)))
1164 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1167 static void hrtick_clear(struct rq
*rq
)
1169 if (hrtimer_active(&rq
->hrtick_timer
))
1170 hrtimer_cancel(&rq
->hrtick_timer
);
1174 * High-resolution timer tick.
1175 * Runs from hardirq context with interrupts disabled.
1177 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1179 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1181 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1183 raw_spin_lock(&rq
->lock
);
1184 update_rq_clock(rq
);
1185 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1186 raw_spin_unlock(&rq
->lock
);
1188 return HRTIMER_NORESTART
;
1193 * called from hardirq (IPI) context
1195 static void __hrtick_start(void *arg
)
1197 struct rq
*rq
= arg
;
1199 raw_spin_lock(&rq
->lock
);
1200 hrtimer_restart(&rq
->hrtick_timer
);
1201 rq
->hrtick_csd_pending
= 0;
1202 raw_spin_unlock(&rq
->lock
);
1206 * Called to set the hrtick timer state.
1208 * called with rq->lock held and irqs disabled
1210 static void hrtick_start(struct rq
*rq
, u64 delay
)
1212 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1213 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1215 hrtimer_set_expires(timer
, time
);
1217 if (rq
== this_rq()) {
1218 hrtimer_restart(timer
);
1219 } else if (!rq
->hrtick_csd_pending
) {
1220 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1221 rq
->hrtick_csd_pending
= 1;
1226 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1228 int cpu
= (int)(long)hcpu
;
1231 case CPU_UP_CANCELED
:
1232 case CPU_UP_CANCELED_FROZEN
:
1233 case CPU_DOWN_PREPARE
:
1234 case CPU_DOWN_PREPARE_FROZEN
:
1236 case CPU_DEAD_FROZEN
:
1237 hrtick_clear(cpu_rq(cpu
));
1244 static __init
void init_hrtick(void)
1246 hotcpu_notifier(hotplug_hrtick
, 0);
1250 * Called to set the hrtick timer state.
1252 * called with rq->lock held and irqs disabled
1254 static void hrtick_start(struct rq
*rq
, u64 delay
)
1256 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1257 HRTIMER_MODE_REL_PINNED
, 0);
1260 static inline void init_hrtick(void)
1263 #endif /* CONFIG_SMP */
1265 static void init_rq_hrtick(struct rq
*rq
)
1268 rq
->hrtick_csd_pending
= 0;
1270 rq
->hrtick_csd
.flags
= 0;
1271 rq
->hrtick_csd
.func
= __hrtick_start
;
1272 rq
->hrtick_csd
.info
= rq
;
1275 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1276 rq
->hrtick_timer
.function
= hrtick
;
1278 #else /* CONFIG_SCHED_HRTICK */
1279 static inline void hrtick_clear(struct rq
*rq
)
1283 static inline void init_rq_hrtick(struct rq
*rq
)
1287 static inline void init_hrtick(void)
1290 #endif /* CONFIG_SCHED_HRTICK */
1293 * resched_task - mark a task 'to be rescheduled now'.
1295 * On UP this means the setting of the need_resched flag, on SMP it
1296 * might also involve a cross-CPU call to trigger the scheduler on
1301 #ifndef tsk_is_polling
1302 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 static void resched_task(struct task_struct
*p
)
1309 assert_raw_spin_locked(&task_rq(p
)->lock
);
1311 if (test_tsk_need_resched(p
))
1314 set_tsk_need_resched(p
);
1317 if (cpu
== smp_processor_id())
1320 /* NEED_RESCHED must be visible before we test polling */
1322 if (!tsk_is_polling(p
))
1323 smp_send_reschedule(cpu
);
1326 static void resched_cpu(int cpu
)
1328 struct rq
*rq
= cpu_rq(cpu
);
1329 unsigned long flags
;
1331 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1333 resched_task(cpu_curr(cpu
));
1334 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1339 * In the semi idle case, use the nearest busy cpu for migrating timers
1340 * from an idle cpu. This is good for power-savings.
1342 * We don't do similar optimization for completely idle system, as
1343 * selecting an idle cpu will add more delays to the timers than intended
1344 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1346 int get_nohz_timer_target(void)
1348 int cpu
= smp_processor_id();
1350 struct sched_domain
*sd
;
1353 for_each_domain(cpu
, sd
) {
1354 for_each_cpu(i
, sched_domain_span(sd
)) {
1366 * When add_timer_on() enqueues a timer into the timer wheel of an
1367 * idle CPU then this timer might expire before the next timer event
1368 * which is scheduled to wake up that CPU. In case of a completely
1369 * idle system the next event might even be infinite time into the
1370 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1371 * leaves the inner idle loop so the newly added timer is taken into
1372 * account when the CPU goes back to idle and evaluates the timer
1373 * wheel for the next timer event.
1375 void wake_up_idle_cpu(int cpu
)
1377 struct rq
*rq
= cpu_rq(cpu
);
1379 if (cpu
== smp_processor_id())
1383 * This is safe, as this function is called with the timer
1384 * wheel base lock of (cpu) held. When the CPU is on the way
1385 * to idle and has not yet set rq->curr to idle then it will
1386 * be serialized on the timer wheel base lock and take the new
1387 * timer into account automatically.
1389 if (rq
->curr
!= rq
->idle
)
1393 * We can set TIF_RESCHED on the idle task of the other CPU
1394 * lockless. The worst case is that the other CPU runs the
1395 * idle task through an additional NOOP schedule()
1397 set_tsk_need_resched(rq
->idle
);
1399 /* NEED_RESCHED must be visible before we test polling */
1401 if (!tsk_is_polling(rq
->idle
))
1402 smp_send_reschedule(cpu
);
1405 static inline bool got_nohz_idle_kick(void)
1407 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick
;
1410 #else /* CONFIG_NO_HZ */
1412 static inline bool got_nohz_idle_kick(void)
1417 #endif /* CONFIG_NO_HZ */
1419 static u64
sched_avg_period(void)
1421 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1424 static void sched_avg_update(struct rq
*rq
)
1426 s64 period
= sched_avg_period();
1428 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1430 * Inline assembly required to prevent the compiler
1431 * optimising this loop into a divmod call.
1432 * See __iter_div_u64_rem() for another example of this.
1434 asm("" : "+rm" (rq
->age_stamp
));
1435 rq
->age_stamp
+= period
;
1440 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1442 rq
->rt_avg
+= rt_delta
;
1443 sched_avg_update(rq
);
1446 #else /* !CONFIG_SMP */
1447 static void resched_task(struct task_struct
*p
)
1449 assert_raw_spin_locked(&task_rq(p
)->lock
);
1450 set_tsk_need_resched(p
);
1453 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1457 static void sched_avg_update(struct rq
*rq
)
1460 #endif /* CONFIG_SMP */
1462 #if BITS_PER_LONG == 32
1463 # define WMULT_CONST (~0UL)
1465 # define WMULT_CONST (1UL << 32)
1468 #define WMULT_SHIFT 32
1471 * Shift right and round:
1473 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476 * delta *= weight / lw
1478 static unsigned long
1479 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1480 struct load_weight
*lw
)
1485 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1486 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1487 * 2^SCHED_LOAD_RESOLUTION.
1489 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1490 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1492 tmp
= (u64
)delta_exec
;
1494 if (!lw
->inv_weight
) {
1495 unsigned long w
= scale_load_down(lw
->weight
);
1497 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1499 else if (unlikely(!w
))
1500 lw
->inv_weight
= WMULT_CONST
;
1502 lw
->inv_weight
= WMULT_CONST
/ w
;
1506 * Check whether we'd overflow the 64-bit multiplication:
1508 if (unlikely(tmp
> WMULT_CONST
))
1509 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1512 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1514 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1517 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1523 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1529 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1536 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1537 * of tasks with abnormal "nice" values across CPUs the contribution that
1538 * each task makes to its run queue's load is weighted according to its
1539 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1540 * scaled version of the new time slice allocation that they receive on time
1544 #define WEIGHT_IDLEPRIO 3
1545 #define WMULT_IDLEPRIO 1431655765
1548 * Nice levels are multiplicative, with a gentle 10% change for every
1549 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1550 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1551 * that remained on nice 0.
1553 * The "10% effect" is relative and cumulative: from _any_ nice level,
1554 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1555 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1556 * If a task goes up by ~10% and another task goes down by ~10% then
1557 * the relative distance between them is ~25%.)
1559 static const int prio_to_weight
[40] = {
1560 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1561 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1562 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1563 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1564 /* 0 */ 1024, 820, 655, 526, 423,
1565 /* 5 */ 335, 272, 215, 172, 137,
1566 /* 10 */ 110, 87, 70, 56, 45,
1567 /* 15 */ 36, 29, 23, 18, 15,
1571 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1573 * In cases where the weight does not change often, we can use the
1574 * precalculated inverse to speed up arithmetics by turning divisions
1575 * into multiplications:
1577 static const u32 prio_to_wmult
[40] = {
1578 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1579 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1580 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1581 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1582 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1583 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1584 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1585 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 /* Time spent by the tasks of the cpu accounting group executing in ... */
1589 enum cpuacct_stat_index
{
1590 CPUACCT_STAT_USER
, /* ... user mode */
1591 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1593 CPUACCT_STAT_NSTATS
,
1596 #ifdef CONFIG_CGROUP_CPUACCT
1597 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1598 static void cpuacct_update_stats(struct task_struct
*tsk
,
1599 enum cpuacct_stat_index idx
, cputime_t val
);
1601 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1602 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1603 enum cpuacct_stat_index idx
, cputime_t val
) {}
1606 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1608 update_load_add(&rq
->load
, load
);
1611 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1613 update_load_sub(&rq
->load
, load
);
1616 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1617 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1618 typedef int (*tg_visitor
)(struct task_group
*, void *);
1621 * Iterate task_group tree rooted at *from, calling @down when first entering a
1622 * node and @up when leaving it for the final time.
1624 * Caller must hold rcu_lock or sufficient equivalent.
1626 static int walk_tg_tree_from(struct task_group
*from
,
1627 tg_visitor down
, tg_visitor up
, void *data
)
1629 struct task_group
*parent
, *child
;
1635 ret
= (*down
)(parent
, data
);
1638 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1645 ret
= (*up
)(parent
, data
);
1646 if (ret
|| parent
== from
)
1650 parent
= parent
->parent
;
1658 * Iterate the full tree, calling @down when first entering a node and @up when
1659 * leaving it for the final time.
1661 * Caller must hold rcu_lock or sufficient equivalent.
1664 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1666 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
1669 static int tg_nop(struct task_group
*tg
, void *data
)
1676 /* Used instead of source_load when we know the type == 0 */
1677 static unsigned long weighted_cpuload(const int cpu
)
1679 return cpu_rq(cpu
)->load
.weight
;
1683 * Return a low guess at the load of a migration-source cpu weighted
1684 * according to the scheduling class and "nice" value.
1686 * We want to under-estimate the load of migration sources, to
1687 * balance conservatively.
1689 static unsigned long source_load(int cpu
, int type
)
1691 struct rq
*rq
= cpu_rq(cpu
);
1692 unsigned long total
= weighted_cpuload(cpu
);
1694 if (type
== 0 || !sched_feat(LB_BIAS
))
1697 return min(rq
->cpu_load
[type
-1], total
);
1701 * Return a high guess at the load of a migration-target cpu weighted
1702 * according to the scheduling class and "nice" value.
1704 static unsigned long target_load(int cpu
, int type
)
1706 struct rq
*rq
= cpu_rq(cpu
);
1707 unsigned long total
= weighted_cpuload(cpu
);
1709 if (type
== 0 || !sched_feat(LB_BIAS
))
1712 return max(rq
->cpu_load
[type
-1], total
);
1715 static unsigned long power_of(int cpu
)
1717 return cpu_rq(cpu
)->cpu_power
;
1720 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1722 static unsigned long cpu_avg_load_per_task(int cpu
)
1724 struct rq
*rq
= cpu_rq(cpu
);
1725 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1728 return rq
->load
.weight
/ nr_running
;
1733 #ifdef CONFIG_PREEMPT
1735 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1738 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1739 * way at the expense of forcing extra atomic operations in all
1740 * invocations. This assures that the double_lock is acquired using the
1741 * same underlying policy as the spinlock_t on this architecture, which
1742 * reduces latency compared to the unfair variant below. However, it
1743 * also adds more overhead and therefore may reduce throughput.
1745 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1746 __releases(this_rq
->lock
)
1747 __acquires(busiest
->lock
)
1748 __acquires(this_rq
->lock
)
1750 raw_spin_unlock(&this_rq
->lock
);
1751 double_rq_lock(this_rq
, busiest
);
1758 * Unfair double_lock_balance: Optimizes throughput at the expense of
1759 * latency by eliminating extra atomic operations when the locks are
1760 * already in proper order on entry. This favors lower cpu-ids and will
1761 * grant the double lock to lower cpus over higher ids under contention,
1762 * regardless of entry order into the function.
1764 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1765 __releases(this_rq
->lock
)
1766 __acquires(busiest
->lock
)
1767 __acquires(this_rq
->lock
)
1771 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1772 if (busiest
< this_rq
) {
1773 raw_spin_unlock(&this_rq
->lock
);
1774 raw_spin_lock(&busiest
->lock
);
1775 raw_spin_lock_nested(&this_rq
->lock
,
1776 SINGLE_DEPTH_NESTING
);
1779 raw_spin_lock_nested(&busiest
->lock
,
1780 SINGLE_DEPTH_NESTING
);
1785 #endif /* CONFIG_PREEMPT */
1788 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1792 if (unlikely(!irqs_disabled())) {
1793 /* printk() doesn't work good under rq->lock */
1794 raw_spin_unlock(&this_rq
->lock
);
1798 return _double_lock_balance(this_rq
, busiest
);
1801 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1802 __releases(busiest
->lock
)
1804 raw_spin_unlock(&busiest
->lock
);
1805 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1809 * double_rq_lock - safely lock two runqueues
1811 * Note this does not disable interrupts like task_rq_lock,
1812 * you need to do so manually before calling.
1814 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1815 __acquires(rq1
->lock
)
1816 __acquires(rq2
->lock
)
1818 BUG_ON(!irqs_disabled());
1820 raw_spin_lock(&rq1
->lock
);
1821 __acquire(rq2
->lock
); /* Fake it out ;) */
1824 raw_spin_lock(&rq1
->lock
);
1825 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1827 raw_spin_lock(&rq2
->lock
);
1828 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1834 * double_rq_unlock - safely unlock two runqueues
1836 * Note this does not restore interrupts like task_rq_unlock,
1837 * you need to do so manually after calling.
1839 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1840 __releases(rq1
->lock
)
1841 __releases(rq2
->lock
)
1843 raw_spin_unlock(&rq1
->lock
);
1845 raw_spin_unlock(&rq2
->lock
);
1847 __release(rq2
->lock
);
1850 #else /* CONFIG_SMP */
1853 * double_rq_lock - safely lock two runqueues
1855 * Note this does not disable interrupts like task_rq_lock,
1856 * you need to do so manually before calling.
1858 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1859 __acquires(rq1
->lock
)
1860 __acquires(rq2
->lock
)
1862 BUG_ON(!irqs_disabled());
1864 raw_spin_lock(&rq1
->lock
);
1865 __acquire(rq2
->lock
); /* Fake it out ;) */
1869 * double_rq_unlock - safely unlock two runqueues
1871 * Note this does not restore interrupts like task_rq_unlock,
1872 * you need to do so manually after calling.
1874 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1875 __releases(rq1
->lock
)
1876 __releases(rq2
->lock
)
1879 raw_spin_unlock(&rq1
->lock
);
1880 __release(rq2
->lock
);
1885 static void update_sysctl(void);
1886 static int get_update_sysctl_factor(void);
1887 static void update_idle_cpu_load(struct rq
*this_rq
);
1889 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1891 set_task_rq(p
, cpu
);
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfully executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1899 task_thread_info(p
)->cpu
= cpu
;
1903 static const struct sched_class rt_sched_class
;
1905 #define sched_class_highest (&stop_sched_class)
1906 #define for_each_class(class) \
1907 for (class = sched_class_highest; class; class = class->next)
1909 #include "sched_stats.h"
1911 static void inc_nr_running(struct rq
*rq
)
1916 static void dec_nr_running(struct rq
*rq
)
1921 static void set_load_weight(struct task_struct
*p
)
1923 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1924 struct load_weight
*load
= &p
->se
.load
;
1927 * SCHED_IDLE tasks get minimal weight:
1929 if (p
->policy
== SCHED_IDLE
) {
1930 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1931 load
->inv_weight
= WMULT_IDLEPRIO
;
1935 load
->weight
= scale_load(prio_to_weight
[prio
]);
1936 load
->inv_weight
= prio_to_wmult
[prio
];
1939 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1941 update_rq_clock(rq
);
1942 sched_info_queued(p
);
1943 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1946 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1948 update_rq_clock(rq
);
1949 sched_info_dequeued(p
);
1950 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1954 * activate_task - move a task to the runqueue.
1956 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1958 if (task_contributes_to_load(p
))
1959 rq
->nr_uninterruptible
--;
1961 enqueue_task(rq
, p
, flags
);
1965 * deactivate_task - remove a task from the runqueue.
1967 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1969 if (task_contributes_to_load(p
))
1970 rq
->nr_uninterruptible
++;
1972 dequeue_task(rq
, p
, flags
);
1975 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1978 * There are no locks covering percpu hardirq/softirq time.
1979 * They are only modified in account_system_vtime, on corresponding CPU
1980 * with interrupts disabled. So, writes are safe.
1981 * They are read and saved off onto struct rq in update_rq_clock().
1982 * This may result in other CPU reading this CPU's irq time and can
1983 * race with irq/account_system_vtime on this CPU. We would either get old
1984 * or new value with a side effect of accounting a slice of irq time to wrong
1985 * task when irq is in progress while we read rq->clock. That is a worthy
1986 * compromise in place of having locks on each irq in account_system_time.
1988 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1989 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1991 static DEFINE_PER_CPU(u64
, irq_start_time
);
1992 static int sched_clock_irqtime
;
1994 void enable_sched_clock_irqtime(void)
1996 sched_clock_irqtime
= 1;
1999 void disable_sched_clock_irqtime(void)
2001 sched_clock_irqtime
= 0;
2004 #ifndef CONFIG_64BIT
2005 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
2007 static inline void irq_time_write_begin(void)
2009 __this_cpu_inc(irq_time_seq
.sequence
);
2013 static inline void irq_time_write_end(void)
2016 __this_cpu_inc(irq_time_seq
.sequence
);
2019 static inline u64
irq_time_read(int cpu
)
2025 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
2026 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
2027 per_cpu(cpu_hardirq_time
, cpu
);
2028 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
2032 #else /* CONFIG_64BIT */
2033 static inline void irq_time_write_begin(void)
2037 static inline void irq_time_write_end(void)
2041 static inline u64
irq_time_read(int cpu
)
2043 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
2045 #endif /* CONFIG_64BIT */
2048 * Called before incrementing preempt_count on {soft,}irq_enter
2049 * and before decrementing preempt_count on {soft,}irq_exit.
2051 void account_system_vtime(struct task_struct
*curr
)
2053 unsigned long flags
;
2057 if (!sched_clock_irqtime
)
2060 local_irq_save(flags
);
2062 cpu
= smp_processor_id();
2063 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
2064 __this_cpu_add(irq_start_time
, delta
);
2066 irq_time_write_begin();
2068 * We do not account for softirq time from ksoftirqd here.
2069 * We want to continue accounting softirq time to ksoftirqd thread
2070 * in that case, so as not to confuse scheduler with a special task
2071 * that do not consume any time, but still wants to run.
2073 if (hardirq_count())
2074 __this_cpu_add(cpu_hardirq_time
, delta
);
2075 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
2076 __this_cpu_add(cpu_softirq_time
, delta
);
2078 irq_time_write_end();
2079 local_irq_restore(flags
);
2081 EXPORT_SYMBOL_GPL(account_system_vtime
);
2083 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2085 #ifdef CONFIG_PARAVIRT
2086 static inline u64
steal_ticks(u64 steal
)
2088 if (unlikely(steal
> NSEC_PER_SEC
))
2089 return div_u64(steal
, TICK_NSEC
);
2091 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
2095 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2098 * In theory, the compile should just see 0 here, and optimize out the call
2099 * to sched_rt_avg_update. But I don't trust it...
2101 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2102 s64 steal
= 0, irq_delta
= 0;
2104 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2105 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
2108 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2109 * this case when a previous update_rq_clock() happened inside a
2110 * {soft,}irq region.
2112 * When this happens, we stop ->clock_task and only update the
2113 * prev_irq_time stamp to account for the part that fit, so that a next
2114 * update will consume the rest. This ensures ->clock_task is
2117 * It does however cause some slight miss-attribution of {soft,}irq
2118 * time, a more accurate solution would be to update the irq_time using
2119 * the current rq->clock timestamp, except that would require using
2122 if (irq_delta
> delta
)
2125 rq
->prev_irq_time
+= irq_delta
;
2128 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2129 if (static_branch((¶virt_steal_rq_enabled
))) {
2132 steal
= paravirt_steal_clock(cpu_of(rq
));
2133 steal
-= rq
->prev_steal_time_rq
;
2135 if (unlikely(steal
> delta
))
2138 st
= steal_ticks(steal
);
2139 steal
= st
* TICK_NSEC
;
2141 rq
->prev_steal_time_rq
+= steal
;
2147 rq
->clock_task
+= delta
;
2149 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2150 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
2151 sched_rt_avg_update(rq
, irq_delta
+ steal
);
2155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2156 static int irqtime_account_hi_update(void)
2158 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2159 unsigned long flags
;
2163 local_irq_save(flags
);
2164 latest_ns
= this_cpu_read(cpu_hardirq_time
);
2165 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
2167 local_irq_restore(flags
);
2171 static int irqtime_account_si_update(void)
2173 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2174 unsigned long flags
;
2178 local_irq_save(flags
);
2179 latest_ns
= this_cpu_read(cpu_softirq_time
);
2180 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2182 local_irq_restore(flags
);
2186 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2188 #define sched_clock_irqtime (0)
2192 #include "sched_idletask.c"
2193 #include "sched_fair.c"
2194 #include "sched_rt.c"
2195 #include "sched_autogroup.c"
2196 #include "sched_stoptask.c"
2197 #ifdef CONFIG_SCHED_DEBUG
2198 # include "sched_debug.c"
2201 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2203 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2204 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2208 * Make it appear like a SCHED_FIFO task, its something
2209 * userspace knows about and won't get confused about.
