3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
47 #include <linux/mtd/partitions.h>
50 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
52 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
53 struct mtd_oob_ops
*ops
);
55 /* Define default oob placement schemes for large and small page devices */
56 static int nand_ooblayout_ecc_sp(struct mtd_info
*mtd
, int section
,
57 struct mtd_oob_region
*oobregion
)
59 struct nand_chip
*chip
= mtd_to_nand(mtd
);
60 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
66 oobregion
->offset
= 0;
67 oobregion
->length
= 4;
69 oobregion
->offset
= 6;
70 oobregion
->length
= ecc
->total
- 4;
76 static int nand_ooblayout_free_sp(struct mtd_info
*mtd
, int section
,
77 struct mtd_oob_region
*oobregion
)
82 if (mtd
->oobsize
== 16) {
86 oobregion
->length
= 8;
87 oobregion
->offset
= 8;
89 oobregion
->length
= 2;
91 oobregion
->offset
= 3;
93 oobregion
->offset
= 6;
99 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops
= {
100 .ecc
= nand_ooblayout_ecc_sp
,
101 .free
= nand_ooblayout_free_sp
,
103 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops
);
105 static int nand_ooblayout_ecc_lp(struct mtd_info
*mtd
, int section
,
106 struct mtd_oob_region
*oobregion
)
108 struct nand_chip
*chip
= mtd_to_nand(mtd
);
109 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
114 oobregion
->length
= ecc
->total
;
115 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
120 static int nand_ooblayout_free_lp(struct mtd_info
*mtd
, int section
,
121 struct mtd_oob_region
*oobregion
)
123 struct nand_chip
*chip
= mtd_to_nand(mtd
);
124 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
129 oobregion
->length
= mtd
->oobsize
- ecc
->total
- 2;
130 oobregion
->offset
= 2;
135 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops
= {
136 .ecc
= nand_ooblayout_ecc_lp
,
137 .free
= nand_ooblayout_free_lp
,
139 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops
);
141 static int check_offs_len(struct mtd_info
*mtd
,
142 loff_t ofs
, uint64_t len
)
144 struct nand_chip
*chip
= mtd_to_nand(mtd
);
147 /* Start address must align on block boundary */
148 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
149 pr_debug("%s: unaligned address\n", __func__
);
153 /* Length must align on block boundary */
154 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
155 pr_debug("%s: length not block aligned\n", __func__
);
163 * nand_release_device - [GENERIC] release chip
164 * @mtd: MTD device structure
166 * Release chip lock and wake up anyone waiting on the device.
168 static void nand_release_device(struct mtd_info
*mtd
)
170 struct nand_chip
*chip
= mtd_to_nand(mtd
);
172 /* Release the controller and the chip */
173 spin_lock(&chip
->controller
->lock
);
174 chip
->controller
->active
= NULL
;
175 chip
->state
= FL_READY
;
176 wake_up(&chip
->controller
->wq
);
177 spin_unlock(&chip
->controller
->lock
);
181 * nand_read_byte - [DEFAULT] read one byte from the chip
182 * @mtd: MTD device structure
184 * Default read function for 8bit buswidth
186 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
188 struct nand_chip
*chip
= mtd_to_nand(mtd
);
189 return readb(chip
->IO_ADDR_R
);
193 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
194 * @mtd: MTD device structure
196 * Default read function for 16bit buswidth with endianness conversion.
199 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
201 struct nand_chip
*chip
= mtd_to_nand(mtd
);
202 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
206 * nand_read_word - [DEFAULT] read one word from the chip
207 * @mtd: MTD device structure
209 * Default read function for 16bit buswidth without endianness conversion.
211 static u16
nand_read_word(struct mtd_info
*mtd
)
213 struct nand_chip
*chip
= mtd_to_nand(mtd
);
214 return readw(chip
->IO_ADDR_R
);
218 * nand_select_chip - [DEFAULT] control CE line
219 * @mtd: MTD device structure
220 * @chipnr: chipnumber to select, -1 for deselect
222 * Default select function for 1 chip devices.
224 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
226 struct nand_chip
*chip
= mtd_to_nand(mtd
);
230 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
241 * nand_write_byte - [DEFAULT] write single byte to chip
242 * @mtd: MTD device structure
243 * @byte: value to write
245 * Default function to write a byte to I/O[7:0]
247 static void nand_write_byte(struct mtd_info
*mtd
, uint8_t byte
)
249 struct nand_chip
*chip
= mtd_to_nand(mtd
);
251 chip
->write_buf(mtd
, &byte
, 1);
255 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
256 * @mtd: MTD device structure
257 * @byte: value to write
259 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
261 static void nand_write_byte16(struct mtd_info
*mtd
, uint8_t byte
)
263 struct nand_chip
*chip
= mtd_to_nand(mtd
);
264 uint16_t word
= byte
;
267 * It's not entirely clear what should happen to I/O[15:8] when writing
268 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
270 * When the host supports a 16-bit bus width, only data is
271 * transferred at the 16-bit width. All address and command line
272 * transfers shall use only the lower 8-bits of the data bus. During
273 * command transfers, the host may place any value on the upper
274 * 8-bits of the data bus. During address transfers, the host shall
275 * set the upper 8-bits of the data bus to 00h.
277 * One user of the write_byte callback is nand_onfi_set_features. The
278 * four parameters are specified to be written to I/O[7:0], but this is
279 * neither an address nor a command transfer. Let's assume a 0 on the
280 * upper I/O lines is OK.
282 chip
->write_buf(mtd
, (uint8_t *)&word
, 2);
286 * nand_write_buf - [DEFAULT] write buffer to chip
287 * @mtd: MTD device structure
289 * @len: number of bytes to write
291 * Default write function for 8bit buswidth.
293 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
295 struct nand_chip
*chip
= mtd_to_nand(mtd
);
297 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
301 * nand_read_buf - [DEFAULT] read chip data into buffer
302 * @mtd: MTD device structure
303 * @buf: buffer to store date
304 * @len: number of bytes to read
306 * Default read function for 8bit buswidth.
308 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
310 struct nand_chip
*chip
= mtd_to_nand(mtd
);
312 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
316 * nand_write_buf16 - [DEFAULT] write buffer to chip
317 * @mtd: MTD device structure
319 * @len: number of bytes to write
321 * Default write function for 16bit buswidth.
323 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
325 struct nand_chip
*chip
= mtd_to_nand(mtd
);
326 u16
*p
= (u16
*) buf
;
328 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
332 * nand_read_buf16 - [DEFAULT] read chip data into buffer
333 * @mtd: MTD device structure
334 * @buf: buffer to store date
335 * @len: number of bytes to read
337 * Default read function for 16bit buswidth.
339 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
341 struct nand_chip
*chip
= mtd_to_nand(mtd
);
342 u16
*p
= (u16
*) buf
;
344 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
348 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
349 * @mtd: MTD device structure
350 * @ofs: offset from device start
352 * Check, if the block is bad.
