4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
39 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 EXPORT_SYMBOL(high_memory
);
64 unsigned long max_mapnr
;
65 EXPORT_SYMBOL(max_mapnr
);
66 unsigned long highest_memmap_pfn
;
67 struct percpu_counter vm_committed_as
;
68 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
69 int sysctl_overcommit_ratio
= 50; /* default is 50% */
70 unsigned long sysctl_overcommit_kbytes __read_mostly
;
71 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
72 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
73 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
74 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
75 int heap_stack_gap
= 0;
77 atomic_long_t mmap_pages_allocated
;
80 * The global memory commitment made in the system can be a metric
81 * that can be used to drive ballooning decisions when Linux is hosted
82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83 * balancing memory across competing virtual machines that are hosted.
84 * Several metrics drive this policy engine including the guest reported
87 unsigned long vm_memory_committed(void)
89 return percpu_counter_read_positive(&vm_committed_as
);
92 EXPORT_SYMBOL_GPL(vm_memory_committed
);
94 EXPORT_SYMBOL(mem_map
);
96 /* list of mapped, potentially shareable regions */
97 static struct kmem_cache
*vm_region_jar
;
98 struct rb_root nommu_region_tree
= RB_ROOT
;
99 DECLARE_RWSEM(nommu_region_sem
);
101 const struct vm_operations_struct generic_file_vm_ops
= {
105 * Return the total memory allocated for this pointer, not
106 * just what the caller asked for.
108 * Doesn't have to be accurate, i.e. may have races.
110 unsigned int kobjsize(const void *objp
)
115 * If the object we have should not have ksize performed on it,
118 if (!objp
|| !virt_addr_valid(objp
))
121 page
= virt_to_head_page(objp
);
124 * If the allocator sets PageSlab, we know the pointer came from
131 * If it's not a compound page, see if we have a matching VMA
132 * region. This test is intentionally done in reverse order,
133 * so if there's no VMA, we still fall through and hand back
134 * PAGE_SIZE for 0-order pages.
136 if (!PageCompound(page
)) {
137 struct vm_area_struct
*vma
;
139 vma
= find_vma(current
->mm
, (unsigned long)objp
);
141 return vma
->vm_end
- vma
->vm_start
;
145 * The ksize() function is only guaranteed to work for pointers
146 * returned by kmalloc(). So handle arbitrary pointers here.
148 return PAGE_SIZE
<< compound_order(page
);
151 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
152 unsigned long start
, unsigned long nr_pages
,
153 unsigned int foll_flags
, struct page
**pages
,
154 struct vm_area_struct
**vmas
, int *nonblocking
)
156 struct vm_area_struct
*vma
;
157 unsigned long vm_flags
;
160 /* calculate required read or write permissions.
161 * If FOLL_FORCE is set, we only require the "MAY" flags.
163 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
164 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
165 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
166 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
168 for (i
= 0; i
< nr_pages
; i
++) {
169 vma
= find_vma(mm
, start
);
171 goto finish_or_fault
;
173 /* protect what we can, including chardevs */
174 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
175 !(vm_flags
& vma
->vm_flags
))
176 goto finish_or_fault
;
179 pages
[i
] = virt_to_page(start
);
181 page_cache_get(pages
[i
]);
185 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
191 return i
? : -EFAULT
;
195 * get a list of pages in an address range belonging to the specified process
196 * and indicate the VMA that covers each page
197 * - this is potentially dodgy as we may end incrementing the page count of a
198 * slab page or a secondary page from a compound page
199 * - don't permit access to VMAs that don't support it, such as I/O mappings
201 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
202 unsigned long start
, unsigned long nr_pages
,
203 int write
, int force
, struct page
**pages
,
204 struct vm_area_struct
**vmas
)
213 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
216 EXPORT_SYMBOL(get_user_pages
);
218 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
219 unsigned long start
, unsigned long nr_pages
,
220 int write
, int force
, struct page
**pages
,
223 return get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
226 EXPORT_SYMBOL(get_user_pages_locked
);
228 long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
229 unsigned long start
, unsigned long nr_pages
,
230 int write
, int force
, struct page
**pages
,
231 unsigned int gup_flags
)
234 down_read(&mm
->mmap_sem
);
235 ret
= get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
237 up_read(&mm
->mmap_sem
);
240 EXPORT_SYMBOL(__get_user_pages_unlocked
);
242 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
243 unsigned long start
, unsigned long nr_pages
,
244 int write
, int force
, struct page
**pages
)
246 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
249 EXPORT_SYMBOL(get_user_pages_unlocked
);
252 * follow_pfn - look up PFN at a user virtual address
253 * @vma: memory mapping
254 * @address: user virtual address
255 * @pfn: location to store found PFN
257 * Only IO mappings and raw PFN mappings are allowed.
259 * Returns zero and the pfn at @pfn on success, -ve otherwise.
261 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
264 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
267 *pfn
= address
>> PAGE_SHIFT
;
270 EXPORT_SYMBOL(follow_pfn
);
272 LIST_HEAD(vmap_area_list
);
274 void vfree(const void *addr
)
278 EXPORT_SYMBOL(vfree
);
280 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
283 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284 * returns only a logical address.