2211 * Also, it will make PI more or less work without too
2212 * much confusion -- but then, stop work should not
2213 * rely on PI working anyway.
2215 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2217 stop
->sched_class
= &stop_sched_class
;
2220 cpu_rq(cpu
)->stop
= stop
;
2224 * Reset it back to a normal scheduling class so that
2225 * it can die in pieces.
2227 old_stop
->sched_class
= &rt_sched_class
;
2232 * __normal_prio - return the priority that is based on the static prio
2234 static inline int __normal_prio(struct task_struct
*p
)
2236 return p
->static_prio
;
2240 * Calculate the expected normal priority: i.e. priority
2241 * without taking RT-inheritance into account. Might be
2242 * boosted by interactivity modifiers. Changes upon fork,
2243 * setprio syscalls, and whenever the interactivity
2244 * estimator recalculates.
2246 static inline int normal_prio(struct task_struct
*p
)
2250 if (task_has_rt_policy(p
))
2251 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2253 prio
= __normal_prio(p
);
2258 * Calculate the current priority, i.e. the priority
2259 * taken into account by the scheduler. This value might
2260 * be boosted by RT tasks, or might be boosted by
2261 * interactivity modifiers. Will be RT if the task got
2262 * RT-boosted. If not then it returns p->normal_prio.
2264 static int effective_prio(struct task_struct
*p
)
2266 p
->normal_prio
= normal_prio(p
);
2268 * If we are RT tasks or we were boosted to RT priority,
2269 * keep the priority unchanged. Otherwise, update priority
2270 * to the normal priority:
2272 if (!rt_prio(p
->prio
))
2273 return p
->normal_prio
;
2278 * task_curr - is this task currently executing on a CPU?
2279 * @p: the task in question.
2281 inline int task_curr(const struct task_struct
*p
)
2283 return cpu_curr(task_cpu(p
)) == p
;
2286 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2287 const struct sched_class
*prev_class
,
2290 if (prev_class
!= p
->sched_class
) {
2291 if (prev_class
->switched_from
)
2292 prev_class
->switched_from(rq
, p
);
2293 p
->sched_class
->switched_to(rq
, p
);
2294 } else if (oldprio
!= p
->prio
)
2295 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2298 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2300 const struct sched_class
*class;
2302 if (p
->sched_class
== rq
->curr
->sched_class
) {
2303 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2305 for_each_class(class) {
2306 if (class == rq
->curr
->sched_class
)
2308 if (class == p
->sched_class
) {
2309 resched_task(rq
->curr
);
2316 * A queue event has occurred, and we're going to schedule. In
2317 * this case, we can save a useless back to back clock update.
2319 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2320 rq
->skip_clock_update
= 1;
2325 * Is this task likely cache-hot:
2328 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2332 if (p
->sched_class
!= &fair_sched_class
)
2335 if (unlikely(p
->policy
== SCHED_IDLE
))
2339 * Buddy candidates are cache hot:
2341 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2342 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2343 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2346 if (sysctl_sched_migration_cost
== -1)
2348 if (sysctl_sched_migration_cost
== 0)
2351 delta
= now
- p
->se
.exec_start
;
2353 return delta
< (s64
)sysctl_sched_migration_cost
;
2356 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2358 #ifdef CONFIG_SCHED_DEBUG
2360 * We should never call set_task_cpu() on a blocked task,
2361 * ttwu() will sort out the placement.
2363 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2364 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2366 #ifdef CONFIG_LOCKDEP
2368 * The caller should hold either p->pi_lock or rq->lock, when changing
2369 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2371 * sched_move_task() holds both and thus holding either pins the cgroup,
2374 * Furthermore, all task_rq users should acquire both locks, see
2377 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2378 lockdep_is_held(&task_rq(p
)->lock
)));
2382 trace_sched_migrate_task(p
, new_cpu
);
2384 if (task_cpu(p
) != new_cpu
) {
2385 p
->se
.nr_migrations
++;
2386 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
2389 __set_task_cpu(p
, new_cpu
);
2392 struct migration_arg
{
2393 struct task_struct
*task
;
2397 static int migration_cpu_stop(void *data
);
2400 * wait_task_inactive - wait for a thread to unschedule.
2402 * If @match_state is nonzero, it's the @p->state value just checked and
2403 * not expected to change. If it changes, i.e. @p might have woken up,
2404 * then return zero. When we succeed in waiting for @p to be off its CPU,
2405 * we return a positive number (its total switch count). If a second call
2406 * a short while later returns the same number, the caller can be sure that
2407 * @p has remained unscheduled the whole time.
2409 * The caller must ensure that the task *will* unschedule sometime soon,
2410 * else this function might spin for a *long* time. This function can't
2411 * be called with interrupts off, or it may introduce deadlock with
2412 * smp_call_function() if an IPI is sent by the same process we are
2413 * waiting to become inactive.
2415 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2417 unsigned long flags
;
2424 * We do the initial early heuristics without holding
2425 * any task-queue locks at all. We'll only try to get
2426 * the runqueue lock when things look like they will
2432 * If the task is actively running on another CPU
2433 * still, just relax and busy-wait without holding
2436 * NOTE! Since we don't hold any locks, it's not
2437 * even sure that "rq" stays as the right runqueue!
2438 * But we don't care, since "task_running()" will
2439 * return false if the runqueue has changed and p
2440 * is actually now running somewhere else!
2442 while (task_running(rq
, p
)) {
2443 if (match_state
&& unlikely(p
->state
!= match_state
))
2449 * Ok, time to look more closely! We need the rq
2450 * lock now, to be *sure*. If we're wrong, we'll
2451 * just go back and repeat.
2453 rq
= task_rq_lock(p
, &flags
);
2454 trace_sched_wait_task(p
);
2455 running
= task_running(rq
, p
);
2458 if (!match_state
|| p
->state
== match_state
)
2459 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2460 task_rq_unlock(rq
, p
, &flags
);
2463 * If it changed from the expected state, bail out now.
2465 if (unlikely(!ncsw
))
2469 * Was it really running after all now that we
2470 * checked with the proper locks actually held?
2472 * Oops. Go back and try again..
2474 if (unlikely(running
)) {
2480 * It's not enough that it's not actively running,
2481 * it must be off the runqueue _entirely_, and not
2484 * So if it was still runnable (but just not actively
2485 * running right now), it's preempted, and we should
2486 * yield - it could be a while.
2488 if (unlikely(on_rq
)) {
2489 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2491 set_current_state(TASK_UNINTERRUPTIBLE
);
2492 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2497 * Ahh, all good. It wasn't running, and it wasn't
2498 * runnable, which means that it will never become
2499 * running in the future either. We're all done!
2508 * kick_process - kick a running thread to enter/exit the kernel
2509 * @p: the to-be-kicked thread
2511 * Cause a process which is running on another CPU to enter
2512 * kernel-mode, without any delay. (to get signals handled.)
2514 * NOTE: this function doesn't have to take the runqueue lock,
2515 * because all it wants to ensure is that the remote task enters
2516 * the kernel. If the IPI races and the task has been migrated
2517 * to another CPU then no harm is done and the purpose has been
2520 void kick_process(struct task_struct
*p
)
2526 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2527 smp_send_reschedule(cpu
);
2530 EXPORT_SYMBOL_GPL(kick_process
);
2531 #endif /* CONFIG_SMP */
2535 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2537 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2540 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2542 /* Look for allowed, online CPU in same node. */
2543 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2544 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
2547 /* Any allowed, online CPU? */
2548 dest_cpu
= cpumask_any_and(tsk_cpus_allowed(p
), cpu_active_mask
);
2549 if (dest_cpu
< nr_cpu_ids
)
2552 /* No more Mr. Nice Guy. */
2553 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2555 * Don't tell them about moving exiting tasks or
2556 * kernel threads (both mm NULL), since they never
2559 if (p
->mm
&& printk_ratelimit()) {
2560 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2561 task_pid_nr(p
), p
->comm
, cpu
);
2568 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2571 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2573 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2576 * In order not to call set_task_cpu() on a blocking task we need
2577 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2580 * Since this is common to all placement strategies, this lives here.
2582 * [ this allows ->select_task() to simply return task_cpu(p) and
2583 * not worry about this generic constraint ]
2585 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
2587 cpu
= select_fallback_rq(task_cpu(p
), p
);
2592 static void update_avg(u64
*avg
, u64 sample
)
2594 s64 diff
= sample
- *avg
;
2600 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2602 #ifdef CONFIG_SCHEDSTATS
2603 struct rq
*rq
= this_rq();
2606 int this_cpu
= smp_processor_id();
2608 if (cpu
== this_cpu
) {
2609 schedstat_inc(rq
, ttwu_local
);
2610 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2612 struct sched_domain
*sd
;
2614 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2616 for_each_domain(this_cpu
, sd
) {
2617 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2618 schedstat_inc(sd
, ttwu_wake_remote
);
2625 if (wake_flags
& WF_MIGRATED
)
2626 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2628 #endif /* CONFIG_SMP */
2630 schedstat_inc(rq
, ttwu_count
);
2631 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2633 if (wake_flags
& WF_SYNC
)
2634 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2636 #endif /* CONFIG_SCHEDSTATS */
2639 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2641 activate_task(rq
, p
, en_flags
);
2644 /* if a worker is waking up, notify workqueue */
2645 if (p
->flags
& PF_WQ_WORKER
)
2646 wq_worker_waking_up(p
, cpu_of(rq
));
2650 * Mark the task runnable and perform wakeup-preemption.
2653 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2655 trace_sched_wakeup(p
, true);
2656 check_preempt_curr(rq
, p
, wake_flags
);
2658 p
->state
= TASK_RUNNING
;
2660 if (p
->sched_class
->task_woken
)
2661 p
->sched_class
->task_woken(rq
, p
);
2663 if (rq
->idle_stamp
) {
2664 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2665 u64 max
= 2*sysctl_sched_migration_cost
;
2670 update_avg(&rq
->avg_idle
, delta
);
2677 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2680 if (p
->sched_contributes_to_load
)
2681 rq
->nr_uninterruptible
--;
2684 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2685 ttwu_do_wakeup(rq
, p
, wake_flags
);
2689 * Called in case the task @p isn't fully descheduled from its runqueue,
2690 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2691 * since all we need to do is flip p->state to TASK_RUNNING, since
2692 * the task is still ->on_rq.
2694 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2699 rq
= __task_rq_lock(p
);
2701 ttwu_do_wakeup(rq
, p
, wake_flags
);
2704 __task_rq_unlock(rq
);
2710 static void sched_ttwu_pending(void)
2712 struct rq
*rq
= this_rq();
2713 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
2714 struct task_struct
*p
;
2716 raw_spin_lock(&rq
->lock
);
2719 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
2720 llist
= llist_next(llist
);
2721 ttwu_do_activate(rq
, p
, 0);
2724 raw_spin_unlock(&rq
->lock
);
2727 void scheduler_ipi(void)
2729 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
2733 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2734 * traditionally all their work was done from the interrupt return
2735 * path. Now that we actually do some work, we need to make sure
2738 * Some archs already do call them, luckily irq_enter/exit nest
2741 * Arguably we should visit all archs and update all handlers,
2742 * however a fair share of IPIs are still resched only so this would
2743 * somewhat pessimize the simple resched case.
2746 sched_ttwu_pending();
2749 * Check if someone kicked us for doing the nohz idle load balance.
2751 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2752 this_rq()->idle_balance
= 1;
2753 raise_softirq_irqoff(SCHED_SOFTIRQ
);
2758 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2760 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
2761 smp_send_reschedule(cpu
);
2764 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2765 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2770 rq
= __task_rq_lock(p
);
2772 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2773 ttwu_do_wakeup(rq
, p
, wake_flags
);
2776 __task_rq_unlock(rq
);
2781 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2782 #endif /* CONFIG_SMP */
2784 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2786 struct rq
*rq
= cpu_rq(cpu
);
2788 #if defined(CONFIG_SMP)
2789 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2790 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2791 ttwu_queue_remote(p
, cpu
);
2796 raw_spin_lock(&rq
->lock
);
2797 ttwu_do_activate(rq
, p
, 0);
2798 raw_spin_unlock(&rq
->lock
);
2802 * try_to_wake_up - wake up a thread
2803 * @p: the thread to be awakened
2804 * @state: the mask of task states that can be woken
2805 * @wake_flags: wake modifier flags (WF_*)
2807 * Put it on the run-queue if it's not already there. The "current"
2808 * thread is always on the run-queue (except when the actual
2809 * re-schedule is in progress), and as such you're allowed to do
2810 * the simpler "current->state = TASK_RUNNING" to mark yourself
2811 * runnable without the overhead of this.
2813 * Returns %true if @p was woken up, %false if it was already running
2814 * or @state didn't match @p's state.
2817 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2819 unsigned long flags
;
2820 int cpu
, success
= 0;
2823 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2824 if (!(p
->state
& state
))
2827 success
= 1; /* we're going to change ->state */
2830 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2835 * If the owning (remote) cpu is still in the middle of schedule() with
2836 * this task as prev, wait until its done referencing the task.
2839 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2841 * In case the architecture enables interrupts in
2842 * context_switch(), we cannot busy wait, since that
2843 * would lead to deadlocks when an interrupt hits and
2844 * tries to wake up @prev. So bail and do a complete
2847 if (ttwu_activate_remote(p
, wake_flags
))
2854 * Pairs with the smp_wmb() in finish_lock_switch().
2858 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2859 p
->state
= TASK_WAKING
;
2861 if (p
->sched_class
->task_waking
)
2862 p
->sched_class
->task_waking(p
);
2864 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2865 if (task_cpu(p
) != cpu
) {
2866 wake_flags
|= WF_MIGRATED
;
2867 set_task_cpu(p
, cpu
);
2869 #endif /* CONFIG_SMP */
2873 ttwu_stat(p
, cpu
, wake_flags
);
2875 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2881 * try_to_wake_up_local - try to wake up a local task with rq lock held
2882 * @p: the thread to be awakened
2884 * Put @p on the run-queue if it's not already there. The caller must
2885 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2888 static void try_to_wake_up_local(struct task_struct
*p
)
2890 struct rq
*rq
= task_rq(p
);
2892 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2893 WARN_ON_ONCE(p
== current
))
2896 lockdep_assert_held(&rq
->lock
);
2898 if (!raw_spin_trylock(&p
->pi_lock
)) {
2899 raw_spin_unlock(&rq
->lock
);
2900 raw_spin_lock(&p
->pi_lock
);
2901 raw_spin_lock(&rq
->lock
);
2904 if (!(p
->state
& TASK_NORMAL
))
2908 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2910 ttwu_do_wakeup(rq
, p
, 0);
2911 ttwu_stat(p
, smp_processor_id(), 0);
2913 raw_spin_unlock(&p
->pi_lock
);
2917 * wake_up_process - Wake up a specific process
2918 * @p: The process to be woken up.
2920 * Attempt to wake up the nominated process and move it to the set of runnable
2921 * processes. Returns 1 if the process was woken up, 0 if it was already
2924 * It may be assumed that this function implies a write memory barrier before
2925 * changing the task state if and only if any tasks are woken up.
2927 int wake_up_process(struct task_struct
*p
)
2929 WARN_ON(task_is_stopped_or_traced(p
));
2930 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2932 EXPORT_SYMBOL(wake_up_process
);
2934 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2936 return try_to_wake_up(p
, state
, 0);
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2943 * __sched_fork() is basic setup used by init_idle() too:
2945 static void __sched_fork(struct task_struct
*p
)
2950 p
->se
.exec_start
= 0;
2951 p
->se
.sum_exec_runtime
= 0;
2952 p
->se
.prev_sum_exec_runtime
= 0;
2953 p
->se
.nr_migrations
= 0;
2955 INIT_LIST_HEAD(&p
->se
.group_node
);
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2961 INIT_LIST_HEAD(&p
->rt
.run_list
);
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2969 * fork()/clone()-time setup:
2971 void sched_fork(struct task_struct
*p
)
2973 unsigned long flags
;
2974 int cpu
= get_cpu();
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2982 p
->state
= TASK_RUNNING
;
2985 * Make sure we do not leak PI boosting priority to the child.
2987 p
->prio
= current
->normal_prio
;
2990 * Revert to default priority/policy on fork if requested.
2992 if (unlikely(p
->sched_reset_on_fork
)) {
2993 if (task_has_rt_policy(p
)) {
2994 p
->policy
= SCHED_NORMAL
;
2995 p
->static_prio
= NICE_TO_PRIO(0);
2997 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2998 p
->static_prio
= NICE_TO_PRIO(0);
3000 p
->prio
= p
->normal_prio
= __normal_prio(p
);
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3007 p
->sched_reset_on_fork
= 0;
3010 if (!rt_prio(p
->prio
))
3011 p
->sched_class
= &fair_sched_class
;
3013 if (p
->sched_class
->task_fork
)
3014 p
->sched_class
->task_fork(p
);
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3021 * Silence PROVE_RCU.
3023 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3024 set_task_cpu(p
, cpu
);
3025 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
3031 #if defined(CONFIG_SMP)
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p
)->preempt_count
= 1;
3039 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
3046 * wake_up_new_task - wake up a newly created task for the first time.
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3052 void wake_up_new_task(struct task_struct
*p
)
3054 unsigned long flags
;
3057 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3064 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
3067 rq
= __task_rq_lock(p
);
3068 activate_task(rq
, p
, 0);
3070 trace_sched_wakeup_new(p
, true);
3071 check_preempt_curr(rq
, p
, WF_FORK
);
3073 if (p
->sched_class
->task_woken
)
3074 p
->sched_class
->task_woken(rq
, p
);
3076 task_rq_unlock(rq
, p
, &flags
);
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3085 void preempt_notifier_register(struct preempt_notifier
*notifier
)
3087 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3095 * This is safe to call from within a preemption notifier.
3097 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
3099 hlist_del(¬ifier
->link
);
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
3103 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3105 struct preempt_notifier
*notifier
;
3106 struct hlist_node
*node
;
3108 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3109 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
3113 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3114 struct task_struct
*next
)
3116 struct preempt_notifier
*notifier
;
3117 struct hlist_node
*node
;
3119 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3120 notifier
->ops
->sched_out(notifier
, next
);
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3125 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3130 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3131 struct task_struct
*next
)
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3147 * prepare_task_switch sets up locking and calls architecture specific
3151 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3152 struct task_struct
*next
)
3154 sched_info_switch(prev
, next
);
3155 perf_event_task_sched_out(prev
, next
);
3156 fire_sched_out_preempt_notifiers(prev
, next
);
3157 prepare_lock_switch(rq
, next
);
3158 prepare_arch_switch(next
);
3159 trace_sched_switch(prev
, next
);
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3177 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
3178 __releases(rq
->lock
)
3180 struct mm_struct
*mm
= rq
->prev_mm
;
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3194 * Manfred Spraul <manfred@colorfullife.com>
3196 prev_state
= prev
->state
;
3197 finish_arch_switch(prev
);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev
, current
);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq
, prev
);
3207 fire_sched_in_preempt_notifiers(current
);
3210 if (unlikely(prev_state
== TASK_DEAD
)) {
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3215 kprobe_flush_task(prev
);
3216 put_task_struct(prev
);
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3225 if (prev
->sched_class
->pre_schedule
)
3226 prev
->sched_class
->pre_schedule(rq
, prev
);
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq
*rq
)
3232 if (rq
->post_schedule
) {
3233 unsigned long flags
;
3235 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3236 if (rq
->curr
->sched_class
->post_schedule
)
3237 rq
->curr
->sched_class
->post_schedule(rq
);
3238 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3240 rq
->post_schedule
= 0;
3246 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3250 static inline void post_schedule(struct rq
*rq
)
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3260 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3261 __releases(rq
->lock
)
3263 struct rq
*rq
= this_rq();
3265 finish_task_switch(rq
, prev
);
3268 * FIXME: do we need to worry about rq being invalidated by the
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3277 if (current
->set_child_tid
)
3278 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3286 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3287 struct task_struct
*next
)
3289 struct mm_struct
*mm
, *oldmm
;
3291 prepare_task_switch(rq
, prev
, next
);
3294 oldmm
= prev
->active_mm
;
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3300 arch_start_context_switch(prev
);
3303 next
->active_mm
= oldmm
;
3304 atomic_inc(&oldmm
->mm_count
);
3305 enter_lazy_tlb(oldmm
, next
);
3307 switch_mm(oldmm
, mm
, next
);
3310 prev
->active_mm
= NULL
;
3311 rq
->prev_mm
= oldmm
;
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev
, next
, prev
);
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3332 finish_task_switch(this_rq(), prev
);
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3342 unsigned long nr_running(void)
3344 unsigned long i
, sum
= 0;
3346 for_each_online_cpu(i
)
3347 sum
+= cpu_rq(i
)->nr_running
;
3352 unsigned long nr_uninterruptible(void)
3354 unsigned long i
, sum
= 0;
3356 for_each_possible_cpu(i
)
3357 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3363 if (unlikely((long)sum
< 0))
3369 unsigned long long nr_context_switches(void)
3372 unsigned long long sum
= 0;
3374 for_each_possible_cpu(i
)
3375 sum
+= cpu_rq(i
)->nr_switches
;
3380 unsigned long nr_iowait(void)
3382 unsigned long i
, sum
= 0;
3384 for_each_possible_cpu(i
)
3385 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3390 unsigned long nr_iowait_cpu(int cpu
)
3392 struct rq
*this = cpu_rq(cpu
);
3393 return atomic_read(&this->nr_iowait
);
3396 unsigned long this_cpu_load(void)
3398 struct rq
*this = this_rq();
3399 return this->cpu_load
[0];
3404 * Global load-average calculations
3406 * We take a distributed and async approach to calculating the global load-avg
3407 * in order to minimize overhead.
3409 * The global load average is an exponentially decaying average of nr_running +
3410 * nr_uninterruptible.
3412 * Once every LOAD_FREQ:
3415 * for_each_possible_cpu(cpu)
3416 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
3418 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
3420 * Due to a number of reasons the above turns in the mess below:
3422 * - for_each_possible_cpu() is prohibitively expensive on machines with
3423 * serious number of cpus, therefore we need to take a distributed approach
3424 * to calculating nr_active.
3426 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
3427 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
3429 * So assuming nr_active := 0 when we start out -- true per definition, we
3430 * can simply take per-cpu deltas and fold those into a global accumulate
3431 * to obtain the same result. See calc_load_fold_active().