354 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
)
356 int page
, res
= 0, i
= 0;
357 struct nand_chip
*chip
= mtd_to_nand(mtd
);
360 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
361 ofs
+= mtd
->erasesize
- mtd
->writesize
;
363 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
366 if (chip
->options
& NAND_BUSWIDTH_16
) {
367 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
368 chip
->badblockpos
& 0xFE, page
);
369 bad
= cpu_to_le16(chip
->read_word(mtd
));
370 if (chip
->badblockpos
& 0x1)
375 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
377 bad
= chip
->read_byte(mtd
);
380 if (likely(chip
->badblockbits
== 8))
383 res
= hweight8(bad
) < chip
->badblockbits
;
384 ofs
+= mtd
->writesize
;
385 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
387 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
393 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
397 * This is the default implementation, which can be overridden by a hardware
398 * specific driver. It provides the details for writing a bad block marker to a
401 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
403 struct nand_chip
*chip
= mtd_to_nand(mtd
);
404 struct mtd_oob_ops ops
;
405 uint8_t buf
[2] = { 0, 0 };
406 int ret
= 0, res
, i
= 0;
408 memset(&ops
, 0, sizeof(ops
));
410 ops
.ooboffs
= chip
->badblockpos
;
411 if (chip
->options
& NAND_BUSWIDTH_16
) {
412 ops
.ooboffs
&= ~0x01;
413 ops
.len
= ops
.ooblen
= 2;
415 ops
.len
= ops
.ooblen
= 1;
417 ops
.mode
= MTD_OPS_PLACE_OOB
;
419 /* Write to first/last page(s) if necessary */
420 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
421 ofs
+= mtd
->erasesize
- mtd
->writesize
;
423 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
428 ofs
+= mtd
->writesize
;
429 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
435 * nand_block_markbad_lowlevel - mark a block bad
436 * @mtd: MTD device structure
437 * @ofs: offset from device start
439 * This function performs the generic NAND bad block marking steps (i.e., bad
440 * block table(s) and/or marker(s)). We only allow the hardware driver to
441 * specify how to write bad block markers to OOB (chip->block_markbad).
443 * We try operations in the following order:
444 * (1) erase the affected block, to allow OOB marker to be written cleanly
445 * (2) write bad block marker to OOB area of affected block (unless flag
446 * NAND_BBT_NO_OOB_BBM is present)
448 * Note that we retain the first error encountered in (2) or (3), finish the
449 * procedures, and dump the error in the end.
451 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
453 struct nand_chip
*chip
= mtd_to_nand(mtd
);
456 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
457 struct erase_info einfo
;
459 /* Attempt erase before marking OOB */
460 memset(&einfo
, 0, sizeof(einfo
));
463 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
464 nand_erase_nand(mtd
, &einfo
, 0);
466 /* Write bad block marker to OOB */
467 nand_get_device(mtd
, FL_WRITING
);
468 ret
= chip
->block_markbad(mtd
, ofs
);
469 nand_release_device(mtd
);
472 /* Mark block bad in BBT */
474 res
= nand_markbad_bbt(mtd
, ofs
);
480 mtd
->ecc_stats
.badblocks
++;
486 * nand_check_wp - [GENERIC] check if the chip is write protected
487 * @mtd: MTD device structure
489 * Check, if the device is write protected. The function expects, that the
490 * device is already selected.
492 static int nand_check_wp(struct mtd_info
*mtd
)
494 struct nand_chip
*chip
= mtd_to_nand(mtd
);
496 /* Broken xD cards report WP despite being writable */
497 if (chip
->options
& NAND_BROKEN_XD
)
500 /* Check the WP bit */
501 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
502 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
506 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 * @mtd: MTD device structure
508 * @ofs: offset from device start
510 * Check if the block is marked as reserved.
512 static int nand_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
514 struct nand_chip
*chip
= mtd_to_nand(mtd
);
518 /* Return info from the table */
519 return nand_isreserved_bbt(mtd
, ofs
);
523 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 * @mtd: MTD device structure
525 * @ofs: offset from device start
526 * @allowbbt: 1, if its allowed to access the bbt area
528 * Check, if the block is bad. Either by reading the bad block table or
529 * calling of the scan function.
531 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
533 struct nand_chip
*chip
= mtd_to_nand(mtd
);
536 return chip
->block_bad(mtd
, ofs
);
538 /* Return info from the table */
539 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
543 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544 * @mtd: MTD device structure
547 * Helper function for nand_wait_ready used when needing to wait in interrupt
550 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
552 struct nand_chip
*chip
= mtd_to_nand(mtd
);
555 /* Wait for the device to get ready */
556 for (i
= 0; i
< timeo
; i
++) {
557 if (chip
->dev_ready(mtd
))
559 touch_softlockup_watchdog();
565 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
566 * @mtd: MTD device structure
568 * Wait for the ready pin after a command, and warn if a timeout occurs.
570 void nand_wait_ready(struct mtd_info
*mtd
)
572 struct nand_chip
*chip
= mtd_to_nand(mtd
);
573 unsigned long timeo
= 400;
575 if (in_interrupt() || oops_in_progress
)
576 return panic_nand_wait_ready(mtd
, timeo
);
578 /* Wait until command is processed or timeout occurs */
579 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
581 if (chip
->dev_ready(mtd
))
584 } while (time_before(jiffies
, timeo
));
586 if (!chip
->dev_ready(mtd
))
587 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
589 EXPORT_SYMBOL_GPL(nand_wait_ready
);
592 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
593 * @mtd: MTD device structure
594 * @timeo: Timeout in ms
596 * Wait for status ready (i.e. command done) or timeout.
598 static void nand_wait_status_ready(struct mtd_info
*mtd
, unsigned long timeo
)
600 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
602 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
604 if ((chip
->read_byte(mtd
) & NAND_STATUS_READY
))
606 touch_softlockup_watchdog();
607 } while (time_before(jiffies
, timeo
));
611 * nand_command - [DEFAULT] Send command to NAND device
612 * @mtd: MTD device structure
613 * @command: the command to be sent
614 * @column: the column address for this command, -1 if none
615 * @page_addr: the page address for this command, -1 if none
617 * Send command to NAND device. This function is used for small page devices
618 * (512 Bytes per page).
620 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
621 int column
, int page_addr
)
623 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
624 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
626 /* Write out the command to the device */
627 if (command
== NAND_CMD_SEQIN
) {
630 if (column
>= mtd
->writesize
) {
632 column
-= mtd
->writesize
;
633 readcmd
= NAND_CMD_READOOB
;
634 } else if (column
< 256) {
635 /* First 256 bytes --> READ0 */
636 readcmd
= NAND_CMD_READ0
;
639 readcmd
= NAND_CMD_READ1
;
641 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
642 ctrl
&= ~NAND_CTRL_CHANGE
;
644 chip
->cmd_ctrl(mtd
, command
, ctrl
);
646 /* Address cycle, when necessary */
647 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
648 /* Serially input address */
650 /* Adjust columns for 16 bit buswidth */
651 if (chip
->options
& NAND_BUSWIDTH_16
&&
652 !nand_opcode_8bits(command
))
654 chip
->cmd_ctrl(mtd
, column
, ctrl
);
655 ctrl
&= ~NAND_CTRL_CHANGE
;
657 if (page_addr
!= -1) {
658 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
659 ctrl
&= ~NAND_CTRL_CHANGE
;
660 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
661 /* One more address cycle for devices > 32MiB */
662 if (chip
->chipsize
> (32 << 20))
663 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
665 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
668 * Program and erase have their own busy handlers status and sequential
673 case NAND_CMD_PAGEPROG
:
674 case NAND_CMD_ERASE1
:
675 case NAND_CMD_ERASE2
:
677 case NAND_CMD_STATUS
:
683 udelay(chip
->chip_delay
);
684 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
685 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
687 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
688 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
689 nand_wait_status_ready(mtd
, 250);
692 /* This applies to read commands */
695 * If we don't have access to the busy pin, we apply the given
698 if (!chip
->dev_ready
) {
699 udelay(chip
->chip_delay
);
704 * Apply this short delay always to ensure that we do wait tWB in
705 * any case on any machine.
