2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per cpu nohz control structure
36 DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
39 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 static ktime_t last_jiffies_update
;
43 struct tick_sched
*tick_get_tick_sched(int cpu
)
45 return &per_cpu(tick_cpu_sched
, cpu
);
49 * Must be called with interrupts disabled !
51 static void tick_do_update_jiffies64(ktime_t now
)
53 unsigned long ticks
= 0;
57 * Do a quick check without holding jiffies_lock:
59 delta
= ktime_sub(now
, last_jiffies_update
);
60 if (delta
.tv64
< tick_period
.tv64
)
63 /* Reevalute with jiffies_lock held */
64 write_seqlock(&jiffies_lock
);
66 delta
= ktime_sub(now
, last_jiffies_update
);
67 if (delta
.tv64
>= tick_period
.tv64
) {
69 delta
= ktime_sub(delta
, tick_period
);
70 last_jiffies_update
= ktime_add(last_jiffies_update
,
73 /* Slow path for long timeouts */
74 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
75 s64 incr
= ktime_to_ns(tick_period
);
77 ticks
= ktime_divns(delta
, incr
);
79 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
84 /* Keep the tick_next_period variable up to date */
85 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
87 write_sequnlock(&jiffies_lock
);
91 * Initialize and return retrieve the jiffies update.
93 static ktime_t
tick_init_jiffy_update(void)
97 write_seqlock(&jiffies_lock
);
98 /* Did we start the jiffies update yet ? */
99 if (last_jiffies_update
.tv64
== 0)
100 last_jiffies_update
= tick_next_period
;
101 period
= last_jiffies_update
;
102 write_sequnlock(&jiffies_lock
);
107 static void tick_sched_do_timer(ktime_t now
)
109 int cpu
= smp_processor_id();
111 #ifdef CONFIG_NO_HZ_COMMON
113 * Check if the do_timer duty was dropped. We don't care about
114 * concurrency: This happens only when the cpu in charge went
115 * into a long sleep. If two cpus happen to assign themself to
116 * this duty, then the jiffies update is still serialized by
119 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
120 && !tick_nohz_full_cpu(cpu
))
121 tick_do_timer_cpu
= cpu
;
124 /* Check, if the jiffies need an update */
125 if (tick_do_timer_cpu
== cpu
)
126 tick_do_update_jiffies64(now
);
129 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
131 #ifdef CONFIG_NO_HZ_COMMON
133 * When we are idle and the tick is stopped, we have to touch
134 * the watchdog as we might not schedule for a really long
135 * time. This happens on complete idle SMP systems while
136 * waiting on the login prompt. We also increment the "start of
137 * idle" jiffy stamp so the idle accounting adjustment we do
138 * when we go busy again does not account too much ticks.
140 if (ts
->tick_stopped
) {
141 touch_softlockup_watchdog();
142 if (is_idle_task(current
))
146 update_process_times(user_mode(regs
));
147 profile_tick(CPU_PROFILING
);
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask
;
152 bool have_nohz_full_mask
;
154 static bool can_stop_full_tick(void)
156 WARN_ON_ONCE(!irqs_disabled());
158 if (!sched_can_stop_tick()) {
159 trace_tick_stop(0, "more than 1 task in runqueue\n");
163 if (!posix_cpu_timers_can_stop_tick(current
)) {
164 trace_tick_stop(0, "posix timers running\n");
168 if (!perf_event_can_stop_tick()) {
169 trace_tick_stop(0, "perf events running\n");
173 /* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
176 * TODO: kick full dynticks CPUs when
177 * sched_clock_stable is set.
179 if (!sched_clock_stable
) {
180 trace_tick_stop(0, "unstable sched clock\n");
188 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
);
191 * Re-evaluate the need for the tick on the current CPU
192 * and restart it if necessary.