3433 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
3434 * across the machine, we assume 10 ticks is sufficient time for every
3435 * cpu to have completed this task.
3437 * This places an upper-bound on the IRQ-off latency of the machine. Then
3438 * again, being late doesn't loose the delta, just wrecks the sample.
3440 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
3441 * this would add another cross-cpu cacheline miss and atomic operation
3442 * to the wakeup path. Instead we increment on whatever cpu the task ran
3443 * when it went into uninterruptible state and decrement on whatever cpu
3444 * did the wakeup. This means that only the sum of nr_uninterruptible over
3445 * all cpus yields the correct result.
3447 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
3450 /* Variables and functions for calc_load */
3451 static atomic_long_t calc_load_tasks
;
3452 static unsigned long calc_load_update
;
3453 unsigned long avenrun
[3];
3454 EXPORT_SYMBOL(avenrun
); /* should be removed */
3457 * get_avenrun - get the load average array
3458 * @loads: pointer to dest load array
3459 * @offset: offset to add
3460 * @shift: shift count to shift the result left
3462 * These values are estimates at best, so no need for locking.
3464 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3466 loads
[0] = (avenrun
[0] + offset
) << shift
;
3467 loads
[1] = (avenrun
[1] + offset
) << shift
;
3468 loads
[2] = (avenrun
[2] + offset
) << shift
;
3471 static long calc_load_fold_active(struct rq
*this_rq
)
3473 long nr_active
, delta
= 0;
3475 nr_active
= this_rq
->nr_running
;
3476 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3478 if (nr_active
!= this_rq
->calc_load_active
) {
3479 delta
= nr_active
- this_rq
->calc_load_active
;
3480 this_rq
->calc_load_active
= nr_active
;
3487 * a1 = a0 * e + a * (1 - e)
3489 static unsigned long
3490 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3493 load
+= active
* (FIXED_1
- exp
);
3494 load
+= 1UL << (FSHIFT
- 1);
3495 return load
>> FSHIFT
;
3500 * Handle NO_HZ for the global load-average.
3502 * Since the above described distributed algorithm to compute the global
3503 * load-average relies on per-cpu sampling from the tick, it is affected by
3506 * The basic idea is to fold the nr_active delta into a global idle-delta upon
3507 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
3508 * when we read the global state.
3510 * Obviously reality has to ruin such a delightfully simple scheme:
3512 * - When we go NO_HZ idle during the window, we can negate our sample
3513 * contribution, causing under-accounting.
3515 * We avoid this by keeping two idle-delta counters and flipping them
3516 * when the window starts, thus separating old and new NO_HZ load.
3518 * The only trick is the slight shift in index flip for read vs write.
3522 * |-|-----------|-|-----------|-|-----------|-|
3523 * r:0 0 1 1 0 0 1 1 0
3524 * w:0 1 1 0 0 1 1 0 0
3526 * This ensures we'll fold the old idle contribution in this window while
3527 * accumlating the new one.
3529 * - When we wake up from NO_HZ idle during the window, we push up our
3530 * contribution, since we effectively move our sample point to a known
3533 * This is solved by pushing the window forward, and thus skipping the
3534 * sample, for this cpu (effectively using the idle-delta for this cpu which
3535 * was in effect at the time the window opened). This also solves the issue
3536 * of having to deal with a cpu having been in NOHZ idle for multiple
3537 * LOAD_FREQ intervals.
3539 * When making the ILB scale, we should try to pull this in as well.
3541 static atomic_long_t calc_load_idle
[2];
3542 static int calc_load_idx
;
3544 static inline int calc_load_write_idx(void)
3546 int idx
= calc_load_idx
;
3549 * See calc_global_nohz(), if we observe the new index, we also
3550 * need to observe the new update time.
3555 * If the folding window started, make sure we start writing in the
3558 if (!time_before(jiffies
, calc_load_update
))
3564 static inline int calc_load_read_idx(void)
3566 return calc_load_idx
& 1;
3569 void calc_load_enter_idle(void)
3571 struct rq
*this_rq
= this_rq();
3575 * We're going into NOHZ mode, if there's any pending delta, fold it
3576 * into the pending idle delta.
3578 delta
= calc_load_fold_active(this_rq
);
3580 int idx
= calc_load_write_idx();
3581 atomic_long_add(delta
, &calc_load_idle
[idx
]);
3585 void calc_load_exit_idle(void)
3587 struct rq
*this_rq
= this_rq();
3590 * If we're still before the sample window, we're done.
3592 if (time_before(jiffies
, this_rq
->calc_load_update
))
3596 * We woke inside or after the sample window, this means we're already
3597 * accounted through the nohz accounting, so skip the entire deal and
3598 * sync up for the next window.
3600 this_rq
->calc_load_update
= calc_load_update
;
3601 if (time_before(jiffies
, this_rq
->calc_load_update
+ 10))
3602 this_rq
->calc_load_update
+= LOAD_FREQ
;
3605 static long calc_load_fold_idle(void)
3607 int idx
= calc_load_read_idx();
3610 if (atomic_long_read(&calc_load_idle
[idx
]))
3611 delta
= atomic_long_xchg(&calc_load_idle
[idx
], 0);
3617 * fixed_power_int - compute: x^n, in O(log n) time
3619 * @x: base of the power
3620 * @frac_bits: fractional bits of @x
3621 * @n: power to raise @x to.
3623 * By exploiting the relation between the definition of the natural power
3624 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3625 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3626 * (where: n_i \elem {0, 1}, the binary vector representing n),
3627 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3628 * of course trivially computable in O(log_2 n), the length of our binary
3631 static unsigned long
3632 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3634 unsigned long result
= 1UL << frac_bits
;
3639 result
+= 1UL << (frac_bits
- 1);
3640 result
>>= frac_bits
;
3646 x
+= 1UL << (frac_bits
- 1);
3654 * a1 = a0 * e + a * (1 - e)
3656 * a2 = a1 * e + a * (1 - e)
3657 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3658 * = a0 * e^2 + a * (1 - e) * (1 + e)
3660 * a3 = a2 * e + a * (1 - e)
3661 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3662 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3666 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3667 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3668 * = a0 * e^n + a * (1 - e^n)
3670 * [1] application of the geometric series:
3673 * S_n := \Sum x^i = -------------
3676 static unsigned long
3677 calc_load_n(unsigned long load
, unsigned long exp
,
3678 unsigned long active
, unsigned int n
)
3681 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3685 * NO_HZ can leave us missing all per-cpu ticks calling
3686 * calc_load_account_active(), but since an idle CPU folds its delta into
3687 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3688 * in the pending idle delta if our idle period crossed a load cycle boundary.
3690 * Once we've updated the global active value, we need to apply the exponential
3691 * weights adjusted to the number of cycles missed.
3693 static void calc_global_nohz(void)
3695 long delta
, active
, n
;
3697 if (!time_before(jiffies
, calc_load_update
+ 10)) {
3699 * Catch-up, fold however many we are behind still
3701 delta
= jiffies
- calc_load_update
- 10;
3702 n
= 1 + (delta
/ LOAD_FREQ
);
3704 active
= atomic_long_read(&calc_load_tasks
);
3705 active
= active
> 0 ? active
* FIXED_1
: 0;
3707 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3708 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3709 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3711 calc_load_update
+= n
* LOAD_FREQ
;
3715 * Flip the idle index...
3717 * Make sure we first write the new time then flip the index, so that
3718 * calc_load_write_idx() will see the new time when it reads the new
3719 * index, this avoids a double flip messing things up.
3724 #else /* !CONFIG_NO_HZ */
3726 static inline long calc_load_fold_idle(void) { return 0; }
3727 static inline void calc_global_nohz(void) { }
3729 #endif /* CONFIG_NO_HZ */
3732 * calc_load - update the avenrun load estimates 10 ticks after the
3733 * CPUs have updated calc_load_tasks.
3735 void calc_global_load(unsigned long ticks
)
3739 if (time_before(jiffies
, calc_load_update
+ 10))
3743 * Fold the 'old' idle-delta to include all NO_HZ cpus.
3745 delta
= calc_load_fold_idle();
3747 atomic_long_add(delta
, &calc_load_tasks
);
3749 active
= atomic_long_read(&calc_load_tasks
);
3750 active
= active
> 0 ? active
* FIXED_1
: 0;
3752 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3753 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3754 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3756 calc_load_update
+= LOAD_FREQ
;
3759 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
3765 * Called from update_cpu_load() to periodically update this CPU's
3768 static void calc_load_account_active(struct rq
*this_rq
)
3772 if (time_before(jiffies
, this_rq
->calc_load_update
))
3775 delta
= calc_load_fold_active(this_rq
);
3777 atomic_long_add(delta
, &calc_load_tasks
);
3779 this_rq
->calc_load_update
+= LOAD_FREQ
;
3783 * End of global load-average stuff
3787 * The exact cpuload at various idx values, calculated at every tick would be
3788 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3790 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3791 * on nth tick when cpu may be busy, then we have:
3792 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3793 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3795 * decay_load_missed() below does efficient calculation of
3796 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3797 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3799 * The calculation is approximated on a 128 point scale.
3800 * degrade_zero_ticks is the number of ticks after which load at any
3801 * particular idx is approximated to be zero.
3802 * degrade_factor is a precomputed table, a row for each load idx.
3803 * Each column corresponds to degradation factor for a power of two ticks,
3804 * based on 128 point scale.
3806 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3807 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3809 * With this power of 2 load factors, we can degrade the load n times
3810 * by looking at 1 bits in n and doing as many mult/shift instead of
3811 * n mult/shifts needed by the exact degradation.
3813 #define DEGRADE_SHIFT 7
3814 static const unsigned char
3815 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3816 static const unsigned char
3817 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3818 {0, 0, 0, 0, 0, 0, 0, 0},
3819 {64, 32, 8, 0, 0, 0, 0, 0},
3820 {96, 72, 40, 12, 1, 0, 0},
3821 {112, 98, 75, 43, 15, 1, 0},
3822 {120, 112, 98, 76, 45, 16, 2} };
3825 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3826 * would be when CPU is idle and so we just decay the old load without
3827 * adding any new load.
3829 static unsigned long
3830 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3834 if (!missed_updates
)
3837 if (missed_updates
>= degrade_zero_ticks
[idx
])
3841 return load
>> missed_updates
;
3843 while (missed_updates
) {
3844 if (missed_updates
% 2)
3845 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3847 missed_updates
>>= 1;
3854 * Update rq->cpu_load[] statistics. This function is usually called every
3855 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3856 * every tick. We fix it up based on jiffies.
3858 static void __update_cpu_load(struct rq
*this_rq
, unsigned long this_load
,
3859 unsigned long pending_updates
)
3863 this_rq
->nr_load_updates
++;
3865 /* Update our load: */
3866 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3867 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3868 unsigned long old_load
, new_load
;
3870 /* scale is effectively 1 << i now, and >> i divides by scale */
3872 old_load
= this_rq
->cpu_load
[i
];
3873 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3874 new_load
= this_load
;
3876 * Round up the averaging division if load is increasing. This
3877 * prevents us from getting stuck on 9 if the load is 10, for
3880 if (new_load
> old_load
)
3881 new_load
+= scale
- 1;
3883 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3886 sched_avg_update(this_rq
);
3891 * There is no sane way to deal with nohz on smp when using jiffies because the
3892 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
3893 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
3895 * Therefore we cannot use the delta approach from the regular tick since that
3896 * would seriously skew the load calculation. However we'll make do for those
3897 * updates happening while idle (nohz_idle_balance) or coming out of idle
3898 * (tick_nohz_idle_exit).
3900 * This means we might still be one tick off for nohz periods.
3904 * Called from nohz_idle_balance() to update the load ratings before doing the
3907 static void update_idle_cpu_load(struct rq
*this_rq
)
3909 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
3910 unsigned long load
= this_rq
->load
.weight
;
3911 unsigned long pending_updates
;
3914 * bail if there's load or we're actually up-to-date.
3916 if (load
|| curr_jiffies
== this_rq
->last_load_update_tick
)
3919 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3920 this_rq
->last_load_update_tick
= curr_jiffies
;
3922 __update_cpu_load(this_rq
, load
, pending_updates
);
3926 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
3928 void update_cpu_load_nohz(void)
3930 struct rq
*this_rq
= this_rq();
3931 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
3932 unsigned long pending_updates
;
3934 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3937 raw_spin_lock(&this_rq
->lock
);
3938 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3939 if (pending_updates
) {
3940 this_rq
->last_load_update_tick
= curr_jiffies
;
3942 * We were idle, this means load 0, the current load might be
3943 * !0 due to remote wakeups and the sort.
3945 __update_cpu_load(this_rq
, 0, pending_updates
);
3947 raw_spin_unlock(&this_rq
->lock
);
3949 #endif /* CONFIG_NO_HZ */
3952 * Called from scheduler_tick()
3954 static void update_cpu_load_active(struct rq
*this_rq
)
3957 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
3959 this_rq
->last_load_update_tick
= jiffies
;
3960 __update_cpu_load(this_rq
, this_rq
->load
.weight
, 1);
3962 calc_load_account_active(this_rq
);
3968 * sched_exec - execve() is a valuable balancing opportunity, because at
3969 * this point the task has the smallest effective memory and cache footprint.
3971 void sched_exec(void)
3973 struct task_struct
*p
= current
;
3974 unsigned long flags
;
3977 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3978 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3979 if (dest_cpu
== smp_processor_id())
3982 if (likely(cpu_active(dest_cpu
))) {
3983 struct migration_arg arg
= { p
, dest_cpu
};
3985 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3986 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3990 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3995 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3997 EXPORT_PER_CPU_SYMBOL(kstat
);
4000 * Return any ns on the sched_clock that have not yet been accounted in
4001 * @p in case that task is currently running.
4003 * Called with task_rq_lock() held on @rq.
4005 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4009 if (task_current(rq
, p
)) {
4010 update_rq_clock(rq
);
4011 ns
= rq
->clock_task
- p
->se
.exec_start
;
4019 unsigned long long task_delta_exec(struct task_struct
*p
)
4021 unsigned long flags
;
4025 rq
= task_rq_lock(p
, &flags
);
4026 ns
= do_task_delta_exec(p
, rq
);
4027 task_rq_unlock(rq
, p
, &flags
);
4033 * Return accounted runtime for the task.
4034 * In case the task is currently running, return the runtime plus current's
4035 * pending runtime that have not been accounted yet.
4037 unsigned long long task_sched_runtime(struct task_struct
*p
)
4039 unsigned long flags
;
4043 rq
= task_rq_lock(p
, &flags
);
4044 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4045 task_rq_unlock(rq
, p
, &flags
);
4051 * Account user cpu time to a process.
4052 * @p: the process that the cpu time gets accounted to
4053 * @cputime: the cpu time spent in user space since the last update
4054 * @cputime_scaled: cputime scaled by cpu frequency
4056 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4057 cputime_t cputime_scaled
)
4059 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4062 /* Add user time to process. */
4063 p
->utime
= cputime_add(p
->utime
, cputime
);
4064 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4065 account_group_user_time(p
, cputime
);
4067 /* Add user time to cpustat. */
4068 tmp
= cputime_to_cputime64(cputime
);
4069 if (TASK_NICE(p
) > 0)
4070 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4072 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4074 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4075 /* Account for user time used */
4076 acct_update_integrals(p
);
4080 * Account guest cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in virtual machine since the last update
4083 * @cputime_scaled: cputime scaled by cpu frequency
4085 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4086 cputime_t cputime_scaled
)
4089 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4091 tmp
= cputime_to_cputime64(cputime
);
4093 /* Add guest time to process. */
4094 p
->utime
= cputime_add(p
->utime
, cputime
);
4095 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4096 account_group_user_time(p
, cputime
);
4097 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4099 /* Add guest time to cpustat. */
4100 if (TASK_NICE(p
) > 0) {
4101 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4102 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
4104 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4105 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4110 * Account system cpu time to a process and desired cpustat field
4111 * @p: the process that the cpu time gets accounted to
4112 * @cputime: the cpu time spent in kernel space since the last update
4113 * @cputime_scaled: cputime scaled by cpu frequency
4114 * @target_cputime64: pointer to cpustat field that has to be updated
4117 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
4118 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
4120 cputime64_t tmp
= cputime_to_cputime64(cputime
);
4122 /* Add system time to process. */
4123 p
->stime
= cputime_add(p
->stime
, cputime
);
4124 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4125 account_group_system_time(p
, cputime
);
4127 /* Add system time to cpustat. */
4128 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
4129 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
4131 /* Account for system time used */
4132 acct_update_integrals(p
);
4136 * Account system cpu time to a process.
4137 * @p: the process that the cpu time gets accounted to
4138 * @hardirq_offset: the offset to subtract from hardirq_count()
4139 * @cputime: the cpu time spent in kernel space since the last update
4140 * @cputime_scaled: cputime scaled by cpu frequency
4142 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4143 cputime_t cputime
, cputime_t cputime_scaled
)
4145 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4146 cputime64_t
*target_cputime64
;
4148 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4149 account_guest_time(p
, cputime
, cputime_scaled
);
4153 if (hardirq_count() - hardirq_offset
)
4154 target_cputime64
= &cpustat
->irq
;
4155 else if (in_serving_softirq())
4156 target_cputime64
= &cpustat
->softirq
;
4158 target_cputime64
= &cpustat
->system
;
4160 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
4164 * Account for involuntary wait time.
4165 * @cputime: the cpu time spent in involuntary wait
4167 void account_steal_time(cputime_t cputime
)
4169 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4170 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4172 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4176 * Account for idle time.
4177 * @cputime: the cpu time spent in idle wait
4179 void account_idle_time(cputime_t cputime
)
4181 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4182 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4183 struct rq
*rq
= this_rq();
4185 if (atomic_read(&rq
->nr_iowait
) > 0)
4186 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4188 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4191 static __always_inline
bool steal_account_process_tick(void)
4193 #ifdef CONFIG_PARAVIRT
4194 if (static_branch(¶virt_steal_enabled
)) {
4197 steal
= paravirt_steal_clock(smp_processor_id());
4198 steal
-= this_rq()->prev_steal_time
;
4200 st
= steal_ticks(steal
);
4201 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
4203 account_steal_time(st
);
4210 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4212 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4214 * Account a tick to a process and cpustat
4215 * @p: the process that the cpu time gets accounted to
4216 * @user_tick: is the tick from userspace
4217 * @rq: the pointer to rq
4219 * Tick demultiplexing follows the order
4220 * - pending hardirq update
4221 * - pending softirq update
4225 * - check for guest_time
4226 * - else account as system_time
4228 * Check for hardirq is done both for system and user time as there is
4229 * no timer going off while we are on hardirq and hence we may never get an
4230 * opportunity to update it solely in system time.
4231 * p->stime and friends are only updated on system time and not on irq
4232 * softirq as those do not count in task exec_runtime any more.
4234 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4237 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4238 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
4239 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4241 if (steal_account_process_tick())
4244 if (irqtime_account_hi_update()) {
4245 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4246 } else if (irqtime_account_si_update()) {
4247 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4248 } else if (this_cpu_ksoftirqd() == p
) {
4250 * ksoftirqd time do not get accounted in cpu_softirq_time.
4251 * So, we have to handle it separately here.
4252 * Also, p->stime needs to be updated for ksoftirqd.
4254 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4256 } else if (user_tick
) {
4257 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4258 } else if (p
== rq
->idle
) {
4259 account_idle_time(cputime_one_jiffy
);
4260 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
4261 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4263 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4268 static void irqtime_account_idle_ticks(int ticks
)
4271 struct rq
*rq
= this_rq();
4273 for (i
= 0; i
< ticks
; i
++)
4274 irqtime_account_process_tick(current
, 0, rq
);
4276 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4277 static void irqtime_account_idle_ticks(int ticks
) {}
4278 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4280 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4283 * Account a single tick of cpu time.
4284 * @p: the process that the cpu time gets accounted to
4285 * @user_tick: indicates if the tick is a user or a system tick
4287 void account_process_tick(struct task_struct
*p
, int user_tick
)
4289 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4290 struct rq
*rq
= this_rq();
4292 if (sched_clock_irqtime
) {
4293 irqtime_account_process_tick(p
, user_tick
, rq
);
4297 if (steal_account_process_tick())
4301 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4302 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4303 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
4306 account_idle_time(cputime_one_jiffy
);
4310 * Account multiple ticks of steal time.
4311 * @p: the process from which the cpu time has been stolen
4312 * @ticks: number of stolen ticks
4314 void account_steal_ticks(unsigned long ticks
)
4316 account_steal_time(jiffies_to_cputime(ticks
));
4320 * Account multiple ticks of idle time.
4321 * @ticks: number of stolen ticks
4323 void account_idle_ticks(unsigned long ticks
)
4326 if (sched_clock_irqtime
) {
4327 irqtime_account_idle_ticks(ticks
);
4331 account_idle_time(jiffies_to_cputime(ticks
));
4337 * Use precise platform statistics if available:
4339 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4340 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4346 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4348 struct task_cputime cputime
;
4350 thread_group_cputime(p
, &cputime
);
4352 *ut
= cputime
.utime
;
4353 *st
= cputime
.stime
;
4357 #ifndef nsecs_to_cputime
4358 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4361 static cputime_t
scale_utime(cputime_t utime
, cputime_t rtime
, cputime_t total
)
4363 u64 temp
= (__force u64
) rtime
;
4365 temp
*= (__force u64
) utime
;
4367 if (sizeof(cputime_t
) == 4)
4368 temp
= div_u64(temp
, (__force u32
) total
);
4370 temp
= div64_u64(temp
, (__force u64
) total
);
4372 return (__force cputime_t
) temp
;
4375 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4377 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
4380 * Use CFS's precise accounting:
4382 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
4385 utime
= scale_utime(utime
, rtime
, total
);
4390 * Compare with previous values, to keep monotonicity:
4392 p
->prev_utime
= max(p
->prev_utime
, utime
);
4393 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4395 *ut
= p
->prev_utime
;
4396 *st
= p
->prev_stime
;
4400 * Must be called with siglock held.