709 nand_wait_ready(mtd
);
713 * nand_command_lp - [DEFAULT] Send command to NAND large page device
714 * @mtd: MTD device structure
715 * @command: the command to be sent
716 * @column: the column address for this command, -1 if none
717 * @page_addr: the page address for this command, -1 if none
719 * Send command to NAND device. This is the version for the new large page
720 * devices. We don't have the separate regions as we have in the small page
721 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
723 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
724 int column
, int page_addr
)
726 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
728 /* Emulate NAND_CMD_READOOB */
729 if (command
== NAND_CMD_READOOB
) {
730 column
+= mtd
->writesize
;
731 command
= NAND_CMD_READ0
;
734 /* Command latch cycle */
735 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
737 if (column
!= -1 || page_addr
!= -1) {
738 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
740 /* Serially input address */
742 /* Adjust columns for 16 bit buswidth */
743 if (chip
->options
& NAND_BUSWIDTH_16
&&
744 !nand_opcode_8bits(command
))
746 chip
->cmd_ctrl(mtd
, column
, ctrl
);
747 ctrl
&= ~NAND_CTRL_CHANGE
;
748 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
750 if (page_addr
!= -1) {
751 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
752 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
753 NAND_NCE
| NAND_ALE
);
754 /* One more address cycle for devices > 128MiB */
755 if (chip
->chipsize
> (128 << 20))
756 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
757 NAND_NCE
| NAND_ALE
);
760 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
763 * Program and erase have their own busy handlers status, sequential
764 * in and status need no delay.
768 case NAND_CMD_CACHEDPROG
:
769 case NAND_CMD_PAGEPROG
:
770 case NAND_CMD_ERASE1
:
771 case NAND_CMD_ERASE2
:
774 case NAND_CMD_STATUS
:
780 udelay(chip
->chip_delay
);
781 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
782 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
783 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
784 NAND_NCE
| NAND_CTRL_CHANGE
);
785 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
786 nand_wait_status_ready(mtd
, 250);
789 case NAND_CMD_RNDOUT
:
790 /* No ready / busy check necessary */
791 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
792 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
793 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
794 NAND_NCE
| NAND_CTRL_CHANGE
);
798 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
799 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
800 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
801 NAND_NCE
| NAND_CTRL_CHANGE
);
803 /* This applies to read commands */
806 * If we don't have access to the busy pin, we apply the given
809 if (!chip
->dev_ready
) {
810 udelay(chip
->chip_delay
);
816 * Apply this short delay always to ensure that we do wait tWB in
817 * any case on any machine.
821 nand_wait_ready(mtd
);
825 * panic_nand_get_device - [GENERIC] Get chip for selected access
826 * @chip: the nand chip descriptor
827 * @mtd: MTD device structure
828 * @new_state: the state which is requested
830 * Used when in panic, no locks are taken.
832 static void panic_nand_get_device(struct nand_chip
*chip
,
833 struct mtd_info
*mtd
, int new_state
)
835 /* Hardware controller shared among independent devices */
836 chip
->controller
->active
= chip
;
837 chip
->state
= new_state
;
841 * nand_get_device - [GENERIC] Get chip for selected access
842 * @mtd: MTD device structure
843 * @new_state: the state which is requested
845 * Get the device and lock it for exclusive access
848 nand_get_device(struct mtd_info
*mtd
, int new_state
)
850 struct nand_chip
*chip
= mtd_to_nand(mtd
);
851 spinlock_t
*lock
= &chip
->controller
->lock
;
852 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
853 DECLARE_WAITQUEUE(wait
, current
);
857 /* Hardware controller shared among independent devices */
858 if (!chip
->controller
->active
)
859 chip
->controller
->active
= chip
;
861 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
862 chip
->state
= new_state
;
866 if (new_state
== FL_PM_SUSPENDED
) {
867 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
868 chip
->state
= FL_PM_SUSPENDED
;
873 set_current_state(TASK_UNINTERRUPTIBLE
);
874 add_wait_queue(wq
, &wait
);
877 remove_wait_queue(wq
, &wait
);
882 * panic_nand_wait - [GENERIC] wait until the command is done
883 * @mtd: MTD device structure
884 * @chip: NAND chip structure
887 * Wait for command done. This is a helper function for nand_wait used when
888 * we are in interrupt context. May happen when in panic and trying to write
889 * an oops through mtdoops.
891 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
895 for (i
= 0; i
< timeo
; i
++) {
896 if (chip
->dev_ready
) {
897 if (chip
->dev_ready(mtd
))
900 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
908 * nand_wait - [DEFAULT] wait until the command is done
909 * @mtd: MTD device structure
910 * @chip: NAND chip structure
912 * Wait for command done. This applies to erase and program only.
914 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
918 unsigned long timeo
= 400;
921 * Apply this short delay always to ensure that we do wait tWB in any
922 * case on any machine.
926 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
928 if (in_interrupt() || oops_in_progress
)
929 panic_nand_wait(mtd
, chip
, timeo
);
931 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
933 if (chip
->dev_ready
) {
934 if (chip
->dev_ready(mtd
))
937 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
941 } while (time_before(jiffies
, timeo
));
944 status
= (int)chip
->read_byte(mtd
);
945 /* This can happen if in case of timeout or buggy dev_ready */
946 WARN_ON(!(status
& NAND_STATUS_READY
));
951 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
953 * @ofs: offset to start unlock from
954 * @len: length to unlock
955 * @invert: when = 0, unlock the range of blocks within the lower and
956 * upper boundary address
957 * when = 1, unlock the range of blocks outside the boundaries
958 * of the lower and upper boundary address
960 * Returs unlock status.
962 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
963 uint64_t len
, int invert
)
967 struct nand_chip
*chip
= mtd_to_nand(mtd
);
969 /* Submit address of first page to unlock */
970 page
= ofs
>> chip
->page_shift
;
971 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
973 /* Submit address of last page to unlock */
974 page
= (ofs
+ len
) >> chip
->page_shift
;
975 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
976 (page
| invert
) & chip
->pagemask
);
978 /* Call wait ready function */
979 status
= chip
->waitfunc(mtd
, chip
);
980 /* See if device thinks it succeeded */
981 if (status
& NAND_STATUS_FAIL
) {
982 pr_debug("%s: error status = 0x%08x\n",
991 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
993 * @ofs: offset to start unlock from
994 * @len: length to unlock
996 * Returns unlock status.
