4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
35 struct vfree_deferred
{
36 struct llist_head list
;
37 struct work_struct wq
;
39 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
41 static void __vunmap(const void *, int);
43 static void free_work(struct work_struct
*w
)
45 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
46 struct llist_node
*llnode
= llist_del_all(&p
->list
);
49 llnode
= llist_next(llnode
);
54 /*** Page table manipulation functions ***/
56 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
60 pte
= pte_offset_kernel(pmd
, addr
);
62 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
63 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
64 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
67 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
72 pmd
= pmd_offset(pud
, addr
);
74 next
= pmd_addr_end(addr
, end
);
75 if (pmd_none_or_clear_bad(pmd
))
77 vunmap_pte_range(pmd
, addr
, next
);
78 } while (pmd
++, addr
= next
, addr
!= end
);
81 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
86 pud
= pud_offset(pgd
, addr
);
88 next
= pud_addr_end(addr
, end
);
89 if (pud_none_or_clear_bad(pud
))
91 vunmap_pmd_range(pud
, addr
, next
);
92 } while (pud
++, addr
= next
, addr
!= end
);
95 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
101 pgd
= pgd_offset_k(addr
);
103 next
= pgd_addr_end(addr
, end
);
104 if (pgd_none_or_clear_bad(pgd
))
106 vunmap_pud_range(pgd
, addr
, next
);
107 } while (pgd
++, addr
= next
, addr
!= end
);
110 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
111 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
120 pte
= pte_alloc_kernel(pmd
, addr
);
124 struct page
*page
= pages
[*nr
];
126 if (WARN_ON(!pte_none(*pte
)))
130 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
132 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
136 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
137 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
142 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
146 next
= pmd_addr_end(addr
, end
);
147 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
149 } while (pmd
++, addr
= next
, addr
!= end
);
153 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
154 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
159 pud
= pud_alloc(&init_mm
, pgd
, addr
);
163 next
= pud_addr_end(addr
, end
);
164 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
166 } while (pud
++, addr
= next
, addr
!= end
);
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
176 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
177 pgprot_t prot
, struct page
**pages
)
181 unsigned long addr
= start
;
186 pgd
= pgd_offset_k(addr
);
188 next
= pgd_addr_end(addr
, end
);
189 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
192 } while (pgd
++, addr
= next
, addr
!= end
);
197 static int vmap_page_range(unsigned long start
, unsigned long end
,
198 pgprot_t prot
, struct page
**pages
)
202 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
203 flush_cache_vmap(start
, end
);
207 int is_vmalloc_or_module_addr(const void *x
)
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr
= (unsigned long)x
;
216 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
219 return is_vmalloc_addr(x
);
223 * Walk a vmap address to the struct page it maps.
225 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
227 unsigned long addr
= (unsigned long) vmalloc_addr
;
228 struct page
*page
= NULL
;
229 pgd_t
*pgd
= pgd_offset_k(addr
);
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
237 if (!pgd_none(*pgd
)) {
238 pud_t
*pud
= pud_offset(pgd
, addr
);
239 if (!pud_none(*pud
)) {
240 pmd_t
*pmd
= pmd_offset(pud
, addr
);
241 if (!pmd_none(*pmd
)) {
244 ptep
= pte_offset_map(pmd
, addr
);
246 if (pte_present(pte
))
247 page
= pte_page(pte
);
254 EXPORT_SYMBOL(vmalloc_to_page
);
257 * Map a vmalloc()-space virtual address to the physical page frame number.
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
263 EXPORT_SYMBOL(vmalloc_to_pfn
);
266 /*** Global kva allocator ***/
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
272 static DEFINE_SPINLOCK(vmap_area_lock
);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list
);
275 static struct rb_root vmap_area_root
= RB_ROOT
;
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node
*free_vmap_cache
;
279 static unsigned long cached_hole_size
;
280 static unsigned long cached_vstart
;
281 static unsigned long cached_align
;
283 static unsigned long vmap_area_pcpu_hole
;
285 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
287 struct rb_node
*n
= vmap_area_root
.rb_node
;
290 struct vmap_area
*va
;
292 va
= rb_entry(n
, struct vmap_area
, rb_node
);
293 if (addr
< va
->va_start
)
295 else if (addr
>= va
->va_end
)
304 static void __insert_vmap_area(struct vmap_area
*va
)
306 struct rb_node
**p
= &vmap_area_root
.rb_node
;
307 struct rb_node
*parent
= NULL
;
311 struct vmap_area
*tmp_va
;
314 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
315 if (va
->va_start
< tmp_va
->va_end
)
317 else if (va
->va_end
> tmp_va
->va_start
)
323 rb_link_node(&va
->rb_node
, parent
, p
);
324 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
326 /* address-sort this list */
327 tmp
= rb_prev(&va
->rb_node
);
329 struct vmap_area
*prev
;
330 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
331 list_add_rcu(&va
->list
, &prev
->list
);
333 list_add_rcu(&va
->list
, &vmap_area_list
);
336 static void purge_vmap_area_lazy(void);
339 * Allocate a region of KVA of the specified size and alignment, within the
342 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
344 unsigned long vstart
, unsigned long vend
,
345 int node
, gfp_t gfp_mask
)
347 struct vmap_area
*va
;
351 struct vmap_area
*first
;
354 BUG_ON(size
& ~PAGE_MASK
);
355 BUG_ON(!is_power_of_2(align
));
357 va
= kmalloc_node(sizeof(struct vmap_area
),
358 gfp_mask
& GFP_RECLAIM_MASK
, node
);
360 return ERR_PTR(-ENOMEM
);
363 spin_lock(&vmap_area_lock
);
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
373 if (!free_vmap_cache
||
374 size
< cached_hole_size
||
375 vstart
< cached_vstart
||
376 align
< cached_align
) {
378 cached_hole_size
= 0;
379 free_vmap_cache
= NULL
;
381 /* record if we encounter less permissive parameters */
382 cached_vstart
= vstart
;
383 cached_align
= align
;
