2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8 #include <linux/cpumask.h>
9 #include <linux/hardirq.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
21 * This list is accessed under irq_lock, except in sigio_handler,
22 * where it is safe from being modified. IRQ handlers won't change it -
23 * if an IRQ source has vanished, it will be freed by free_irqs just
24 * before returning from sigio_handler. That will process a separate
25 * list of irqs to free, with its own locking, coming back here to
26 * remove list elements, taking the irq_lock to do so.
28 static struct irq_fd
*active_fds
= NULL
;
29 static struct irq_fd
**last_irq_ptr
= &active_fds
;
31 extern void free_irqs(void);
33 void sigio_handler(int sig
, struct siginfo
*unused_si
, struct uml_pt_regs
*regs
)
35 struct irq_fd
*irq_fd
;
38 if (smp_sigio_handler())
42 n
= os_waiting_for_events(active_fds
);
49 for (irq_fd
= active_fds
; irq_fd
!= NULL
;
50 irq_fd
= irq_fd
->next
) {
51 if (irq_fd
->current_events
!= 0) {
52 irq_fd
->current_events
= 0;
53 do_IRQ(irq_fd
->irq
, regs
);
61 static DEFINE_SPINLOCK(irq_lock
);
63 static int activate_fd(int irq
, int fd
, int type
, void *dev_id
)
65 struct pollfd
*tmp_pfd
;
66 struct irq_fd
*new_fd
, *irq_fd
;
70 err
= os_set_fd_async(fd
);
75 new_fd
= kmalloc(sizeof(struct irq_fd
), GFP_KERNEL
);
80 events
= UM_POLLIN
| UM_POLLPRI
;
81 else events
= UM_POLLOUT
;
82 *new_fd
= ((struct irq_fd
) { .next
= NULL
,
88 .current_events
= 0 } );
91 spin_lock_irqsave(&irq_lock
, flags
);
92 for (irq_fd
= active_fds
; irq_fd
!= NULL
; irq_fd
= irq_fd
->next
) {
93 if ((irq_fd
->fd
== fd
) && (irq_fd
->type
== type
)) {
94 printk(KERN_ERR
"Registering fd %d twice\n", fd
);
95 printk(KERN_ERR
"Irqs : %d, %d\n", irq_fd
->irq
, irq
);
96 printk(KERN_ERR
"Ids : 0x%p, 0x%p\n", irq_fd
->id
,
102 if (type
== IRQ_WRITE
)
109 n
= os_create_pollfd(fd
, events
, tmp_pfd
, n
);
115 * It means we couldn't put new pollfd to current pollfds
116 * and tmp_fds is NULL or too small for new pollfds array.
117 * Needed size is equal to n as minimum.
119 * Here we have to drop the lock in order to call
120 * kmalloc, which might sleep.
121 * If something else came in and changed the pollfds array
122 * so we will not be able to put new pollfd struct to pollfds
123 * then we free the buffer tmp_fds and try again.
125 spin_unlock_irqrestore(&irq_lock
, flags
);
128 tmp_pfd
= kmalloc(n
, GFP_KERNEL
);
132 spin_lock_irqsave(&irq_lock
, flags
);
135 *last_irq_ptr
= new_fd
;
136 last_irq_ptr
= &new_fd
->next
;
138 spin_unlock_irqrestore(&irq_lock
, flags
);
141 * This calls activate_fd, so it has to be outside the critical
144 maybe_sigio_broken(fd
, (type
== IRQ_READ
));
149 spin_unlock_irqrestore(&irq_lock
, flags
);
156 static void free_irq_by_cb(int (*test
)(struct irq_fd
*, void *), void *arg
)
160 spin_lock_irqsave(&irq_lock
, flags
);
161 os_free_irq_by_cb(test
, arg
, active_fds
, &last_irq_ptr
);
162 spin_unlock_irqrestore(&irq_lock
, flags
);
170 static int same_irq_and_dev(struct irq_fd
*irq
, void *d
)
172 struct irq_and_dev
*data
= d
;
174 return ((irq
->irq
== data
->irq
) && (irq
->id
== data
->dev
));
177 static void free_irq_by_irq_and_dev(unsigned int irq
, void *dev
)
179 struct irq_and_dev data
= ((struct irq_and_dev
) { .irq
= irq
,
182 free_irq_by_cb(same_irq_and_dev
, &data
);
185 static int same_fd(struct irq_fd
*irq
, void *fd
)
187 return (irq
->fd
== *((int *)fd
));
190 void free_irq_by_fd(int fd
)
192 free_irq_by_cb(same_fd
, &fd
);
195 /* Must be called with irq_lock held */
196 static struct irq_fd
*find_irq_by_fd(int fd
, int irqnum
, int *index_out
)
202 for (irq
= active_fds
; irq
!= NULL
; irq
= irq
->next
) {
203 if ((irq
->fd
== fd
) && (irq
->irq
== irqnum
))
208 printk(KERN_ERR
"find_irq_by_fd doesn't have descriptor %d\n",
212 fdi
= os_get_pollfd(i
);
213 if ((fdi
!= -1) && (fdi
!= fd
)) {
214 printk(KERN_ERR
"find_irq_by_fd - mismatch between active_fds "
215 "and pollfds, fd %d vs %d, need %d\n", irq
->fd
,
225 void reactivate_fd(int fd
, int irqnum
)
231 spin_lock_irqsave(&irq_lock
, flags
);
232 irq
= find_irq_by_fd(fd
, irqnum
, &i
);
234 spin_unlock_irqrestore(&irq_lock
, flags
);
237 os_set_pollfd(i
, irq
->fd
);
238 spin_unlock_irqrestore(&irq_lock
, flags
);
243 void deactivate_fd(int fd
, int irqnum
)
249 spin_lock_irqsave(&irq_lock
, flags
);
250 irq
= find_irq_by_fd(fd
, irqnum
, &i
);
252 spin_unlock_irqrestore(&irq_lock
, flags
);
256 os_set_pollfd(i
, -1);
257 spin_unlock_irqrestore(&irq_lock
, flags
);
261 EXPORT_SYMBOL(deactivate_fd
);
264 * Called just before shutdown in order to provide a clean exec
265 * environment in case the system is rebooting. No locking because
266 * that would cause a pointless shutdown hang if something hadn't