998 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1002 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1004 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1005 __func__
, (unsigned long long)ofs
, len
);
1007 if (check_offs_len(mtd
, ofs
, len
))
1010 /* Align to last block address if size addresses end of the device */
1011 if (ofs
+ len
== mtd
->size
)
1012 len
-= mtd
->erasesize
;
1014 nand_get_device(mtd
, FL_UNLOCKING
);
1016 /* Shift to get chip number */
1017 chipnr
= ofs
>> chip
->chip_shift
;
1019 chip
->select_chip(mtd
, chipnr
);
1023 * If we want to check the WP through READ STATUS and check the bit 7
1024 * we must reset the chip
1025 * some operation can also clear the bit 7 of status register
1026 * eg. erase/program a locked block
1028 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1030 /* Check, if it is write protected */
1031 if (nand_check_wp(mtd
)) {
1032 pr_debug("%s: device is write protected!\n",
1038 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
1041 chip
->select_chip(mtd
, -1);
1042 nand_release_device(mtd
);
1046 EXPORT_SYMBOL(nand_unlock
);
1049 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1051 * @ofs: offset to start unlock from
1052 * @len: length to unlock
1054 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1055 * have this feature, but it allows only to lock all blocks, not for specified
1056 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1059 * Returns lock status.
1061 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1064 int chipnr
, status
, page
;
1065 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1067 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1068 __func__
, (unsigned long long)ofs
, len
);
1070 if (check_offs_len(mtd
, ofs
, len
))
1073 nand_get_device(mtd
, FL_LOCKING
);
1075 /* Shift to get chip number */
1076 chipnr
= ofs
>> chip
->chip_shift
;
1078 chip
->select_chip(mtd
, chipnr
);
1082 * If we want to check the WP through READ STATUS and check the bit 7
1083 * we must reset the chip
1084 * some operation can also clear the bit 7 of status register
1085 * eg. erase/program a locked block
1087 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1089 /* Check, if it is write protected */
1090 if (nand_check_wp(mtd
)) {
1091 pr_debug("%s: device is write protected!\n",
1093 status
= MTD_ERASE_FAILED
;
1098 /* Submit address of first page to lock */
1099 page
= ofs
>> chip
->page_shift
;
1100 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1102 /* Call wait ready function */
1103 status
= chip
->waitfunc(mtd
, chip
);
1104 /* See if device thinks it succeeded */
1105 if (status
& NAND_STATUS_FAIL
) {
1106 pr_debug("%s: error status = 0x%08x\n",
1112 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1115 chip
->select_chip(mtd
, -1);
1116 nand_release_device(mtd
);
1120 EXPORT_SYMBOL(nand_lock
);
1123 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1124 * @buf: buffer to test
1125 * @len: buffer length
1126 * @bitflips_threshold: maximum number of bitflips
1128 * Check if a buffer contains only 0xff, which means the underlying region
1129 * has been erased and is ready to be programmed.
1130 * The bitflips_threshold specify the maximum number of bitflips before
1131 * considering the region is not erased.
1132 * Note: The logic of this function has been extracted from the memweight
1133 * implementation, except that nand_check_erased_buf function exit before
1134 * testing the whole buffer if the number of bitflips exceed the
1135 * bitflips_threshold value.
1137 * Returns a positive number of bitflips less than or equal to
1138 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1141 static int nand_check_erased_buf(void *buf
, int len
, int bitflips_threshold
)
1143 const unsigned char *bitmap
= buf
;
1147 for (; len
&& ((uintptr_t)bitmap
) % sizeof(long);
1149 weight
= hweight8(*bitmap
);
1150 bitflips
+= BITS_PER_BYTE
- weight
;
1151 if (unlikely(bitflips
> bitflips_threshold
))
1155 for (; len
>= sizeof(long);
1156 len
-= sizeof(long), bitmap
+= sizeof(long)) {
1157 weight
= hweight_long(*((unsigned long *)bitmap
));
1158 bitflips
+= BITS_PER_LONG
- weight
;
1159 if (unlikely(bitflips
> bitflips_threshold
))
1163 for (; len
> 0; len
--, bitmap
++) {
1164 weight
= hweight8(*bitmap
);
1165 bitflips
+= BITS_PER_BYTE
- weight
;
1166 if (unlikely(bitflips
> bitflips_threshold
))
1174 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1176 * @data: data buffer to test
1177 * @datalen: data length
1179 * @ecclen: ECC length
1180 * @extraoob: extra OOB buffer
1181 * @extraooblen: extra OOB length
1182 * @bitflips_threshold: maximum number of bitflips
1184 * Check if a data buffer and its associated ECC and OOB data contains only
1185 * 0xff pattern, which means the underlying region has been erased and is
1186 * ready to be programmed.
1187 * The bitflips_threshold specify the maximum number of bitflips before
1188 * considering the region as not erased.
1191 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1192 * different from the NAND page size. When fixing bitflips, ECC engines will
1193 * report the number of errors per chunk, and the NAND core infrastructure
1194 * expect you to return the maximum number of bitflips for the whole page.
1195 * This is why you should always use this function on a single chunk and
1196 * not on the whole page. After checking each chunk you should update your
1197 * max_bitflips value accordingly.
1198 * 2/ When checking for bitflips in erased pages you should not only check
1199 * the payload data but also their associated ECC data, because a user might
1200 * have programmed almost all bits to 1 but a few. In this case, we
1201 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1203 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1204 * data are protected by the ECC engine.
1205 * It could also be used if you support subpages and want to attach some
1206 * extra OOB data to an ECC chunk.
1208 * Returns a positive number of bitflips less than or equal to
1209 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1210 * threshold. In case of success, the passed buffers are filled with 0xff.
1212 int nand_check_erased_ecc_chunk(void *data
, int datalen
,
1213 void *ecc
, int ecclen
,
1214 void *extraoob
, int extraooblen
,
1215 int bitflips_threshold
)
1217 int data_bitflips
= 0, ecc_bitflips
= 0, extraoob_bitflips
= 0;
1219 data_bitflips
= nand_check_erased_buf(data
, datalen
,
1220 bitflips_threshold
);
1221 if (data_bitflips
< 0)
1222 return data_bitflips
;
1224 bitflips_threshold
-= data_bitflips
;
1226 ecc_bitflips
= nand_check_erased_buf(ecc
, ecclen
, bitflips_threshold
);
1227 if (ecc_bitflips
< 0)
1228 return ecc_bitflips
;
1230 bitflips_threshold
-= ecc_bitflips
;
1232 extraoob_bitflips
= nand_check_erased_buf(extraoob
, extraooblen
,
1233 bitflips_threshold
);
1234 if (extraoob_bitflips
< 0)
1235 return extraoob_bitflips
;
1238 memset(data
, 0xff, datalen
);
1241 memset(ecc
, 0xff, ecclen
);
1243 if (extraoob_bitflips
)
1244 memset(extraoob
, 0xff, extraooblen
);
1246 return data_bitflips
+ ecc_bitflips
+ extraoob_bitflips
;
1248 EXPORT_SYMBOL(nand_check_erased_ecc_chunk
);
1251 * nand_read_page_raw - [INTERN] read raw page data without ecc
1252 * @mtd: mtd info structure
1253 * @chip: nand chip info structure
1254 * @buf: buffer to store read data
1255 * @oob_required: caller requires OOB data read to chip->oob_poi
1256 * @page: page number to read
1258 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1260 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1261 uint8_t *buf
, int oob_required
, int page
)
1263 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1265 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1270 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1271 * @mtd: mtd info structure
1272 * @chip: nand chip info structure
1273 * @buf: buffer to store read data
1274 * @oob_required: caller requires OOB data read to chip->oob_poi
1275 * @page: page number to read
1277 * We need a special oob layout and handling even when OOB isn't used.