385 /* find starting point for our search */
386 if (free_vmap_cache
) {
387 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
388 addr
= ALIGN(first
->va_end
, align
);
391 if (addr
+ size
< addr
)
395 addr
= ALIGN(vstart
, align
);
396 if (addr
+ size
< addr
)
399 n
= vmap_area_root
.rb_node
;
403 struct vmap_area
*tmp
;
404 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
405 if (tmp
->va_end
>= addr
) {
407 if (tmp
->va_start
<= addr
)
418 /* from the starting point, walk areas until a suitable hole is found */
419 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
420 if (addr
+ cached_hole_size
< first
->va_start
)
421 cached_hole_size
= first
->va_start
- addr
;
422 addr
= ALIGN(first
->va_end
, align
);
423 if (addr
+ size
< addr
)
426 if (list_is_last(&first
->list
, &vmap_area_list
))
429 first
= list_entry(first
->list
.next
,
430 struct vmap_area
, list
);
434 if (addr
+ size
> vend
)
438 va
->va_end
= addr
+ size
;
440 __insert_vmap_area(va
);
441 free_vmap_cache
= &va
->rb_node
;
442 spin_unlock(&vmap_area_lock
);
444 BUG_ON(va
->va_start
& (align
-1));
445 BUG_ON(va
->va_start
< vstart
);
446 BUG_ON(va
->va_end
> vend
);
451 spin_unlock(&vmap_area_lock
);
453 purge_vmap_area_lazy();
457 if (printk_ratelimit())
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size
);
462 return ERR_PTR(-EBUSY
);
465 static void __free_vmap_area(struct vmap_area
*va
)
467 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
469 if (free_vmap_cache
) {
470 if (va
->va_end
< cached_vstart
) {
471 free_vmap_cache
= NULL
;
473 struct vmap_area
*cache
;
474 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
475 if (va
->va_start
<= cache
->va_start
) {
476 free_vmap_cache
= rb_prev(&va
->rb_node
);
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
484 rb_erase(&va
->rb_node
, &vmap_area_root
);
485 RB_CLEAR_NODE(&va
->rb_node
);
486 list_del_rcu(&va
->list
);
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
494 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
495 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
497 kfree_rcu(va
, rcu_head
);
501 * Free a region of KVA allocated by alloc_vmap_area
503 static void free_vmap_area(struct vmap_area
*va
)
505 spin_lock(&vmap_area_lock
);
506 __free_vmap_area(va
);
507 spin_unlock(&vmap_area_lock
);
511 * Clear the pagetable entries of a given vmap_area
513 static void unmap_vmap_area(struct vmap_area
*va
)
515 vunmap_page_range(va
->va_start
, va
->va_end
);
518 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start
, end
);
535 flush_tlb_kernel_range(start
, end
);
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
555 static unsigned long lazy_max_pages(void)
559 log
= fls(num_online_cpus());
561 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
564 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
570 * called before a call to iounmap() if the caller wants vm_area_struct's
573 void set_iounmap_nonlazy(void)
575 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
579 * Purges all lazily-freed vmap areas.
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
588 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
589 int sync
, int force_flush
)
591 static DEFINE_SPINLOCK(purge_lock
);
593 struct vmap_area
*va
;
594 struct vmap_area
*n_va
;
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
602 if (!sync
&& !force_flush
) {
603 if (!spin_trylock(&purge_lock
))
606 spin_lock(&purge_lock
);
609 purge_fragmented_blocks_allcpus();
612 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
613 if (va
->flags
& VM_LAZY_FREE
) {
614 if (va
->va_start
< *start
)
615 *start
= va
->va_start
;
616 if (va
->va_end
> *end
)
618 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
619 list_add_tail(&va
->purge_list
, &valist
);
620 va
->flags
|= VM_LAZY_FREEING
;
621 va
->flags
&= ~VM_LAZY_FREE
;
627 atomic_sub(nr
, &vmap_lazy_nr
);
629 if (nr
|| force_flush
)
630 flush_tlb_kernel_range(*start
, *end
);
633 spin_lock(&vmap_area_lock
);
634 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
635 __free_vmap_area(va
);
636 spin_unlock(&vmap_area_lock
);
638 spin_unlock(&purge_lock
);
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
645 static void try_purge_vmap_area_lazy(void)
647 unsigned long start
= ULONG_MAX
, end
= 0;
649 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
653 * Kick off a purge of the outstanding lazy areas.
655 static void purge_vmap_area_lazy(void)
657 unsigned long start
= ULONG_MAX
, end
= 0;
659 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
667 static void free_vmap_area_noflush(struct vmap_area
*va
)
669 va
->flags
|= VM_LAZY_FREE
;
670 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
671 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
672 try_purge_vmap_area_lazy();
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
679 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
682 free_vmap_area_noflush(va
);
686 * Free and unmap a vmap area
688 static void free_unmap_vmap_area(struct vmap_area
*va
)
690 flush_cache_vunmap(va
->va_start
, va
->va_end
);
691 free_unmap_vmap_area_noflush(va
);
694 static struct vmap_area
*find_vmap_area(unsigned long addr
)
696 struct vmap_area
*va
;
698 spin_lock(&vmap_area_lock
);
699 va
= __find_vmap_area(addr
);
700 spin_unlock(&vmap_area_lock
);
705 static void free_unmap_vmap_area_addr(unsigned long addr
)
707 struct vmap_area
*va
;
709 va
= find_vmap_area(addr
);
711 free_unmap_vmap_area(va
);
715 /*** Per cpu kva allocator ***/
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE (128UL*1024*1024)
729 #define VMALLOC_SPACE (128UL*1024*1024*1024)
732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
745 static bool vmap_initialized __read_mostly
= false;
747 struct vmap_block_queue
{
749 struct list_head free
;
754 struct vmap_area
*va
;
755 struct vmap_block_queue
*vbq
;
756 unsigned long free
, dirty
;
757 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
758 struct list_head free_list
;
759 struct rcu_head rcu_head
;
760 struct list_head purge
;
763 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
764 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
767 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
768 * in the free path. Could get rid of this if we change the API to return a
769 * "cookie" from alloc, to be passed to free. But no big deal yet.