286 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
288 EXPORT_SYMBOL(__vmalloc
);
290 void *vmalloc_user(unsigned long size
)
294 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
297 struct vm_area_struct
*vma
;
299 down_write(¤t
->mm
->mmap_sem
);
300 vma
= find_vma(current
->mm
, (unsigned long)ret
);
302 vma
->vm_flags
|= VM_USERMAP
;
303 up_write(¤t
->mm
->mmap_sem
);
308 EXPORT_SYMBOL(vmalloc_user
);
310 struct page
*vmalloc_to_page(const void *addr
)
312 return virt_to_page(addr
);
314 EXPORT_SYMBOL(vmalloc_to_page
);
316 unsigned long vmalloc_to_pfn(const void *addr
)
318 return page_to_pfn(virt_to_page(addr
));
320 EXPORT_SYMBOL(vmalloc_to_pfn
);
322 long vread(char *buf
, char *addr
, unsigned long count
)
324 /* Don't allow overflow */
325 if ((unsigned long) buf
+ count
< count
)
326 count
= -(unsigned long) buf
;
328 memcpy(buf
, addr
, count
);
332 long vwrite(char *buf
, char *addr
, unsigned long count
)
334 /* Don't allow overflow */
335 if ((unsigned long) addr
+ count
< count
)
336 count
= -(unsigned long) addr
;
338 memcpy(addr
, buf
, count
);
343 * vmalloc - allocate virtually continguos memory
345 * @size: allocation size
347 * Allocate enough pages to cover @size from the page level
348 * allocator and map them into continguos kernel virtual space.
350 * For tight control over page level allocator and protection flags
351 * use __vmalloc() instead.
353 void *vmalloc(unsigned long size
)
355 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
357 EXPORT_SYMBOL(vmalloc
);
360 * vzalloc - allocate virtually continguos memory with zero fill
362 * @size: allocation size
364 * Allocate enough pages to cover @size from the page level
365 * allocator and map them into continguos kernel virtual space.
366 * The memory allocated is set to zero.
368 * For tight control over page level allocator and protection flags
369 * use __vmalloc() instead.
371 void *vzalloc(unsigned long size
)
373 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
376 EXPORT_SYMBOL(vzalloc
);
379 * vmalloc_node - allocate memory on a specific node
380 * @size: allocation size
383 * Allocate enough pages to cover @size from the page level
384 * allocator and map them into contiguous kernel virtual space.
386 * For tight control over page level allocator and protection flags
387 * use __vmalloc() instead.
389 void *vmalloc_node(unsigned long size
, int node
)
391 return vmalloc(size
);
393 EXPORT_SYMBOL(vmalloc_node
);
396 * vzalloc_node - allocate memory on a specific node with zero fill
397 * @size: allocation size
400 * Allocate enough pages to cover @size from the page level
401 * allocator and map them into contiguous kernel virtual space.
402 * The memory allocated is set to zero.
404 * For tight control over page level allocator and protection flags
405 * use __vmalloc() instead.
407 void *vzalloc_node(unsigned long size
, int node
)
409 return vzalloc(size
);
411 EXPORT_SYMBOL(vzalloc_node
);
413 #ifndef PAGE_KERNEL_EXEC
414 # define PAGE_KERNEL_EXEC PAGE_KERNEL
418 * vmalloc_exec - allocate virtually contiguous, executable memory
419 * @size: allocation size
421 * Kernel-internal function to allocate enough pages to cover @size
422 * the page level allocator and map them into contiguous and
423 * executable kernel virtual space.
425 * For tight control over page level allocator and protection flags
426 * use __vmalloc() instead.
429 void *vmalloc_exec(unsigned long size
)
431 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
436 * @size: allocation size
438 * Allocate enough 32bit PA addressable pages to cover @size from the
439 * page level allocator and map them into continguos kernel virtual space.
441 void *vmalloc_32(unsigned long size
)
443 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
445 EXPORT_SYMBOL(vmalloc_32
);
448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449 * @size: allocation size
451 * The resulting memory area is 32bit addressable and zeroed so it can be
452 * mapped to userspace without leaking data.
454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455 * remap_vmalloc_range() are permissible.
457 void *vmalloc_32_user(unsigned long size
)
460 * We'll have to sort out the ZONE_DMA bits for 64-bit,
461 * but for now this can simply use vmalloc_user() directly.
463 return vmalloc_user(size
);
465 EXPORT_SYMBOL(vmalloc_32_user
);
467 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
474 void vunmap(const void *addr
)
478 EXPORT_SYMBOL(vunmap
);
480 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
485 EXPORT_SYMBOL(vm_map_ram
);
487 void vm_unmap_ram(const void *mem
, unsigned int count
)
491 EXPORT_SYMBOL(vm_unmap_ram
);
493 void vm_unmap_aliases(void)
496 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
502 void __weak
vmalloc_sync_all(void)
507 * alloc_vm_area - allocate a range of kernel address space
508 * @size: size of the area
510 * Returns: NULL on failure, vm_struct on success
512 * This function reserves a range of kernel address space, and
513 * allocates pagetables to map that range. No actual mappings
514 * are created. If the kernel address space is not shared
515 * between processes, it syncs the pagetable across all
518 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
523 EXPORT_SYMBOL_GPL(alloc_vm_area
);
525 void free_vm_area(struct vm_struct
*area
)
529 EXPORT_SYMBOL_GPL(free_vm_area
);
531 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
536 EXPORT_SYMBOL(vm_insert_page
);
539 * sys_brk() for the most part doesn't need the global kernel
540 * lock, except when an application is doing something nasty
541 * like trying to un-brk an area that has already been mapped
542 * to a regular file. in this case, the unmapping will need
543 * to invoke file system routines that need the global lock.
545 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
547 struct mm_struct
*mm
= current
->mm
;
549 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
556 * Always allow shrinking brk
558 if (brk
<= mm
->brk
) {
564 * Ok, looks good - let it rip.