1279 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1280 struct nand_chip
*chip
, uint8_t *buf
,
1281 int oob_required
, int page
)
1283 int eccsize
= chip
->ecc
.size
;
1284 int eccbytes
= chip
->ecc
.bytes
;
1285 uint8_t *oob
= chip
->oob_poi
;
1288 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1289 chip
->read_buf(mtd
, buf
, eccsize
);
1292 if (chip
->ecc
.prepad
) {
1293 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1294 oob
+= chip
->ecc
.prepad
;
1297 chip
->read_buf(mtd
, oob
, eccbytes
);
1300 if (chip
->ecc
.postpad
) {
1301 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1302 oob
+= chip
->ecc
.postpad
;
1306 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1308 chip
->read_buf(mtd
, oob
, size
);
1314 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1315 * @mtd: mtd info structure
1316 * @chip: nand chip info structure
1317 * @buf: buffer to store read data
1318 * @oob_required: caller requires OOB data read to chip->oob_poi
1319 * @page: page number to read
1321 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1322 uint8_t *buf
, int oob_required
, int page
)
1324 int i
, eccsize
= chip
->ecc
.size
, ret
;
1325 int eccbytes
= chip
->ecc
.bytes
;
1326 int eccsteps
= chip
->ecc
.steps
;
1328 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1329 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1330 unsigned int max_bitflips
= 0;
1332 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1334 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1335 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1337 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1342 eccsteps
= chip
->ecc
.steps
;
1345 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1348 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1350 mtd
->ecc_stats
.failed
++;
1352 mtd
->ecc_stats
.corrected
+= stat
;
1353 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1356 return max_bitflips
;
1360 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1361 * @mtd: mtd info structure
1362 * @chip: nand chip info structure
1363 * @data_offs: offset of requested data within the page
1364 * @readlen: data length
1365 * @bufpoi: buffer to store read data
1366 * @page: page number to read
1368 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1369 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
,
1372 int start_step
, end_step
, num_steps
, ret
;
1374 int data_col_addr
, i
, gaps
= 0;
1375 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1376 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1377 int index
, section
= 0;
1378 unsigned int max_bitflips
= 0;
1379 struct mtd_oob_region oobregion
= { };
1381 /* Column address within the page aligned to ECC size (256bytes) */
1382 start_step
= data_offs
/ chip
->ecc
.size
;
1383 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1384 num_steps
= end_step
- start_step
+ 1;
1385 index
= start_step
* chip
->ecc
.bytes
;
1387 /* Data size aligned to ECC ecc.size */
1388 datafrag_len
= num_steps
* chip
->ecc
.size
;
1389 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1391 data_col_addr
= start_step
* chip
->ecc
.size
;
1392 /* If we read not a page aligned data */
1393 if (data_col_addr
!= 0)
1394 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1396 p
= bufpoi
+ data_col_addr
;
1397 chip
->read_buf(mtd
, p
, datafrag_len
);
1400 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1401 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1404 * The performance is faster if we position offsets according to
1405 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1407 ret
= mtd_ooblayout_find_eccregion(mtd
, index
, §ion
, &oobregion
);
1411 if (oobregion
.length
< eccfrag_len
)
1415 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1416 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1419 * Send the command to read the particular ECC bytes take care
1420 * about buswidth alignment in read_buf.
1422 aligned_pos
= oobregion
.offset
& ~(busw
- 1);
1423 aligned_len
= eccfrag_len
;
1424 if (oobregion
.offset
& (busw
- 1))
1426 if ((oobregion
.offset
+ (num_steps
* chip
->ecc
.bytes
)) &
1430 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1431 mtd
->writesize
+ aligned_pos
, -1);
1432 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1435 ret
= mtd_ooblayout_get_eccbytes(mtd
, chip
->buffers
->ecccode
,
1436 chip
->oob_poi
, index
, eccfrag_len
);
1440 p
= bufpoi
+ data_col_addr
;
1441 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1444 stat
= chip
->ecc
.correct(mtd
, p
,
1445 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1446 if (stat
== -EBADMSG
&&
1447 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1448 /* check for empty pages with bitflips */
1449 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1450 &chip
->buffers
->ecccode
[i
],
1453 chip
->ecc
.strength
);
1457 mtd
->ecc_stats
.failed
++;
1459 mtd
->ecc_stats
.corrected
+= stat
;
1460 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1463 return max_bitflips
;
1467 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1468 * @mtd: mtd info structure
1469 * @chip: nand chip info structure
1470 * @buf: buffer to store read data
1471 * @oob_required: caller requires OOB data read to chip->oob_poi
1472 * @page: page number to read
1474 * Not for syndrome calculating ECC controllers which need a special oob layout.
1476 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1477 uint8_t *buf
, int oob_required
, int page
)
1479 int i
, eccsize
= chip
->ecc
.size
, ret
;
1480 int eccbytes
= chip
->ecc
.bytes
;
1481 int eccsteps
= chip
->ecc
.steps
;
1483 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1484 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1485 unsigned int max_bitflips
= 0;
1487 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1488 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1489 chip
->read_buf(mtd
, p
, eccsize
);
1490 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1492 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1494 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1499 eccsteps
= chip
->ecc
.steps
;
1502 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1505 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1506 if (stat
== -EBADMSG
&&
1507 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1508 /* check for empty pages with bitflips */
1509 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1510 &ecc_code
[i
], eccbytes
,
1512 chip
->ecc
.strength
);
1516 mtd
->ecc_stats
.failed
++;
1518 mtd
->ecc_stats
.corrected
+= stat
;
1519 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1522 return max_bitflips
;
1526 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1527 * @mtd: mtd info structure
1528 * @chip: nand chip info structure
1529 * @buf: buffer to store read data
1530 * @oob_required: caller requires OOB data read to chip->oob_poi
1531 * @page: page number to read
1533 * Hardware ECC for large page chips, require OOB to be read first. For this
1534 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1535 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1536 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1537 * the data area, by overwriting the NAND manufacturer bad block markings.
1539 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1540 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1542 int i
, eccsize
= chip
->ecc
.size
, ret
;
1543 int eccbytes
= chip
->ecc
.bytes
;
1544 int eccsteps
= chip
->ecc
.steps
;
1546 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1547 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1548 unsigned int max_bitflips
= 0;
1550 /* Read the OOB area first */
1551 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1552 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1553 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1555 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1560 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1563 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1564 chip
->read_buf(mtd
, p
, eccsize
);
1565 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1567 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1568 if (stat
== -EBADMSG
&&
1569 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1570 /* check for empty pages with bitflips */
1571 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1572 &ecc_code
[i
], eccbytes
,
1574 chip
->ecc
.strength
);
1578 mtd
->ecc_stats
.failed
++;
1580 mtd
->ecc_stats
.corrected
+= stat
;
1581 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1584 return max_bitflips
;
1588 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1589 * @mtd: mtd info structure
1590 * @chip: nand chip info structure
1591 * @buf: buffer to store read data
1592 * @oob_required: caller requires OOB data read to chip->oob_poi
1593 * @page: page number to read
1595 * The hw generator calculates the error syndrome automatically. Therefore we
1596 * need a special oob layout and handling.