194 void tick_nohz_full_check(void)
196 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
198 if (tick_nohz_full_cpu(smp_processor_id())) {
199 if (ts
->tick_stopped
&& !is_idle_task(current
)) {
200 if (!can_stop_full_tick())
201 tick_nohz_restart_sched_tick(ts
, ktime_get());
206 static void nohz_full_kick_work_func(struct irq_work
*work
)
208 tick_nohz_full_check();
211 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
212 .func
= nohz_full_kick_work_func
,
216 * Kick the current CPU if it's full dynticks in order to force it to
217 * re-evaluate its dependency on the tick and restart it if necessary.
219 void tick_nohz_full_kick(void)
221 if (tick_nohz_full_cpu(smp_processor_id()))
222 irq_work_queue(&__get_cpu_var(nohz_full_kick_work
));
225 static void nohz_full_kick_ipi(void *info
)
227 tick_nohz_full_check();
231 * Kick all full dynticks CPUs in order to force these to re-evaluate
232 * their dependency on the tick and restart it if necessary.
234 void tick_nohz_full_kick_all(void)
236 if (!have_nohz_full_mask
)
240 smp_call_function_many(nohz_full_mask
,
241 nohz_full_kick_ipi
, NULL
, false);
246 * Re-evaluate the need for the tick as we switch the current task.
247 * It might need the tick due to per task/process properties:
248 * perf events, posix cpu timers, ...
250 void tick_nohz_task_switch(struct task_struct
*tsk
)
254 local_irq_save(flags
);
256 if (!tick_nohz_full_cpu(smp_processor_id()))
259 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
260 tick_nohz_full_kick();
263 local_irq_restore(flags
);
266 int tick_nohz_full_cpu(int cpu
)
268 if (!have_nohz_full_mask
)
271 return cpumask_test_cpu(cpu
, nohz_full_mask
);
274 /* Parse the boot-time nohz CPU list from the kernel parameters. */
275 static int __init
tick_nohz_full_setup(char *str
)
279 alloc_bootmem_cpumask_var(&nohz_full_mask
);
280 if (cpulist_parse(str
, nohz_full_mask
) < 0) {
281 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
285 cpu
= smp_processor_id();
286 if (cpumask_test_cpu(cpu
, nohz_full_mask
)) {
287 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu
);
288 cpumask_clear_cpu(cpu
, nohz_full_mask
);
290 have_nohz_full_mask
= true;
294 __setup("nohz_full=", tick_nohz_full_setup
);
296 static int __cpuinit
tick_nohz_cpu_down_callback(struct notifier_block
*nfb
,
297 unsigned long action
,
300 unsigned int cpu
= (unsigned long)hcpu
;
302 switch (action
& ~CPU_TASKS_FROZEN
) {
303 case CPU_DOWN_PREPARE
:
305 * If we handle the timekeeping duty for full dynticks CPUs,
306 * we can't safely shutdown that CPU.
308 if (have_nohz_full_mask
&& tick_do_timer_cpu
== cpu
)
316 * Worst case string length in chunks of CPU range seems 2 steps
317 * separations: 0,2,4,6,...