771 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
772 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
775 * We should probably have a fallback mechanism to allocate virtual memory
776 * out of partially filled vmap blocks. However vmap block sizing should be
777 * fairly reasonable according to the vmalloc size, so it shouldn't be a
781 static unsigned long addr_to_vb_idx(unsigned long addr
)
783 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
784 addr
/= VMAP_BLOCK_SIZE
;
788 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
790 struct vmap_block_queue
*vbq
;
791 struct vmap_block
*vb
;
792 struct vmap_area
*va
;
793 unsigned long vb_idx
;
796 node
= numa_node_id();
798 vb
= kmalloc_node(sizeof(struct vmap_block
),
799 gfp_mask
& GFP_RECLAIM_MASK
, node
);
801 return ERR_PTR(-ENOMEM
);
803 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
804 VMALLOC_START
, VMALLOC_END
,
811 err
= radix_tree_preload(gfp_mask
);
818 spin_lock_init(&vb
->lock
);
820 vb
->free
= VMAP_BBMAP_BITS
;
822 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
823 INIT_LIST_HEAD(&vb
->free_list
);
825 vb_idx
= addr_to_vb_idx(va
->va_start
);
826 spin_lock(&vmap_block_tree_lock
);
827 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
828 spin_unlock(&vmap_block_tree_lock
);
830 radix_tree_preload_end();
832 vbq
= &get_cpu_var(vmap_block_queue
);
834 spin_lock(&vbq
->lock
);
835 list_add_rcu(&vb
->free_list
, &vbq
->free
);
836 spin_unlock(&vbq
->lock
);
837 put_cpu_var(vmap_block_queue
);
842 static void free_vmap_block(struct vmap_block
*vb
)
844 struct vmap_block
*tmp
;
845 unsigned long vb_idx
;
847 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
848 spin_lock(&vmap_block_tree_lock
);
849 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
850 spin_unlock(&vmap_block_tree_lock
);
853 free_vmap_area_noflush(vb
->va
);
854 kfree_rcu(vb
, rcu_head
);
857 static void purge_fragmented_blocks(int cpu
)
860 struct vmap_block
*vb
;
861 struct vmap_block
*n_vb
;
862 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
865 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
867 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
870 spin_lock(&vb
->lock
);
871 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
872 vb
->free
= 0; /* prevent further allocs after releasing lock */
873 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
874 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
875 spin_lock(&vbq
->lock
);
876 list_del_rcu(&vb
->free_list
);
877 spin_unlock(&vbq
->lock
);
878 spin_unlock(&vb
->lock
);
879 list_add_tail(&vb
->purge
, &purge
);
881 spin_unlock(&vb
->lock
);
885 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
886 list_del(&vb
->purge
);
891 static void purge_fragmented_blocks_allcpus(void)
895 for_each_possible_cpu(cpu
)
896 purge_fragmented_blocks(cpu
);
899 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
901 struct vmap_block_queue
*vbq
;
902 struct vmap_block
*vb
;
903 unsigned long addr
= 0;
906 BUG_ON(size
& ~PAGE_MASK
);
907 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
908 if (WARN_ON(size
== 0)) {
910 * Allocating 0 bytes isn't what caller wants since
911 * get_order(0) returns funny result. Just warn and terminate
916 order
= get_order(size
);
920 vbq
= &get_cpu_var(vmap_block_queue
);
921 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
924 spin_lock(&vb
->lock
);
925 if (vb
->free
< 1UL << order
)
928 i
= VMAP_BBMAP_BITS
- vb
->free
;
929 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
930 BUG_ON(addr_to_vb_idx(addr
) !=
931 addr_to_vb_idx(vb
->va
->va_start
));
932 vb
->free
-= 1UL << order
;
934 spin_lock(&vbq
->lock
);
935 list_del_rcu(&vb
->free_list
);
936 spin_unlock(&vbq
->lock
);
938 spin_unlock(&vb
->lock
);
941 spin_unlock(&vb
->lock
);
944 put_cpu_var(vmap_block_queue
);
948 vb
= new_vmap_block(gfp_mask
);
957 static void vb_free(const void *addr
, unsigned long size
)
959 unsigned long offset
;
960 unsigned long vb_idx
;
962 struct vmap_block
*vb
;
964 BUG_ON(size
& ~PAGE_MASK
);
965 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
967 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
969 order
= get_order(size
);
971 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
973 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
975 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
979 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
981 spin_lock(&vb
->lock
);
982 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
984 vb
->dirty
+= 1UL << order
;
985 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
987 spin_unlock(&vb
->lock
);
990 spin_unlock(&vb
->lock
);
994 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
996 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
997 * to amortize TLB flushing overheads. What this means is that any page you
998 * have now, may, in a former life, have been mapped into kernel virtual
999 * address by the vmap layer and so there might be some CPUs with TLB entries
1000 * still referencing that page (additional to the regular 1:1 kernel mapping).
1002 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1003 * be sure that none of the pages we have control over will have any aliases
1004 * from the vmap layer.
1006 void vm_unmap_aliases(void)
1008 unsigned long start
= ULONG_MAX
, end
= 0;
1012 if (unlikely(!vmap_initialized
))
1015 for_each_possible_cpu(cpu
) {
1016 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1017 struct vmap_block
*vb
;
1020 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1023 spin_lock(&vb
->lock
);
1024 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1025 while (i
< VMAP_BBMAP_BITS
) {
1028 j
= find_next_zero_bit(vb
->dirty_map
,
1029 VMAP_BBMAP_BITS
, i
);
1031 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1032 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1041 i
= find_next_bit(vb
->dirty_map
,
1042 VMAP_BBMAP_BITS
, i
);
1044 spin_unlock(&vb
->lock
);
1049 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1051 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1054 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1055 * @mem: the pointer returned by vm_map_ram
1056 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1058 void vm_unmap_ram(const void *mem
, unsigned int count
)
1060 unsigned long size
= count
<< PAGE_SHIFT
;
1061 unsigned long addr
= (unsigned long)mem
;
1064 BUG_ON(addr
< VMALLOC_START
);
1065 BUG_ON(addr
> VMALLOC_END
);
1066 BUG_ON(addr
& (PAGE_SIZE
-1));
1068 debug_check_no_locks_freed(mem
, size
);
1069 vmap_debug_free_range(addr
, addr
+size
);
1071 if (likely(count
<= VMAP_MAX_ALLOC
))
1074 free_unmap_vmap_area_addr(addr
);
1076 EXPORT_SYMBOL(vm_unmap_ram
);
1079 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1080 * @pages: an array of pointers to the pages to be mapped
1081 * @count: number of pages
1082 * @node: prefer to allocate data structures on this node
1083 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1085 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1087 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1089 unsigned long size
= count
<< PAGE_SHIFT
;
1093 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1094 mem
= vb_alloc(size
, GFP_KERNEL
);
1097 addr
= (unsigned long)mem
;
1099 struct vmap_area
*va
;
1100 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1101 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1105 addr
= va
->va_start
;
1108 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1109 vm_unmap_ram(mem
, count
);
1114 EXPORT_SYMBOL(vm_map_ram
);
1116 static struct vm_struct
*vmlist __initdata
;
1118 * vm_area_add_early - add vmap area early during boot
1119 * @vm: vm_struct to add
1121 * This function is used to add fixed kernel vm area to vmlist before
1122 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1123 * should contain proper values and the other fields should be zero.
1125 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1127 void __init
vm_area_add_early(struct vm_struct
*vm
)
1129 struct vm_struct
*tmp
, **p
;
1131 BUG_ON(vmap_initialized
);
1132 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1133 if (tmp
->addr
>= vm
->addr
) {
1134 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1137 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1144 * vm_area_register_early - register vmap area early during boot
1145 * @vm: vm_struct to register
1146 * @align: requested alignment
1148 * This function is used to register kernel vm area before
1149 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1150 * proper values on entry and other fields should be zero. On return,
1151 * vm->addr contains the allocated address.
