perf annotate: Fix objdump line parsing offset validation
[linux/fpc-iii.git] / arch / powerpc / perf / core-fsl-emb.c
blob106c533546758280ae59da38ce45a2c88a7f49b5
1 /*
2 * Performance event support - Freescale Embedded Performance Monitor
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 * Copyright 2010 Freescale Semiconductor, Inc.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu.h>
16 #include <linux/hardirq.h>
17 #include <asm/reg_fsl_emb.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
23 struct cpu_hw_events {
24 int n_events;
25 int disabled;
26 u8 pmcs_enabled;
27 struct perf_event *event[MAX_HWEVENTS];
29 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
31 static struct fsl_emb_pmu *ppmu;
33 /* Number of perf_events counting hardware events */
34 static atomic_t num_events;
35 /* Used to avoid races in calling reserve/release_pmc_hardware */
36 static DEFINE_MUTEX(pmc_reserve_mutex);
39 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
40 * it as an NMI.
42 static inline int perf_intr_is_nmi(struct pt_regs *regs)
44 #ifdef __powerpc64__
45 return !regs->softe;
46 #else
47 return 0;
48 #endif
51 static void perf_event_interrupt(struct pt_regs *regs);
54 * Read one performance monitor counter (PMC).
56 static unsigned long read_pmc(int idx)
58 unsigned long val;
60 switch (idx) {
61 case 0:
62 val = mfpmr(PMRN_PMC0);
63 break;
64 case 1:
65 val = mfpmr(PMRN_PMC1);
66 break;
67 case 2:
68 val = mfpmr(PMRN_PMC2);
69 break;
70 case 3:
71 val = mfpmr(PMRN_PMC3);
72 break;
73 default:
74 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
75 val = 0;
77 return val;
81 * Write one PMC.
83 static void write_pmc(int idx, unsigned long val)
85 switch (idx) {
86 case 0:
87 mtpmr(PMRN_PMC0, val);
88 break;
89 case 1:
90 mtpmr(PMRN_PMC1, val);
91 break;
92 case 2:
93 mtpmr(PMRN_PMC2, val);
94 break;
95 case 3:
96 mtpmr(PMRN_PMC3, val);
97 break;
98 default:
99 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
102 isync();
106 * Write one local control A register
108 static void write_pmlca(int idx, unsigned long val)
110 switch (idx) {
111 case 0:
112 mtpmr(PMRN_PMLCA0, val);
113 break;
114 case 1:
115 mtpmr(PMRN_PMLCA1, val);
116 break;
117 case 2:
118 mtpmr(PMRN_PMLCA2, val);
119 break;
120 case 3:
121 mtpmr(PMRN_PMLCA3, val);
122 break;
123 default:
124 printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
127 isync();
131 * Write one local control B register
133 static void write_pmlcb(int idx, unsigned long val)
135 switch (idx) {
136 case 0:
137 mtpmr(PMRN_PMLCB0, val);
138 break;
139 case 1:
140 mtpmr(PMRN_PMLCB1, val);
141 break;
142 case 2:
143 mtpmr(PMRN_PMLCB2, val);
144 break;
145 case 3:
146 mtpmr(PMRN_PMLCB3, val);
147 break;
148 default:
149 printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
152 isync();
155 static void fsl_emb_pmu_read(struct perf_event *event)
157 s64 val, delta, prev;
159 if (event->hw.state & PERF_HES_STOPPED)
160 return;
163 * Performance monitor interrupts come even when interrupts
164 * are soft-disabled, as long as interrupts are hard-enabled.
165 * Therefore we treat them like NMIs.
167 do {
168 prev = local64_read(&event->hw.prev_count);
169 barrier();
170 val = read_pmc(event->hw.idx);
171 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
173 /* The counters are only 32 bits wide */
174 delta = (val - prev) & 0xfffffffful;
175 local64_add(delta, &event->count);
176 local64_sub(delta, &event->hw.period_left);
180 * Disable all events to prevent PMU interrupts and to allow
181 * events to be added or removed.
183 static void fsl_emb_pmu_disable(struct pmu *pmu)
185 struct cpu_hw_events *cpuhw;
186 unsigned long flags;
188 local_irq_save(flags);
189 cpuhw = &__get_cpu_var(cpu_hw_events);
191 if (!cpuhw->disabled) {
192 cpuhw->disabled = 1;
195 * Check if we ever enabled the PMU on this cpu.