318 * This is NR_CPUS + sizeof('\0')
320 static char __initdata nohz_full_buf
[NR_CPUS
+ 1];
322 static int tick_nohz_init_all(void)
326 #ifdef CONFIG_NO_HZ_FULL_ALL
327 if (!alloc_cpumask_var(&nohz_full_mask
, GFP_KERNEL
)) {
328 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
332 cpumask_setall(nohz_full_mask
);
333 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask
);
334 have_nohz_full_mask
= true;
339 void __init
tick_nohz_init(void)
343 if (!have_nohz_full_mask
) {
344 if (tick_nohz_init_all() < 0)
348 cpu_notifier(tick_nohz_cpu_down_callback
, 0);
350 /* Make sure full dynticks CPU are also RCU nocbs */
351 for_each_cpu(cpu
, nohz_full_mask
) {
352 if (!rcu_is_nocb_cpu(cpu
)) {
353 pr_warning("NO_HZ: CPU %d is not RCU nocb: "
354 "cleared from nohz_full range", cpu
);
355 cpumask_clear_cpu(cpu
, nohz_full_mask
);
359 cpulist_scnprintf(nohz_full_buf
, sizeof(nohz_full_buf
), nohz_full_mask
);
360 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf
);
363 #define have_nohz_full_mask (0)
367 * NOHZ - aka dynamic tick functionality
369 #ifdef CONFIG_NO_HZ_COMMON
373 int tick_nohz_enabled __read_mostly
= 1;
376 * Enable / Disable tickless mode
378 static int __init
setup_tick_nohz(char *str
)
380 if (!strcmp(str
, "off"))
381 tick_nohz_enabled
= 0;
382 else if (!strcmp(str
, "on"))
383 tick_nohz_enabled
= 1;
389 __setup("nohz=", setup_tick_nohz
);
392 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
394 * Called from interrupt entry when the CPU was idle
396 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
397 * must be updated. Otherwise an interrupt handler could use a stale jiffy
398 * value. We do this unconditionally on any cpu, as we don't know whether the
399 * cpu, which has the update task assigned is in a long sleep.
401 static void tick_nohz_update_jiffies(ktime_t now
)
403 int cpu
= smp_processor_id();
404 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
407 ts
->idle_waketime
= now
;
409 local_irq_save(flags
);
410 tick_do_update_jiffies64(now
);
411 local_irq_restore(flags
);
413 touch_softlockup_watchdog();
417 * Updates the per cpu time idle statistics counters
420 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
424 if (ts
->idle_active
) {
425 delta
= ktime_sub(now
, ts
->idle_entrytime
);
426 if (nr_iowait_cpu(cpu
) > 0)
427 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
429 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
430 ts
->idle_entrytime
= now
;
433 if (last_update_time
)
434 *last_update_time
= ktime_to_us(now
);
438 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
440 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
442 update_ts_time_stats(cpu
, ts
, now
, NULL
);
445 sched_clock_idle_wakeup_event(0);
448 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
450 ktime_t now
= ktime_get();
452 ts
->idle_entrytime
= now
;
454 sched_clock_idle_sleep_event();
459 * get_cpu_idle_time_us - get the total idle time of a cpu
460 * @cpu: CPU number to query
461 * @last_update_time: variable to store update time in. Do not update
464 * Return the cummulative idle time (since boot) for a given
465 * CPU, in microseconds.
467 * This time is measured via accounting rather than sampling,
468 * and is as accurate as ktime_get() is.
470 * This function returns -1 if NOHZ is not enabled.
472 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
474 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
477 if (!tick_nohz_enabled
)
481 if (last_update_time
) {
482 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
483 idle
= ts
->idle_sleeptime
;
485 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
486 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
488 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
490 idle
= ts
->idle_sleeptime
;
494 return ktime_to_us(idle
);
497 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
500 * get_cpu_iowait_time_us - get the total iowait time of a cpu
501 * @cpu: CPU number to query
502 * @last_update_time: variable to store update time in. Do not update
505 * Return the cummulative iowait time (since boot) for a given
506 * CPU, in microseconds.
508 * This time is measured via accounting rather than sampling,
509 * and is as accurate as ktime_get() is.
511 * This function returns -1 if NOHZ is not enabled.