1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1155 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1157 static size_t vm_init_off __initdata
;
1160 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1161 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1163 vm
->addr
= (void *)addr
;
1165 vm_area_add_early(vm
);
1168 void __init
vmalloc_init(void)
1170 struct vmap_area
*va
;
1171 struct vm_struct
*tmp
;
1174 for_each_possible_cpu(i
) {
1175 struct vmap_block_queue
*vbq
;
1176 struct vfree_deferred
*p
;
1178 vbq
= &per_cpu(vmap_block_queue
, i
);
1179 spin_lock_init(&vbq
->lock
);
1180 INIT_LIST_HEAD(&vbq
->free
);
1181 p
= &per_cpu(vfree_deferred
, i
);
1182 init_llist_head(&p
->list
);
1183 INIT_WORK(&p
->wq
, free_work
);
1186 /* Import existing vmlist entries. */
1187 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1188 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1189 va
->flags
= VM_VM_AREA
;
1190 va
->va_start
= (unsigned long)tmp
->addr
;
1191 va
->va_end
= va
->va_start
+ tmp
->size
;
1193 __insert_vmap_area(va
);
1196 vmap_area_pcpu_hole
= VMALLOC_END
;
1198 vmap_initialized
= true;
1202 * map_kernel_range_noflush - map kernel VM area with the specified pages
1203 * @addr: start of the VM area to map
1204 * @size: size of the VM area to map
1205 * @prot: page protection flags to use
1206 * @pages: pages to map
1208 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1209 * specify should have been allocated using get_vm_area() and its
1213 * This function does NOT do any cache flushing. The caller is
1214 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1215 * before calling this function.
1218 * The number of pages mapped on success, -errno on failure.
1220 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1221 pgprot_t prot
, struct page
**pages
)
1223 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1227 * unmap_kernel_range_noflush - unmap kernel VM area
1228 * @addr: start of the VM area to unmap
1229 * @size: size of the VM area to unmap
1231 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1232 * specify should have been allocated using get_vm_area() and its
1236 * This function does NOT do any cache flushing. The caller is
1237 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1238 * before calling this function and flush_tlb_kernel_range() after.
1240 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1242 vunmap_page_range(addr
, addr
+ size
);
1244 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1247 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1248 * @addr: start of the VM area to unmap
1249 * @size: size of the VM area to unmap
1251 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1252 * the unmapping and tlb after.
1254 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1256 unsigned long end
= addr
+ size
;
1258 flush_cache_vunmap(addr
, end
);
1259 vunmap_page_range(addr
, end
);
1260 flush_tlb_kernel_range(addr
, end
);
1263 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1265 unsigned long addr
= (unsigned long)area
->addr
;
1266 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1269 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1277 EXPORT_SYMBOL_GPL(map_vm_area
);
1279 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1280 unsigned long flags
, const void *caller
)
1282 spin_lock(&vmap_area_lock
);
1284 vm
->addr
= (void *)va
->va_start
;
1285 vm
->size
= va
->va_end
- va
->va_start
;
1286 vm
->caller
= caller
;
1288 va
->flags
|= VM_VM_AREA
;
1289 spin_unlock(&vmap_area_lock
);
1292 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1295 * Before removing VM_UNINITIALIZED,
1296 * we should make sure that vm has proper values.
1297 * Pair with smp_rmb() in show_numa_info().
1300 vm
->flags
&= ~VM_UNINITIALIZED
;
1303 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1304 unsigned long align
, unsigned long flags
, unsigned long start
,
1305 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1307 struct vmap_area
*va
;
1308 struct vm_struct
*area
;
1310 BUG_ON(in_interrupt());
1311 if (flags
& VM_IOREMAP
)
1312 align
= 1ul << clamp(fls(size
), PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1314 size
= PAGE_ALIGN(size
);
1315 if (unlikely(!size
))
1318 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1319 if (unlikely(!area
))
1323 * We always allocate a guard page.
1327 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1333 setup_vmalloc_vm(area
, va
, flags
, caller
);
1338 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1339 unsigned long start
, unsigned long end
)
1341 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1342 GFP_KERNEL
, __builtin_return_address(0));
1344 EXPORT_SYMBOL_GPL(__get_vm_area
);
1346 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1347 unsigned long start
, unsigned long end
,
1350 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1351 GFP_KERNEL
, caller
);
1355 * get_vm_area - reserve a contiguous kernel virtual area
1356 * @size: size of the area
1357 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1359 * Search an area of @size in the kernel virtual mapping area,
1360 * and reserved it for out purposes. Returns the area descriptor
1361 * on success or %NULL on failure.
1363 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1365 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1366 NUMA_NO_NODE
, GFP_KERNEL
,
1367 __builtin_return_address(0));
1370 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1373 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1374 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1378 * find_vm_area - find a continuous kernel virtual area
1379 * @addr: base address
1381 * Search for the kernel VM area starting at @addr, and return it.
1382 * It is up to the caller to do all required locking to keep the returned
1385 struct vm_struct
*find_vm_area(const void *addr
)
1387 struct vmap_area
*va
;
1389 va
= find_vmap_area((unsigned long)addr
);
1390 if (va
&& va
->flags
& VM_VM_AREA
)
1397 * remove_vm_area - find and remove a continuous kernel virtual area
1398 * @addr: base address
1400 * Search for the kernel VM area starting at @addr, and remove it.
1401 * This function returns the found VM area, but using it is NOT safe
1402 * on SMP machines, except for its size or flags.
1404 struct vm_struct
*remove_vm_area(const void *addr
)
1406 struct vmap_area
*va
;
1408 va
= find_vmap_area((unsigned long)addr
);
1409 if (va
&& va
->flags
& VM_VM_AREA
) {
1410 struct vm_struct
*vm
= va
->vm
;
1412 spin_lock(&vmap_area_lock
);
1414 va
->flags
&= ~VM_VM_AREA
;
1415 spin_unlock(&vmap_area_lock
);
1417 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1418 free_unmap_vmap_area(va
);
1419 vm
->size
-= PAGE_SIZE
;
1426 static void __vunmap(const void *addr
, int deallocate_pages
)
1428 struct vm_struct
*area
;
1433 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1437 area
= remove_vm_area(addr
);
1438 if (unlikely(!area
)) {
1439 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1444 debug_check_no_locks_freed(addr
, area
->size
);
1445 debug_check_no_obj_freed(addr
, area
->size
);
1447 if (deallocate_pages
) {
1450 for (i
= 0; i
< area
->nr_pages
; i
++) {
1451 struct page
*page
= area
->pages
[i
];
1457 if (area
->flags
& VM_VPAGES
)
1468 * vfree - release memory allocated by vmalloc()
1469 * @addr: memory base address
1471 * Free the virtually continuous memory area starting at @addr, as
1472 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1473 * NULL, no operation is performed.
1475 * Must not be called in NMI context (strictly speaking, only if we don't
1476 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1477 * conventions for vfree() arch-depenedent would be a really bad idea)
1479 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1481 void vfree(const void *addr
)
1485 kmemleak_free(addr
);
1489 if (unlikely(in_interrupt())) {
1490 struct vfree_deferred
*p
= &__get_cpu_var(vfree_deferred
);
1491 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1492 schedule_work(&p
->wq
);
1496 EXPORT_SYMBOL(vfree
);
1499 * vunmap - release virtual mapping obtained by vmap()
1500 * @addr: memory base address
1502 * Free the virtually contiguous memory area starting at @addr,
1503 * which was created from the page array passed to vmap().