197 if (!cpuhw->pmcs_enabled) {
198 ppc_enable_pmcs();
199 cpuhw->pmcs_enabled = 1;
202 if (atomic_read(&num_events)) {
204 * Set the 'freeze all counters' bit, and disable
205 * interrupts. The barrier is to make sure the
206 * mtpmr has been executed and the PMU has frozen
207 * the events before we return.
210 mtpmr(PMRN_PMGC0, PMGC0_FAC);
211 isync();
214 local_irq_restore(flags);
218 * Re-enable all events if disable == 0.
219 * If we were previously disabled and events were added, then
220 * put the new config on the PMU.
222 static void fsl_emb_pmu_enable(struct pmu *pmu)
224 struct cpu_hw_events *cpuhw;
225 unsigned long flags;
227 local_irq_save(flags);
228 cpuhw = &__get_cpu_var(cpu_hw_events);
229 if (!cpuhw->disabled)
230 goto out;
232 cpuhw->disabled = 0;
233 ppc_set_pmu_inuse(cpuhw->n_events != 0);
235 if (cpuhw->n_events > 0) {
236 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
237 isync();
240 out:
241 local_irq_restore(flags);
244 static int collect_events(struct perf_event *group, int max_count,
245 struct perf_event *ctrs[])
247 int n = 0;
248 struct perf_event *event;
250 if (!is_software_event(group)) {
251 if (n >= max_count)
252 return -1;
253 ctrs[n] = group;
254 n++;
256 list_for_each_entry(event, &group->sibling_list, group_entry) {
257 if (!is_software_event(event) &&
258 event->state != PERF_EVENT_STATE_OFF) {
259 if (n >= max_count)
260 return -1;
261 ctrs[n] = event;
262 n++;
265 return n;
268 /* context locked on entry */
269 static int fsl_emb_pmu_add(struct perf_event *event, int flags)
271 struct cpu_hw_events *cpuhw;
272 int ret = -EAGAIN;
273 int num_counters = ppmu->n_counter;
274 u64 val;
275 int i;
277 perf_pmu_disable(event->pmu);
278 cpuhw = &get_cpu_var(cpu_hw_events);
280 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
281 num_counters = ppmu->n_restricted;
284 * Allocate counters from top-down, so that restricted-capable
285 * counters are kept free as long as possible.
287 for (i = num_counters - 1; i >= 0; i--) {
288 if (cpuhw->event[i])
289 continue;
291 break;
294 if (i < 0)
295 goto out;
297 event->hw.idx = i;
298 cpuhw->event[i] = event;
299 ++cpuhw->n_events;
301 val = 0;
302 if (event->hw.sample_period) {
303 s64 left = local64_read(&event->hw.period_left);
304 if (left < 0x80000000L)
305 val = 0x80000000L - left;
307 local64_set(&event->hw.prev_count, val);
309 if (!(flags & PERF_EF_START)) {
310 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
311 val = 0;
314 write_pmc(i, val);
315 perf_event_update_userpage(event);
317 write_pmlcb(i, event->hw.config >> 32);
318 write_pmlca(i, event->hw.config_base);
320 ret = 0;
321 out:
322 put_cpu_var(cpu_hw_events);
323 perf_pmu_enable(event->pmu);
324 return ret;
327 /* context locked on entry */
328 static void fsl_emb_pmu_del(struct perf_event *event, int flags)
330 struct cpu_hw_events *cpuhw;
331 int i = event->hw.idx;
333 perf_pmu_disable(event->pmu);
334 if (i < 0)
335 goto out;
337 fsl_emb_pmu_read(event);
339 cpuhw = &get_cpu_var(cpu_hw_events);
341 WARN_ON(event != cpuhw->event[event->hw.idx]);
343 write_pmlca(i, 0);
344 write_pmlcb(i, 0);
345 write_pmc(i, 0);
347 cpuhw->event[i] = NULL;
348 event->hw.idx = -1;
351 * TODO: if at least one restricted event exists, and we
352 * just freed up a non-restricted-capable counter, and
353 * there is a restricted-capable counter occupied by
354 * a non-restricted event, migrate that event to the
355 * vacated counter.