513 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
515 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
518 if (!tick_nohz_enabled
)
522 if (last_update_time
) {
523 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
524 iowait
= ts
->iowait_sleeptime
;
526 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
527 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
529 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
531 iowait
= ts
->iowait_sleeptime
;
535 return ktime_to_us(iowait
);
537 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
539 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
540 ktime_t now
, int cpu
)
542 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
543 ktime_t last_update
, expires
, ret
= { .tv64
= 0 };
544 unsigned long rcu_delta_jiffies
;
545 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
548 /* Read jiffies and the time when jiffies were updated last */
550 seq
= read_seqbegin(&jiffies_lock
);
551 last_update
= last_jiffies_update
;
552 last_jiffies
= jiffies
;
553 time_delta
= timekeeping_max_deferment();
554 } while (read_seqretry(&jiffies_lock
, seq
));
556 if (rcu_needs_cpu(cpu
, &rcu_delta_jiffies
) ||
557 arch_needs_cpu(cpu
) || irq_work_needs_cpu()) {
558 next_jiffies
= last_jiffies
+ 1;
561 /* Get the next timer wheel timer */
562 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
563 delta_jiffies
= next_jiffies
- last_jiffies
;
564 if (rcu_delta_jiffies
< delta_jiffies
) {
565 next_jiffies
= last_jiffies
+ rcu_delta_jiffies
;
566 delta_jiffies
= rcu_delta_jiffies
;
571 * Do not stop the tick, if we are only one off (or less)
572 * or if the cpu is required for RCU:
574 if (!ts
->tick_stopped
&& delta_jiffies
<= 1)
577 /* Schedule the tick, if we are at least one jiffie off */
578 if ((long)delta_jiffies
>= 1) {
581 * If this cpu is the one which updates jiffies, then
582 * give up the assignment and let it be taken by the
583 * cpu which runs the tick timer next, which might be
584 * this cpu as well. If we don't drop this here the
585 * jiffies might be stale and do_timer() never
586 * invoked. Keep track of the fact that it was the one
587 * which had the do_timer() duty last. If this cpu is
588 * the one which had the do_timer() duty last, we
589 * limit the sleep time to the timekeeping
590 * max_deferement value which we retrieved
591 * above. Otherwise we can sleep as long as we want.
593 if (cpu
== tick_do_timer_cpu
) {
594 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
595 ts
->do_timer_last
= 1;
596 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
597 time_delta
= KTIME_MAX
;
598 ts
->do_timer_last
= 0;
599 } else if (!ts
->do_timer_last
) {
600 time_delta
= KTIME_MAX
;
603 #ifdef CONFIG_NO_HZ_FULL
605 time_delta
= min(time_delta
,
606 scheduler_tick_max_deferment());
611 * calculate the expiry time for the next timer wheel
612 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
613 * that there is no timer pending or at least extremely
614 * far into the future (12 days for HZ=1000). In this
615 * case we set the expiry to the end of time.
617 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
619 * Calculate the time delta for the next timer event.
620 * If the time delta exceeds the maximum time delta
621 * permitted by the current clocksource then adjust
622 * the time delta accordingly to ensure the
623 * clocksource does not wrap.
625 time_delta
= min_t(u64
, time_delta
,
626 tick_period
.tv64
* delta_jiffies
);
629 if (time_delta
< KTIME_MAX
)
630 expires
= ktime_add_ns(last_update
, time_delta
);
632 expires
.tv64
= KTIME_MAX
;
634 /* Skip reprogram of event if its not changed */
635 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
641 * nohz_stop_sched_tick can be called several times before
642 * the nohz_restart_sched_tick is called. This happens when
643 * interrupts arrive which do not cause a reschedule. In the
644 * first call we save the current tick time, so we can restart
645 * the scheduler tick in nohz_restart_sched_tick.
647 if (!ts
->tick_stopped
) {
648 nohz_balance_enter_idle(cpu
);
649 calc_load_enter_idle();
651 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
652 ts
->tick_stopped
= 1;
653 trace_tick_stop(1, " ");
657 * If the expiration time == KTIME_MAX, then
658 * in this case we simply stop the tick timer.