566 flush_icache_range(mm
->brk
, brk
);
567 return mm
->brk
= brk
;
571 * initialise the VMA and region record slabs
573 void __init
mmap_init(void)
577 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
579 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
583 * validate the region tree
584 * - the caller must hold the region lock
586 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
587 static noinline
void validate_nommu_regions(void)
589 struct vm_region
*region
, *last
;
590 struct rb_node
*p
, *lastp
;
592 lastp
= rb_first(&nommu_region_tree
);
596 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
597 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
598 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
600 while ((p
= rb_next(lastp
))) {
601 region
= rb_entry(p
, struct vm_region
, vm_rb
);
602 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
604 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
605 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
606 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
612 static void validate_nommu_regions(void)
618 * add a region into the global tree
620 static void add_nommu_region(struct vm_region
*region
)
622 struct vm_region
*pregion
;
623 struct rb_node
**p
, *parent
;
625 validate_nommu_regions();
628 p
= &nommu_region_tree
.rb_node
;
631 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
632 if (region
->vm_start
< pregion
->vm_start
)
634 else if (region
->vm_start
> pregion
->vm_start
)
636 else if (pregion
== region
)
642 rb_link_node(®ion
->vm_rb
, parent
, p
);
643 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
645 validate_nommu_regions();
649 * delete a region from the global tree
651 static void delete_nommu_region(struct vm_region
*region
)
653 BUG_ON(!nommu_region_tree
.rb_node
);
655 validate_nommu_regions();
656 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
657 validate_nommu_regions();
661 * free a contiguous series of pages
663 static void free_page_series(unsigned long from
, unsigned long to
)
665 for (; from
< to
; from
+= PAGE_SIZE
) {
666 struct page
*page
= virt_to_page(from
);
668 kdebug("- free %lx", from
);
669 atomic_long_dec(&mmap_pages_allocated
);
670 if (page_count(page
) != 1)
671 kdebug("free page %p: refcount not one: %d",
672 page
, page_count(page
));
678 * release a reference to a region
679 * - the caller must hold the region semaphore for writing, which this releases
680 * - the region may not have been added to the tree yet, in which case vm_top
681 * will equal vm_start
683 static void __put_nommu_region(struct vm_region
*region
)
684 __releases(nommu_region_sem
)
686 kenter("%p{%d}", region
, region
->vm_usage
);
688 BUG_ON(!nommu_region_tree
.rb_node
);
690 if (--region
->vm_usage
== 0) {
691 if (region
->vm_top
> region
->vm_start
)
692 delete_nommu_region(region
);
693 up_write(&nommu_region_sem
);
696 fput(region
->vm_file
);
698 /* IO memory and memory shared directly out of the pagecache
699 * from ramfs/tmpfs mustn't be released here */
700 if (region
->vm_flags
& VM_MAPPED_COPY
) {
701 kdebug("free series");
702 free_page_series(region
->vm_start
, region
->vm_top
);
704 kmem_cache_free(vm_region_jar
, region
);
706 up_write(&nommu_region_sem
);
711 * release a reference to a region
713 static void put_nommu_region(struct vm_region
*region
)
715 down_write(&nommu_region_sem
);
716 __put_nommu_region(region
);
720 * update protection on a vma
722 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
725 struct mm_struct
*mm
= vma
->vm_mm
;
726 long start
= vma
->vm_start
& PAGE_MASK
;
727 while (start
< vma
->vm_end
) {
728 protect_page(mm
, start
, flags
);
731 update_protections(mm
);
736 * add a VMA into a process's mm_struct in the appropriate place in the list
737 * and tree and add to the address space's page tree also if not an anonymous
739 * - should be called with mm->mmap_sem held writelocked
741 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
743 struct vm_area_struct
*pvma
, *prev
;
744 struct address_space
*mapping
;
745 struct rb_node
**p
, *parent
, *rb_prev
;
749 BUG_ON(!vma
->vm_region
);
754 protect_vma(vma
, vma
->vm_flags
);
756 /* add the VMA to the mapping */
758 mapping
= vma
->vm_file
->f_mapping
;
760 i_mmap_lock_write(mapping
);
761 flush_dcache_mmap_lock(mapping
);
762 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
763 flush_dcache_mmap_unlock(mapping
);
764 i_mmap_unlock_write(mapping
);
767 /* add the VMA to the tree */
768 parent
= rb_prev
= NULL
;
769 p
= &mm
->mm_rb
.rb_node
;
772 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
774 /* sort by: start addr, end addr, VMA struct addr in that order
775 * (the latter is necessary as we may get identical VMAs) */
776 if (vma
->vm_start
< pvma
->vm_start
)
778 else if (vma
->vm_start
> pvma
->vm_start
) {
781 } else if (vma
->vm_end
< pvma
->vm_end
)
783 else if (vma
->vm_end
> pvma
->vm_end
) {
786 } else if (vma
< pvma
)
788 else if (vma
> pvma
) {
795 rb_link_node(&vma
->vm_rb
, parent
, p
);
796 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
798 /* add VMA to the VMA list also */
801 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
803 __vma_link_list(mm
, vma
, prev
, parent
);
807 * delete a VMA from its owning mm_struct and address space
809 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
812 struct address_space
*mapping
;
813 struct mm_struct
*mm
= vma
->vm_mm
;
814 struct task_struct
*curr
= current