358 cpuhw->n_events--;
360 out:
361 perf_pmu_enable(event->pmu);
362 put_cpu_var(cpu_hw_events);
365 static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
367 unsigned long flags;
368 s64 left;
370 if (event->hw.idx < 0 || !event->hw.sample_period)
371 return;
373 if (!(event->hw.state & PERF_HES_STOPPED))
374 return;
376 if (ef_flags & PERF_EF_RELOAD)
377 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
379 local_irq_save(flags);
380 perf_pmu_disable(event->pmu);
382 event->hw.state = 0;
383 left = local64_read(&event->hw.period_left);
384 write_pmc(event->hw.idx, left);
386 perf_event_update_userpage(event);
387 perf_pmu_enable(event->pmu);
388 local_irq_restore(flags);
391 static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
393 unsigned long flags;
395 if (event->hw.idx < 0 || !event->hw.sample_period)
396 return;
398 if (event->hw.state & PERF_HES_STOPPED)
399 return;
401 local_irq_save(flags);
402 perf_pmu_disable(event->pmu);
404 fsl_emb_pmu_read(event);
405 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
406 write_pmc(event->hw.idx, 0);
408 perf_event_update_userpage(event);
409 perf_pmu_enable(event->pmu);
410 local_irq_restore(flags);
414 * Release the PMU if this is the last perf_event.
416 static void hw_perf_event_destroy(struct perf_event *event)
418 if (!atomic_add_unless(&num_events, -1, 1)) {
419 mutex_lock(&pmc_reserve_mutex);
420 if (atomic_dec_return(&num_events) == 0)
421 release_pmc_hardware();
422 mutex_unlock(&pmc_reserve_mutex);
427 * Translate a generic cache event_id config to a raw event_id code.
429 static int hw_perf_cache_event(u64 config, u64 *eventp)
431 unsigned long type, op, result;
432 int ev;
434 if (!ppmu->cache_events)
435 return -EINVAL;
437 /* unpack config */
438 type = config & 0xff;
439 op = (config >> 8) & 0xff;
440 result = (config >> 16) & 0xff;
442 if (type >= PERF_COUNT_HW_CACHE_MAX ||
443 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
444 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
445 return -EINVAL;
447 ev = (*ppmu->cache_events)[type][op][result];
448 if (ev == 0)
449 return -EOPNOTSUPP;
450 if (ev == -1)
451 return -EINVAL;
452 *eventp = ev;
453 return 0;
456 static int fsl_emb_pmu_event_init(struct perf_event *event)
458 u64 ev;
459 struct perf_event *events[MAX_HWEVENTS];
460 int n;
461 int err;
462 int num_restricted;
463 int i;
465 switch (event->attr.type) {
466 case PERF_TYPE_HARDWARE:
467 ev = event->attr.config;
468 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
469 return -EOPNOTSUPP;
470 ev = ppmu->generic_events[ev];
471 break;
473 case PERF_TYPE_HW_CACHE:
474 err = hw_perf_cache_event(event->attr.config, &ev);
475 if (err)
476 return err;
477 break;
479 case PERF_TYPE_RAW:
480 ev = event->attr.config;
481 break;
483 default:
484 return -ENOENT;
487 event->hw.config = ppmu->xlate_event(ev);
488 if (!(event->hw.config & FSL_EMB_EVENT_VALID))
489 return -EINVAL;
492 * If this is in a group, check if it can go on with all the
493 * other hardware events in the group. We assume the event
494 * hasn't been linked into its leader's sibling list at this point.
496 n = 0;
497 if (event->group_leader != event) {
498 n = collect_events(event->group_leader,
499 ppmu->n_counter - 1, events);
500 if (n < 0)
501 return -EINVAL;
504 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
505 num_restricted = 0;
506 for (i = 0; i < n; i++) {
507 if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
508 num_restricted++;
511 if (num_restricted >= ppmu->n_restricted)
512 return -EINVAL;
515 event->hw.idx = -1;
517 event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
518 (u32)((ev << 16) & PMLCA_EVENT_MASK);
520 if (event->attr.exclude_user)
521 event->hw.config_base |= PMLCA_FCU;
522 if (event->attr.exclude_kernel)
523 event->hw.config_base |= PMLCA_FCS;
524 if (event->attr.exclude_idle)
525 return -ENOTSUPP;
527 event->hw.last_period = event->hw.sample_period;
528 local64_set(&event->hw.period_left, event->hw.last_period);
531 * See if we need to reserve the PMU.