660 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
661 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
662 hrtimer_cancel(&ts
->sched_timer
);
666 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
667 hrtimer_start(&ts
->sched_timer
, expires
,
668 HRTIMER_MODE_ABS_PINNED
);
669 /* Check, if the timer was already in the past */
670 if (hrtimer_active(&ts
->sched_timer
))
672 } else if (!tick_program_event(expires
, 0))
675 * We are past the event already. So we crossed a
676 * jiffie boundary. Update jiffies and raise the
679 tick_do_update_jiffies64(ktime_get());
681 raise_softirq_irqoff(TIMER_SOFTIRQ
);
683 ts
->next_jiffies
= next_jiffies
;
684 ts
->last_jiffies
= last_jiffies
;
685 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
690 static void tick_nohz_full_stop_tick(struct tick_sched
*ts
)
692 #ifdef CONFIG_NO_HZ_FULL
693 int cpu
= smp_processor_id();
695 if (!tick_nohz_full_cpu(cpu
) || is_idle_task(current
))
698 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
701 if (!can_stop_full_tick())
704 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
708 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
711 * If this cpu is offline and it is the one which updates
712 * jiffies, then give up the assignment and let it be taken by
713 * the cpu which runs the tick timer next. If we don't drop
714 * this here the jiffies might be stale and do_timer() never
717 if (unlikely(!cpu_online(cpu
))) {
718 if (cpu
== tick_do_timer_cpu
)
719 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
723 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
724 ts
->sleep_length
= (ktime_t
) { .tv64
= NSEC_PER_SEC
/HZ
};
731 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
732 static int ratelimit
;
734 if (ratelimit
< 10 &&
735 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
736 pr_warn("NOHZ: local_softirq_pending %02x\n",
737 (unsigned int) local_softirq_pending());
743 if (have_nohz_full_mask
) {
745 * Keep the tick alive to guarantee timekeeping progression
746 * if there are full dynticks CPUs around
748 if (tick_do_timer_cpu
== cpu
)
751 * Boot safety: make sure the timekeeping duty has been
752 * assigned before entering dyntick-idle mode,
754 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
761 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
763 ktime_t now
, expires
;
764 int cpu
= smp_processor_id();
766 now
= tick_nohz_start_idle(cpu
, ts
);
768 if (can_stop_idle_tick(cpu
, ts
)) {
769 int was_stopped
= ts
->tick_stopped
;
773 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
774 if (expires
.tv64
> 0LL) {
776 ts
->idle_expires
= expires
;
779 if (!was_stopped
&& ts
->tick_stopped
)
780 ts
->idle_jiffies
= ts
->last_jiffies
;
785 * tick_nohz_idle_enter - stop the idle tick from the idle task
787 * When the next event is more than a tick into the future, stop the idle tick
788 * Called when we start the idle loop.
790 * The arch is responsible of calling:
792 * - rcu_idle_enter() after its last use of RCU before the CPU is put
794 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
796 void tick_nohz_idle_enter(void)
798 struct tick_sched
*ts
;
800 WARN_ON_ONCE(irqs_disabled());
803 * Update the idle state in the scheduler domain hierarchy
804 * when tick_nohz_stop_sched_tick() is called from the idle loop.
805 * State will be updated to busy during the first busy tick after
808 set_cpu_sd_state_idle();
812 ts
= &__get_cpu_var(tick_cpu_sched
);
814 * set ts->inidle unconditionally. even if the system did not
815 * switch to nohz mode the cpu frequency governers rely on the
816 * update of the idle time accounting in tick_nohz_start_idle().
819 __tick_nohz_idle_enter(ts
);
823 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter
);
826 * tick_nohz_irq_exit - update next tick event from interrupt exit
828 * When an interrupt fires while we are idle and it doesn't cause
829 * a reschedule, it may still add, modify or delete a timer, enqueue
830 * an RCU callback, etc...
831 * So we need to re-calculate and reprogram the next tick event.