;
821 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
822 /* if the vma is cached, invalidate the entire cache */
823 if (curr
->vmacache
[i
] == vma
) {
824 vmacache_invalidate(mm
);
829 /* remove the VMA from the mapping */
831 mapping
= vma
->vm_file
->f_mapping
;
833 i_mmap_lock_write(mapping
);
834 flush_dcache_mmap_lock(mapping
);
835 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
836 flush_dcache_mmap_unlock(mapping
);
837 i_mmap_unlock_write(mapping
);
840 /* remove from the MM's tree and list */
841 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
844 vma
->vm_prev
->vm_next
= vma
->vm_next
;
846 mm
->mmap
= vma
->vm_next
;
849 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
853 * destroy a VMA record
855 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
858 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
859 vma
->vm_ops
->close(vma
);
862 put_nommu_region(vma
->vm_region
);
863 kmem_cache_free(vm_area_cachep
, vma
);
867 * look up the first VMA in which addr resides, NULL if none
868 * - should be called with mm->mmap_sem at least held readlocked
870 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
872 struct vm_area_struct
*vma
;
874 /* check the cache first */
875 vma
= vmacache_find(mm
, addr
);
879 /* trawl the list (there may be multiple mappings in which addr
881 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
882 if (vma
->vm_start
> addr
)
884 if (vma
->vm_end
> addr
) {
885 vmacache_update(addr
, vma
);
892 EXPORT_SYMBOL(find_vma
);
896 * - we don't extend stack VMAs under NOMMU conditions
898 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
900 return find_vma(mm
, addr
);
904 * expand a stack to a given address
905 * - not supported under NOMMU conditions
907 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
913 * look up the first VMA exactly that exactly matches addr
914 * - should be called with mm->mmap_sem at least held readlocked
916 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
920 struct vm_area_struct
*vma
;
921 unsigned long end
= addr
+ len
;
923 /* check the cache first */
924 vma
= vmacache_find_exact(mm
, addr
, end
);
928 /* trawl the list (there may be multiple mappings in which addr
930 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
931 if (vma
->vm_start
< addr
)
933 if (vma
->vm_start
> addr
)
935 if (vma
->vm_end
== end
) {
936 vmacache_update(addr
, vma
);
945 * determine whether a mapping should be permitted and, if so, what sort of
946 * mapping we're capable of supporting
948 static int validate_mmap_request(struct file
*file
,
954 unsigned long *_capabilities
)
956 unsigned long capabilities
, rlen
;
959 /* do the simple checks first */
960 if (flags
& MAP_FIXED
) {
962 "%d: Can't do fixed-address/overlay mmap of RAM\n",
967 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
968 (flags
& MAP_TYPE
) != MAP_SHARED
)
974 /* Careful about overflows.. */
975 rlen
= PAGE_ALIGN(len
);
976 if (!rlen
|| rlen
> TASK_SIZE
)
979 /* offset overflow? */
980 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
984 /* files must support mmap */
985 if (!file
->f_op
->mmap
)
988 /* work out if what we've got could possibly be shared
989 * - we support chardevs that provide their own "memory"
990 * - we support files/blockdevs that are memory backed
992 if (file
->f_op
->mmap_capabilities
) {
993 capabilities
= file
->f_op
->mmap_capabilities(file
);
995 /* no explicit capabilities set, so assume some
997 switch (file_inode(file
)->i_mode
& S_IFMT
) {
1000 capabilities
= NOMMU_MAP_COPY
;
1015 /* eliminate any capabilities that we can't support on this
1017 if (!file
->f_op
->get_unmapped_area
)
1018 capabilities
&= ~NOMMU_MAP_DIRECT
;
1019 if (!file
->f_op
->read
)
1020 capabilities
&= ~NOMMU_MAP_COPY
;
1022 /* The file shall have been opened with read permission. */
1023 if (!(file
->f_mode
& FMODE_READ
))
1026 if (flags
& MAP_SHARED
) {
1027 /* do checks for writing, appending and locking */
1028 if ((prot
& PROT_WRITE
) &&
1029 !(file
->f_mode
& FMODE_WRITE
))
1032 if (IS_APPEND(file_inode(file
)) &&
1033 (file
->f_mode
& FMODE_WRITE
))
1036 if (locks_verify_locked(file
))
1039 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1042 /* we mustn't privatise shared mappings */
1043 capabilities
&= ~NOMMU_MAP_COPY
;
1045 /* we're going to read the file into private memory we
1047 if (!(capabilities
& NOMMU_MAP_COPY
))
1050 /* we don't permit a private writable mapping to be
1051 * shared with the backing device */
1052 if (prot
& PROT_WRITE
)
1053 capabilities
&= ~NOMMU_MAP_DIRECT
;
1056 if (capabilities
& NOMMU_MAP_DIRECT
) {
1057 if (((prot
& PROT_READ
) && !(capabilities
& NOMMU_MAP_READ
)) ||
1058 ((prot
& PROT_WRITE
) && !(capabilities
& NOMMU_MAP_WRITE
)) ||
1059 ((prot
& PROT_EXEC
) && !(capabilities
& NOMMU_MAP_EXEC
))
1061 capabilities
&= ~NOMMU_MAP_DIRECT
;
1062 if (flags
& MAP_SHARED
) {
1064 "MAP_SHARED not completely supported on !MMU\n");
1070 /* handle executable mappings and implied executable
1072 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1073 if (prot
& PROT_EXEC
)
1075 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1076 /* handle implication of PROT_EXEC by PROT_READ */
1077 if (current
->personality
& READ_IMPLIES_EXEC
) {
1078 if (capabilities
& NOMMU_MAP_EXEC
)
1081 } else if ((prot
& PROT_READ
) &&
1082 (prot
& PROT_EXEC
) &&
1083 !(capabilities
& NOMMU_MAP_EXEC
)
1085 /* backing file is not executable, try to copy */
1086 capabilities