1598 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1599 uint8_t *buf
, int oob_required
, int page
)
1601 int i
, eccsize
= chip
->ecc
.size
;
1602 int eccbytes
= chip
->ecc
.bytes
;
1603 int eccsteps
= chip
->ecc
.steps
;
1604 int eccpadbytes
= eccbytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1606 uint8_t *oob
= chip
->oob_poi
;
1607 unsigned int max_bitflips
= 0;
1609 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1612 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1613 chip
->read_buf(mtd
, p
, eccsize
);
1615 if (chip
->ecc
.prepad
) {
1616 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1617 oob
+= chip
->ecc
.prepad
;
1620 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1621 chip
->read_buf(mtd
, oob
, eccbytes
);
1622 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1626 if (chip
->ecc
.postpad
) {
1627 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1628 oob
+= chip
->ecc
.postpad
;
1631 if (stat
== -EBADMSG
&&
1632 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1633 /* check for empty pages with bitflips */
1634 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1638 chip
->ecc
.strength
);
1642 mtd
->ecc_stats
.failed
++;
1644 mtd
->ecc_stats
.corrected
+= stat
;
1645 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1649 /* Calculate remaining oob bytes */
1650 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1652 chip
->read_buf(mtd
, oob
, i
);
1654 return max_bitflips
;
1658 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1659 * @mtd: mtd info structure
1660 * @oob: oob destination address
1661 * @ops: oob ops structure
1662 * @len: size of oob to transfer
1664 static uint8_t *nand_transfer_oob(struct mtd_info
*mtd
, uint8_t *oob
,
1665 struct mtd_oob_ops
*ops
, size_t len
)
1667 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1670 switch (ops
->mode
) {
1672 case MTD_OPS_PLACE_OOB
:
1674 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1677 case MTD_OPS_AUTO_OOB
:
1678 ret
= mtd_ooblayout_get_databytes(mtd
, oob
, chip
->oob_poi
,
1690 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1691 * @mtd: MTD device structure
1692 * @retry_mode: the retry mode to use
1694 * Some vendors supply a special command to shift the Vt threshold, to be used
1695 * when there are too many bitflips in a page (i.e., ECC error). After setting
1696 * a new threshold, the host should retry reading the page.
1698 static int nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
1700 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1702 pr_debug("setting READ RETRY mode %d\n", retry_mode
);
1704 if (retry_mode
>= chip
->read_retries
)
1707 if (!chip
->setup_read_retry
)
1710 return chip
->setup_read_retry(mtd
, retry_mode
);
1714 * nand_do_read_ops - [INTERN] Read data with ECC
1715 * @mtd: MTD device structure
1716 * @from: offset to read from
1717 * @ops: oob ops structure
1719 * Internal function. Called with chip held.
1721 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1722 struct mtd_oob_ops
*ops
)
1724 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1725 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1727 uint32_t readlen
= ops
->len
;
1728 uint32_t oobreadlen
= ops
->ooblen
;
1729 uint32_t max_oobsize
= mtd_oobavail(mtd
, ops
);
1731 uint8_t *bufpoi
, *oob
, *buf
;
1733 unsigned int max_bitflips
= 0;
1735 bool ecc_fail
= false;
1737 chipnr
= (int)(from
>> chip
->chip_shift
);
1738 chip
->select_chip(mtd
, chipnr
);
1740 realpage
= (int)(from
>> chip
->page_shift
);
1741 page
= realpage
& chip
->pagemask
;
1743 col
= (int)(from
& (mtd
->writesize
- 1));
1747 oob_required
= oob
? 1 : 0;
1750 unsigned int ecc_failures
= mtd
->ecc_stats
.failed
;
1752 bytes
= min(mtd
->writesize
- col
, readlen
);
1753 aligned
= (bytes
== mtd
->writesize
);
1757 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
1758 use_bufpoi
= !virt_addr_valid(buf
);
1762 /* Is the current page in the buffer? */
1763 if (realpage
!= chip
->pagebuf
|| oob
) {
1764 bufpoi
= use_bufpoi
? chip
->buffers
->databuf
: buf
;
1766 if (use_bufpoi
&& aligned
)
1767 pr_debug("%s: using read bounce buffer for buf@%p\n",
1771 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1774 * Now read the page into the buffer. Absent an error,
1775 * the read methods return max bitflips per ecc step.
1777 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1778 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
1781 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
1783 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1787 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1788 oob_required
, page
);
1791 /* Invalidate page cache */
1796 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1798 /* Transfer not aligned data */
1800 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
1801 !(mtd
->ecc_stats
.failed
- ecc_failures
) &&
1802 (ops
->mode
!= MTD_OPS_RAW
)) {
1803 chip
->pagebuf
= realpage
;
1804 chip
->pagebuf_bitflips
= ret
;
1806 /* Invalidate page cache */
1809 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1812 if (unlikely(oob
)) {
1813 int toread
= min(oobreadlen
, max_oobsize
);
1816 oob
= nand_transfer_oob(mtd
,
1818 oobreadlen
-= toread
;
1822 if (chip
->options
& NAND_NEED_READRDY
) {
1823 /* Apply delay or wait for ready/busy pin */
1824 if (!chip
->dev_ready
)
1825 udelay(chip
->chip_delay
);
1827 nand_wait_ready(mtd
);
1830 if (mtd
->ecc_stats
.failed
- ecc_failures
) {
1831 if (retry_mode
+ 1 < chip
->read_retries
) {
1833 ret
= nand_setup_read_retry(mtd
,
1838 /* Reset failures; retry */
1839 mtd
->ecc_stats
.failed
= ecc_failures
;
1842 /* No more retry modes; real failure */
1849 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1851 max_bitflips
= max_t(unsigned int, max_bitflips
,
1852 chip
->pagebuf_bitflips
);
1857 /* Reset to retry mode 0 */
1859 ret
= nand_setup_read_retry(mtd
, 0);
1868 /* For subsequent reads align to page boundary */
1870 /* Increment page address */
1873 page
= realpage
& chip
->pagemask
;
1874 /* Check, if we cross a chip boundary */
1877 chip
->select_chip(mtd
, -1);
1878 chip
->select_chip(mtd
, chipnr
);
1881 chip
->select_chip(mtd
, -1);
1883 ops
->retlen
= ops
->len
- (size_t) readlen
;
1885 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1893 return max_bitflips
;
1897 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1898 * @mtd: MTD device structure
1899 * @from: offset to read from
1900 * @len: number of bytes to read
1901 * @retlen: pointer to variable to store the number of read bytes
1902 * @buf: the databuffer to put data
1904 * Get hold of the chip and call nand_do_read.