1505 * Must not be called in interrupt context.
1507 void vunmap(const void *addr
)
1509 BUG_ON(in_interrupt());
1514 EXPORT_SYMBOL(vunmap
);
1517 * vmap - map an array of pages into virtually contiguous space
1518 * @pages: array of page pointers
1519 * @count: number of pages to map
1520 * @flags: vm_area->flags
1521 * @prot: page protection for the mapping
1523 * Maps @count pages from @pages into contiguous kernel virtual
1526 void *vmap(struct page
**pages
, unsigned int count
,
1527 unsigned long flags
, pgprot_t prot
)
1529 struct vm_struct
*area
;
1533 if (count
> totalram_pages
)
1536 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1537 __builtin_return_address(0));
1541 if (map_vm_area(area
, prot
, &pages
)) {
1548 EXPORT_SYMBOL(vmap
);
1550 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1551 gfp_t gfp_mask
, pgprot_t prot
,
1552 int node
, const void *caller
);
1553 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1554 pgprot_t prot
, int node
, const void *caller
)
1556 const int order
= 0;
1557 struct page
**pages
;
1558 unsigned int nr_pages
, array_size
, i
;
1559 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1561 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1562 array_size
= (nr_pages
* sizeof(struct page
*));
1564 area
->nr_pages
= nr_pages
;
1565 /* Please note that the recursion is strictly bounded. */
1566 if (array_size
> PAGE_SIZE
) {
1567 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1568 PAGE_KERNEL
, node
, caller
);
1569 area
->flags
|= VM_VPAGES
;
1571 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1573 area
->pages
= pages
;
1574 area
->caller
= caller
;
1576 remove_vm_area(area
->addr
);
1581 for (i
= 0; i
< area
->nr_pages
; i
++) {
1583 gfp_t tmp_mask
= gfp_mask
| __GFP_NOWARN
;
1586 page
= alloc_page(tmp_mask
);
1588 page
= alloc_pages_node(node
, tmp_mask
, order
);
1590 if (unlikely(!page
)) {
1591 /* Successfully allocated i pages, free them in __vunmap() */
1595 area
->pages
[i
] = page
;
1598 if (map_vm_area(area
, prot
, &pages
))
1603 warn_alloc_failed(gfp_mask
, order
,
1604 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1605 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1611 * __vmalloc_node_range - allocate virtually contiguous memory
1612 * @size: allocation size
1613 * @align: desired alignment
1614 * @start: vm area range start
1615 * @end: vm area range end
1616 * @gfp_mask: flags for the page level allocator
1617 * @prot: protection mask for the allocated pages
1618 * @node: node to use for allocation or NUMA_NO_NODE
1619 * @caller: caller's return address
1621 * Allocate enough pages to cover @size from the page level
1622 * allocator with @gfp_mask flags. Map them into contiguous
1623 * kernel virtual space, using a pagetable protection of @prot.
1625 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1626 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1627 pgprot_t prot
, int node
, const void *caller
)
1629 struct vm_struct
*area
;
1631 unsigned long real_size
= size
;
1633 size
= PAGE_ALIGN(size
);
1634 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1637 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
,
1638 start
, end
, node
, gfp_mask
, caller
);
1642 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1647 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1648 * flag. It means that vm_struct is not fully initialized.
1649 * Now, it is fully initialized, so remove this flag here.
1651 clear_vm_uninitialized_flag(area
);
1654 * A ref_count = 3 is needed because the vm_struct and vmap_area
1655 * structures allocated in the __get_vm_area_node() function contain
1656 * references to the virtual address of the vmalloc'ed block.
1658 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1663 warn_alloc_failed(gfp_mask
, 0,
1664 "vmalloc: allocation failure: %lu bytes\n",
1670 * __vmalloc_node - allocate virtually contiguous memory
1671 * @size: allocation size
1672 * @align: desired alignment
1673 * @gfp_mask: flags for the page level allocator
1674 * @prot: protection mask for the allocated pages
1675 * @node: node to use for allocation or NUMA_NO_NODE
1676 * @caller: caller's return address
1678 * Allocate enough pages to cover @size from the page level
1679 * allocator with @gfp_mask flags. Map them into contiguous
1680 * kernel virtual space, using a pagetable protection of @prot.
1682 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1683 gfp_t gfp_mask
, pgprot_t prot
,
1684 int node
, const void *caller
)
1686 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1687 gfp_mask
, prot
, node
, caller
);
1690 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1692 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1693 __builtin_return_address(0));
1695 EXPORT_SYMBOL(__vmalloc
);
1697 static inline void *__vmalloc_node_flags(unsigned long size
,
1698 int node
, gfp_t flags
)
1700 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1701 node
, __builtin_return_address(0));
1705 * vmalloc - allocate virtually contiguous memory
1706 * @size: allocation size
1707 * Allocate enough pages to cover @size from the page level
1708 * allocator and map them into contiguous kernel virtual space.
1710 * For tight control over page level allocator and protection flags
1711 * use __vmalloc() instead.
1713 void *vmalloc(unsigned long size
)
1715 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1716 GFP_KERNEL
| __GFP_HIGHMEM
);
1718 EXPORT_SYMBOL(vmalloc
);
1721 * vzalloc - allocate virtually contiguous memory with zero fill
1722 * @size: allocation size
1723 * Allocate enough pages to cover @size from the page level
1724 * allocator and map them into contiguous kernel virtual space.
1725 * The memory allocated is set to zero.
1727 * For tight control over page level allocator and protection flags
1728 * use __vmalloc() instead.
1730 void *vzalloc(unsigned long size
)
1732 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1733 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1735 EXPORT_SYMBOL(vzalloc
);
1738 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1739 * @size: allocation size
1741 * The resulting memory area is zeroed so it can be mapped to userspace
1742 * without leaking data.
1744 void *vmalloc_user(unsigned long size
)
1746 struct vm_struct
*area
;
1749 ret
= __vmalloc_node(size
, SHMLBA
,
1750 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1751 PAGE_KERNEL
, NUMA_NO_NODE
,
1752 __builtin_return_address(0));
1754 area
= find_vm_area(ret
);
1755 area
->flags
|= VM_USERMAP
;
1759 EXPORT_SYMBOL(vmalloc_user
);
1762 * vmalloc_node - allocate memory on a specific node
1763 * @size: allocation size
1766 * Allocate enough pages to cover @size from the page level
1767 * allocator and map them into contiguous kernel virtual space.
1769 * For tight control over page level allocator and protection flags
1770 * use __vmalloc() instead.