&= ~NOMMU_MAP_DIRECT
;
1089 /* anonymous mappings are always memory backed and can be
1092 capabilities
= NOMMU_MAP_COPY
;
1094 /* handle PROT_EXEC implication by PROT_READ */
1095 if ((prot
& PROT_READ
) &&
1096 (current
->personality
& READ_IMPLIES_EXEC
))
1100 /* allow the security API to have its say */
1101 ret
= security_mmap_addr(addr
);
1106 *_capabilities
= capabilities
;
1111 * we've determined that we can make the mapping, now translate what we
1112 * now know into VMA flags
1114 static unsigned long determine_vm_flags(struct file
*file
,
1116 unsigned long flags
,
1117 unsigned long capabilities
)
1119 unsigned long vm_flags
;
1121 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1122 /* vm_flags |= mm->def_flags; */
1124 if (!(capabilities
& NOMMU_MAP_DIRECT
)) {
1125 /* attempt to share read-only copies of mapped file chunks */
1126 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1127 if (file
&& !(prot
& PROT_WRITE
))
1128 vm_flags
|= VM_MAYSHARE
;
1130 /* overlay a shareable mapping on the backing device or inode
1131 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1133 vm_flags
|= VM_MAYSHARE
| (capabilities
& NOMMU_VMFLAGS
);
1134 if (flags
& MAP_SHARED
)
1135 vm_flags
|= VM_SHARED
;
1138 /* refuse to let anyone share private mappings with this process if
1139 * it's being traced - otherwise breakpoints set in it may interfere
1140 * with another untraced process
1142 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1143 vm_flags
&= ~VM_MAYSHARE
;
1149 * set up a shared mapping on a file (the driver or filesystem provides and
1152 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1156 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1158 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1164 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1165 * opposed to tried but failed) so we can only give a suitable error as
1166 * it's not possible to make a private copy if MAP_SHARED was given */
1171 * set up a private mapping or an anonymous shared mapping
1173 static int do_mmap_private(struct vm_area_struct
*vma
,
1174 struct vm_region
*region
,
1176 unsigned long capabilities
)
1178 unsigned long total
, point
;
1182 /* invoke the file's mapping function so that it can keep track of
1183 * shared mappings on devices or memory
1184 * - VM_MAYSHARE will be set if it may attempt to share
1186 if (capabilities
& NOMMU_MAP_DIRECT
) {
1187 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1189 /* shouldn't return success if we're not sharing */
1190 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1191 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1197 /* getting an ENOSYS error indicates that direct mmap isn't
1198 * possible (as opposed to tried but failed) so we'll try to
1199 * make a private copy of the data and map that instead */
1203 /* allocate some memory to hold the mapping
1204 * - note that this may not return a page-aligned address if the object
1205 * we're allocating is smaller than a page
1207 order
= get_order(len
);
1208 kdebug("alloc order %d for %lx", order
, len
);
1211 point
= len
>> PAGE_SHIFT
;
1213 /* we don't want to allocate a power-of-2 sized page set */
1214 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1216 kdebug("try to alloc exact %lu pages", total
);
1219 base
= alloc_pages_exact(total
<< PAGE_SHIFT
, GFP_KERNEL
);
1223 atomic_long_add(total
, &mmap_pages_allocated
);
1225 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1226 region
->vm_start
= (unsigned long) base
;
1227 region
->vm_end
= region
->vm_start
+ len
;
1228 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1230 vma
->vm_start
= region
->vm_start
;
1231 vma
->vm_end
= region
->vm_start
+ len
;
1234 /* read the contents of a file into the copy */
1235 mm_segment_t old_fs
;
1238 fpos
= vma
->vm_pgoff
;
1239 fpos
<<= PAGE_SHIFT
;
1243 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1249 /* clear the last little bit */
1251 memset(base
+ ret
, 0, len
- ret
);
1258 free_page_series(region
->vm_start
, region
->vm_top
);
1259 region
->vm_start
= vma
->vm_start
= 0;
1260 region
->vm_end
= vma
->vm_end
= 0;
1265 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266 len
, current
->pid
, current
->comm
);
1272 * handle mapping creation for uClinux
1274 unsigned long do_mmap_pgoff(struct file
*file
,
1278 unsigned long flags
,
1279 unsigned long pgoff
,
1280 unsigned long *populate
)
1282 struct vm_area_struct
*vma
;
1283 struct vm_region
*region
;
1285 unsigned long capabilities
, vm_flags
, result
;
1288 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1292 /* decide whether we should attempt the mapping, and if so what sort of
1294 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1297 kleave(" = %d [val]", ret
);
1301 /* we ignore the address hint */
1303 len
= PAGE_ALIGN(len
);
1305 /* we've determined that we can make the mapping, now translate what we
1306 * now know into VMA flags */
1307 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1309 /* we're going to need to record the mapping */
1310 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1312 goto error_getting_region
;
1314 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1316 goto error_getting_vma
;
1318 region
->vm_usage
= 1;
1319 region
->vm_flags
= vm_flags
;
1320 region
->vm_pgoff
= pgoff
;
1322 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1323 vma
->vm_flags
= vm_flags
;
1324 vma
->vm_pgoff
= pgoff
;
1327 region