1906 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1907 size_t *retlen
, uint8_t *buf
)
1909 struct mtd_oob_ops ops
;
1912 nand_get_device(mtd
, FL_READING
);
1913 memset(&ops
, 0, sizeof(ops
));
1916 ops
.mode
= MTD_OPS_PLACE_OOB
;
1917 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1918 *retlen
= ops
.retlen
;
1919 nand_release_device(mtd
);
1924 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1925 * @mtd: mtd info structure
1926 * @chip: nand chip info structure
1927 * @page: page number to read
1929 int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1931 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1932 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1935 EXPORT_SYMBOL(nand_read_oob_std
);
1938 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @page: page number to read
1944 int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1947 int length
= mtd
->oobsize
;
1948 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1949 int eccsize
= chip
->ecc
.size
;
1950 uint8_t *bufpoi
= chip
->oob_poi
;
1951 int i
, toread
, sndrnd
= 0, pos
;
1953 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1954 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1956 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1957 if (mtd
->writesize
> 512)
1958 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1960 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1963 toread
= min_t(int, length
, chunk
);
1964 chip
->read_buf(mtd
, bufpoi
, toread
);
1969 chip
->read_buf(mtd
, bufpoi
, length
);
1973 EXPORT_SYMBOL(nand_read_oob_syndrome
);
1976 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1977 * @mtd: mtd info structure
1978 * @chip: nand chip info structure
1979 * @page: page number to write
1981 int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1984 const uint8_t *buf
= chip
->oob_poi
;
1985 int length
= mtd
->oobsize
;
1987 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1988 chip
->write_buf(mtd
, buf
, length
);
1989 /* Send command to program the OOB data */
1990 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1992 status
= chip
->waitfunc(mtd
, chip
);
1994 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1996 EXPORT_SYMBOL(nand_write_oob_std
);
1999 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2000 * with syndrome - only for large page flash
2001 * @mtd: mtd info structure
2002 * @chip: nand chip info structure
2003 * @page: page number to write
2005 int nand_write_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2008 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
2009 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
2010 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
2011 const uint8_t *bufpoi
= chip
->oob_poi
;
2014 * data-ecc-data-ecc ... ecc-oob
2016 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2018 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
2019 pos
= steps
* (eccsize
+ chunk
);
2024 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
2025 for (i
= 0; i
< steps
; i
++) {
2027 if (mtd
->writesize
<= 512) {
2028 uint32_t fill
= 0xFFFFFFFF;
2032 int num
= min_t(int, len
, 4);
2033 chip
->write_buf(mtd
, (uint8_t *)&fill
,
2038 pos
= eccsize
+ i
* (eccsize
+ chunk
);
2039 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
2043 len
= min_t(int, length
, chunk
);
2044 chip
->write_buf(mtd
, bufpoi
, len
);
2049 chip
->write_buf(mtd
, bufpoi
, length
);
2051 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2052 status
= chip
->waitfunc(mtd
, chip
);
2054 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
2056 EXPORT_SYMBOL(nand_write_oob_syndrome
);
2059 * nand_do_read_oob - [INTERN] NAND read out-of-band
2060 * @mtd: MTD device structure
2061 * @from: offset to read from
2062 * @ops: oob operations description structure
2064 * NAND read out-of-band data from the spare area.
2066 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
2067 struct mtd_oob_ops
*ops
)
2069 int page
, realpage
, chipnr
;
2070 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2071 struct mtd_ecc_stats stats
;
2072 int readlen
= ops
->ooblen
;
2074 uint8_t *buf
= ops
->oobbuf
;
2077 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2078 __func__
, (unsigned long long)from
, readlen
);
2080 stats
= mtd
->ecc_stats
;
2082 len
= mtd_oobavail(mtd
, ops
);
2084 if (unlikely(ops
->ooboffs
>= len
)) {
2085 pr_debug("%s: attempt to start read outside oob\n",
2090 /* Do not allow reads past end of device */
2091 if (unlikely(from
>= mtd
->size
||
2092 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
2093 (from
>> chip
->page_shift
)) * len
)) {
2094 pr_debug("%s: attempt to read beyond end of device\n",
2099 chipnr
= (int)(from
>> chip
->chip_shift
);
2100 chip
->select_chip(mtd
, chipnr
);
2102 /* Shift to get page */
2103 realpage
= (int)(from
>> chip
->page_shift
);
2104 page
= realpage
& chip
->pagemask
;
2107 if (ops
->mode
== MTD_OPS_RAW
)
2108 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
2110 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
2115 len
= min(len
, readlen
);
2116 buf
= nand_transfer_oob(mtd
, buf
, ops
, len
);
2118 if (chip
->options
& NAND_NEED_READRDY
) {
2119 /* Apply delay or wait for ready/busy pin */
2120 if (!chip
->dev_ready
)
2121 udelay(chip
->chip_delay
);
2123 nand_wait_ready(mtd
);
2130 /* Increment page address */
2133 page
= realpage
& chip
->pagemask
;
2134 /* Check, if we cross a chip boundary */
2137 chip
->select_chip(mtd
, -1);
2138 chip
->select_chip(mtd
, chipnr
);
2141 chip
->select_chip(mtd
, -1);
2143 ops
->oobretlen
= ops
->ooblen
- readlen
;
2148 if (mtd
->ecc_stats
.failed
- stats
.failed
)
2151 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
2155 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2156 * @mtd: MTD device structure
2157 * @from: offset to read from
2158 * @ops: oob operation description structure
2160 * NAND read data and/or out-of-band data.
2162 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
2163 struct mtd_oob_ops
*ops
)
2165 int ret
= -ENOTSUPP
;
2169 /* Do not allow reads past end of device */
2170 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
2171 pr_debug("%s: attempt to read beyond end of device\n",
2176 nand_get_device(mtd
, FL_READING
);
2178 switch (ops
->mode
) {
2179 case MTD_OPS_PLACE_OOB
:
2180 case MTD_OPS_AUTO_OOB
:
2189 ret
= nand_do_read_oob(mtd
, from
, ops
);
2191 ret
= nand_do_read_ops(mtd
, from
, ops
);
2194 nand_release_device(mtd
);
2200 * nand_write_page_raw - [INTERN] raw page write function
2201 * @mtd: mtd info structure
2202 * @chip: nand chip info structure
2204 * @oob_required: must write chip->oob_poi to OOB
2205 * @page: page number to write
2207 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2209 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2210 const uint8_t *buf
, int oob_required
, int page
)
2212 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
2214 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2220 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2221 * @mtd: mtd info structure
2222 * @chip: nand chip info structure
2224 * @oob_required: must write chip->oob_poi to OOB
2225 * @page: page number to write
2227 * We need a special oob layout and handling even when ECC isn't checked.