269 int deactivate_all_fds(void)
274 for (irq
= active_fds
; irq
!= NULL
; irq
= irq
->next
) {
275 err
= os_clear_fd_async(irq
->fd
);
279 /* If there is a signal already queued, after unblocking ignore it */
286 * do_IRQ handles all normal device IRQs (the special
287 * SMP cross-CPU interrupts have their own specific
290 unsigned int do_IRQ(int irq
, struct uml_pt_regs
*regs
)
292 struct pt_regs
*old_regs
= set_irq_regs((struct pt_regs
*)regs
);
294 generic_handle_irq(irq
);
296 set_irq_regs(old_regs
);
300 void um_free_irq(unsigned int irq
, void *dev
)
302 free_irq_by_irq_and_dev(irq
, dev
);
305 EXPORT_SYMBOL(um_free_irq
);
307 int um_request_irq(unsigned int irq
, int fd
, int type
,
308 irq_handler_t handler
,
309 unsigned long irqflags
, const char * devname
,
315 err
= activate_fd(irq
, fd
, type
, dev_id
);
320 return request_irq(irq
, handler
, irqflags
, devname
, dev_id
);
323 EXPORT_SYMBOL(um_request_irq
);
324 EXPORT_SYMBOL(reactivate_fd
);
327 * irq_chip must define at least enable/disable and ack when
328 * the edge handler is used.
330 static void dummy(struct irq_data
*d
)
334 /* This is used for everything else than the timer. */
335 static struct irq_chip normal_irq_type
= {
337 .irq_disable
= dummy
,
342 static struct irq_chip SIGVTALRM_irq_type
= {
344 .irq_disable
= dummy
,
349 void __init
init_IRQ(void)
353 irq_set_chip_and_handler(TIMER_IRQ
, &SIGVTALRM_irq_type
, handle_edge_irq
);
355 for (i
= 1; i
< NR_IRQS
; i
++)
356 irq_set_chip_and_handler(i
, &normal_irq_type
, handle_edge_irq
);
360 * IRQ stack entry and exit:
362 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
363 * and switch over to the IRQ stack after some preparation. We use
364 * sigaltstack to receive signals on a separate stack from the start.
365 * These two functions make sure the rest of the kernel won't be too
366 * upset by being on a different stack. The IRQ stack has a
367 * thread_info structure at the bottom so that current et al continue
370 * to_irq_stack copies the current task's thread_info to the IRQ stack
371 * thread_info and sets the tasks's stack to point to the IRQ stack.
373 * from_irq_stack copies the thread_info struct back (flags may have
374 * been modified) and resets the task's stack pointer.
378 * What happens when two signals race each other? UML doesn't block
379 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
380 * could arrive while a previous one is still setting up the
383 * There are three cases -
384 * The first interrupt on the stack - sets up the thread_info and
385 * handles the interrupt
386 * A nested interrupt interrupting the copying of the thread_info -
387 * can't handle the interrupt, as the stack is in an unknown state
388 * A nested interrupt not interrupting the copying of the
389 * thread_info - doesn't do any setup, just handles the interrupt
391 * The first job is to figure out whether we interrupted stack setup.
392 * This is done by xchging the signal mask with thread_info->pending.
393 * If the value that comes back is zero, then there is no setup in
394 * progress, and the interrupt can be handled. If the value is
395 * non-zero, then there is stack setup in progress. In order to have
396 * the interrupt handled, we leave our signal in the mask, and it will
397 * be handled by the upper handler after it has set up the stack.
399 * Next is to figure out whether we are the outer handler or a nested
400 * one. As part of setting up the stack, thread_info->real_thread is
401 * set to non-NULL (and is reset to NULL on exit). This is the
402 * nesting indicator. If it is non-NULL, then the stack is already
403 * set up and the handler can run.
406 static unsigned long pending_mask
;
408 unsigned long to_irq_stack(unsigned long *mask_out
)
410 struct thread_info
*ti
;
411 unsigned long mask
, old
;
414 mask
= xchg(&pending_mask
, *mask_out
);
417 * If any interrupts come in at this point, we want to
418 * make sure that their bits aren't lost by our
419 * putting our bit in. So, this loop accumulates bits
420 * until xchg returns the same value that we put in.
421 * When that happens, there were no new interrupts,
422 * and pending_mask contains a bit for each interrupt
428 mask
= xchg(&pending_mask
, old
);
429 } while (mask
!= old
);
433 ti
= current_thread_info();
434 nested
= (ti
->real_thread
!= NULL
);
436 struct task_struct
*task
;
437 struct thread_info
*tti
;
439 task
= cpu_tasks
[ti
->cpu
].task
;
440 tti
= task_thread_info(task
);
443 ti
->real_thread
= tti
;
447 mask
= xchg(&pending_mask
, 0);
448 *mask_out
|= mask
| nested
;
452 unsigned long from_irq_stack(int nested
)
454 struct thread_info
*ti
, *to
;
457 ti
= current_thread_info();
461 to
= ti
->real_thread
;
463 ti
->real_thread
= NULL
;
466 mask
= xchg(&pending_mask
, 0);