->vm_file
= get_file(file
);
1328 vma
->vm_file
= get_file(file
);
1331 down_write(&nommu_region_sem
);
1333 /* if we want to share, we need to check for regions created by other
1334 * mmap() calls that overlap with our proposed mapping
1335 * - we can only share with a superset match on most regular files
1336 * - shared mappings on character devices and memory backed files are
1337 * permitted to overlap inexactly as far as we are concerned for in
1338 * these cases, sharing is handled in the driver or filesystem rather
1341 if (vm_flags
& VM_MAYSHARE
) {
1342 struct vm_region
*pregion
;
1343 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1345 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1346 pgend
= pgoff
+ pglen
;
1348 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1349 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1351 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1354 /* search for overlapping mappings on the same file */
1355 if (file_inode(pregion
->vm_file
) !=
1359 if (pregion
->vm_pgoff
>= pgend
)
1362 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1363 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1364 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1365 if (pgoff
>= rpgend
)
1368 /* handle inexactly overlapping matches between
1370 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1371 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1372 /* new mapping is not a subset of the region */
1373 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1374 goto sharing_violation
;
1378 /* we've found a region we can share */
1379 pregion
->vm_usage
++;
1380 vma
->vm_region
= pregion
;
1381 start
= pregion
->vm_start
;
1382 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1383 vma
->vm_start
= start
;
1384 vma
->vm_end
= start
+ len
;
1386 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1387 kdebug("share copy");
1388 vma
->vm_flags
|= VM_MAPPED_COPY
;
1390 kdebug("share mmap");
1391 ret
= do_mmap_shared_file(vma
);
1393 vma
->vm_region
= NULL
;
1396 pregion
->vm_usage
--;
1398 goto error_just_free
;
1401 fput(region
->vm_file
);
1402 kmem_cache_free(vm_region_jar
, region
);
1408 /* obtain the address at which to make a shared mapping
1409 * - this is the hook for quasi-memory character devices to
1410 * tell us the location of a shared mapping
1412 if (capabilities
& NOMMU_MAP_DIRECT
) {
1413 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1415 if (IS_ERR_VALUE(addr
)) {
1418 goto error_just_free
;
1420 /* the driver refused to tell us where to site
1421 * the mapping so we'll have to attempt to copy
1424 if (!(capabilities
& NOMMU_MAP_COPY
))
1425 goto error_just_free
;
1427 capabilities
&= ~NOMMU_MAP_DIRECT
;
1429 vma
->vm_start
= region
->vm_start
= addr
;
1430 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1435 vma
->vm_region
= region
;
1437 /* set up the mapping
1438 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1440 if (file
&& vma
->vm_flags
& VM_SHARED
)
1441 ret
= do_mmap_shared_file(vma
);
1443 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1445 goto error_just_free
;
1446 add_nommu_region(region
);
1448 /* clear anonymous mappings that don't ask for uninitialized data */
1449 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1450 memset((void *)region
->vm_start
, 0,
1451 region
->vm_end
- region
->vm_start
);
1453 /* okay... we have a mapping; now we have to register it */
1454 result
= vma
->vm_start
;
1456 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1459 add_vma_to_mm(current
->mm
, vma
);
1461 /* we flush the region from the icache only when the first executable
1462 * mapping of it is made */
1463 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1464 flush_icache_range(region
->vm_start
, region
->vm_end
);
1465 region
->vm_icache_flushed
= true;
1468 up_write(&nommu_region_sem
);
1470 kleave(" = %lx", result
);
1474 up_write(&nommu_region_sem
);
1476 if (region
->vm_file
)
1477 fput(region
->vm_file
);
1478 kmem_cache_free(vm_region_jar
, region
);
1481 kmem_cache_free(vm_area_cachep
, vma
);
1482 kleave(" = %d", ret
);
1486 up_write(&nommu_region_sem
);
1487 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1492 kmem_cache_free(vm_region_jar
, region
);
1493 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1494 " from process %d failed\n",
1499 error_getting_region
:
1500 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1501 " from process %d failed\n",
1507 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1508 unsigned long, prot
, unsigned long, flags
,
1509 unsigned long, fd
, unsigned long, pgoff
)
1511 struct file
*file
= NULL
;
1512 unsigned long retval
= -EBADF
;
1514 audit_mmap_fd(fd
, flags
);
1515 if (!(flags
& MAP_ANONYMOUS
)) {
1521 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1523 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1531 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1532 struct mmap_arg_struct
{
1536 unsigned long flags
;
1538 unsigned long offset
;
1541 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1543 struct mmap_arg_struct a
;
1545 if (copy_from_user(&a
, arg
, sizeof(a
)))
1547 if (a
.offset
& ~PAGE_MASK
)
1550 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1551 a
.offset
>> PAGE_SHIFT
);
1553 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1556 * split a vma into two pieces at address 'addr', a new vma is allocated either
1557 * for the first part or the tail.