4402 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4404 struct signal_struct
*sig
= p
->signal
;
4405 struct task_cputime cputime
;
4406 cputime_t rtime
, utime
, total
;
4408 thread_group_cputime(p
, &cputime
);
4410 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4411 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4414 utime
= scale_utime(cputime
.utime
, rtime
, total
);
4418 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4419 sig
->prev_stime
= max(sig
->prev_stime
,
4420 cputime_sub(rtime
, sig
->prev_utime
));
4422 *ut
= sig
->prev_utime
;
4423 *st
= sig
->prev_stime
;
4428 * This function gets called by the timer code, with HZ frequency.
4429 * We call it with interrupts disabled.
4431 void scheduler_tick(void)
4433 int cpu
= smp_processor_id();
4434 struct rq
*rq
= cpu_rq(cpu
);
4435 struct task_struct
*curr
= rq
->curr
;
4439 raw_spin_lock(&rq
->lock
);
4440 update_rq_clock(rq
);
4441 update_cpu_load_active(rq
);
4442 curr
->sched_class
->task_tick(rq
, curr
, 0);
4443 raw_spin_unlock(&rq
->lock
);
4445 perf_event_task_tick();
4448 rq
->idle_balance
= idle_cpu(cpu
);
4449 trigger_load_balance(rq
, cpu
);
4453 notrace
unsigned long get_parent_ip(unsigned long addr
)
4455 if (in_lock_functions(addr
)) {
4456 addr
= CALLER_ADDR2
;
4457 if (in_lock_functions(addr
))
4458 addr
= CALLER_ADDR3
;
4463 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4464 defined(CONFIG_PREEMPT_TRACER))
4466 void __kprobes
add_preempt_count(int val
)
4468 #ifdef CONFIG_DEBUG_PREEMPT
4472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4475 preempt_count() += val
;
4476 #ifdef CONFIG_DEBUG_PREEMPT
4478 * Spinlock count overflowing soon?
4480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4483 if (preempt_count() == val
)
4484 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4486 EXPORT_SYMBOL(add_preempt_count
);
4488 void __kprobes
sub_preempt_count(int val
)
4490 #ifdef CONFIG_DEBUG_PREEMPT
4494 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4497 * Is the spinlock portion underflowing?
4499 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4500 !(preempt_count() & PREEMPT_MASK
)))
4504 if (preempt_count() == val
)
4505 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4506 preempt_count() -= val
;
4508 EXPORT_SYMBOL(sub_preempt_count
);
4513 * Print scheduling while atomic bug:
4515 static noinline
void __schedule_bug(struct task_struct
*prev
)
4517 struct pt_regs
*regs
= get_irq_regs();
4519 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4520 prev
->comm
, prev
->pid
, preempt_count());
4522 debug_show_held_locks(prev
);
4524 if (irqs_disabled())
4525 print_irqtrace_events(prev
);
4534 * Various schedule()-time debugging checks and statistics:
4536 static inline void schedule_debug(struct task_struct
*prev
)
4539 * Test if we are atomic. Since do_exit() needs to call into
4540 * schedule() atomically, we ignore that path for now.
4541 * Otherwise, whine if we are scheduling when we should not be.
4543 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4544 __schedule_bug(prev
);
4547 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4549 schedstat_inc(this_rq(), sched_count
);
4552 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4554 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4555 update_rq_clock(rq
);
4556 prev
->sched_class
->put_prev_task(rq
, prev
);
4560 * Pick up the highest-prio task:
4562 static inline struct task_struct
*
4563 pick_next_task(struct rq
*rq
)
4565 const struct sched_class
*class;
4566 struct task_struct
*p
;
4569 * Optimization: we know that if all tasks are in
4570 * the fair class we can call that function directly:
4572 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
4573 p
= fair_sched_class
.pick_next_task(rq
);
4578 for_each_class(class) {
4579 p
= class->pick_next_task(rq
);
4584 BUG(); /* the idle class will always have a runnable task */
4588 * __schedule() is the main scheduler function.
4590 static void __sched
__schedule(void)
4592 struct task_struct
*prev
, *next
;
4593 unsigned long *switch_count
;
4599 cpu
= smp_processor_id();
4601 rcu_note_context_switch(cpu
);
4604 schedule_debug(prev
);
4606 if (sched_feat(HRTICK
))
4609 raw_spin_lock_irq(&rq
->lock
);
4611 switch_count
= &prev
->nivcsw
;
4612 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4613 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4614 prev
->state
= TASK_RUNNING
;
4616 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4620 * If a worker went to sleep, notify and ask workqueue
4621 * whether it wants to wake up a task to maintain
4624 if (prev
->flags
& PF_WQ_WORKER
) {
4625 struct task_struct
*to_wakeup
;
4627 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4629 try_to_wake_up_local(to_wakeup
);
4632 switch_count
= &prev
->nvcsw
;
4635 pre_schedule(rq
, prev
);
4637 if (unlikely(!rq
->nr_running
))
4638 idle_balance(cpu
, rq
);
4640 put_prev_task(rq
, prev
);
4641 next
= pick_next_task(rq
);
4642 clear_tsk_need_resched(prev
);
4643 rq
->skip_clock_update
= 0;
4645 if (likely(prev
!= next
)) {
4650 context_switch(rq
, prev
, next
); /* unlocks the rq */
4652 * The context switch have flipped the stack from under us
4653 * and restored the local variables which were saved when
4654 * this task called schedule() in the past. prev == current
4655 * is still correct, but it can be moved to another cpu/rq.
4657 cpu
= smp_processor_id();
4660 raw_spin_unlock_irq(&rq
->lock
);
4664 preempt_enable_no_resched();
4669 static inline void sched_submit_work(struct task_struct
*tsk
)
4674 * If we are going to sleep and we have plugged IO queued,
4675 * make sure to submit it to avoid deadlocks.
4677 if (blk_needs_flush_plug(tsk
))
4678 blk_schedule_flush_plug(tsk
);
4681 asmlinkage
void __sched
schedule(void)
4683 struct task_struct
*tsk
= current
;
4685 sched_submit_work(tsk
);
4688 EXPORT_SYMBOL(schedule
);
4690 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4692 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4694 if (lock
->owner
!= owner
)
4698 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4699 * lock->owner still matches owner, if that fails, owner might
4700 * point to free()d memory, if it still matches, the rcu_read_lock()
4701 * ensures the memory stays valid.
4705 return owner
->on_cpu
;
4709 * Look out! "owner" is an entirely speculative pointer
4710 * access and not reliable.
4712 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4714 if (!sched_feat(OWNER_SPIN
))
4718 while (owner_running(lock
, owner
)) {
4722 arch_mutex_cpu_relax();
4727 * We break out the loop above on need_resched() and when the
4728 * owner changed, which is a sign for heavy contention. Return
4729 * success only when lock->owner is NULL.
4731 return lock
->owner
== NULL
;
4735 #ifdef CONFIG_PREEMPT
4737 * this is the entry point to schedule() from in-kernel preemption
4738 * off of preempt_enable. Kernel preemptions off return from interrupt
4739 * occur there and call schedule directly.
4741 asmlinkage
void __sched notrace
preempt_schedule(void)
4743 struct thread_info
*ti
= current_thread_info();
4746 * If there is a non-zero preempt_count or interrupts are disabled,
4747 * we do not want to preempt the current task. Just return..
4749 if (likely(ti
->preempt_count
|| irqs_disabled()))
4753 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4755 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4758 * Check again in case we missed a preemption opportunity
4759 * between schedule and now.
4762 } while (need_resched());
4764 EXPORT_SYMBOL(preempt_schedule
);
4767 * this is the entry point to schedule() from kernel preemption
4768 * off of irq context.
4769 * Note, that this is called and return with irqs disabled. This will
4770 * protect us against recursive calling from irq.
4772 asmlinkage
void __sched
preempt_schedule_irq(void)
4774 struct thread_info
*ti
= current_thread_info();
4776 /* Catch callers which need to be fixed */
4777 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4780 add_preempt_count(PREEMPT_ACTIVE
);
4783 local_irq_disable();
4784 sub_preempt_count(PREEMPT_ACTIVE
);
4787 * Check again in case we missed a preemption opportunity
4788 * between schedule and now.
4791 } while (need_resched());
4794 #endif /* CONFIG_PREEMPT */
4796 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4799 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4801 EXPORT_SYMBOL(default_wake_function
);
4804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4806 * number) then we wake all the non-exclusive tasks and one exclusive task.
4808 * There are circumstances in which we can try to wake a task which has already
4809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4812 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4813 int nr_exclusive
, int wake_flags
, void *key
)
4815 wait_queue_t
*curr
, *next
;
4817 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4818 unsigned flags
= curr
->flags
;
4820 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4821 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4827 * __wake_up - wake up threads blocked on a waitqueue.
4829 * @mode: which threads
4830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4831 * @key: is directly passed to the wakeup function
4833 * It may be assumed that this function implies a write memory barrier before
4834 * changing the task state if and only if any tasks are woken up.
4836 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4837 int nr_exclusive
, void *key
)
4839 unsigned long flags
;
4841 spin_lock_irqsave(&q
->lock
, flags
);
4842 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4843 spin_unlock_irqrestore(&q
->lock
, flags
);
4845 EXPORT_SYMBOL(__wake_up
);
4848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4850 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4852 __wake_up_common(q
, mode
, 1, 0, NULL
);
4854 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4856 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4858 __wake_up_common(q
, mode
, 1, 0, key
);
4860 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4863 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4865 * @mode: which threads
4866 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4867 * @key: opaque value to be passed to wakeup targets
4869 * The sync wakeup differs that the waker knows that it will schedule
4870 * away soon, so while the target thread will be woken up, it will not
4871 * be migrated to another CPU - ie. the two threads are 'synchronized'
4872 * with each other. This can prevent needless bouncing between CPUs.
4874 * On UP it can prevent extra preemption.
4876 * It may be assumed that this function implies a write memory barrier before
4877 * changing the task state if and only if any tasks are woken up.
4879 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4880 int nr_exclusive
, void *key
)
4882 unsigned long flags
;
4883 int wake_flags
= WF_SYNC
;
4888 if (unlikely(!nr_exclusive
))
4891 spin_lock_irqsave(&q
->lock
, flags
);
4892 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4893 spin_unlock_irqrestore(&q
->lock
, flags
);
4895 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4898 * __wake_up_sync - see __wake_up_sync_key()
4900 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4902 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4904 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4907 * complete: - signals a single thread waiting on this completion
4908 * @x: holds the state of this particular completion
4910 * This will wake up a single thread waiting on this completion. Threads will be
4911 * awakened in the same order in which they were queued.
4913 * See also complete_all(), wait_for_completion() and related routines.
4915 * It may be assumed that this function implies a write memory barrier before
4916 * changing the task state if and only if any tasks are woken up.
4918 void complete(struct completion
*x
)
4920 unsigned long flags
;
4922 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4924 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4925 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4927 EXPORT_SYMBOL(complete
);
4930 * complete_all: - signals all threads waiting on this completion
4931 * @x: holds the state of this particular completion
4933 * This will wake up all threads waiting on this particular completion event.
4935 * It may be assumed that this function implies a write memory barrier before
4936 * changing the task state if and only if any tasks are woken up.
4938 void complete_all(struct completion
*x
)
4940 unsigned long flags
;
4942 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4943 x
->done
+= UINT_MAX
/2;
4944 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4945 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4947 EXPORT_SYMBOL(complete_all
);
4949 static inline long __sched
4950 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4953 DECLARE_WAITQUEUE(wait
, current
);
4955 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4957 if (signal_pending_state(state
, current
)) {
4958 timeout
= -ERESTARTSYS
;
4961 __set_current_state(state
);
4962 spin_unlock_irq(&x
->wait
.lock
);
4963 timeout
= schedule_timeout(timeout
);
4964 spin_lock_irq(&x
->wait
.lock
);
4965 } while (!x
->done
&& timeout
);
4966 __remove_wait_queue(&x
->wait
, &wait
);
4971 return timeout
?: 1;
4975 wait_for_common(struct completion
*x
, long timeout
, int state
)
4979 spin_lock_irq(&x
->wait
.lock
);
4980 timeout
= do_wait_for_common(x
, timeout
, state
);
4981 spin_unlock_irq(&x
->wait
.lock
);
4986 * wait_for_completion: - waits for completion of a task
4987 * @x: holds the state of this particular completion
4989 * This waits to be signaled for completion of a specific task. It is NOT
4990 * interruptible and there is no timeout.
4992 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4993 * and interrupt capability. Also see complete().
4995 void __sched
wait_for_completion(struct completion
*x
)
4997 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4999 EXPORT_SYMBOL(wait_for_completion
);
5002 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5003 * @x: holds the state of this particular completion
5004 * @timeout: timeout value in jiffies
5006 * This waits for either a completion of a specific task to be signaled or for a
5007 * specified timeout to expire. The timeout is in jiffies. It is not
5010 * The return value is 0 if timed out, and positive (at least 1, or number of
5011 * jiffies left till timeout) if completed.
5013 unsigned long __sched
5014 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5016 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5018 EXPORT_SYMBOL(wait_for_completion_timeout
);
5021 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5022 * @x: holds the state of this particular completion
5024 * This waits for completion of a specific task to be signaled. It is
5027 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5029 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5031 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5032 if (t
== -ERESTARTSYS
)
5036 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5039 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5040 * @x: holds the state of this particular completion
5041 * @timeout: timeout value in jiffies
5043 * This waits for either a completion of a specific task to be signaled or for a
5044 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5046 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5047 * positive (at least 1, or number of jiffies left till timeout) if completed.
5050 wait_for_completion_interruptible_timeout(struct completion
*x
,
5051 unsigned long timeout
)
5053 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5055 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5058 * wait_for_completion_killable: - waits for completion of a task (killable)
5059 * @x: holds the state of this particular completion
5061 * This waits to be signaled for completion of a specific task. It can be
5062 * interrupted by a kill signal.
5064 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
5066 int __sched
wait_for_completion_killable(struct completion
*x
)
5068 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5069 if (t
== -ERESTARTSYS
)
5073 EXPORT_SYMBOL(wait_for_completion_killable
);
5076 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
5077 * @x: holds the state of this particular completion
5078 * @timeout: timeout value in jiffies
5080 * This waits for either a completion of a specific task to be
5081 * signaled or for a specified timeout to expire. It can be
5082 * interrupted by a kill signal. The timeout is in jiffies.
5084 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
5085 * positive (at least 1, or number of jiffies left till timeout) if completed.
5088 wait_for_completion_killable_timeout(struct completion
*x
,
5089 unsigned long timeout
)
5091 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
5093 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
5096 * try_wait_for_completion - try to decrement a completion without blocking
5097 * @x: completion structure
5099 * Returns: 0 if a decrement cannot be done without blocking
5100 * 1 if a decrement succeeded.
5102 * If a completion is being used as a counting completion,
5103 * attempt to decrement the counter without blocking. This
5104 * enables us to avoid waiting if the resource the completion
5105 * is protecting is not available.
5107 bool try_wait_for_completion(struct completion
*x
)
5109 unsigned long flags
;
5112 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5117 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5120 EXPORT_SYMBOL(try_wait_for_completion
);
5123 * completion_done - Test to see if a completion has any waiters
5124 * @x: completion structure
5126 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5127 * 1 if there are no waiters.
5130 bool completion_done(struct completion
*x
)
5132 unsigned long flags
;
5135 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5138 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5141 EXPORT_SYMBOL(completion_done
);
5144 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5146 unsigned long flags
;
5149 init_waitqueue_entry(&wait
, current
);
5151 __set_current_state(state
);
5153 spin_lock_irqsave(&q
->lock
, flags
);
5154 __add_wait_queue(q
, &wait
);
5155 spin_unlock(&q
->lock
);
5156 timeout
= schedule_timeout(timeout
);
5157 spin_lock_irq(&q
->lock
);
5158 __remove_wait_queue(q
, &wait
);
5159 spin_unlock_irqrestore(&q
->lock
, flags
);
5164 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5166 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5168 EXPORT_SYMBOL(interruptible_sleep_on
);
5171 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5173 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5175 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5177 void __sched
sleep_on(wait_queue_head_t
*q
)
5179 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5181 EXPORT_SYMBOL(sleep_on
);
5183 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5185 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5187 EXPORT_SYMBOL(sleep_on_timeout
);
5189 #ifdef CONFIG_RT_MUTEXES
5192 * rt_mutex_setprio - set the current priority of a task
5194 * @prio: prio value (kernel-internal form)
5196 * This function changes the 'effective' priority of a task. It does
5197 * not touch ->normal_prio like __setscheduler().
5199 * Used by the rt_mutex code to implement priority inheritance logic.
5201 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5203 int oldprio
, on_rq
, running
;
5205 const struct sched_class
*prev_class
;
5207 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5209 rq
= __task_rq_lock(p
);
5211 trace_sched_pi_setprio(p
, prio
);
5213 prev_class
= p
->sched_class
;
5215 running
= task_current(rq
, p
);
5217 dequeue_task(rq
, p
, 0);
5219 p
->sched_class
->put_prev_task(rq
, p
);
5222 p
->sched_class
= &rt_sched_class
;
5224 p
->sched_class
= &fair_sched_class
;
5229 p
->sched_class
->set_curr_task(rq
);
5231 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
5233 check_class_changed(rq
, p
, prev_class
, oldprio
);
5234 __task_rq_unlock(rq
);
5239 void set_user_nice(struct task_struct
*p
, long nice
)
5241 int old_prio
, delta
, on_rq
;
5242 unsigned long flags
;
5245 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5248 * We have to be careful, if called from sys_setpriority(),
5249 * the task might be in the middle of scheduling on another CPU.
5251 rq
= task_rq_lock(p
, &flags
);
5253 * The RT priorities are set via sched_setscheduler(), but we still
5254 * allow the 'normal' nice value to be set - but as expected
5255 * it wont have any effect on scheduling until the task is
5256 * SCHED_FIFO/SCHED_RR:
5258 if (task_has_rt_policy(p
)) {
5259 p
->static_prio
= NICE_TO_PRIO(nice
);
5264 dequeue_task(rq
, p
, 0);
5266 p
->static_prio
= NICE_TO_PRIO(nice
);
5269 p
->prio
= effective_prio(p
);
5270 delta
= p
->prio
- old_prio
;
5273 enqueue_task(rq
, p
, 0);
5275 * If the task increased its priority or is running and
5276 * lowered its priority, then reschedule its CPU:
5278 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5279 resched_task(rq
->curr
);
5282 task_rq_unlock(rq
, p
, &flags
);
5284 EXPORT_SYMBOL(set_user_nice
);
5287 * can_nice - check if a task can reduce its nice value
5291 int can_nice(const struct task_struct
*p
, const int nice
)
5293 /* convert nice value [19,-20] to rlimit style value [1,40] */
5294 int nice_rlim
= 20 - nice
;
5296 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
5297 capable(CAP_SYS_NICE
));
5300 #ifdef __ARCH_WANT_SYS_NICE
5303 * sys_nice - change the priority of the current process.
5304 * @increment: priority increment
5306 * sys_setpriority is a more generic, but much slower function that
5307 * does similar things.
5309 SYSCALL_DEFINE1(nice
, int, increment
)
5314 * Setpriority might change our priority at the same moment.
5315 * We don't have to worry. Conceptually one call occurs first
5316 * and we have a single winner.
5318 if (increment
< -40)
5323 nice
= TASK_NICE(current
) + increment
;
5329 if (increment
< 0 && !can_nice(current
, nice
))
5332 retval
= security_task_setnice(current
, nice
);
5336 set_user_nice(current
, nice
);
5343 * task_prio - return the priority value of a given task.
5344 * @p: the task in question.
5346 * This is the priority value as seen by users in /proc.
5347 * RT tasks are offset by -200. Normal tasks are centered
5348 * around 0, value goes from -16 to +15.
5350 int task_prio(const struct task_struct
*p
)
5352 return p
->prio
- MAX_RT_PRIO
;
5356 * task_nice - return the nice value of a given task.
5357 * @p: the task in question.
5359 int task_nice(const struct task_struct
*p
)
5361 return TASK_NICE(p
);
5363 EXPORT_SYMBOL(task_nice
);
5366 * idle_cpu - is a given cpu idle currently?
5367 * @cpu: the processor in question.
5369 int idle_cpu(int cpu
)
5371 struct rq
*rq
= cpu_rq(cpu
);
5373 if (rq
->curr
!= rq
->idle
)
5380 if (!llist_empty(&rq
->wake_list
))
5388 * idle_task - return the idle task for a given cpu.
5389 * @cpu: the processor in question.
5391 struct task_struct
*idle_task(int cpu
)
5393 return cpu_rq(cpu
)->idle
;
5397 * find_process_by_pid - find a process with a matching PID value.
5398 * @pid: the pid in question.
5400 static struct task_struct
*find_process_by_pid(pid_t pid
)
5402 return pid
? find_task_by_vpid(pid
) : current
;
5405 /* Actually do priority change: must hold rq lock. */
5407 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5410 p
->rt_priority
= prio
;
5411 p
->normal_prio
= normal_prio(p
);
5412 /* we are holding p->pi_lock already */
5413 p
->prio
= rt_mutex_getprio(p
);
5414 if (rt_prio(p
->prio
))
5415 p
->sched_class
= &rt_sched_class
;
5417 p
->sched_class
= &fair_sched_class
;
5422 * check the target process has a UID that matches the current process's
5424 static bool check_same_owner(struct task_struct
*p
)
5426 const struct cred
*cred
= current_cred(), *pcred
;
5430 pcred
= __task_cred(p
);
5431 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5432 match
= (cred
->euid
== pcred
->euid
||
5433 cred
->euid
== pcred
->uid
);
5440 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5441 const struct sched_param
*param
, bool user
)
5443 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5444 unsigned long flags
;
5445 const struct sched_class
*prev_class
;
5449 /* may grab non-irq protected spin_locks */
5450 BUG_ON(in_interrupt());
5452 /* double check policy once rq lock held */
5454 reset_on_fork
= p
->sched_reset_on_fork
;
5455 policy
= oldpolicy
= p
->policy
;
5457 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5458 policy
&= ~SCHED_RESET_ON_FORK
;
5460 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5461 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5462 policy
!= SCHED_IDLE
)
5467 * Valid priorities for SCHED_FIFO and SCHED_RR are
5468 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5469 * SCHED_BATCH and SCHED_IDLE is 0.