833 void tick_nohz_irq_exit(void)
835 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
838 __tick_nohz_idle_enter(ts
);
840 tick_nohz_full_stop_tick(ts
);
844 * tick_nohz_get_sleep_length - return the length of the current sleep
846 * Called from power state control code with interrupts disabled
848 ktime_t
tick_nohz_get_sleep_length(void)
850 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
852 return ts
->sleep_length
;
855 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
857 hrtimer_cancel(&ts
->sched_timer
);
858 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
861 /* Forward the time to expire in the future */
862 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
864 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
865 hrtimer_start_expires(&ts
->sched_timer
,
866 HRTIMER_MODE_ABS_PINNED
);
867 /* Check, if the timer was already in the past */
868 if (hrtimer_active(&ts
->sched_timer
))
871 if (!tick_program_event(
872 hrtimer_get_expires(&ts
->sched_timer
), 0))
875 /* Reread time and update jiffies */
877 tick_do_update_jiffies64(now
);
881 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
883 /* Update jiffies first */
884 tick_do_update_jiffies64(now
);
885 update_cpu_load_nohz();
887 calc_load_exit_idle();
888 touch_softlockup_watchdog();
890 * Cancel the scheduled timer and restore the tick
892 ts
->tick_stopped
= 0;
893 ts
->idle_exittime
= now
;
895 tick_nohz_restart(ts
, now
);
898 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
900 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
903 if (vtime_accounting_enabled())
906 * We stopped the tick in idle. Update process times would miss the
907 * time we slept as update_process_times does only a 1 tick
908 * accounting. Enforce that this is accounted to idle !
910 ticks
= jiffies
- ts
->idle_jiffies
;
912 * We might be one off. Do not randomly account a huge number of ticks!
914 if (ticks
&& ticks
< LONG_MAX
)
915 account_idle_ticks(ticks
);
920 * tick_nohz_idle_exit - restart the idle tick from the idle task
922 * Restart the idle tick when the CPU is woken up from idle
923 * This also exit the RCU extended quiescent state. The CPU
924 * can use RCU again after this function is called.
926 void tick_nohz_idle_exit(void)
928 int cpu
= smp_processor_id();
929 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
934 WARN_ON_ONCE(!ts
->inidle
);
938 if (ts
->idle_active
|| ts
->tick_stopped
)
942 tick_nohz_stop_idle(cpu
, now
);
944 if (ts
->tick_stopped
) {
945 tick_nohz_restart_sched_tick(ts
, now
);
946 tick_nohz_account_idle_ticks(ts
);
951 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit
);
953 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
955 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
956 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
960 * The nohz low res interrupt handler
962 static void tick_nohz_handler(struct clock_event_device
*dev
)
964 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
965 struct pt_regs
*regs
= get_irq_regs();
966 ktime_t now
= ktime_get();
968 dev
->next_event
.tv64
= KTIME_MAX
;
970 tick_sched_do_timer(now
);
971 tick_sched_handle(ts
, regs
);
973 while (tick_nohz_reprogram(ts
, now
)) {
975 tick_do_update_jiffies64(now
);
980 * tick_nohz_switch_to_nohz - switch to nohz mode
982 static void tick_nohz_switch_to_nohz(void)
984 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
987 if (!tick_nohz_enabled
)
991 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
996 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
999 * Recycle the hrtimer in ts, so we can share the
1000 * hrtimer_forward with the highres code.
1002 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1003 /* Get the next period */
1004 next
= tick_init_jiffy_update();
1007 hrtimer_set_expires(&ts
->sched_timer
, next
);
1008 if (!tick_program_event(next
, 0))
1010 next
= ktime_add(next
, tick_period
);
1016 * When NOHZ is enabled and the tick is stopped, we need to kick the
1017 * tick timer from irq_enter() so that the jiffies update is kept
1018 * alive during long running softirqs. That's ugly as hell, but
1019 * correctness is key even if we need to fix the offending softirq in
1022 * Note, this is different to tick_nohz_restart. We just kick the
1023 * timer and do not touch the other magic bits which need to be done
1024 * when idle is left.
1026 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
1029 /* Switch back to 2.6.27 behaviour */
1031 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1035 * Do not touch the tick device, when the next expiry is either
1036 * already reached or less/equal than the tick period.