1559 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1560 unsigned long addr
, int new_below
)
1562 struct vm_area_struct
*new;
1563 struct vm_region
*region
;
1564 unsigned long npages
;
1568 /* we're only permitted to split anonymous regions (these should have
1569 * only a single usage on the region) */
1573 if (mm
->map_count
>= sysctl_max_map_count
)
1576 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1580 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1582 kmem_cache_free(vm_region_jar
, region
);
1586 /* most fields are the same, copy all, and then fixup */
1588 *region
= *vma
->vm_region
;
1589 new->vm_region
= region
;
1591 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1594 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1596 region
->vm_start
= new->vm_start
= addr
;
1597 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1600 if (new->vm_ops
&& new->vm_ops
->open
)
1601 new->vm_ops
->open(new);
1603 delete_vma_from_mm(vma
);
1604 down_write(&nommu_region_sem
);
1605 delete_nommu_region(vma
->vm_region
);
1607 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1608 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1610 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1611 vma
->vm_region
->vm_top
= addr
;
1613 add_nommu_region(vma
->vm_region
);
1614 add_nommu_region(new->vm_region
);
1615 up_write(&nommu_region_sem
);
1616 add_vma_to_mm(mm
, vma
);
1617 add_vma_to_mm(mm
, new);
1622 * shrink a VMA by removing the specified chunk from either the beginning or
1625 static int shrink_vma(struct mm_struct
*mm
,
1626 struct vm_area_struct
*vma
,
1627 unsigned long from
, unsigned long to
)
1629 struct vm_region
*region
;
1633 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1635 delete_vma_from_mm(vma
);
1636 if (from
> vma
->vm_start
)
1640 add_vma_to_mm(mm
, vma
);
1642 /* cut the backing region down to size */
1643 region
= vma
->vm_region
;
1644 BUG_ON(region
->vm_usage
!= 1);
1646 down_write(&nommu_region_sem
);
1647 delete_nommu_region(region
);
1648 if (from
> region
->vm_start
) {
1649 to
= region
->vm_top
;
1650 region
->vm_top
= region
->vm_end
= from
;
1652 region
->vm_start
= to
;
1654 add_nommu_region(region
);
1655 up_write(&nommu_region_sem
);
1657 free_page_series(from
, to
);
1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664 * VMA, though it need not cover the whole VMA
1666 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1668 struct vm_area_struct
*vma
;
1672 kenter(",%lx,%zx", start
, len
);
1674 len
= PAGE_ALIGN(len
);
1680 /* find the first potentially overlapping VMA */
1681 vma
= find_vma(mm
, start
);
1686 "munmap of memory not mmapped by process %d"
1687 " (%s): 0x%lx-0x%lx\n",
1688 current
->pid
, current
->comm
,
1689 start
, start
+ len
- 1);
1695 /* we're allowed to split an anonymous VMA but not a file-backed one */
1698 if (start
> vma
->vm_start
) {
1699 kleave(" = -EINVAL [miss]");
1702 if (end
== vma
->vm_end
)
1703 goto erase_whole_vma
;
1706 kleave(" = -EINVAL [split file]");
1709 /* the chunk must be a subset of the VMA found */
1710 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1711 goto erase_whole_vma
;
1712 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1713 kleave(" = -EINVAL [superset]");
1716 if (start
& ~PAGE_MASK
) {
1717 kleave(" = -EINVAL [unaligned start]");
1720 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1721 kleave(" = -EINVAL [unaligned split]");
1724 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1725 ret
= split_vma(mm
, vma
, start
, 1);
1727 kleave(" = %d [split]", ret
);
1731 return shrink_vma(mm
, vma
, start
, end
);
1735 delete_vma_from_mm(vma
);
1736 delete_vma(mm
, vma
);
1740 EXPORT_SYMBOL(do_munmap
);
1742 int vm_munmap(unsigned long addr
, size_t len
)
1744 struct mm_struct
*mm
= current
->mm
;
1747 down_write(&mm
->mmap_sem
);
1748 ret
= do_munmap(mm
, addr
, len
);
1749 up_write(&mm
->mmap_sem
);
1752 EXPORT_SYMBOL(vm_munmap
);
1754 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1756 return vm_munmap(addr
, len
);
1760 * release all the mappings made in a process's VM space
1762 void exit_mmap(struct mm_struct
*mm
)
1764 struct vm_area_struct
*vma
;
1773 while ((vma
= mm
->mmap
)) {
1774 mm
->mmap
= vma
->vm_next
;
1775 delete_vma_from_mm(vma
);
1776 delete_vma(mm
, vma
);
1783 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1789 * expand (or shrink) an existing mapping, potentially moving it at the same
1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1792 * under NOMMU conditions, we only permit changing a mapping's size, and only
1793 * as long as it stays within the region allocated by do_mmap_private() and the
1794 * block is not shareable
1796 * MREMAP_FIXED is not supported under NOMMU conditions
1798 static unsigned long do_mremap(unsigned long addr
,
1799 unsigned long old_len
, unsigned long new_len
,
1800 unsigned long flags
, unsigned long new_addr
)
1802 struct vm_area_struct
*vma
;
1804 /* insanity checks first */
1805 old_len
= PAGE_ALIGN(old_len
);
1806 new_len
= PAGE_ALIGN(new_len
);
1807 if (old_len
== 0 || new_len
== 0)
1808 return (unsigned long) -EINVAL
;
1810 if (addr
& ~PAGE_MASK
)
1813 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1814 return (unsigned long) -EINVAL
;
1816 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1818 return (unsigned long) -EINVAL
;
1820 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1821 return (unsigned long) -EFAULT
;
1823 if (vma
->vm_flags
& VM_MAYSHARE
)
1824 return (unsigned long) -EPERM
;
1826 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1827 return (unsigned long) -ENOMEM
;
1829 /* all checks complete - do it */
1830 vma
->vm_end
= vma
->vm_start
+ new_len
;
1831 return vma
->vm_start
;
1834 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1835 unsigned long, new_len
, unsigned long, flags
,
1836 unsigned long, new_addr
)
1840 down_write(¤t
->mm
->mmap_sem
);
1841 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1842 up_write(¤t
->mm
->mmap_sem
);
1846 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1847 unsigned long address
, unsigned int flags
,
1848 unsigned int *page_mask
)
1854 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1855 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1857 if (addr
!= (pfn
<< PAGE_SHIFT
))
1860 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1863 EXPORT_SYMBOL(remap_pfn_range
);
1865 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1867 unsigned long pfn
= start
>> PAGE_SHIFT
;
1868 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1870 pfn
+= vma
->vm_pgoff
;
1871 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1873 EXPORT_SYMBOL(vm_iomap_memory
);
1875 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1876 unsigned long pgoff
)
1878 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1880 if (!(vma
->vm_flags
& VM_USERMAP
))
1883 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1884 vma
->vm_end
= vma
->vm_start
+ size
;
1888 EXPORT_SYMBOL(remap_vmalloc_range
);
1890 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1891 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1896 void unmap_mapping_range(struct address_space
*mapping
,
1897 loff_t
const holebegin
, loff_t
const holelen
,
1901 EXPORT_SYMBOL(unmap_mapping_range
);
1904 * Check that a process has enough memory to allocate a new virtual
1905 * mapping. 0 means there is enough memory for the allocation to
1906 * succeed and -ENOMEM implies there is not.