1772 void *vmalloc_node(unsigned long size
, int node
)
1774 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1775 node
, __builtin_return_address(0));
1777 EXPORT_SYMBOL(vmalloc_node
);
1780 * vzalloc_node - allocate memory on a specific node with zero fill
1781 * @size: allocation size
1784 * Allocate enough pages to cover @size from the page level
1785 * allocator and map them into contiguous kernel virtual space.
1786 * The memory allocated is set to zero.
1788 * For tight control over page level allocator and protection flags
1789 * use __vmalloc_node() instead.
1791 void *vzalloc_node(unsigned long size
, int node
)
1793 return __vmalloc_node_flags(size
, node
,
1794 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1796 EXPORT_SYMBOL(vzalloc_node
);
1798 #ifndef PAGE_KERNEL_EXEC
1799 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1803 * vmalloc_exec - allocate virtually contiguous, executable memory
1804 * @size: allocation size
1806 * Kernel-internal function to allocate enough pages to cover @size
1807 * the page level allocator and map them into contiguous and
1808 * executable kernel virtual space.
1810 * For tight control over page level allocator and protection flags
1811 * use __vmalloc() instead.
1814 void *vmalloc_exec(unsigned long size
)
1816 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1817 NUMA_NO_NODE
, __builtin_return_address(0));
1820 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1821 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1822 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1823 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1825 #define GFP_VMALLOC32 GFP_KERNEL
1829 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1830 * @size: allocation size
1832 * Allocate enough 32bit PA addressable pages to cover @size from the
1833 * page level allocator and map them into contiguous kernel virtual space.
1835 void *vmalloc_32(unsigned long size
)
1837 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1838 NUMA_NO_NODE
, __builtin_return_address(0));
1840 EXPORT_SYMBOL(vmalloc_32
);
1843 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1844 * @size: allocation size
1846 * The resulting memory area is 32bit addressable and zeroed so it can be
1847 * mapped to userspace without leaking data.
1849 void *vmalloc_32_user(unsigned long size
)
1851 struct vm_struct
*area
;
1854 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1855 NUMA_NO_NODE
, __builtin_return_address(0));
1857 area
= find_vm_area(ret
);
1858 area
->flags
|= VM_USERMAP
;
1862 EXPORT_SYMBOL(vmalloc_32_user
);
1865 * small helper routine , copy contents to buf from addr.
1866 * If the page is not present, fill zero.
1869 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1875 unsigned long offset
, length
;
1877 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1878 length
= PAGE_SIZE
- offset
;
1881 p
= vmalloc_to_page(addr
);
1883 * To do safe access to this _mapped_ area, we need
1884 * lock. But adding lock here means that we need to add
1885 * overhead of vmalloc()/vfree() calles for this _debug_
1886 * interface, rarely used. Instead of that, we'll use
1887 * kmap() and get small overhead in this access function.
1891 * we can expect USER0 is not used (see vread/vwrite's
1892 * function description)
1894 void *map
= kmap_atomic(p
);
1895 memcpy(buf
, map
+ offset
, length
);
1898 memset(buf
, 0, length
);
1908 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1914 unsigned long offset
, length
;
1916 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1917 length
= PAGE_SIZE
- offset
;
1920 p
= vmalloc_to_page(addr
);
1922 * To do safe access to this _mapped_ area, we need
1923 * lock. But adding lock here means that we need to add
1924 * overhead of vmalloc()/vfree() calles for this _debug_
1925 * interface, rarely used. Instead of that, we'll use
1926 * kmap() and get small overhead in this access function.
1930 * we can expect USER0 is not used (see vread/vwrite's
1931 * function description)
1933 void *map
= kmap_atomic(p
);
1934 memcpy(map
+ offset
, buf
, length
);
1946 * vread() - read vmalloc area in a safe way.
1947 * @buf: buffer for reading data
1948 * @addr: vm address.
1949 * @count: number of bytes to be read.
1951 * Returns # of bytes which addr and buf should be increased.
1952 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1953 * includes any intersect with alive vmalloc area.
1955 * This function checks that addr is a valid vmalloc'ed area, and
1956 * copy data from that area to a given buffer. If the given memory range
1957 * of [addr...addr+count) includes some valid address, data is copied to
1958 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1959 * IOREMAP area is treated as memory hole and no copy is done.
1961 * If [addr...addr+count) doesn't includes any intersects with alive
1962 * vm_struct area, returns 0. @buf should be kernel's buffer.
1964 * Note: In usual ops, vread() is never necessary because the caller
1965 * should know vmalloc() area is valid and can use memcpy().
1966 * This is for routines which have to access vmalloc area without
1967 * any informaion, as /dev/kmem.
1971 long vread(char *buf
, char *addr
, unsigned long count
)
1973 struct vmap_area
*va
;
1974 struct vm_struct
*vm
;
1975 char *vaddr
, *buf_start
= buf
;
1976 unsigned long buflen
= count
;
1979 /* Don't allow overflow */
1980 if ((unsigned long) addr
+ count
< count
)
1981 count
= -(unsigned long) addr
;
1983 spin_lock(&vmap_area_lock
);
1984 list_for_each_entry(va
, &vmap_area_list
, list
) {
1988 if (!(va
->flags
& VM_VM_AREA
))
1992 vaddr
= (char *) vm
->addr
;
1993 if (addr
>= vaddr
+ vm
->size
- PAGE_SIZE
)
1995 while (addr
< vaddr
) {
2003 n
= vaddr
+ vm
->size
- PAGE_SIZE
- addr
;
2006 if (!(vm
->flags
& VM_IOREMAP
))
2007 aligned_vread(buf
, addr
, n
);
2008 else /* IOREMAP area is treated as memory hole */
2015 spin_unlock(&vmap_area_lock
);
2017 if (buf
== buf_start
)
2019 /* zero-fill memory holes */
2020 if (buf
!= buf_start
+ buflen
)
2021 memset(buf
, 0, buflen
- (buf
- buf_start
));
2027 * vwrite() - write vmalloc area in a safe way.
2028 * @buf: buffer for source data
2029 * @addr: vm address.
2030 * @count: number of bytes to be read.
2032 * Returns # of bytes which addr and buf should be incresed.
2033 * (same number to @count).
2034 * If [addr...addr+count) doesn't includes any intersect with valid
2035 * vmalloc area, returns 0.
2037 * This function checks that addr is a valid vmalloc'ed area, and
2038 * copy data from a buffer to the given addr. If specified range of
2039 * [addr...addr+count) includes some valid address, data is copied from
2040 * proper area of @buf. If there are memory holes, no copy to hole.
2041 * IOREMAP area is treated as memory hole and no copy is done.
2043 * If [addr...addr+count) doesn't includes any intersects with alive
2044 * vm_struct area, returns 0. @buf should be kernel's buffer.
2046 * Note: In usual ops, vwrite() is never necessary because the caller
2047 * should know vmalloc() area is valid and can use memcpy().
2048 * This is for routines which have to access vmalloc area without
2049 * any informaion, as /dev/kmem.