5471 if (param
->sched_priority
< 0 ||
5472 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5473 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5475 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5479 * Allow unprivileged RT tasks to decrease priority:
5481 if (user
&& !capable(CAP_SYS_NICE
)) {
5482 if (rt_policy(policy
)) {
5483 unsigned long rlim_rtprio
=
5484 task_rlimit(p
, RLIMIT_RTPRIO
);
5486 /* can't set/change the rt policy */
5487 if (policy
!= p
->policy
&& !rlim_rtprio
)
5490 /* can't increase priority */
5491 if (param
->sched_priority
> p
->rt_priority
&&
5492 param
->sched_priority
> rlim_rtprio
)
5497 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5498 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5500 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5501 if (!can_nice(p
, TASK_NICE(p
)))
5505 /* can't change other user's priorities */
5506 if (!check_same_owner(p
))
5509 /* Normal users shall not reset the sched_reset_on_fork flag */
5510 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5515 retval
= security_task_setscheduler(p
);
5521 * make sure no PI-waiters arrive (or leave) while we are
5522 * changing the priority of the task:
5524 * To be able to change p->policy safely, the appropriate
5525 * runqueue lock must be held.
5527 rq
= task_rq_lock(p
, &flags
);
5530 * Changing the policy of the stop threads its a very bad idea
5532 if (p
== rq
->stop
) {
5533 task_rq_unlock(rq
, p
, &flags
);
5538 * If not changing anything there's no need to proceed further:
5540 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5541 param
->sched_priority
== p
->rt_priority
))) {
5543 __task_rq_unlock(rq
);
5544 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5548 #ifdef CONFIG_RT_GROUP_SCHED
5551 * Do not allow realtime tasks into groups that have no runtime
5554 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5555 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5556 !task_group_is_autogroup(task_group(p
))) {
5557 task_rq_unlock(rq
, p
, &flags
);
5563 /* recheck policy now with rq lock held */
5564 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5565 policy
= oldpolicy
= -1;
5566 task_rq_unlock(rq
, p
, &flags
);
5570 running
= task_current(rq
, p
);
5572 deactivate_task(rq
, p
, 0);
5574 p
->sched_class
->put_prev_task(rq
, p
);
5576 p
->sched_reset_on_fork
= reset_on_fork
;
5579 prev_class
= p
->sched_class
;
5580 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5583 p
->sched_class
->set_curr_task(rq
);
5585 activate_task(rq
, p
, 0);
5587 check_class_changed(rq
, p
, prev_class
, oldprio
);
5588 task_rq_unlock(rq
, p
, &flags
);
5590 rt_mutex_adjust_pi(p
);
5596 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5597 * @p: the task in question.
5598 * @policy: new policy.
5599 * @param: structure containing the new RT priority.
5601 * NOTE that the task may be already dead.
5603 int sched_setscheduler(struct task_struct
*p
, int policy
,
5604 const struct sched_param
*param
)
5606 return __sched_setscheduler(p
, policy
, param
, true);
5608 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5611 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5612 * @p: the task in question.
5613 * @policy: new policy.
5614 * @param: structure containing the new RT priority.
5616 * Just like sched_setscheduler, only don't bother checking if the
5617 * current context has permission. For example, this is needed in
5618 * stop_machine(): we create temporary high priority worker threads,
5619 * but our caller might not have that capability.
5621 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5622 const struct sched_param
*param
)
5624 return __sched_setscheduler(p
, policy
, param
, false);
5628 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5630 struct sched_param lparam
;
5631 struct task_struct
*p
;
5634 if (!param
|| pid
< 0)
5636 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5641 p
= find_process_by_pid(pid
);
5643 retval
= sched_setscheduler(p
, policy
, &lparam
);
5650 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5651 * @pid: the pid in question.
5652 * @policy: new policy.
5653 * @param: structure containing the new RT priority.
5655 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5656 struct sched_param __user
*, param
)
5658 /* negative values for policy are not valid */
5662 return do_sched_setscheduler(pid
, policy
, param
);
5666 * sys_sched_setparam - set/change the RT priority of a thread
5667 * @pid: the pid in question.
5668 * @param: structure containing the new RT priority.
5670 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5672 return do_sched_setscheduler(pid
, -1, param
);
5676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5677 * @pid: the pid in question.
5679 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5681 struct task_struct
*p
;
5689 p
= find_process_by_pid(pid
);
5691 retval
= security_task_getscheduler(p
);
5694 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5701 * sys_sched_getparam - get the RT priority of a thread
5702 * @pid: the pid in question.
5703 * @param: structure containing the RT priority.
5705 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5707 struct sched_param lp
;
5708 struct task_struct
*p
;
5711 if (!param
|| pid
< 0)
5715 p
= find_process_by_pid(pid
);
5720 retval
= security_task_getscheduler(p
);
5724 lp
.sched_priority
= p
->rt_priority
;
5728 * This one might sleep, we cannot do it with a spinlock held ...
5730 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5739 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5741 cpumask_var_t cpus_allowed
, new_mask
;
5742 struct task_struct
*p
;
5748 p
= find_process_by_pid(pid
);
5755 /* Prevent p going away */
5759 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5763 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5765 goto out_free_cpus_allowed
;
5768 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5771 retval
= security_task_setscheduler(p
);
5775 cpuset_cpus_allowed(p
, cpus_allowed
);
5776 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5778 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5781 cpuset_cpus_allowed(p
, cpus_allowed
);
5782 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5784 * We must have raced with a concurrent cpuset
5785 * update. Just reset the cpus_allowed to the
5786 * cpuset's cpus_allowed
5788 cpumask_copy(new_mask
, cpus_allowed
);
5793 free_cpumask_var(new_mask
);
5794 out_free_cpus_allowed
:
5795 free_cpumask_var(cpus_allowed
);
5802 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5803 struct cpumask
*new_mask
)
5805 if (len
< cpumask_size())
5806 cpumask_clear(new_mask
);
5807 else if (len
> cpumask_size())
5808 len
= cpumask_size();
5810 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5814 * sys_sched_setaffinity - set the cpu affinity of a process
5815 * @pid: pid of the process
5816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5817 * @user_mask_ptr: user-space pointer to the new cpu mask
5819 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5820 unsigned long __user
*, user_mask_ptr
)
5822 cpumask_var_t new_mask
;
5825 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5828 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5830 retval
= sched_setaffinity(pid
, new_mask
);
5831 free_cpumask_var(new_mask
);
5835 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5837 struct task_struct
*p
;
5838 unsigned long flags
;
5845 p
= find_process_by_pid(pid
);
5849 retval
= security_task_getscheduler(p
);
5853 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5854 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5855 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5865 * sys_sched_getaffinity - get the cpu affinity of a process
5866 * @pid: pid of the process
5867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5870 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5871 unsigned long __user
*, user_mask_ptr
)
5876 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5878 if (len
& (sizeof(unsigned long)-1))
5881 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5884 ret
= sched_getaffinity(pid
, mask
);
5886 size_t retlen
= min_t(size_t, len
, cpumask_size());
5888 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5893 free_cpumask_var(mask
);
5899 * sys_sched_yield - yield the current processor to other threads.
5901 * This function yields the current CPU to other tasks. If there are no
5902 * other threads running on this CPU then this function will return.
5904 SYSCALL_DEFINE0(sched_yield
)
5906 struct rq
*rq
= this_rq_lock();
5908 schedstat_inc(rq
, yld_count
);
5909 current
->sched_class
->yield_task(rq
);
5912 * Since we are going to call schedule() anyway, there's
5913 * no need to preempt or enable interrupts:
5915 __release(rq
->lock
);
5916 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5917 do_raw_spin_unlock(&rq
->lock
);
5918 preempt_enable_no_resched();
5925 static inline int should_resched(void)
5927 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5930 static void __cond_resched(void)
5932 add_preempt_count(PREEMPT_ACTIVE
);
5934 sub_preempt_count(PREEMPT_ACTIVE
);
5937 int __sched
_cond_resched(void)
5939 if (should_resched()) {
5945 EXPORT_SYMBOL(_cond_resched
);
5948 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5949 * call schedule, and on return reacquire the lock.
5951 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5952 * operations here to prevent schedule() from being called twice (once via
5953 * spin_unlock(), once by hand).
5955 int __cond_resched_lock(spinlock_t
*lock
)
5957 int resched
= should_resched();
5960 lockdep_assert_held(lock
);
5962 if (spin_needbreak(lock
) || resched
) {
5973 EXPORT_SYMBOL(__cond_resched_lock
);
5975 int __sched
__cond_resched_softirq(void)
5977 BUG_ON(!in_softirq());
5979 if (should_resched()) {
5987 EXPORT_SYMBOL(__cond_resched_softirq
);
5990 * yield - yield the current processor to other threads.
5992 * This is a shortcut for kernel-space yielding - it marks the
5993 * thread runnable and calls sys_sched_yield().
5995 void __sched
yield(void)
5997 set_current_state(TASK_RUNNING
);
6000 EXPORT_SYMBOL(yield
);
6003 * yield_to - yield the current processor to another thread in
6004 * your thread group, or accelerate that thread toward the
6005 * processor it's on.
6007 * @preempt: whether task preemption is allowed or not
6009 * It's the caller's job to ensure that the target task struct
6010 * can't go away on us before we can do any checks.
6012 * Returns true if we indeed boosted the target task.
6014 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
6016 struct task_struct
*curr
= current
;
6017 struct rq
*rq
, *p_rq
;
6018 unsigned long flags
;
6021 local_irq_save(flags
);
6026 double_rq_lock(rq
, p_rq
);
6027 while (task_rq(p
) != p_rq
) {
6028 double_rq_unlock(rq
, p_rq
);
6032 if (!curr
->sched_class
->yield_to_task
)
6035 if (curr
->sched_class
!= p
->sched_class
)
6038 if (task_running(p_rq
, p
) || p
->state
)
6041 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
6043 schedstat_inc(rq
, yld_count
);
6045 * Make p's CPU reschedule; pick_next_entity takes care of
6048 if (preempt
&& rq
!= p_rq
)
6049 resched_task(p_rq
->curr
);
6053 double_rq_unlock(rq
, p_rq
);
6054 local_irq_restore(flags
);
6061 EXPORT_SYMBOL_GPL(yield_to
);
6064 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6065 * that process accounting knows that this is a task in IO wait state.
6067 void __sched
io_schedule(void)
6069 struct rq
*rq
= raw_rq();
6071 delayacct_blkio_start();
6072 atomic_inc(&rq
->nr_iowait
);
6073 blk_flush_plug(current
);
6074 current
->in_iowait
= 1;
6076 current
->in_iowait
= 0;
6077 atomic_dec(&rq
->nr_iowait
);
6078 delayacct_blkio_end();
6080 EXPORT_SYMBOL(io_schedule
);
6082 long __sched
io_schedule_timeout(long timeout
)
6084 struct rq
*rq
= raw_rq();
6087 delayacct_blkio_start();
6088 atomic_inc(&rq
->nr_iowait
);
6089 blk_flush_plug(current
);
6090 current
->in_iowait
= 1;
6091 ret
= schedule_timeout(timeout
);
6092 current
->in_iowait
= 0;
6093 atomic_dec(&rq
->nr_iowait
);
6094 delayacct_blkio_end();
6099 * sys_sched_get_priority_max - return maximum RT priority.
6100 * @policy: scheduling class.
6102 * this syscall returns the maximum rt_priority that can be used
6103 * by a given scheduling class.
6105 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6112 ret
= MAX_USER_RT_PRIO
-1;
6124 * sys_sched_get_priority_min - return minimum RT priority.
6125 * @policy: scheduling class.
6127 * this syscall returns the minimum rt_priority that can be used
6128 * by a given scheduling class.
6130 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6148 * sys_sched_rr_get_interval - return the default timeslice of a process.
6149 * @pid: pid of the process.
6150 * @interval: userspace pointer to the timeslice value.
6152 * this syscall writes the default timeslice value of a given process
6153 * into the user-space timespec buffer. A value of '0' means infinity.
6155 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6156 struct timespec __user
*, interval
)
6158 struct task_struct
*p
;
6159 unsigned int time_slice
;
6160 unsigned long flags
;
6170 p
= find_process_by_pid(pid
);
6174 retval
= security_task_getscheduler(p
);
6178 rq
= task_rq_lock(p
, &flags
);
6179 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6180 task_rq_unlock(rq
, p
, &flags
);
6183 jiffies_to_timespec(time_slice
, &t
);
6184 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6192 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6194 void sched_show_task(struct task_struct
*p
)
6196 unsigned long free
= 0;
6199 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6200 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
6201 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6202 #if BITS_PER_LONG == 32
6203 if (state
== TASK_RUNNING
)
6204 printk(KERN_CONT
" running ");
6206 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6208 if (state
== TASK_RUNNING
)
6209 printk(KERN_CONT
" running task ");
6211 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6213 #ifdef CONFIG_DEBUG_STACK_USAGE
6214 free
= stack_not_used(p
);
6216 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6217 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6218 (unsigned long)task_thread_info(p
)->flags
);
6220 show_stack(p
, NULL
);
6223 void show_state_filter(unsigned long state_filter
)
6225 struct task_struct
*g
, *p
;
6227 #if BITS_PER_LONG == 32
6229 " task PC stack pid father\n");
6232 " task PC stack pid father\n");
6235 do_each_thread(g
, p
) {
6237 * reset the NMI-timeout, listing all files on a slow
6238 * console might take a lot of time:
6240 touch_nmi_watchdog();
6241 if (!state_filter
|| (p
->state
& state_filter
))
6243 } while_each_thread(g
, p
);
6245 touch_all_softlockup_watchdogs();
6247 #ifdef CONFIG_SCHED_DEBUG
6248 sysrq_sched_debug_show();
6252 * Only show locks if all tasks are dumped:
6255 debug_show_all_locks();
6258 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6260 idle
->sched_class
= &idle_sched_class
;
6264 * init_idle - set up an idle thread for a given CPU
6265 * @idle: task in question
6266 * @cpu: cpu the idle task belongs to
6268 * NOTE: this function does not set the idle thread's NEED_RESCHED
6269 * flag, to make booting more robust.
6271 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6273 struct rq
*rq
= cpu_rq(cpu
);
6274 unsigned long flags
;
6276 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6279 idle
->state
= TASK_RUNNING
;
6280 idle
->se
.exec_start
= sched_clock();
6282 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
6284 * We're having a chicken and egg problem, even though we are
6285 * holding rq->lock, the cpu isn't yet set to this cpu so the
6286 * lockdep check in task_group() will fail.
6288 * Similar case to sched_fork(). / Alternatively we could
6289 * use task_rq_lock() here and obtain the other rq->lock.
6294 __set_task_cpu(idle
, cpu
);
6297 rq
->curr
= rq
->idle
= idle
;
6298 #if defined(CONFIG_SMP)
6301 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6303 /* Set the preempt count _outside_ the spinlocks! */
6304 task_thread_info(idle
)->preempt_count
= 0;
6307 * The idle tasks have their own, simple scheduling class:
6309 idle
->sched_class
= &idle_sched_class
;
6310 ftrace_graph_init_idle_task(idle
, cpu
);
6311 #if defined(CONFIG_SMP)
6312 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
6317 * Increase the granularity value when there are more CPUs,
6318 * because with more CPUs the 'effective latency' as visible
6319 * to users decreases. But the relationship is not linear,
6320 * so pick a second-best guess by going with the log2 of the
6323 * This idea comes from the SD scheduler of Con Kolivas:
6325 static int get_update_sysctl_factor(void)
6327 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
6328 unsigned int factor
;
6330 switch (sysctl_sched_tunable_scaling
) {
6331 case SCHED_TUNABLESCALING_NONE
:
6334 case SCHED_TUNABLESCALING_LINEAR
:
6337 case SCHED_TUNABLESCALING_LOG
:
6339 factor
= 1 + ilog2(cpus
);
6346 static void update_sysctl(void)
6348 unsigned int factor
= get_update_sysctl_factor();
6350 #define SET_SYSCTL(name) \
6351 (sysctl_##name = (factor) * normalized_sysctl_##name)
6352 SET_SYSCTL(sched_min_granularity
);
6353 SET_SYSCTL(sched_latency
);
6354 SET_SYSCTL(sched_wakeup_granularity
);
6358 static inline void sched_init_granularity(void)
6364 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
6366 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
6367 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6369 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6370 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6374 * This is how migration works:
6376 * 1) we invoke migration_cpu_stop() on the target CPU using
6378 * 2) stopper starts to run (implicitly forcing the migrated thread
6380 * 3) it checks whether the migrated task is still in the wrong runqueue.
6381 * 4) if it's in the wrong runqueue then the migration thread removes
6382 * it and puts it into the right queue.
6383 * 5) stopper completes and stop_one_cpu() returns and the migration
6388 * Change a given task's CPU affinity. Migrate the thread to a
6389 * proper CPU and schedule it away if the CPU it's executing on
6390 * is removed from the allowed bitmask.
6392 * NOTE: the caller must have a valid reference to the task, the
6393 * task must not exit() & deallocate itself prematurely. The
6394 * call is not atomic; no spinlocks may be held.
6396 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6398 unsigned long flags
;
6400 unsigned int dest_cpu
;
6403 rq
= task_rq_lock(p
, &flags
);
6405 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6408 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6413 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6418 do_set_cpus_allowed(p
, new_mask
);
6420 /* Can the task run on the task's current CPU? If so, we're done */
6421 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6424 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6426 struct migration_arg arg
= { p
, dest_cpu
};
6427 /* Need help from migration thread: drop lock and wait. */
6428 task_rq_unlock(rq
, p
, &flags
);
6429 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6430 tlb_migrate_finish(p
->mm
);
6434 task_rq_unlock(rq
, p
, &flags
);
6438 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6441 * Move (not current) task off this cpu, onto dest cpu. We're doing
6442 * this because either it can't run here any more (set_cpus_allowed()
6443 * away from this CPU, or CPU going down), or because we're
6444 * attempting to rebalance this task on exec (sched_exec).
6446 * So we race with normal scheduler movements, but that's OK, as long
6447 * as the task is no longer on this CPU.
6449 * Returns non-zero if task was successfully migrated.
6451 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6453 struct rq
*rq_dest
, *rq_src
;
6456 if (unlikely(!cpu_active(dest_cpu
)))
6459 rq_src
= cpu_rq(src_cpu
);
6460 rq_dest
= cpu_rq(dest_cpu
);
6462 raw_spin_lock(&p
->pi_lock
);
6463 double_rq_lock(rq_src
, rq_dest
);
6464 /* Already moved. */
6465 if (task_cpu(p
) != src_cpu
)
6467 /* Affinity changed (again). */
6468 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
6472 * If we're not on a rq, the next wake-up will ensure we're
6476 deactivate_task(rq_src
, p
, 0);
6477 set_task_cpu(p
, dest_cpu
);
6478 activate_task(rq_dest
, p
, 0);
6479 check_preempt_curr(rq_dest
, p
, 0);
6484 double_rq_unlock(rq_src
, rq_dest
);
6485 raw_spin_unlock(&p
->pi_lock
);
6490 * migration_cpu_stop - this will be executed by a highprio stopper thread
6491 * and performs thread migration by bumping thread off CPU then
6492 * 'pushing' onto another runqueue.
6494 static int migration_cpu_stop(void *data
)
6496 struct migration_arg
*arg
= data
;
6499 * The original target cpu might have gone down and we might
6500 * be on another cpu but it doesn't matter.
6502 local_irq_disable();
6503 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6508 #ifdef CONFIG_HOTPLUG_CPU
6511 * Ensures that the idle task is using init_mm right before its cpu goes
6514 void idle_task_exit(void)
6516 struct mm_struct
*mm
= current
->active_mm
;
6518 BUG_ON(cpu_online(smp_processor_id()));
6521 switch_mm(mm
, &init_mm
, current
);
6526 * While a dead CPU has no uninterruptible tasks queued at this point,
6527 * it might still have a nonzero ->nr_uninterruptible counter, because
6528 * for performance reasons the counter is not stricly tracking tasks to
6529 * their home CPUs. So we just add the counter to another CPU's counter,
6530 * to keep the global sum constant after CPU-down:
6532 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6534 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6536 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6537 rq_src
->nr_uninterruptible
= 0;
6541 * remove the tasks which were accounted by rq from calc_load_tasks.
6543 static void calc_global_load_remove(struct rq
*rq
)
6545 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6546 rq
->calc_load_active
= 0;
6549 #ifdef CONFIG_CFS_BANDWIDTH
6550 static void unthrottle_offline_cfs_rqs(struct rq
*rq
)
6552 struct cfs_rq
*cfs_rq
;
6554 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6555 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
6557 if (!cfs_rq
->runtime_enabled
)
6561 * clock_task is not advancing so we just need to make sure
6562 * there's some valid quota amount
6564 cfs_rq
->runtime_remaining
= cfs_b
->quota
;
6565 if (cfs_rq_throttled(cfs_rq
))
6566 unthrottle_cfs_rq(cfs_rq
);
6570 static void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
6574 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6575 * try_to_wake_up()->select_task_rq().
6577 * Called with rq->lock held even though we'er in stop_machine() and
6578 * there's no concurrency possible, we hold the required locks anyway
6579 * because of lock validation efforts.
6581 static void migrate_tasks(unsigned int dead_cpu
)
6583 struct rq
*rq
= cpu_rq(dead_cpu
);
6584 struct task_struct
*next
, *stop
= rq
->stop
;
6588 * Fudge the rq selection such that the below task selection loop
6589 * doesn't get stuck on the currently eligible stop task.
6591 * We're currently inside stop_machine() and the rq is either stuck
6592 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6593 * either way we should never end up calling schedule() until we're
6598 /* Ensure any throttled groups are reachable by pick_next_task */
6599 unthrottle_offline_cfs_rqs(rq
);
6603 * There's this thread running, bail when that's the only
6606 if (rq
->nr_running
== 1)
6609 next
= pick_next_task(rq
);
6611 next
->sched_class
->put_prev_task(rq
, next
);
6613 /* Find suitable destination for @next, with force if needed. */
6614 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6615 raw_spin_unlock(&rq
->lock
);
6617 __migrate_task(next
, dead_cpu
, dest_cpu
);
6619 raw_spin_lock(&rq
->lock
);
6625 #endif /* CONFIG_HOTPLUG_CPU */
6627 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6629 static struct ctl_table sd_ctl_dir
[] = {
6631 .procname
= "sched_domain",
6637 static struct ctl_table sd_ctl_root
[] = {
6639 .procname
= "kernel",
6641 .child
= sd_ctl_dir
,
6646 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6648 struct ctl_table
*entry
=
6649 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6654 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6656 struct ctl_table
*entry
;
6659 * In the intermediate directories, both the child directory and
6660 * procname are dynamically allocated and could fail but the mode
6661 * will always be set. In the lowest directory the names are
6662 * static strings and all have proc handlers.