1038 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
1039 if (delta
.tv64
<= tick_period
.tv64
)
1042 tick_nohz_restart(ts
, now
);
1046 static inline void tick_check_nohz(int cpu
)
1048 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1051 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1054 if (ts
->idle_active
)
1055 tick_nohz_stop_idle(cpu
, now
);
1056 if (ts
->tick_stopped
) {
1057 tick_nohz_update_jiffies(now
);
1058 tick_nohz_kick_tick(cpu
, now
);
1064 static inline void tick_nohz_switch_to_nohz(void) { }
1065 static inline void tick_check_nohz(int cpu
) { }
1067 #endif /* CONFIG_NO_HZ_COMMON */
1070 * Called from irq_enter to notify about the possible interruption of idle()
1072 void tick_check_idle(int cpu
)
1074 tick_check_oneshot_broadcast(cpu
);
1075 tick_check_nohz(cpu
);
1079 * High resolution timer specific code
1081 #ifdef CONFIG_HIGH_RES_TIMERS
1083 * We rearm the timer until we get disabled by the idle code.
1084 * Called with interrupts disabled.
1086 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1088 struct tick_sched
*ts
=
1089 container_of(timer
, struct tick_sched
, sched_timer
);
1090 struct pt_regs
*regs
= get_irq_regs();
1091 ktime_t now
= ktime_get();
1093 tick_sched_do_timer(now
);
1096 * Do not call, when we are not in irq context and have
1097 * no valid regs pointer
1100 tick_sched_handle(ts
, regs
);
1102 hrtimer_forward(timer
, now
, tick_period
);
1104 return HRTIMER_RESTART
;
1107 static int sched_skew_tick
;
1109 static int __init
skew_tick(char *str
)
1111 get_option(&str
, &sched_skew_tick
);
1115 early_param("skew_tick", skew_tick
);
1118 * tick_setup_sched_timer - setup the tick emulation timer
1120 void tick_setup_sched_timer(void)
1122 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1123 ktime_t now
= ktime_get();
1126 * Emulate tick processing via per-CPU hrtimers:
1128 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1129 ts
->sched_timer
.function
= tick_sched_timer
;
1131 /* Get the next period (per cpu) */
1132 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1134 /* Offset the tick to avert jiffies_lock contention. */
1135 if (sched_skew_tick
) {
1136 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1137 do_div(offset
, num_possible_cpus());
1138 offset
*= smp_processor_id();
1139 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1143 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1144 hrtimer_start_expires(&ts
->sched_timer
,
1145 HRTIMER_MODE_ABS_PINNED
);
1146 /* Check, if the timer was already in the past */
1147 if (hrtimer_active(&ts
->sched_timer
))
1152 #ifdef CONFIG_NO_HZ_COMMON
1153 if (tick_nohz_enabled
)
1154 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
1157 #endif /* HIGH_RES_TIMERS */
1159 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1160 void tick_cancel_sched_timer(int cpu
)
1162 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1164 # ifdef CONFIG_HIGH_RES_TIMERS
1165 if (ts
->sched_timer
.base
)
1166 hrtimer_cancel(&ts
->sched_timer
);
1169 memset(ts
, 0, sizeof(*ts
));
1174 * Async notification about clocksource changes
1176 void tick_clock_notify(void)
1180 for_each_possible_cpu(cpu
)
1181 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1185 * Async notification about clock event changes
1187 void tick_oneshot_notify(void)
1189 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1191 set_bit(0, &ts
->check_clocks
);
1195 * Check, if a change happened, which makes oneshot possible.
1197 * Called cyclic from the hrtimer softirq (driven by the timer
1198 * softirq) allow_nohz signals, that we can switch into low-res nohz
1199 * mode, because high resolution timers are disabled (either compile
1202 int tick_check_oneshot_change(int allow_nohz
)
1204 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1206 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1209 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1212 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1218 tick_nohz_switch_to_nohz();