2052 long vwrite(char *buf
, char *addr
, unsigned long count
)
2054 struct vmap_area
*va
;
2055 struct vm_struct
*vm
;
2057 unsigned long n
, buflen
;
2060 /* Don't allow overflow */
2061 if ((unsigned long) addr
+ count
< count
)
2062 count
= -(unsigned long) addr
;
2065 spin_lock(&vmap_area_lock
);
2066 list_for_each_entry(va
, &vmap_area_list
, list
) {
2070 if (!(va
->flags
& VM_VM_AREA
))
2074 vaddr
= (char *) vm
->addr
;
2075 if (addr
>= vaddr
+ vm
->size
- PAGE_SIZE
)
2077 while (addr
< vaddr
) {
2084 n
= vaddr
+ vm
->size
- PAGE_SIZE
- addr
;
2087 if (!(vm
->flags
& VM_IOREMAP
)) {
2088 aligned_vwrite(buf
, addr
, n
);
2096 spin_unlock(&vmap_area_lock
);
2103 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2104 * @vma: vma to cover
2105 * @uaddr: target user address to start at
2106 * @kaddr: virtual address of vmalloc kernel memory
2107 * @size: size of map area
2109 * Returns: 0 for success, -Exxx on failure
2111 * This function checks that @kaddr is a valid vmalloc'ed area,
2112 * and that it is big enough to cover the range starting at
2113 * @uaddr in @vma. Will return failure if that criteria isn't
2116 * Similar to remap_pfn_range() (see mm/memory.c)
2118 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2119 void *kaddr
, unsigned long size
)
2121 struct vm_struct
*area
;
2123 size
= PAGE_ALIGN(size
);
2125 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2128 area
= find_vm_area(kaddr
);
2132 if (!(area
->flags
& VM_USERMAP
))
2135 if (kaddr
+ size
> area
->addr
+ area
->size
)
2139 struct page
*page
= vmalloc_to_page(kaddr
);
2142 ret
= vm_insert_page(vma
, uaddr
, page
);
2151 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2155 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2158 * remap_vmalloc_range - map vmalloc pages to userspace
2159 * @vma: vma to cover (map full range of vma)
2160 * @addr: vmalloc memory
2161 * @pgoff: number of pages into addr before first page to map
2163 * Returns: 0 for success, -Exxx on failure
2165 * This function checks that addr is a valid vmalloc'ed area, and
2166 * that it is big enough to cover the vma. Will return failure if
2167 * that criteria isn't met.
2169 * Similar to remap_pfn_range() (see mm/memory.c)
2171 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2172 unsigned long pgoff
)
2174 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2175 addr
+ (pgoff
<< PAGE_SHIFT
),
2176 vma
->vm_end
- vma
->vm_start
);
2178 EXPORT_SYMBOL(remap_vmalloc_range
);
2181 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2184 void __attribute__((weak
)) vmalloc_sync_all(void)
2189 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2201 * alloc_vm_area - allocate a range of kernel address space
2202 * @size: size of the area
2203 * @ptes: returns the PTEs for the address space
2205 * Returns: NULL on failure, vm_struct on success
2207 * This function reserves a range of kernel address space, and
2208 * allocates pagetables to map that range. No actual mappings
2211 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2212 * allocated for the VM area are returned.
2214 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2216 struct vm_struct
*area
;
2218 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2219 __builtin_return_address(0));
2224 * This ensures that page tables are constructed for this region
2225 * of kernel virtual address space and mapped into init_mm.
2227 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2228 size
, f
, ptes
? &ptes
: NULL
)) {
2235 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2237 void free_vm_area(struct vm_struct
*area
)
2239 struct vm_struct
*ret
;
2240 ret
= remove_vm_area(area
->addr
);
2241 BUG_ON(ret
!= area
);
2244 EXPORT_SYMBOL_GPL(free_vm_area
);
2247 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2249 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2253 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2254 * @end: target address
2255 * @pnext: out arg for the next vmap_area
2256 * @pprev: out arg for the previous vmap_area
2258 * Returns: %true if either or both of next and prev are found,
2259 * %false if no vmap_area exists
2261 * Find vmap_areas end addresses of which enclose @end. ie. if not
2262 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2264 static bool pvm_find_next_prev(unsigned long end
,
2265 struct vmap_area
**pnext
,
2266 struct vmap_area
**pprev
)
2268 struct rb_node
*n
= vmap_area_root
.rb_node
;
2269 struct vmap_area
*va
= NULL
;
2272 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2273 if (end
< va
->va_end
)
2275 else if (end
> va
->va_end
)
2284 if (va
->va_end
> end
) {
2286 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2289 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2295 * pvm_determine_end - find the highest aligned address between two vmap_areas
2296 * @pnext: in/out arg for the next vmap_area
2297 * @pprev: in/out arg for the previous vmap_area
2300 * Returns: determined end address
2302 * Find the highest aligned address between *@pnext and *@pprev below
2303 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2304 * down address is between the end addresses of the two vmap_areas.
2306 * Please note that the address returned by this function may fall
2307 * inside *@pnext vmap_area. The caller is responsible for checking
2310 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2311 struct vmap_area
**pprev
,
2312 unsigned long align
)
2314 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2318 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2322 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2324 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2331 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2332 * @offsets: array containing offset of each area
2333 * @sizes: array containing size of each area
2334 * @nr_vms: the number of areas to allocate
2335 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2337 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2338 * vm_structs on success, %NULL on failure
2340 * Percpu allocator wants to use congruent vm areas so that it can
2341 * maintain the offsets among percpu areas. This function allocates
2342 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2343 * be scattered pretty far, distance between two areas easily going up
2344 * to gigabytes. To avoid interacting with regular vmallocs, these
2345 * areas are allocated from top.
2347 * Despite its complicated look, this allocator is rather simple. It
2348 * does everything top-down and scans areas from the end looking for
2349 * matching slot. While scanning, if any of the areas overlaps with
2350 * existing vmap_area, the base address is pulled down to fit the
2351 * area. Scanning is repeated till all the areas fit and then all
2352 * necessary data structres are inserted and the result is returned.