6664 for (entry
= *tablep
; entry
->mode
; entry
++) {
6666 sd_free_ctl_entry(&entry
->child
);
6667 if (entry
->proc_handler
== NULL
)
6668 kfree(entry
->procname
);
6675 static int min_load_idx
= 0;
6676 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
6679 set_table_entry(struct ctl_table
*entry
,
6680 const char *procname
, void *data
, int maxlen
,
6681 mode_t mode
, proc_handler
*proc_handler
,
6684 entry
->procname
= procname
;
6686 entry
->maxlen
= maxlen
;
6688 entry
->proc_handler
= proc_handler
;
6691 entry
->extra1
= &min_load_idx
;
6692 entry
->extra2
= &max_load_idx
;
6696 static struct ctl_table
*
6697 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6699 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6704 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6705 sizeof(long), 0644, proc_doulongvec_minmax
, false);
6706 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6707 sizeof(long), 0644, proc_doulongvec_minmax
, false);
6708 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6709 sizeof(int), 0644, proc_dointvec_minmax
, true);
6710 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6711 sizeof(int), 0644, proc_dointvec_minmax
, true);
6712 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6713 sizeof(int), 0644, proc_dointvec_minmax
, true);
6714 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6715 sizeof(int), 0644, proc_dointvec_minmax
, true);
6716 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6717 sizeof(int), 0644, proc_dointvec_minmax
, true);
6718 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6719 sizeof(int), 0644, proc_dointvec_minmax
, false);
6720 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6721 sizeof(int), 0644, proc_dointvec_minmax
, false);
6722 set_table_entry(&table
[9], "cache_nice_tries",
6723 &sd
->cache_nice_tries
,
6724 sizeof(int), 0644, proc_dointvec_minmax
, false);
6725 set_table_entry(&table
[10], "flags", &sd
->flags
,
6726 sizeof(int), 0644, proc_dointvec_minmax
, false);
6727 set_table_entry(&table
[11], "name", sd
->name
,
6728 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
6729 /* &table[12] is terminator */
6734 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6736 struct ctl_table
*entry
, *table
;
6737 struct sched_domain
*sd
;
6738 int domain_num
= 0, i
;
6741 for_each_domain(cpu
, sd
)
6743 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6748 for_each_domain(cpu
, sd
) {
6749 snprintf(buf
, 32, "domain%d", i
);
6750 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6752 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6759 static struct ctl_table_header
*sd_sysctl_header
;
6760 static void register_sched_domain_sysctl(void)
6762 int i
, cpu_num
= num_possible_cpus();
6763 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6766 WARN_ON(sd_ctl_dir
[0].child
);
6767 sd_ctl_dir
[0].child
= entry
;
6772 for_each_possible_cpu(i
) {
6773 snprintf(buf
, 32, "cpu%d", i
);
6774 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6776 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6780 WARN_ON(sd_sysctl_header
);
6781 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6784 /* may be called multiple times per register */
6785 static void unregister_sched_domain_sysctl(void)
6787 if (sd_sysctl_header
)
6788 unregister_sysctl_table(sd_sysctl_header
);
6789 sd_sysctl_header
= NULL
;
6790 if (sd_ctl_dir
[0].child
)
6791 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6794 static void register_sched_domain_sysctl(void)
6797 static void unregister_sched_domain_sysctl(void)
6802 static void set_rq_online(struct rq
*rq
)
6805 const struct sched_class
*class;
6807 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6810 for_each_class(class) {
6811 if (class->rq_online
)
6812 class->rq_online(rq
);
6817 static void set_rq_offline(struct rq
*rq
)
6820 const struct sched_class
*class;
6822 for_each_class(class) {
6823 if (class->rq_offline
)
6824 class->rq_offline(rq
);
6827 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6833 * migration_call - callback that gets triggered when a CPU is added.
6834 * Here we can start up the necessary migration thread for the new CPU.
6836 static int __cpuinit
6837 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6839 int cpu
= (long)hcpu
;
6840 unsigned long flags
;
6841 struct rq
*rq
= cpu_rq(cpu
);
6843 switch (action
& ~CPU_TASKS_FROZEN
) {
6845 case CPU_UP_PREPARE
:
6846 rq
->calc_load_update
= calc_load_update
;
6850 /* Update our root-domain */
6851 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6853 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6857 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6860 #ifdef CONFIG_HOTPLUG_CPU
6862 sched_ttwu_pending();
6863 /* Update our root-domain */
6864 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6866 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6870 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6871 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6873 migrate_nr_uninterruptible(rq
);
6874 calc_global_load_remove(rq
);
6879 update_max_interval();
6885 * Register at high priority so that task migration (migrate_all_tasks)
6886 * happens before everything else. This has to be lower priority than
6887 * the notifier in the perf_event subsystem, though.
6889 static struct notifier_block __cpuinitdata migration_notifier
= {
6890 .notifier_call
= migration_call
,
6891 .priority
= CPU_PRI_MIGRATION
,
6894 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6895 unsigned long action
, void *hcpu
)
6897 switch (action
& ~CPU_TASKS_FROZEN
) {
6899 case CPU_DOWN_FAILED
:
6900 set_cpu_active((long)hcpu
, true);
6907 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6908 unsigned long action
, void *hcpu
)
6910 switch (action
& ~CPU_TASKS_FROZEN
) {
6911 case CPU_DOWN_PREPARE
:
6912 set_cpu_active((long)hcpu
, false);
6919 static int __init
migration_init(void)
6921 void *cpu
= (void *)(long)smp_processor_id();
6924 /* Initialize migration for the boot CPU */
6925 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6926 BUG_ON(err
== NOTIFY_BAD
);
6927 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6928 register_cpu_notifier(&migration_notifier
);
6930 /* Register cpu active notifiers */
6931 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6932 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6936 early_initcall(migration_init
);
6941 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6943 #ifdef CONFIG_SCHED_DEBUG
6945 static __read_mostly
int sched_domain_debug_enabled
;
6947 static int __init
sched_domain_debug_setup(char *str
)
6949 sched_domain_debug_enabled
= 1;
6953 early_param("sched_debug", sched_domain_debug_setup
);
6955 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6956 struct cpumask
*groupmask
)
6958 struct sched_group
*group
= sd
->groups
;
6961 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6962 cpumask_clear(groupmask
);
6964 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6966 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6967 printk("does not load-balance\n");
6969 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6974 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6976 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6977 printk(KERN_ERR
"ERROR: domain->span does not contain "
6980 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6981 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6985 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6989 printk(KERN_ERR
"ERROR: group is NULL\n");
6993 if (!group
->sgp
->power
) {
6994 printk(KERN_CONT
"\n");
6995 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7000 if (!cpumask_weight(sched_group_cpus(group
))) {
7001 printk(KERN_CONT
"\n");
7002 printk(KERN_ERR
"ERROR: empty group\n");
7006 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7007 printk(KERN_CONT
"\n");
7008 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7012 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7014 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7016 printk(KERN_CONT
" %s", str
);
7017 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
7018 printk(KERN_CONT
" (cpu_power = %d)",
7022 group
= group
->next
;
7023 } while (group
!= sd
->groups
);
7024 printk(KERN_CONT
"\n");
7026 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7027 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7030 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7031 printk(KERN_ERR
"ERROR: parent span is not a superset "
7032 "of domain->span\n");
7036 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7040 if (!sched_domain_debug_enabled
)
7044 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7048 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7051 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
7059 #else /* !CONFIG_SCHED_DEBUG */
7060 # define sched_domain_debug(sd, cpu) do { } while (0)
7061 #endif /* CONFIG_SCHED_DEBUG */
7063 static int sd_degenerate(struct sched_domain
*sd
)
7065 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7068 /* Following flags need at least 2 groups */
7069 if (sd
->flags
& (SD_LOAD_BALANCE
|
7070 SD_BALANCE_NEWIDLE
|
7074 SD_SHARE_PKG_RESOURCES
)) {
7075 if (sd
->groups
!= sd
->groups
->next
)
7079 /* Following flags don't use groups */
7080 if (sd
->flags
& (SD_WAKE_AFFINE
))
7087 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7089 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7091 if (sd_degenerate(parent
))
7094 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7097 /* Flags needing groups don't count if only 1 group in parent */
7098 if (parent
->groups
== parent
->groups
->next
) {
7099 pflags
&= ~(SD_LOAD_BALANCE
|
7100 SD_BALANCE_NEWIDLE
|
7104 SD_SHARE_PKG_RESOURCES
);
7105 if (nr_node_ids
== 1)
7106 pflags
&= ~SD_SERIALIZE
;
7108 if (~cflags
& pflags
)
7114 static void free_rootdomain(struct rcu_head
*rcu
)
7116 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
7118 cpupri_cleanup(&rd
->cpupri
);
7119 free_cpumask_var(rd
->rto_mask
);
7120 free_cpumask_var(rd
->online
);
7121 free_cpumask_var(rd
->span
);
7125 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7127 struct root_domain
*old_rd
= NULL
;
7128 unsigned long flags
;
7130 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7135 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7138 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7141 * If we dont want to free the old_rt yet then
7142 * set old_rd to NULL to skip the freeing later
7145 if (!atomic_dec_and_test(&old_rd
->refcount
))
7149 atomic_inc(&rd
->refcount
);
7152 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7153 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
7156 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7159 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
7162 static int init_rootdomain(struct root_domain
*rd
)
7164 memset(rd
, 0, sizeof(*rd
));
7166 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
7168 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
7170 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
7173 if (cpupri_init(&rd
->cpupri
) != 0)
7178 free_cpumask_var(rd
->rto_mask
);
7180 free_cpumask_var(rd
->online
);
7182 free_cpumask_var(rd
->span
);
7187 static void init_defrootdomain(void)
7189 init_rootdomain(&def_root_domain
);
7191 atomic_set(&def_root_domain
.refcount
, 1);
7194 static struct root_domain
*alloc_rootdomain(void)
7196 struct root_domain
*rd
;
7198 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7202 if (init_rootdomain(rd
) != 0) {
7210 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
7212 struct sched_group
*tmp
, *first
;
7221 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
7226 } while (sg
!= first
);
7229 static void free_sched_domain(struct rcu_head
*rcu
)
7231 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
7234 * If its an overlapping domain it has private groups, iterate and
7237 if (sd
->flags
& SD_OVERLAP
) {
7238 free_sched_groups(sd
->groups
, 1);
7239 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
7240 kfree(sd
->groups
->sgp
);
7246 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
7248 call_rcu(&sd
->rcu
, free_sched_domain
);
7251 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
7253 for (; sd
; sd
= sd
->parent
)
7254 destroy_sched_domain(sd
, cpu
);
7258 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7259 * hold the hotplug lock.
7262 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7264 struct rq
*rq
= cpu_rq(cpu
);
7265 struct sched_domain
*tmp
;
7267 /* Remove the sched domains which do not contribute to scheduling. */
7268 for (tmp
= sd
; tmp
; ) {
7269 struct sched_domain
*parent
= tmp
->parent
;
7273 if (sd_parent_degenerate(tmp
, parent
)) {
7274 tmp
->parent
= parent
->parent
;
7276 parent
->parent
->child
= tmp
;
7277 destroy_sched_domain(parent
, cpu
);
7282 if (sd
&& sd_degenerate(sd
)) {
7285 destroy_sched_domain(tmp
, cpu
);
7290 sched_domain_debug(sd
, cpu
);
7292 rq_attach_root(rq
, rd
);
7294 rcu_assign_pointer(rq
->sd
, sd
);
7295 destroy_sched_domains(tmp
, cpu
);
7298 /* cpus with isolated domains */
7299 static cpumask_var_t cpu_isolated_map
;
7301 /* Setup the mask of cpus configured for isolated domains */
7302 static int __init
isolated_cpu_setup(char *str
)
7304 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
7305 cpulist_parse(str
, cpu_isolated_map
);
7309 __setup("isolcpus=", isolated_cpu_setup
);
7314 * find_next_best_node - find the next node to include in a sched_domain
7315 * @node: node whose sched_domain we're building
7316 * @used_nodes: nodes already in the sched_domain
7318 * Find the next node to include in a given scheduling domain. Simply
7319 * finds the closest node not already in the @used_nodes map.
7321 * Should use nodemask_t.
7323 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7325 int i
, n
, val
, min_val
, best_node
= -1;
7329 for (i
= 0; i
< nr_node_ids
; i
++) {
7330 /* Start at @node */
7331 n
= (node
+ i
) % nr_node_ids
;
7333 if (!nr_cpus_node(n
))
7336 /* Skip already used nodes */
7337 if (node_isset(n
, *used_nodes
))
7340 /* Simple min distance search */
7341 val
= node_distance(node
, n
);
7343 if (val
< min_val
) {
7349 if (best_node
!= -1)
7350 node_set(best_node
, *used_nodes
);
7355 * sched_domain_node_span - get a cpumask for a node's sched_domain
7356 * @node: node whose cpumask we're constructing
7357 * @span: resulting cpumask
7359 * Given a node, construct a good cpumask for its sched_domain to span. It
7360 * should be one that prevents unnecessary balancing, but also spreads tasks
7363 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7365 nodemask_t used_nodes
;
7368 cpumask_clear(span
);
7369 nodes_clear(used_nodes
);
7371 cpumask_or(span
, span
, cpumask_of_node(node
));
7372 node_set(node
, used_nodes
);
7374 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7375 int next_node
= find_next_best_node(node
, &used_nodes
);
7378 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7382 static const struct cpumask
*cpu_node_mask(int cpu
)
7384 lockdep_assert_held(&sched_domains_mutex
);
7386 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
7388 return sched_domains_tmpmask
;
7391 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
7393 return cpu_possible_mask
;
7395 #endif /* CONFIG_NUMA */
7397 static const struct cpumask
*cpu_cpu_mask(int cpu
)
7399 return cpumask_of_node(cpu_to_node(cpu
));
7402 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7405 struct sched_domain
**__percpu sd
;
7406 struct sched_group
**__percpu sg
;
7407 struct sched_group_power
**__percpu sgp
;
7411 struct sched_domain
** __percpu sd
;
7412 struct root_domain
*rd
;
7422 struct sched_domain_topology_level
;
7424 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
7425 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
7427 #define SDTL_OVERLAP 0x01
7429 struct sched_domain_topology_level
{
7430 sched_domain_init_f init
;
7431 sched_domain_mask_f mask
;
7433 struct sd_data data
;
7437 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
7439 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
7440 const struct cpumask
*span
= sched_domain_span(sd
);
7441 struct cpumask
*covered
= sched_domains_tmpmask
;
7442 struct sd_data
*sdd
= sd
->private;
7443 struct sched_domain
*child
;
7446 cpumask_clear(covered
);
7448 for_each_cpu(i
, span
) {
7449 struct cpumask
*sg_span
;
7451 if (cpumask_test_cpu(i
, covered
))
7454 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7455 GFP_KERNEL
, cpu_to_node(i
));
7460 sg_span
= sched_group_cpus(sg
);
7462 child
= *per_cpu_ptr(sdd
->sd
, i
);
7464 child
= child
->child
;
7465 cpumask_copy(sg_span
, sched_domain_span(child
));
7467 cpumask_set_cpu(i
, sg_span
);
7469 cpumask_or(covered
, covered
, sg_span
);
7471 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
7472 atomic_inc(&sg
->sgp
->ref
);
7474 if (cpumask_test_cpu(cpu
, sg_span
))
7484 sd
->groups
= groups
;
7489 free_sched_groups(first
, 0);
7494 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
7496 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
7497 struct sched_domain
*child
= sd
->child
;
7500 cpu
= cpumask_first(sched_domain_span(child
));
7503 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
7504 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
7505 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
7512 * build_sched_groups will build a circular linked list of the groups
7513 * covered by the given span, and will set each group's ->cpumask correctly,
7514 * and ->cpu_power to 0.
7516 * Assumes the sched_domain tree is fully constructed
7519 build_sched_groups(struct sched_domain
*sd
, int cpu
)
7521 struct sched_group
*first
= NULL
, *last
= NULL
;
7522 struct sd_data
*sdd
= sd
->private;
7523 const struct cpumask
*span
= sched_domain_span(sd
);
7524 struct cpumask
*covered
;
7527 get_group(cpu
, sdd
, &sd
->groups
);
7528 atomic_inc(&sd
->groups
->ref
);
7530 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
7533 lockdep_assert_held(&sched_domains_mutex
);
7534 covered
= sched_domains_tmpmask
;
7536 cpumask_clear(covered
);
7538 for_each_cpu(i
, span
) {
7539 struct sched_group
*sg
;
7540 int group
= get_group(i
, sdd
, &sg
);
7543 if (cpumask_test_cpu(i
, covered
))
7546 cpumask_clear(sched_group_cpus(sg
));
7549 for_each_cpu(j
, span
) {
7550 if (get_group(j
, sdd
, NULL
) != group
)
7553 cpumask_set_cpu(j
, covered
);
7554 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7569 * Initialize sched groups cpu_power.
7571 * cpu_power indicates the capacity of sched group, which is used while
7572 * distributing the load between different sched groups in a sched domain.
7573 * Typically cpu_power for all the groups in a sched domain will be same unless
7574 * there are asymmetries in the topology. If there are asymmetries, group
7575 * having more cpu_power will pickup more load compared to the group having
7578 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7580 struct sched_group
*sg
= sd
->groups
;
7582 WARN_ON(!sd
|| !sg
);
7585 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
7587 } while (sg
!= sd
->groups
);
7589 if (cpu
!= group_first_cpu(sg
))
7592 update_group_power(sd
, cpu
);
7596 * Initializers for schedule domains
7597 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7600 #ifdef CONFIG_SCHED_DEBUG
7601 # define SD_INIT_NAME(sd, type) sd->name = #type
7603 # define SD_INIT_NAME(sd, type) do { } while (0)
7606 #define SD_INIT_FUNC(type) \
7607 static noinline struct sched_domain * \
7608 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7610 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7611 *sd = SD_##type##_INIT; \
7612 SD_INIT_NAME(sd, type); \
7613 sd->private = &tl->data; \
7619 SD_INIT_FUNC(ALLNODES
)
7622 #ifdef CONFIG_SCHED_SMT
7623 SD_INIT_FUNC(SIBLING
)
7625 #ifdef CONFIG_SCHED_MC
7628 #ifdef CONFIG_SCHED_BOOK
7632 static int default_relax_domain_level
= -1;
7633 int sched_domain_level_max
;
7635 static int __init
setup_relax_domain_level(char *str
)
7637 if (kstrtoint(str
, 0, &default_relax_domain_level
))
7638 pr_warn("Unable to set relax_domain_level\n");
7642 __setup("relax_domain_level=", setup_relax_domain_level
);
7644 static void set_domain_attribute(struct sched_domain
*sd
,
7645 struct sched_domain_attr
*attr
)
7649 if (!attr
|| attr
->relax_domain_level
< 0) {
7650 if (default_relax_domain_level
< 0)
7653 request
= default_relax_domain_level
;
7655 request
= attr
->relax_domain_level
;
7656 if (request
< sd
->level
) {
7657 /* turn off idle balance on this domain */
7658 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7660 /* turn on idle balance on this domain */
7661 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7665 static void __sdt_free(const struct cpumask
*cpu_map
);
7666 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7668 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7669 const struct cpumask
*cpu_map
)
7673 if (!atomic_read(&d
->rd
->refcount
))
7674 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7676 free_percpu(d
->sd
); /* fall through */
7678 __sdt_free(cpu_map
); /* fall through */
7684 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7685 const struct cpumask
*cpu_map
)
7687 memset(d
, 0, sizeof(*d
));
7689 if (__sdt_alloc(cpu_map
))
7690 return sa_sd_storage
;
7691 d
->sd
= alloc_percpu(struct sched_domain
*);
7693 return sa_sd_storage
;
7694 d
->rd
= alloc_rootdomain();
7697 return sa_rootdomain
;
7701 * NULL the sd_data elements we've used to build the sched_domain and
7702 * sched_group structure so that the subsequent __free_domain_allocs()
7703 * will not free the data we're using.
7705 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7707 struct sd_data
*sdd
= sd
->private;
7709 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7710 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7712 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
7713 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7715 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
7716 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
7719 #ifdef CONFIG_SCHED_SMT
7720 static const struct cpumask
*cpu_smt_mask(int cpu
)
7722 return topology_thread_cpumask(cpu
);
7727 * Topology list, bottom-up.