532 * If no events are currently in use, then we have to take a
533 * mutex to ensure that we don't race with another task doing
534 * reserve_pmc_hardware or release_pmc_hardware.
536 err = 0;
537 if (!atomic_inc_not_zero(&num_events)) {
538 mutex_lock(&pmc_reserve_mutex);
539 if (atomic_read(&num_events) == 0 &&
540 reserve_pmc_hardware(perf_event_interrupt))
541 err = -EBUSY;
542 else
543 atomic_inc(&num_events);
544 mutex_unlock(&pmc_reserve_mutex);
546 mtpmr(PMRN_PMGC0, PMGC0_FAC);
547 isync();
549 event->destroy = hw_perf_event_destroy;
551 return err;
554 static struct pmu fsl_emb_pmu = {
555 .pmu_enable = fsl_emb_pmu_enable,
556 .pmu_disable = fsl_emb_pmu_disable,
557 .event_init = fsl_emb_pmu_event_init,
558 .add = fsl_emb_pmu_add,
559 .del = fsl_emb_pmu_del,
560 .start = fsl_emb_pmu_start,
561 .stop = fsl_emb_pmu_stop,
562 .read = fsl_emb_pmu_read,
566 * A counter has overflowed; update its count and record
567 * things if requested. Note that interrupts are hard-disabled
568 * here so there is no possibility of being interrupted.
570 static void record_and_restart(struct perf_event *event, unsigned long val,
571 struct pt_regs *regs)
573 u64 period = event->hw.sample_period;
574 s64 prev, delta, left;
575 int record = 0;
577 if (event->hw.state & PERF_HES_STOPPED) {
578 write_pmc(event->hw.idx, 0);
579 return;
582 /* we don't have to worry about interrupts here */
583 prev = local64_read(&event->hw.prev_count);
584 delta = (val - prev) & 0xfffffffful;
585 local64_add(delta, &event->count);
588 * See if the total period for this event has expired,
589 * and update for the next period.
591 val = 0;
592 left = local64_read(&event->hw.period_left) - delta;
593 if (period) {
594 if (left <= 0) {
595 left += period;
596 if (left <= 0)
597 left = period;
598 record = 1;
599 event->hw.last_period = event->hw.sample_period;
601 if (left < 0x80000000LL)
602 val = 0x80000000LL - left;
605 write_pmc(event->hw.idx, val);
606 local64_set(&event->hw.prev_count, val);
607 local64_set(&event->hw.period_left, left);
608 perf_event_update_userpage(event);
611 * Finally record data if requested.
613 if (record) {
614 struct perf_sample_data data;
616 perf_sample_data_init(&data, 0, event->hw.last_period);
618 if (perf_event_overflow(event, &data, regs))
619 fsl_emb_pmu_stop(event, 0);
623 static void perf_event_interrupt(struct pt_regs *regs)
625 int i;
626 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
627 struct perf_event *event;
628 unsigned long val;
629 int found = 0;
630 int nmi;
632 nmi = perf_intr_is_nmi(regs);
633 if (nmi)
634 nmi_enter();
635 else
636 irq_enter();
638 for (i = 0; i < ppmu->n_counter; ++i) {
639 event = cpuhw->event[i];
641 val = read_pmc(i);
642 if ((int)val < 0) {
643 if (event) {
644 /* event has overflowed */
645 found = 1;
646 record_and_restart(event, val, regs);
647 } else {
649 * Disabled counter is negative,
650 * reset it just in case.
652 write_pmc(i, 0);
657 /* PMM will keep counters frozen until we return from the interrupt. */
658 mtmsr(mfmsr() | MSR_PMM);
659 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
660 isync();
662 if (nmi)
663 nmi_exit();
664 else
665 irq_exit();
668 void hw_perf_event_setup(int cpu)
670 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
672 memset(cpuhw, 0, sizeof(*cpuhw));
675 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
677 if (ppmu)
678 return -EBUSY; /* something's already registered */
680 ppmu = pmu;
681 pr_info("%s performance monitor hardware support registered\n",
682 pmu->name);
684 perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
686 return 0;