2354 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2355 const size_t *sizes
, int nr_vms
,
2358 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2359 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2360 struct vmap_area
**vas
, *prev
, *next
;
2361 struct vm_struct
**vms
;
2362 int area
, area2
, last_area
, term_area
;
2363 unsigned long base
, start
, end
, last_end
;
2364 bool purged
= false;
2366 /* verify parameters and allocate data structures */
2367 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2368 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2369 start
= offsets
[area
];
2370 end
= start
+ sizes
[area
];
2372 /* is everything aligned properly? */
2373 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2374 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2376 /* detect the area with the highest address */
2377 if (start
> offsets
[last_area
])
2380 for (area2
= 0; area2
< nr_vms
; area2
++) {
2381 unsigned long start2
= offsets
[area2
];
2382 unsigned long end2
= start2
+ sizes
[area2
];
2387 BUG_ON(start2
>= start
&& start2
< end
);
2388 BUG_ON(end2
<= end
&& end2
> start
);
2391 last_end
= offsets
[last_area
] + sizes
[last_area
];
2393 if (vmalloc_end
- vmalloc_start
< last_end
) {
2398 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2399 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2403 for (area
= 0; area
< nr_vms
; area
++) {
2404 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2405 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2406 if (!vas
[area
] || !vms
[area
])
2410 spin_lock(&vmap_area_lock
);
2412 /* start scanning - we scan from the top, begin with the last area */
2413 area
= term_area
= last_area
;
2414 start
= offsets
[area
];
2415 end
= start
+ sizes
[area
];
2417 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2418 base
= vmalloc_end
- last_end
;
2421 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2424 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2425 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2428 * base might have underflowed, add last_end before
2431 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2432 spin_unlock(&vmap_area_lock
);
2434 purge_vmap_area_lazy();
2442 * If next overlaps, move base downwards so that it's
2443 * right below next and then recheck.
2445 if (next
&& next
->va_start
< base
+ end
) {
2446 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2452 * If prev overlaps, shift down next and prev and move
2453 * base so that it's right below new next and then
2456 if (prev
&& prev
->va_end
> base
+ start
) {
2458 prev
= node_to_va(rb_prev(&next
->rb_node
));
2459 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2465 * This area fits, move on to the previous one. If
2466 * the previous one is the terminal one, we're done.
2468 area
= (area
+ nr_vms
- 1) % nr_vms
;
2469 if (area
== term_area
)
2471 start
= offsets
[area
];
2472 end
= start
+ sizes
[area
];
2473 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2476 /* we've found a fitting base, insert all va's */
2477 for (area
= 0; area
< nr_vms
; area
++) {
2478 struct vmap_area
*va
= vas
[area
];
2480 va
->va_start
= base
+ offsets
[area
];
2481 va
->va_end
= va
->va_start
+ sizes
[area
];
2482 __insert_vmap_area(va
);
2485 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2487 spin_unlock(&vmap_area_lock
);
2489 /* insert all vm's */
2490 for (area
= 0; area
< nr_vms
; area
++)
2491 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2498 for (area
= 0; area
< nr_vms
; area
++) {
2509 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2510 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2511 * @nr_vms: the number of allocated areas
2513 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2515 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2519 for (i
= 0; i
< nr_vms
; i
++)
2520 free_vm_area(vms
[i
]);
2523 #endif /* CONFIG_SMP */
2525 #ifdef CONFIG_PROC_FS
2526 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2527 __acquires(&vmap_area_lock
)
2530 struct vmap_area
*va
;
2532 spin_lock(&vmap_area_lock
);
2533 va
= list_entry((&vmap_area_list
)->next
, typeof(*va
), list
);
2534 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2536 va
= list_entry(va
->list
.next
, typeof(*va
), list
);
2538 if (!n
&& &va
->list
!= &vmap_area_list
)
2545 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2547 struct vmap_area
*va
= p
, *next
;
2550 next
= list_entry(va
->list
.next
, typeof(*va
), list
);
2551 if (&next
->list
!= &vmap_area_list
)
2557 static void s_stop(struct seq_file
*m
, void *p
)
2558 __releases(&vmap_area_lock
)
2560 spin_unlock(&vmap_area_lock
);
2563 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2565 if (IS_ENABLED(CONFIG_NUMA
)) {
2566 unsigned int nr
, *counters
= m
->private;
2571 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2573 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2574 counters
[page_to_nid(v
->pages
[nr
])]++;
2576 for_each_node_state(nr
, N_HIGH_MEMORY
)
2578 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2582 static int s_show(struct seq_file
*m
, void *p
)
2584 struct vmap_area
*va
= p
;
2585 struct vm_struct
*v
;
2587 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2590 if (!(va
->flags
& VM_VM_AREA
)) {
2591 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
2592 (void *)va
->va_start
, (void *)va
->va_end
,
2593 va
->va_end
- va
->va_start
);
2599 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2601 if (v
->flags
& VM_UNINITIALIZED
)
2604 seq_printf(m
, "0x%pK-0x%pK %7ld",
2605 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2608 seq_printf(m
, " %pS", v
->caller
);
2611 seq_printf(m
, " pages=%d", v
->nr_pages
);
2614 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2616 if (v
->flags
& VM_IOREMAP
)
2617 seq_printf(m
, " ioremap");
2619 if (v
->flags
& VM_ALLOC
)
2620 seq_printf(m
, " vmalloc");
2622 if (v
->flags
& VM_MAP
)
2623 seq_printf(m
, " vmap");
2625 if (v
->flags
& VM_USERMAP
)
2626 seq_printf(m
, " user");
2628 if (v
->flags
& VM_VPAGES
)
2629 seq_printf(m
, " vpages");
2631 show_numa_info(m
, v
);
2636 static const struct seq_operations vmalloc_op
= {
2643 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2645 unsigned int *ptr
= NULL
;
2648 if (IS_ENABLED(CONFIG_NUMA
)) {
2649 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2653 ret
= seq_open(file
, &vmalloc_op
);
2655 struct seq_file
*m
= file
->private_data
;
2662 static const struct file_operations proc_vmalloc_operations
= {
2663 .open
= vmalloc_open
,
2665 .llseek
= seq_lseek
,
2666 .release
= seq_release_private
,
2669 static int __init
proc_vmalloc_init(void)
2671 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2674 module_init(proc_vmalloc_init
);
2676 void get_vmalloc_info(struct vmalloc_info
*vmi
)
2678 struct vmap_area
*va
;
2679 unsigned long free_area_size
;
2680 unsigned long prev_end
;
2683 vmi
->largest_chunk
= 0;
2685 prev_end
= VMALLOC_START
;
2687 spin_lock(&vmap_area_lock
);
2689 if (list_empty(&vmap_area_list
)) {
2690 vmi
->largest_chunk
= VMALLOC_TOTAL
;
2694 list_for_each_entry(va
, &vmap_area_list
, list
) {
2695 unsigned long addr
= va
->va_start
;
2698 * Some archs keep another range for modules in vmalloc space
2700 if (addr
< VMALLOC_START
)
2702 if (addr
>= VMALLOC_END
)
2705 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2708 vmi
->used
+= (va
->va_end
- va
->va_start
);
2710 free_area_size
= addr
- prev_end
;
2711 if (vmi
->largest_chunk
< free_area_size
)
2712 vmi
->largest_chunk
= free_area_size
;
2714 prev_end
= va
->va_end
;
2717 if (VMALLOC_END
- prev_end
> vmi
->largest_chunk
)
2718 vmi
->largest_chunk
= VMALLOC_END
- prev_end
;
2721 spin_unlock(&vmap_area_lock
);