7729 static struct sched_domain_topology_level default_topology
[] = {
7730 #ifdef CONFIG_SCHED_SMT
7731 { sd_init_SIBLING
, cpu_smt_mask
, },
7733 #ifdef CONFIG_SCHED_MC
7734 { sd_init_MC
, cpu_coregroup_mask
, },
7736 #ifdef CONFIG_SCHED_BOOK
7737 { sd_init_BOOK
, cpu_book_mask
, },
7739 { sd_init_CPU
, cpu_cpu_mask
, },
7741 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
7742 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7747 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7749 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7751 struct sched_domain_topology_level
*tl
;
7754 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7755 struct sd_data
*sdd
= &tl
->data
;
7757 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7761 sdd
->sg
= alloc_percpu(struct sched_group
*);
7765 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
7769 for_each_cpu(j
, cpu_map
) {
7770 struct sched_domain
*sd
;
7771 struct sched_group
*sg
;
7772 struct sched_group_power
*sgp
;
7774 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7775 GFP_KERNEL
, cpu_to_node(j
));
7779 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7781 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7782 GFP_KERNEL
, cpu_to_node(j
));
7786 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7788 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
7789 GFP_KERNEL
, cpu_to_node(j
));
7793 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
7800 static void __sdt_free(const struct cpumask
*cpu_map
)
7802 struct sched_domain_topology_level
*tl
;
7805 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7806 struct sd_data
*sdd
= &tl
->data
;
7808 for_each_cpu(j
, cpu_map
) {
7809 struct sched_domain
*sd
;
7812 sd
= *per_cpu_ptr(sdd
->sd
, j
);
7813 if (sd
&& (sd
->flags
& SD_OVERLAP
))
7814 free_sched_groups(sd
->groups
, 0);
7815 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7819 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7821 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
7823 free_percpu(sdd
->sd
);
7825 free_percpu(sdd
->sg
);
7827 free_percpu(sdd
->sgp
);
7832 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7833 struct s_data
*d
, const struct cpumask
*cpu_map
,
7834 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7837 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7841 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7843 sd
->level
= child
->level
+ 1;
7844 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7848 set_domain_attribute(sd
, attr
);
7854 * Build sched domains for a given set of cpus and attach the sched domains
7855 * to the individual cpus
7857 static int build_sched_domains(const struct cpumask
*cpu_map
,
7858 struct sched_domain_attr
*attr
)
7860 enum s_alloc alloc_state
= sa_none
;
7861 struct sched_domain
*sd
;
7863 int i
, ret
= -ENOMEM
;
7865 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7866 if (alloc_state
!= sa_rootdomain
)
7869 /* Set up domains for cpus specified by the cpu_map. */
7870 for_each_cpu(i
, cpu_map
) {
7871 struct sched_domain_topology_level
*tl
;
7874 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7875 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7876 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7877 sd
->flags
|= SD_OVERLAP
;
7878 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7885 *per_cpu_ptr(d
.sd
, i
) = sd
;
7888 /* Build the groups for the domains */
7889 for_each_cpu(i
, cpu_map
) {
7890 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7891 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7892 if (sd
->flags
& SD_OVERLAP
) {
7893 if (build_overlap_sched_groups(sd
, i
))
7896 if (build_sched_groups(sd
, i
))
7902 /* Calculate CPU power for physical packages and nodes */
7903 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7904 if (!cpumask_test_cpu(i
, cpu_map
))
7907 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7908 claim_allocations(i
, sd
);
7909 init_sched_groups_power(i
, sd
);
7913 /* Attach the domains */
7915 for_each_cpu(i
, cpu_map
) {
7916 sd
= *per_cpu_ptr(d
.sd
, i
);
7917 cpu_attach_domain(sd
, d
.rd
, i
);
7923 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7927 static cpumask_var_t
*doms_cur
; /* current sched domains */
7928 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7929 static struct sched_domain_attr
*dattr_cur
;
7930 /* attribues of custom domains in 'doms_cur' */
7933 * Special case: If a kmalloc of a doms_cur partition (array of
7934 * cpumask) fails, then fallback to a single sched domain,
7935 * as determined by the single cpumask fallback_doms.
7937 static cpumask_var_t fallback_doms
;
7940 * arch_update_cpu_topology lets virtualized architectures update the
7941 * cpu core maps. It is supposed to return 1 if the topology changed
7942 * or 0 if it stayed the same.
7944 int __attribute__((weak
)) arch_update_cpu_topology(void)
7949 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7952 cpumask_var_t
*doms
;
7954 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7957 for (i
= 0; i
< ndoms
; i
++) {
7958 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7959 free_sched_domains(doms
, i
);
7966 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7969 for (i
= 0; i
< ndoms
; i
++)
7970 free_cpumask_var(doms
[i
]);
7975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7976 * For now this just excludes isolated cpus, but could be used to
7977 * exclude other special cases in the future.
7979 static int init_sched_domains(const struct cpumask
*cpu_map
)
7983 arch_update_cpu_topology();
7985 doms_cur
= alloc_sched_domains(ndoms_cur
);
7987 doms_cur
= &fallback_doms
;
7988 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7990 err
= build_sched_domains(doms_cur
[0], NULL
);
7991 register_sched_domain_sysctl();
7997 * Detach sched domains from a group of cpus specified in cpu_map
7998 * These cpus will now be attached to the NULL domain
8000 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8005 for_each_cpu(i
, cpu_map
)
8006 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8010 /* handle null as "default" */
8011 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8012 struct sched_domain_attr
*new, int idx_new
)
8014 struct sched_domain_attr tmp
;
8021 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8022 new ? (new + idx_new
) : &tmp
,
8023 sizeof(struct sched_domain_attr
));
8027 * Partition sched domains as specified by the 'ndoms_new'
8028 * cpumasks in the array doms_new[] of cpumasks. This compares
8029 * doms_new[] to the current sched domain partitioning, doms_cur[].
8030 * It destroys each deleted domain and builds each new domain.
8032 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8033 * The masks don't intersect (don't overlap.) We should setup one
8034 * sched domain for each mask. CPUs not in any of the cpumasks will
8035 * not be load balanced. If the same cpumask appears both in the
8036 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8039 * The passed in 'doms_new' should be allocated using
8040 * alloc_sched_domains. This routine takes ownership of it and will
8041 * free_sched_domains it when done with it. If the caller failed the
8042 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8043 * and partition_sched_domains() will fallback to the single partition
8044 * 'fallback_doms', it also forces the domains to be rebuilt.
8046 * If doms_new == NULL it will be replaced with cpu_online_mask.
8047 * ndoms_new == 0 is a special case for destroying existing domains,
8048 * and it will not create the default domain.
8050 * Call with hotplug lock held
8052 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
8053 struct sched_domain_attr
*dattr_new
)
8058 mutex_lock(&sched_domains_mutex
);
8060 /* always unregister in case we don't destroy any domains */
8061 unregister_sched_domain_sysctl();
8063 /* Let architecture update cpu core mappings. */
8064 new_topology
= arch_update_cpu_topology();
8066 n
= doms_new
? ndoms_new
: 0;
8068 /* Destroy deleted domains */
8069 for (i
= 0; i
< ndoms_cur
; i
++) {
8070 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8071 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
8072 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8075 /* no match - a current sched domain not in new doms_new[] */
8076 detach_destroy_domains(doms_cur
[i
]);
8081 if (doms_new
== NULL
) {
8083 doms_new
= &fallback_doms
;
8084 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
8085 WARN_ON_ONCE(dattr_new
);
8088 /* Build new domains */
8089 for (i
= 0; i
< ndoms_new
; i
++) {
8090 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8091 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
8092 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8095 /* no match - add a new doms_new */
8096 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
8101 /* Remember the new sched domains */
8102 if (doms_cur
!= &fallback_doms
)
8103 free_sched_domains(doms_cur
, ndoms_cur
);
8104 kfree(dattr_cur
); /* kfree(NULL) is safe */
8105 doms_cur
= doms_new
;
8106 dattr_cur
= dattr_new
;
8107 ndoms_cur
= ndoms_new
;
8109 register_sched_domain_sysctl();
8111 mutex_unlock(&sched_domains_mutex
);
8114 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8115 static void reinit_sched_domains(void)
8119 /* Destroy domains first to force the rebuild */
8120 partition_sched_domains(0, NULL
, NULL
);
8122 rebuild_sched_domains();
8126 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8128 unsigned int level
= 0;
8130 if (sscanf(buf
, "%u", &level
) != 1)
8134 * level is always be positive so don't check for
8135 * level < POWERSAVINGS_BALANCE_NONE which is 0
8136 * What happens on 0 or 1 byte write,
8137 * need to check for count as well?
8140 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8144 sched_smt_power_savings
= level
;
8146 sched_mc_power_savings
= level
;
8148 reinit_sched_domains();
8153 #ifdef CONFIG_SCHED_MC
8154 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8155 struct sysdev_class_attribute
*attr
,
8158 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8160 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8161 struct sysdev_class_attribute
*attr
,
8162 const char *buf
, size_t count
)
8164 return sched_power_savings_store(buf
, count
, 0);
8166 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8167 sched_mc_power_savings_show
,
8168 sched_mc_power_savings_store
);
8171 #ifdef CONFIG_SCHED_SMT
8172 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8173 struct sysdev_class_attribute
*attr
,
8176 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8178 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8179 struct sysdev_class_attribute
*attr
,
8180 const char *buf
, size_t count
)
8182 return sched_power_savings_store(buf
, count
, 1);
8184 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8185 sched_smt_power_savings_show
,
8186 sched_smt_power_savings_store
);
8189 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8193 #ifdef CONFIG_SCHED_SMT
8195 err
= sysfs_create_file(&cls
->kset
.kobj
,
8196 &attr_sched_smt_power_savings
.attr
);
8198 #ifdef CONFIG_SCHED_MC
8199 if (!err
&& mc_capable())
8200 err
= sysfs_create_file(&cls
->kset
.kobj
,
8201 &attr_sched_mc_power_savings
.attr
);
8205 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8207 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
8210 * Update cpusets according to cpu_active mask. If cpusets are
8211 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8212 * around partition_sched_domains().
8214 * If we come here as part of a suspend/resume, don't touch cpusets because we
8215 * want to restore it back to its original state upon resume anyway.
8217 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
8221 case CPU_ONLINE_FROZEN
:
8222 case CPU_DOWN_FAILED_FROZEN
:
8225 * num_cpus_frozen tracks how many CPUs are involved in suspend
8226 * resume sequence. As long as this is not the last online
8227 * operation in the resume sequence, just build a single sched
8228 * domain, ignoring cpusets.
8231 if (likely(num_cpus_frozen
)) {
8232 partition_sched_domains(1, NULL
, NULL
);
8237 * This is the last CPU online operation. So fall through and
8238 * restore the original sched domains by considering the
8239 * cpuset configurations.
8243 case CPU_DOWN_FAILED
:
8244 cpuset_update_active_cpus();
8252 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
8256 case CPU_DOWN_PREPARE
:
8257 cpuset_update_active_cpus();
8259 case CPU_DOWN_PREPARE_FROZEN
:
8261 partition_sched_domains(1, NULL
, NULL
);
8269 static int update_runtime(struct notifier_block
*nfb
,
8270 unsigned long action
, void *hcpu
)
8272 int cpu
= (int)(long)hcpu
;
8275 case CPU_DOWN_PREPARE
:
8276 case CPU_DOWN_PREPARE_FROZEN
:
8277 disable_runtime(cpu_rq(cpu
));
8280 case CPU_DOWN_FAILED
:
8281 case CPU_DOWN_FAILED_FROZEN
:
8283 case CPU_ONLINE_FROZEN
:
8284 enable_runtime(cpu_rq(cpu
));
8292 void __init
sched_init_smp(void)
8294 cpumask_var_t non_isolated_cpus
;
8296 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8297 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8300 mutex_lock(&sched_domains_mutex
);
8301 init_sched_domains(cpu_active_mask
);
8302 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8303 if (cpumask_empty(non_isolated_cpus
))
8304 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8305 mutex_unlock(&sched_domains_mutex
);
8308 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
8309 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
8311 /* RT runtime code needs to handle some hotplug events */
8312 hotcpu_notifier(update_runtime
, 0);
8316 /* Move init over to a non-isolated CPU */
8317 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8319 sched_init_granularity();
8320 free_cpumask_var(non_isolated_cpus
);
8322 init_sched_rt_class();
8325 void __init
sched_init_smp(void)
8327 sched_init_granularity();
8329 #endif /* CONFIG_SMP */
8331 const_debug
unsigned int sysctl_timer_migration
= 1;
8333 int in_sched_functions(unsigned long addr
)
8335 return in_lock_functions(addr
) ||
8336 (addr
>= (unsigned long)__sched_text_start
8337 && addr
< (unsigned long)__sched_text_end
);
8340 static void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8342 cfs_rq
->tasks_timeline
= RB_ROOT
;
8343 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8344 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8345 #ifndef CONFIG_64BIT
8346 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8350 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8352 struct rt_prio_array
*array
;
8355 array
= &rt_rq
->active
;
8356 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8357 INIT_LIST_HEAD(array
->queue
+ i
);
8358 __clear_bit(i
, array
->bitmap
);
8360 /* delimiter for bitsearch: */
8361 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8363 #if defined CONFIG_SMP
8364 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8365 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8366 rt_rq
->rt_nr_migratory
= 0;
8367 rt_rq
->overloaded
= 0;
8368 plist_head_init(&rt_rq
->pushable_tasks
);
8372 rt_rq
->rt_throttled
= 0;
8373 rt_rq
->rt_runtime
= 0;
8374 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8379 struct sched_entity
*se
, int cpu
,
8380 struct sched_entity
*parent
)
8382 struct rq
*rq
= cpu_rq(cpu
);
8387 /* allow initial update_cfs_load() to truncate */
8388 cfs_rq
->load_stamp
= 1;
8390 init_cfs_rq_runtime(cfs_rq
);
8392 tg
->cfs_rq
[cpu
] = cfs_rq
;
8395 /* se could be NULL for root_task_group */
8400 se
->cfs_rq
= &rq
->cfs
;
8402 se
->cfs_rq
= parent
->my_q
;
8405 update_load_set(&se
->load
, 0);
8406 se
->parent
= parent
;
8410 #ifdef CONFIG_RT_GROUP_SCHED
8411 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8412 struct sched_rt_entity
*rt_se
, int cpu
,
8413 struct sched_rt_entity
*parent
)
8415 struct rq
*rq
= cpu_rq(cpu
);
8417 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8418 rt_rq
->rt_nr_boosted
= 0;
8422 tg
->rt_rq
[cpu
] = rt_rq
;
8423 tg
->rt_se
[cpu
] = rt_se
;
8429 rt_se
->rt_rq
= &rq
->rt
;
8431 rt_se
->rt_rq
= parent
->my_q
;
8433 rt_se
->my_q
= rt_rq
;
8434 rt_se
->parent
= parent
;
8435 INIT_LIST_HEAD(&rt_se
->run_list
);
8439 void __init
sched_init(void)
8442 unsigned long alloc_size
= 0, ptr
;
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8447 #ifdef CONFIG_RT_GROUP_SCHED
8448 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8450 #ifdef CONFIG_CPUMASK_OFFSTACK
8451 alloc_size
+= num_possible_cpus() * cpumask_size();
8454 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8456 #ifdef CONFIG_FAIR_GROUP_SCHED
8457 root_task_group
.se
= (struct sched_entity
**)ptr
;
8458 ptr
+= nr_cpu_ids
* sizeof(void **);
8460 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8461 ptr
+= nr_cpu_ids
* sizeof(void **);
8463 #endif /* CONFIG_FAIR_GROUP_SCHED */
8464 #ifdef CONFIG_RT_GROUP_SCHED
8465 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8466 ptr
+= nr_cpu_ids
* sizeof(void **);
8468 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8469 ptr
+= nr_cpu_ids
* sizeof(void **);
8471 #endif /* CONFIG_RT_GROUP_SCHED */
8472 #ifdef CONFIG_CPUMASK_OFFSTACK
8473 for_each_possible_cpu(i
) {
8474 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8475 ptr
+= cpumask_size();
8477 #endif /* CONFIG_CPUMASK_OFFSTACK */
8481 init_defrootdomain();
8484 init_rt_bandwidth(&def_rt_bandwidth
,
8485 global_rt_period(), global_rt_runtime());
8487 #ifdef CONFIG_RT_GROUP_SCHED
8488 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8489 global_rt_period(), global_rt_runtime());
8490 #endif /* CONFIG_RT_GROUP_SCHED */
8492 #ifdef CONFIG_CGROUP_SCHED
8493 list_add(&root_task_group
.list
, &task_groups
);
8494 INIT_LIST_HEAD(&root_task_group
.children
);
8495 autogroup_init(&init_task
);
8496 #endif /* CONFIG_CGROUP_SCHED */
8498 for_each_possible_cpu(i
) {
8502 raw_spin_lock_init(&rq
->lock
);
8504 rq
->calc_load_active
= 0;
8505 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8506 init_cfs_rq(&rq
->cfs
);
8507 init_rt_rq(&rq
->rt
, rq
);
8508 #ifdef CONFIG_FAIR_GROUP_SCHED
8509 root_task_group
.shares
= root_task_group_load
;
8510 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8512 * How much cpu bandwidth does root_task_group get?
8514 * In case of task-groups formed thr' the cgroup filesystem, it
8515 * gets 100% of the cpu resources in the system. This overall
8516 * system cpu resource is divided among the tasks of
8517 * root_task_group and its child task-groups in a fair manner,
8518 * based on each entity's (task or task-group's) weight
8519 * (se->load.weight).
8521 * In other words, if root_task_group has 10 tasks of weight
8522 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8523 * then A0's share of the cpu resource is:
8525 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8527 * We achieve this by letting root_task_group's tasks sit
8528 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8530 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
8531 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8532 #endif /* CONFIG_FAIR_GROUP_SCHED */
8534 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8535 #ifdef CONFIG_RT_GROUP_SCHED
8536 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8537 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8540 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8541 rq
->cpu_load
[j
] = 0;
8543 rq
->last_load_update_tick
= jiffies
;
8548 rq
->cpu_power
= SCHED_POWER_SCALE
;
8549 rq
->post_schedule
= 0;
8550 rq
->active_balance
= 0;
8551 rq
->next_balance
= jiffies
;
8556 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8557 rq_attach_root(rq
, &def_root_domain
);
8559 rq
->nohz_balance_kick
= 0;
8563 atomic_set(&rq
->nr_iowait
, 0);
8566 set_load_weight(&init_task
);
8568 #ifdef CONFIG_PREEMPT_NOTIFIERS
8569 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8573 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8576 #ifdef CONFIG_RT_MUTEXES
8577 plist_head_init(&init_task
.pi_waiters
);
8581 * The boot idle thread does lazy MMU switching as well:
8583 atomic_inc(&init_mm
.mm_count
);
8584 enter_lazy_tlb(&init_mm
, current
);
8587 * Make us the idle thread. Technically, schedule() should not be
8588 * called from this thread, however somewhere below it might be,
8589 * but because we are the idle thread, we just pick up running again
8590 * when this runqueue becomes "idle".
8592 init_idle(current
, smp_processor_id());
8594 calc_load_update
= jiffies
+ LOAD_FREQ
;
8597 * During early bootup we pretend to be a normal task:
8599 current
->sched_class
= &fair_sched_class
;
8602 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8604 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8605 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8606 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8607 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8608 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8610 /* May be allocated at isolcpus cmdline parse time */
8611 if (cpu_isolated_map
== NULL
)
8612 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8615 scheduler_running
= 1;
8618 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8619 static inline int preempt_count_equals(int preempt_offset
)
8621 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8623 return (nested
== preempt_offset
);
8626 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8628 static unsigned long prev_jiffy
; /* ratelimiting */
8630 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8631 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8632 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8634 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8636 prev_jiffy
= jiffies
;
8639 "BUG: sleeping function called from invalid context at %s:%d\n",
8642 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8643 in_atomic(), irqs_disabled(),
8644 current
->pid
, current
->comm
);
8646 debug_show_held_locks(current
);
8647 if (irqs_disabled())
8648 print_irqtrace_events(current
);
8651 EXPORT_SYMBOL(__might_sleep
);
8654 #ifdef CONFIG_MAGIC_SYSRQ
8655 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8657 const struct sched_class
*prev_class
= p
->sched_class
;
8658 int old_prio
= p
->prio
;
8663 deactivate_task(rq
, p
, 0);
8664 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8666 activate_task(rq
, p
, 0);
8667 resched_task(rq
->curr
);
8670 check_class_changed(rq
, p
, prev_class
, old_prio
);
8673 void normalize_rt_tasks(void)
8675 struct task_struct
*g
, *p
;
8676 unsigned long flags
;
8679 read_lock_irqsave(&tasklist_lock
, flags
);
8680 do_each_thread(g
, p
) {
8682 * Only normalize user tasks:
8687 p
->se
.exec_start
= 0;
8688 #ifdef CONFIG_SCHEDSTATS
8689 p
->se
.statistics
.wait_start
= 0;
8690 p
->se
.statistics
.sleep_start
= 0;
8691 p
->se
.statistics
.block_start
= 0;
8696 * Renice negative nice level userspace
8699 if (TASK_NICE(p
) < 0 && p
->mm
)
8700 set_user_nice(p
, 0);
8704 raw_spin_lock(&p
->pi_lock
);
8705 rq
= __task_rq_lock(p
);
8707 normalize_task(rq
, p
);
8709 __task_rq_unlock(rq
);
8710 raw_spin_unlock(&p
->pi_lock
);
8711 } while_each_thread(g
, p
);
8713 read_unlock_irqrestore(&tasklist_lock
, flags
);
8716 #endif /* CONFIG_MAGIC_SYSRQ */
8718 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8720 * These functions are only useful for the IA64 MCA handling, or kdb.
8722 * They can only be called when the whole system has been
8723 * stopped - every CPU needs to be quiescent, and no scheduling
8724 * activity can take place. Using them for anything else would
8725 * be a serious bug, and as a result, they aren't even visible
8726 * under any other configuration.
8730 * curr_task - return the current task for a given cpu.
8731 * @cpu: the processor in question.
8733 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8735 struct task_struct
*curr_task(int cpu
)
8737 return cpu_curr(cpu
);
8740 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8744 * set_curr_task - set the current task for a given cpu.
8745 * @cpu: the processor in question.
8746 * @p: the task pointer to set.
8748 * Description: This function must only be used when non-maskable interrupts
8749 * are serviced on a separate stack. It allows the architecture to switch the
8750 * notion of the current task on a cpu in a non-blocking manner. This function
8751 * must be called with all CPU's synchronized, and interrupts disabled, the
8752 * and caller must save the original value of the current task (see
8753 * curr_task() above) and restore that value before reenabling interrupts and
8754 * re-starting the system.
8756 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8758 void set_curr_task(int cpu
, struct task_struct
*p
)
8765 #ifdef CONFIG_FAIR_GROUP_SCHED
8766 static void free_fair_sched_group(struct task_group
*tg
)
8770 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8772 for_each_possible_cpu(i
) {
8774 kfree(tg
->cfs_rq
[i
]);
8784 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8786 struct cfs_rq
*cfs_rq
;
8787 struct sched_entity
*se
;
8790 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8793 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8797 tg
->shares
= NICE_0_LOAD
;
8799 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8801 for_each_possible_cpu(i
) {
8802 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8803 GFP_KERNEL
, cpu_to_node(i
));
8807 se
= kzalloc_node(sizeof(struct sched_entity
),
8808 GFP_KERNEL
, cpu_to_node(i
));
8812 init_cfs_rq(cfs_rq
);
8813 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8824 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8826 struct rq
*rq
= cpu_rq(cpu
);
8827 unsigned long flags
;
8830 * Only empty task groups can be destroyed; so we can speculatively
8831 * check on_list without danger of it being re-added.