1908 * We currently support three overcommit policies, which are set via the
1909 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912 * Additional code 2002 Jul 20 by Robert Love.
1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1916 * Note this is a helper function intended to be used by LSMs which
1917 * wish to use this logic.
1919 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1921 long free
, allowed
, reserve
;
1923 vm_acct_memory(pages
);
1926 * Sometimes we want to use more memory than we have
1928 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1931 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1932 free
= global_page_state(NR_FREE_PAGES
);
1933 free
+= global_page_state(NR_FILE_PAGES
);
1936 * shmem pages shouldn't be counted as free in this
1937 * case, they can't be purged, only swapped out, and
1938 * that won't affect the overall amount of available
1939 * memory in the system.
1941 free
-= global_page_state(NR_SHMEM
);
1943 free
+= get_nr_swap_pages();
1946 * Any slabs which are created with the
1947 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948 * which are reclaimable, under pressure. The dentry
1949 * cache and most inode caches should fall into this
1951 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1954 * Leave reserved pages. The pages are not for anonymous pages.
1956 if (free
<= totalreserve_pages
)
1959 free
-= totalreserve_pages
;
1962 * Reserve some for root
1965 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1973 allowed
= vm_commit_limit();
1975 * Reserve some 3% for root
1978 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1981 * Don't let a single process grow so big a user can't recover
1984 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1985 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
1988 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1992 vm_unacct_memory(pages
);
1997 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2002 EXPORT_SYMBOL(filemap_fault
);
2004 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2008 EXPORT_SYMBOL(filemap_map_pages
);
2010 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
2011 unsigned long addr
, void *buf
, int len
, int write
)
2013 struct vm_area_struct
*vma
;
2015 down_read(&mm
->mmap_sem
);
2017 /* the access must start within one of the target process's mappings */
2018 vma
= find_vma(mm
, addr
);
2020 /* don't overrun this mapping */
2021 if (addr
+ len
>= vma
->vm_end
)
2022 len
= vma
->vm_end
- addr
;
2024 /* only read or write mappings where it is permitted */
2025 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2026 copy_to_user_page(vma
, NULL
, addr
,
2027 (void *) addr
, buf
, len
);
2028 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2029 copy_from_user_page(vma
, NULL
, addr
,
2030 buf
, (void *) addr
, len
);
2037 up_read(&mm
->mmap_sem
);
2043 * @access_remote_vm - access another process' address space
2044 * @mm: the mm_struct of the target address space
2045 * @addr: start address to access
2046 * @buf: source or destination buffer
2047 * @len: number of bytes to transfer
2048 * @write: whether the access is a write
2050 * The caller must hold a reference on @mm.
2052 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2053 void *buf
, int len
, int write
)
2055 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2059 * Access another process' address space.
2060 * - source/target buffer must be kernel space
2062 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2064 struct mm_struct
*mm
;
2066 if (addr
+ len
< addr
)
2069 mm
= get_task_mm(tsk
);
2073 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081 * @inode: The inode to check
2082 * @size: The current filesize of the inode
2083 * @newsize: The proposed filesize of the inode
2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086 * make sure that that any outstanding VMAs aren't broken and then shrink the
2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088 * automatically grant mappings that are too large.
2090 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2093 struct vm_area_struct
*vma
;
2094 struct vm_region
*region
;
2096 size_t r_size
, r_top
;
2098 low
= newsize
>> PAGE_SHIFT
;
2099 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2101 down_write(&nommu_region_sem
);
2102 i_mmap_lock_read(inode
->i_mapping
);
2104 /* search for VMAs that fall within the dead zone */
2105 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2106 /* found one - only interested if it's shared out of the page
2108 if (vma
->vm_flags
& VM_SHARED
) {
2109 i_mmap_unlock_read(inode
->i_mapping
);
2110 up_write(&nommu_region_sem
);
2111 return -ETXTBSY
; /* not quite true, but near enough */
2115 /* reduce any regions that overlap the dead zone - if in existence,
2116 * these will be pointed to by VMAs that don't overlap the dead zone
2118 * we don't check for any regions that start beyond the EOF as there
2121 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
2122 if (!(vma
->vm_flags
& VM_SHARED
))
2125 region
= vma
->vm_region
;
2126 r_size
= region
->vm_top
- region
->vm_start
;
2127 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2129 if (r_top
> newsize
) {
2130 region
->vm_top
-= r_top
- newsize
;
2131 if (region
->vm_end
> region
->vm_top
)
2132 region
->vm_end
= region
->vm_top
;
2136 i_mmap_unlock_read(inode
->i_mapping
);
2137 up_write(&nommu_region_sem
);
2142 * Initialise sysctl_user_reserve_kbytes.
2144 * This is intended to prevent a user from starting a single memory hogging
2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2148 * The default value is min(3% of free memory, 128MB)
2149 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2151 static int __meminit
init_user_reserve(void)
2153 unsigned long free_kbytes
;
2155 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2157 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2160 module_init(init_user_reserve
)
2163 * Initialise sysctl_admin_reserve_kbytes.
2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166 * to log in and kill a memory hogging process.
2168 * Systems with more than 256MB will reserve 8MB, enough to recover
2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170 * only reserve 3% of free pages by default.
2172 static int __meminit
init_admin_reserve(void)
2174 unsigned long free_kbytes
;
2176 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2178 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2181 module_init(init_admin_reserve
)