8833 if (!tg
->cfs_rq
[cpu
]->on_list
)
8836 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8837 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8838 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8840 #else /* !CONFIG_FAIR_GROUP_SCHED */
8841 static inline void free_fair_sched_group(struct task_group
*tg
)
8846 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8851 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8854 #endif /* CONFIG_FAIR_GROUP_SCHED */
8856 #ifdef CONFIG_RT_GROUP_SCHED
8857 static void free_rt_sched_group(struct task_group
*tg
)
8862 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8864 for_each_possible_cpu(i
) {
8866 kfree(tg
->rt_rq
[i
]);
8868 kfree(tg
->rt_se
[i
]);
8876 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8878 struct rt_rq
*rt_rq
;
8879 struct sched_rt_entity
*rt_se
;
8882 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8885 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8889 init_rt_bandwidth(&tg
->rt_bandwidth
,
8890 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8892 for_each_possible_cpu(i
) {
8893 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8894 GFP_KERNEL
, cpu_to_node(i
));
8898 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8899 GFP_KERNEL
, cpu_to_node(i
));
8903 init_rt_rq(rt_rq
, cpu_rq(i
));
8904 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8905 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8915 #else /* !CONFIG_RT_GROUP_SCHED */
8916 static inline void free_rt_sched_group(struct task_group
*tg
)
8921 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8925 #endif /* CONFIG_RT_GROUP_SCHED */
8927 #ifdef CONFIG_CGROUP_SCHED
8928 static void free_sched_group(struct task_group
*tg
)
8930 free_fair_sched_group(tg
);
8931 free_rt_sched_group(tg
);
8936 /* allocate runqueue etc for a new task group */
8937 struct task_group
*sched_create_group(struct task_group
*parent
)
8939 struct task_group
*tg
;
8940 unsigned long flags
;
8942 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8944 return ERR_PTR(-ENOMEM
);
8946 if (!alloc_fair_sched_group(tg
, parent
))
8949 if (!alloc_rt_sched_group(tg
, parent
))
8952 spin_lock_irqsave(&task_group_lock
, flags
);
8953 list_add_rcu(&tg
->list
, &task_groups
);
8955 WARN_ON(!parent
); /* root should already exist */
8957 tg
->parent
= parent
;
8958 INIT_LIST_HEAD(&tg
->children
);
8959 list_add_rcu(&tg
->siblings
, &parent
->children
);
8960 spin_unlock_irqrestore(&task_group_lock
, flags
);
8965 free_sched_group(tg
);
8966 return ERR_PTR(-ENOMEM
);
8969 /* rcu callback to free various structures associated with a task group */
8970 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8972 /* now it should be safe to free those cfs_rqs */
8973 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8976 /* Destroy runqueue etc associated with a task group */
8977 void sched_destroy_group(struct task_group
*tg
)
8979 unsigned long flags
;
8982 /* end participation in shares distribution */
8983 for_each_possible_cpu(i
)
8984 unregister_fair_sched_group(tg
, i
);
8986 spin_lock_irqsave(&task_group_lock
, flags
);
8987 list_del_rcu(&tg
->list
);
8988 list_del_rcu(&tg
->siblings
);
8989 spin_unlock_irqrestore(&task_group_lock
, flags
);
8991 /* wait for possible concurrent references to cfs_rqs complete */
8992 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8995 /* change task's runqueue when it moves between groups.
8996 * The caller of this function should have put the task in its new group
8997 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8998 * reflect its new group.
9000 void sched_move_task(struct task_struct
*tsk
)
9002 struct task_group
*tg
;
9004 unsigned long flags
;
9007 rq
= task_rq_lock(tsk
, &flags
);
9009 running
= task_current(rq
, tsk
);
9013 dequeue_task(rq
, tsk
, 0);
9014 if (unlikely(running
))
9015 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9017 tg
= container_of(task_subsys_state_check(tsk
, cpu_cgroup_subsys_id
,
9018 lockdep_is_held(&tsk
->sighand
->siglock
)),
9019 struct task_group
, css
);
9020 tg
= autogroup_task_group(tsk
, tg
);
9021 tsk
->sched_task_group
= tg
;
9023 #ifdef CONFIG_FAIR_GROUP_SCHED
9024 if (tsk
->sched_class
->task_move_group
)
9025 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
9028 set_task_rq(tsk
, task_cpu(tsk
));
9030 if (unlikely(running
))
9031 tsk
->sched_class
->set_curr_task(rq
);
9033 enqueue_task(rq
, tsk
, 0);
9035 task_rq_unlock(rq
, tsk
, &flags
);
9037 #endif /* CONFIG_CGROUP_SCHED */
9039 #ifdef CONFIG_FAIR_GROUP_SCHED
9040 static DEFINE_MUTEX(shares_mutex
);
9042 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9045 unsigned long flags
;
9048 * We can't change the weight of the root cgroup.
9053 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
9055 mutex_lock(&shares_mutex
);
9056 if (tg
->shares
== shares
)
9059 tg
->shares
= shares
;
9060 for_each_possible_cpu(i
) {
9061 struct rq
*rq
= cpu_rq(i
);
9062 struct sched_entity
*se
;
9065 /* Propagate contribution to hierarchy */
9066 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9067 for_each_sched_entity(se
)
9068 update_cfs_shares(group_cfs_rq(se
));
9069 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9073 mutex_unlock(&shares_mutex
);
9077 unsigned long sched_group_shares(struct task_group
*tg
)
9083 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9084 static unsigned long to_ratio(u64 period
, u64 runtime
)
9086 if (runtime
== RUNTIME_INF
)
9089 return div64_u64(runtime
<< 20, period
);
9093 #ifdef CONFIG_RT_GROUP_SCHED
9095 * Ensure that the real time constraints are schedulable.
9097 static DEFINE_MUTEX(rt_constraints_mutex
);
9099 /* Must be called with tasklist_lock held */
9100 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9102 struct task_struct
*g
, *p
;
9104 do_each_thread(g
, p
) {
9105 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9107 } while_each_thread(g
, p
);
9112 struct rt_schedulable_data
{
9113 struct task_group
*tg
;
9118 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
9120 struct rt_schedulable_data
*d
= data
;
9121 struct task_group
*child
;
9122 unsigned long total
, sum
= 0;
9123 u64 period
, runtime
;
9125 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9126 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9129 period
= d
->rt_period
;
9130 runtime
= d
->rt_runtime
;
9134 * Cannot have more runtime than the period.
9136 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9140 * Ensure we don't starve existing RT tasks.
9142 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9145 total
= to_ratio(period
, runtime
);
9148 * Nobody can have more than the global setting allows.
9150 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9154 * The sum of our children's runtime should not exceed our own.
9156 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9157 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9158 runtime
= child
->rt_bandwidth
.rt_runtime
;
9160 if (child
== d
->tg
) {
9161 period
= d
->rt_period
;
9162 runtime
= d
->rt_runtime
;
9165 sum
+= to_ratio(period
, runtime
);
9174 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9178 struct rt_schedulable_data data
= {
9180 .rt_period
= period
,
9181 .rt_runtime
= runtime
,
9185 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
9191 static int tg_set_rt_bandwidth(struct task_group
*tg
,
9192 u64 rt_period
, u64 rt_runtime
)
9196 mutex_lock(&rt_constraints_mutex
);
9197 read_lock(&tasklist_lock
);
9198 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9202 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9203 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9204 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9206 for_each_possible_cpu(i
) {
9207 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9209 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9210 rt_rq
->rt_runtime
= rt_runtime
;
9211 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9213 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9215 read_unlock(&tasklist_lock
);
9216 mutex_unlock(&rt_constraints_mutex
);
9221 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9223 u64 rt_runtime
, rt_period
;
9225 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9226 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9227 if (rt_runtime_us
< 0)
9228 rt_runtime
= RUNTIME_INF
;
9230 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
9233 long sched_group_rt_runtime(struct task_group
*tg
)
9237 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9240 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9241 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9242 return rt_runtime_us
;
9245 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9247 u64 rt_runtime
, rt_period
;
9249 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9250 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9255 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
9258 long sched_group_rt_period(struct task_group
*tg
)
9262 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9263 do_div(rt_period_us
, NSEC_PER_USEC
);
9264 return rt_period_us
;
9267 static int sched_rt_global_constraints(void)
9269 u64 runtime
, period
;
9272 if (sysctl_sched_rt_period
<= 0)
9275 runtime
= global_rt_runtime();
9276 period
= global_rt_period();
9279 * Sanity check on the sysctl variables.
9281 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9284 mutex_lock(&rt_constraints_mutex
);
9285 read_lock(&tasklist_lock
);
9286 ret
= __rt_schedulable(NULL
, 0, 0);
9287 read_unlock(&tasklist_lock
);
9288 mutex_unlock(&rt_constraints_mutex
);
9293 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9295 /* Don't accept realtime tasks when there is no way for them to run */
9296 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9302 #else /* !CONFIG_RT_GROUP_SCHED */
9303 static int sched_rt_global_constraints(void)
9305 unsigned long flags
;
9308 if (sysctl_sched_rt_period
<= 0)
9312 * There's always some RT tasks in the root group
9313 * -- migration, kstopmachine etc..
9315 if (sysctl_sched_rt_runtime
== 0)
9318 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9319 for_each_possible_cpu(i
) {
9320 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9322 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9323 rt_rq
->rt_runtime
= global_rt_runtime();
9324 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9326 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9330 #endif /* CONFIG_RT_GROUP_SCHED */
9332 int sched_rt_handler(struct ctl_table
*table
, int write
,
9333 void __user
*buffer
, size_t *lenp
,
9337 int old_period
, old_runtime
;
9338 static DEFINE_MUTEX(mutex
);
9341 old_period
= sysctl_sched_rt_period
;
9342 old_runtime
= sysctl_sched_rt_runtime
;
9344 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
9346 if (!ret
&& write
) {
9347 ret
= sched_rt_global_constraints();
9349 sysctl_sched_rt_period
= old_period
;
9350 sysctl_sched_rt_runtime
= old_runtime
;
9352 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9353 def_rt_bandwidth
.rt_period
=
9354 ns_to_ktime(global_rt_period());
9357 mutex_unlock(&mutex
);
9362 #ifdef CONFIG_CGROUP_SCHED
9364 /* return corresponding task_group object of a cgroup */
9365 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9367 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9368 struct task_group
, css
);
9371 static struct cgroup_subsys_state
*
9372 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9374 struct task_group
*tg
, *parent
;
9376 if (!cgrp
->parent
) {
9377 /* This is early initialization for the top cgroup */
9378 return &root_task_group
.css
;
9381 parent
= cgroup_tg(cgrp
->parent
);
9382 tg
= sched_create_group(parent
);
9384 return ERR_PTR(-ENOMEM
);
9390 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9392 struct task_group
*tg
= cgroup_tg(cgrp
);
9394 sched_destroy_group(tg
);
9398 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9400 #ifdef CONFIG_RT_GROUP_SCHED
9401 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9404 /* We don't support RT-tasks being in separate groups */
9405 if (tsk
->sched_class
!= &fair_sched_class
)
9412 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9414 sched_move_task(tsk
);
9418 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9419 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9422 * cgroup_exit() is called in the copy_process() failure path.
9423 * Ignore this case since the task hasn't ran yet, this avoids
9424 * trying to poke a half freed task state from generic code.
9426 if (!(task
->flags
& PF_EXITING
))
9429 sched_move_task(task
);
9432 #ifdef CONFIG_FAIR_GROUP_SCHED
9433 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9436 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
9439 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9441 struct task_group
*tg
= cgroup_tg(cgrp
);
9443 return (u64
) scale_load_down(tg
->shares
);
9446 #ifdef CONFIG_CFS_BANDWIDTH
9447 static DEFINE_MUTEX(cfs_constraints_mutex
);
9449 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
9450 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
9452 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
9454 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
9456 int i
, ret
= 0, runtime_enabled
;
9457 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9459 if (tg
== &root_task_group
)
9463 * Ensure we have at some amount of bandwidth every period. This is
9464 * to prevent reaching a state of large arrears when throttled via
9465 * entity_tick() resulting in prolonged exit starvation.
9467 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
9471 * Likewise, bound things on the otherside by preventing insane quota
9472 * periods. This also allows us to normalize in computing quota
9475 if (period
> max_cfs_quota_period
)
9478 mutex_lock(&cfs_constraints_mutex
);
9479 ret
= __cfs_schedulable(tg
, period
, quota
);
9483 runtime_enabled
= quota
!= RUNTIME_INF
;
9484 raw_spin_lock_irq(&cfs_b
->lock
);
9485 cfs_b
->period
= ns_to_ktime(period
);
9486 cfs_b
->quota
= quota
;
9488 __refill_cfs_bandwidth_runtime(cfs_b
);
9489 /* restart the period timer (if active) to handle new period expiry */
9490 if (runtime_enabled
&& cfs_b
->timer_active
) {
9491 /* force a reprogram */
9492 cfs_b
->timer_active
= 0;
9493 __start_cfs_bandwidth(cfs_b
);
9495 raw_spin_unlock_irq(&cfs_b
->lock
);
9497 for_each_possible_cpu(i
) {
9498 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
9499 struct rq
*rq
= rq_of(cfs_rq
);
9501 raw_spin_lock_irq(&rq
->lock
);
9502 cfs_rq
->runtime_enabled
= runtime_enabled
;
9503 cfs_rq
->runtime_remaining
= 0;
9505 if (cfs_rq_throttled(cfs_rq
))
9506 unthrottle_cfs_rq(cfs_rq
);
9507 raw_spin_unlock_irq(&rq
->lock
);
9510 mutex_unlock(&cfs_constraints_mutex
);
9515 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
9519 period
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9520 if (cfs_quota_us
< 0)
9521 quota
= RUNTIME_INF
;
9523 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
9525 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9528 long tg_get_cfs_quota(struct task_group
*tg
)
9532 if (tg_cfs_bandwidth(tg
)->quota
== RUNTIME_INF
)
9535 quota_us
= tg_cfs_bandwidth(tg
)->quota
;
9536 do_div(quota_us
, NSEC_PER_USEC
);
9541 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
9545 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
9546 quota
= tg_cfs_bandwidth(tg
)->quota
;
9551 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9554 long tg_get_cfs_period(struct task_group
*tg
)
9558 cfs_period_us
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9559 do_div(cfs_period_us
, NSEC_PER_USEC
);
9561 return cfs_period_us
;
9564 static s64
cpu_cfs_quota_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
9566 return tg_get_cfs_quota(cgroup_tg(cgrp
));
9569 static int cpu_cfs_quota_write_s64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9572 return tg_set_cfs_quota(cgroup_tg(cgrp
), cfs_quota_us
);
9575 static u64
cpu_cfs_period_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9577 return tg_get_cfs_period(cgroup_tg(cgrp
));
9580 static int cpu_cfs_period_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9583 return tg_set_cfs_period(cgroup_tg(cgrp
), cfs_period_us
);
9586 struct cfs_schedulable_data
{
9587 struct task_group
*tg
;
9592 * normalize group quota/period to be quota/max_period
9593 * note: units are usecs
9595 static u64
normalize_cfs_quota(struct task_group
*tg
,
9596 struct cfs_schedulable_data
*d
)
9604 period
= tg_get_cfs_period(tg
);
9605 quota
= tg_get_cfs_quota(tg
);
9608 /* note: these should typically be equivalent */
9609 if (quota
== RUNTIME_INF
|| quota
== -1)
9612 return to_ratio(period
, quota
);
9615 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
9617 struct cfs_schedulable_data
*d
= data
;
9618 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9619 s64 quota
= 0, parent_quota
= -1;
9622 quota
= RUNTIME_INF
;
9624 struct cfs_bandwidth
*parent_b
= tg_cfs_bandwidth(tg
->parent
);
9626 quota
= normalize_cfs_quota(tg
, d
);
9627 parent_quota
= parent_b
->hierarchal_quota
;
9630 * ensure max(child_quota) <= parent_quota, inherit when no
9633 if (quota
== RUNTIME_INF
)
9634 quota
= parent_quota
;
9635 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
9638 cfs_b
->hierarchal_quota
= quota
;
9643 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
9646 struct cfs_schedulable_data data
= {
9652 if (quota
!= RUNTIME_INF
) {
9653 do_div(data
.period
, NSEC_PER_USEC
);
9654 do_div(data
.quota
, NSEC_PER_USEC
);
9658 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
9664 static int cpu_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9665 struct cgroup_map_cb
*cb
)
9667 struct task_group
*tg
= cgroup_tg(cgrp
);
9668 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9670 cb
->fill(cb
, "nr_periods", cfs_b
->nr_periods
);
9671 cb
->fill(cb
, "nr_throttled", cfs_b
->nr_throttled
);
9672 cb
->fill(cb
, "throttled_time", cfs_b
->throttled_time
);
9676 #endif /* CONFIG_CFS_BANDWIDTH */
9677 #endif /* CONFIG_FAIR_GROUP_SCHED */
9679 #ifdef CONFIG_RT_GROUP_SCHED
9680 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9683 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9686 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9688 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9691 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9694 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9697 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9699 return sched_group_rt_period(cgroup_tg(cgrp
));
9701 #endif /* CONFIG_RT_GROUP_SCHED */
9703 static struct cftype cpu_files
[] = {
9704 #ifdef CONFIG_FAIR_GROUP_SCHED
9707 .read_u64
= cpu_shares_read_u64
,
9708 .write_u64
= cpu_shares_write_u64
,
9711 #ifdef CONFIG_CFS_BANDWIDTH
9713 .name
= "cfs_quota_us",
9714 .read_s64
= cpu_cfs_quota_read_s64
,
9715 .write_s64
= cpu_cfs_quota_write_s64
,
9718 .name
= "cfs_period_us",
9719 .read_u64
= cpu_cfs_period_read_u64
,
9720 .write_u64
= cpu_cfs_period_write_u64
,
9724 .read_map
= cpu_stats_show
,
9727 #ifdef CONFIG_RT_GROUP_SCHED
9729 .name
= "rt_runtime_us",
9730 .read_s64
= cpu_rt_runtime_read
,
9731 .write_s64
= cpu_rt_runtime_write
,
9734 .name
= "rt_period_us",
9735 .read_u64
= cpu_rt_period_read_uint
,
9736 .write_u64
= cpu_rt_period_write_uint
,
9741 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9743 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9746 struct cgroup_subsys cpu_cgroup_subsys
= {
9748 .create
= cpu_cgroup_create
,
9749 .destroy
= cpu_cgroup_destroy
,
9750 .can_attach_task
= cpu_cgroup_can_attach_task
,
9751 .attach_task
= cpu_cgroup_attach_task
,
9752 .exit
= cpu_cgroup_exit
,
9753 .populate
= cpu_cgroup_populate
,
9754 .subsys_id
= cpu_cgroup_subsys_id
,
9758 #endif /* CONFIG_CGROUP_SCHED */
9760 #ifdef CONFIG_CGROUP_CPUACCT
9763 * CPU accounting code for task groups.
9765 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9766 * (balbir@in.ibm.com).
9769 /* track cpu usage of a group of tasks and its child groups */
9771 struct cgroup_subsys_state css
;
9772 /* cpuusage holds pointer to a u64-type object on every cpu */
9773 u64 __percpu
*cpuusage
;
9774 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9775 struct cpuacct
*parent
;
9778 struct cgroup_subsys cpuacct_subsys
;
9780 /* return cpu accounting group corresponding to this container */
9781 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9783 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9784 struct cpuacct
, css
);
9787 /* return cpu accounting group to which this task belongs */
9788 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9790 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9791 struct cpuacct
, css
);
9794 /* create a new cpu accounting group */
9795 static struct cgroup_subsys_state
*cpuacct_create(
9796 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9798 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9804 ca
->cpuusage
= alloc_percpu(u64
);
9808 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9809 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9810 goto out_free_counters
;
9813 ca
->parent
= cgroup_ca(cgrp
->parent
);
9819 percpu_counter_destroy(&ca
->cpustat
[i
]);
9820 free_percpu(ca
->cpuusage
);
9824 return ERR_PTR(-ENOMEM
);
9827 /* destroy an existing cpu accounting group */
9829 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9831 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9834 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9835 percpu_counter_destroy(&ca
->cpustat
[i
]);
9836 free_percpu(ca
->cpuusage
);
9840 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9842 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9845 #ifndef CONFIG_64BIT
9847 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9849 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9851 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9859 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9861 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9863 #ifndef CONFIG_64BIT
9865 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9867 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9869 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9875 /* return total cpu usage (in nanoseconds) of a group */
9876 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9878 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9879 u64 totalcpuusage
= 0;
9882 for_each_present_cpu(i
)
9883 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9885 return totalcpuusage
;
9888 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9891 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9900 for_each_present_cpu(i
)
9901 cpuacct_cpuusage_write(ca
, i
, 0);
9907 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9910 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9914 for_each_present_cpu(i
) {
9915 percpu
= cpuacct_cpuusage_read(ca
, i
);
9916 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9918 seq_printf(m
, "\n");
9922 static const char *cpuacct_stat_desc
[] = {
9923 [CPUACCT_STAT_USER
] = "user",
9924 [CPUACCT_STAT_SYSTEM
] = "system",
9927 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9928 struct cgroup_map_cb
*cb
)
9930 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9933 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9934 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9935 val
= cputime64_to_clock_t(val
);
9936 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9941 static struct cftype files
[] = {
9944 .read_u64
= cpuusage_read
,
9945 .write_u64
= cpuusage_write
,
9948 .name
= "usage_percpu",
9949 .read_seq_string
= cpuacct_percpu_seq_read
,
9953 .read_map
= cpuacct_stats_show
,
9957 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9959 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9963 * charge this task's execution time to its accounting group.
9965 * called with rq->lock held.
9967 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9972 if (unlikely(!cpuacct_subsys
.active
))
9975 cpu
= task_cpu(tsk
);
9981 for (; ca
; ca
= ca
->parent
) {
9982 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9983 *cpuusage
+= cputime
;
9990 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9991 * in cputime_t units. As a result, cpuacct_update_stats calls
9992 * percpu_counter_add with values large enough to always overflow the
9993 * per cpu batch limit causing bad SMP scalability.
9995 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9996 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9997 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
10000 #define CPUACCT_BATCH \
10001 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
10003 #define CPUACCT_BATCH 0
10007 * Charge the system/user time to the task's accounting group.
10009 static void cpuacct_update_stats(struct task_struct
*tsk
,
10010 enum cpuacct_stat_index idx
, cputime_t val
)
10012 struct cpuacct
*ca
;
10013 int batch
= CPUACCT_BATCH
;
10015 if (unlikely(!cpuacct_subsys
.active
))
10022 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
10028 struct cgroup_subsys cpuacct_subsys
= {
10030 .create
= cpuacct_create
,
10031 .destroy
= cpuacct_destroy
,
10032 .populate
= cpuacct_populate
,
10033 .subsys_id
= cpuacct_subsys_id
,
10035 #endif /* CONFIG_CGROUP_CPUACCT */