2229 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
2230 struct nand_chip
*chip
,
2231 const uint8_t *buf
, int oob_required
,
2234 int eccsize
= chip
->ecc
.size
;
2235 int eccbytes
= chip
->ecc
.bytes
;
2236 uint8_t *oob
= chip
->oob_poi
;
2239 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
2240 chip
->write_buf(mtd
, buf
, eccsize
);
2243 if (chip
->ecc
.prepad
) {
2244 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2245 oob
+= chip
->ecc
.prepad
;
2248 chip
->write_buf(mtd
, oob
, eccbytes
);
2251 if (chip
->ecc
.postpad
) {
2252 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2253 oob
+= chip
->ecc
.postpad
;
2257 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2259 chip
->write_buf(mtd
, oob
, size
);
2264 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2265 * @mtd: mtd info structure
2266 * @chip: nand chip info structure
2268 * @oob_required: must write chip->oob_poi to OOB
2269 * @page: page number to write
2271 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2272 const uint8_t *buf
, int oob_required
,
2275 int i
, eccsize
= chip
->ecc
.size
, ret
;
2276 int eccbytes
= chip
->ecc
.bytes
;
2277 int eccsteps
= chip
->ecc
.steps
;
2278 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2279 const uint8_t *p
= buf
;
2281 /* Software ECC calculation */
2282 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
2283 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2285 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2290 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1, page
);
2294 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2295 * @mtd: mtd info structure
2296 * @chip: nand chip info structure
2298 * @oob_required: must write chip->oob_poi to OOB
2299 * @page: page number to write
2301 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2302 const uint8_t *buf
, int oob_required
,
2305 int i
, eccsize
= chip
->ecc
.size
, ret
;
2306 int eccbytes
= chip
->ecc
.bytes
;
2307 int eccsteps
= chip
->ecc
.steps
;
2308 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2309 const uint8_t *p
= buf
;
2311 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2312 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2313 chip
->write_buf(mtd
, p
, eccsize
);
2314 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2317 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2322 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2329 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2330 * @mtd: mtd info structure
2331 * @chip: nand chip info structure
2332 * @offset: column address of subpage within the page
2333 * @data_len: data length
2335 * @oob_required: must write chip->oob_poi to OOB
2336 * @page: page number to write
2338 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
2339 struct nand_chip
*chip
, uint32_t offset
,
2340 uint32_t data_len
, const uint8_t *buf
,
2341 int oob_required
, int page
)
2343 uint8_t *oob_buf
= chip
->oob_poi
;
2344 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2345 int ecc_size
= chip
->ecc
.size
;
2346 int ecc_bytes
= chip
->ecc
.bytes
;
2347 int ecc_steps
= chip
->ecc
.steps
;
2348 uint32_t start_step
= offset
/ ecc_size
;
2349 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2350 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2353 for (step
= 0; step
< ecc_steps
; step
++) {
2354 /* configure controller for WRITE access */
2355 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2357 /* write data (untouched subpages already masked by 0xFF) */
2358 chip
->write_buf(mtd
, buf
, ecc_size
);
2360 /* mask ECC of un-touched subpages by padding 0xFF */
2361 if ((step
< start_step
) || (step
> end_step
))
2362 memset(ecc_calc
, 0xff, ecc_bytes
);
2364 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2366 /* mask OOB of un-touched subpages by padding 0xFF */
2367 /* if oob_required, preserve OOB metadata of written subpage */
2368 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2369 memset(oob_buf
, 0xff, oob_bytes
);
2372 ecc_calc
+= ecc_bytes
;
2373 oob_buf
+= oob_bytes
;
2376 /* copy calculated ECC for whole page to chip->buffer->oob */
2377 /* this include masked-value(0xFF) for unwritten subpages */
2378 ecc_calc
= chip
->buffers
->ecccalc
;
2379 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2384 /* write OOB buffer to NAND device */
2385 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2392 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2393 * @mtd: mtd info structure
2394 * @chip: nand chip info structure
2396 * @oob_required: must write chip->oob_poi to OOB
2397 * @page: page number to write
2399 * The hw generator calculates the error syndrome automatically. Therefore we
2400 * need a special oob layout and handling.
2402 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2403 struct nand_chip
*chip
,
2404 const uint8_t *buf
, int oob_required
,
2407 int i
, eccsize
= chip
->ecc
.size
;
2408 int eccbytes
= chip
->ecc
.bytes
;
2409 int eccsteps
= chip
->ecc
.steps
;
2410 const uint8_t *p
= buf
;
2411 uint8_t *oob
= chip
->oob_poi
;
2413 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2415 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2416 chip
->write_buf(mtd
, p
, eccsize
);
2418 if (chip
->ecc
.prepad
) {
2419 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2420 oob
+= chip
->ecc
.prepad
;
2423 chip
->ecc
.calculate(mtd
, p
, oob
);
2424 chip
->write_buf(mtd
, oob
, eccbytes
);
2427 if (chip
->ecc
.postpad
) {
2428 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2429 oob
+= chip
->ecc
.postpad
;
2433 /* Calculate remaining oob bytes */
2434 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2436 chip
->write_buf(mtd
, oob
, i
);
2442 * nand_write_page - [REPLACEABLE] write one page
2443 * @mtd: MTD device structure
2444 * @chip: NAND chip descriptor
2445 * @offset: address offset within the page
2446 * @data_len: length of actual data to be written
2447 * @buf: the data to write
2448 * @oob_required: must write chip->oob_poi to OOB
2449 * @page: page number to write
2450 * @cached: cached programming
2451 * @raw: use _raw version of write_page
2453 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2454 uint32_t offset
, int data_len
, const uint8_t *buf
,
2455 int oob_required
, int page
, int cached
, int raw
)
2457 int status
, subpage
;
2459 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2460 chip
->ecc
.write_subpage
)
2461 subpage
= offset
|| (data_len
< mtd
->writesize
);
2465 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2468 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2469 oob_required
, page
);
2471 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2472 buf
, oob_required
, page
);
2474 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
,
2481 * Cached progamming disabled for now. Not sure if it's worth the
2482 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2486 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2488 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2489 status
= chip
->waitfunc(mtd
, chip
);
2491 * See if operation failed and additional status checks are
2494 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2495 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2498 if (status
& NAND_STATUS_FAIL
)
2501 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2502 status
= chip
->waitfunc(mtd
, chip
);
2509 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2510 * @mtd: MTD device structure
2511 * @oob: oob data buffer
2512 * @len: oob data write length
2513 * @ops: oob ops structure
2515 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2516 struct mtd_oob_ops
*ops
)
2518 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2522 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2523 * data from a previous OOB read.
2525 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2527 switch (ops
->mode
) {
2529 case MTD_OPS_PLACE_OOB
:
2531 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2534 case MTD_OPS_AUTO_OOB
:
2535 ret
= mtd_ooblayout_set_databytes(mtd
, oob
, chip
->oob_poi
,
2546 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2549 * nand_do_write_ops - [INTERN] NAND write with ECC
2550 * @mtd: MTD device structure
2551 * @to: offset to write to
2552 * @ops: oob operations description structure
2554 * NAND write with ECC.
2556 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2557 struct mtd_oob_ops
*ops
)
2559 int chipnr
, realpage
, page
, blockmask
, column
;
2560 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2561 uint32_t writelen
= ops
->len
;
2563 uint32_t oobwritelen
= ops
->ooblen
;
2564 uint32_t oobmaxlen
= mtd_oobavail(mtd
, ops
);
2566 uint8_t *oob
= ops
->oobbuf
;
2567 uint8_t *buf
= ops
->datbuf
;
2569 int oob_required
= oob
? 1 : 0;
2575 /* Reject writes, which are not page aligned */
2576 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2577 pr_notice("%s: attempt to write non page aligned data\n",
2582 column
= to
& (mtd
->writesize
- 1);
2584 chipnr
= (int)(to
>> chip
->chip_shift
);
2585 chip
->select_chip(mtd
, chipnr
);
2587 /* Check, if it is write protected */
2588 if (nand_check_wp(mtd
)) {
2593 realpage
= (int)(to
>> chip
->page_shift
);
2594 page
= realpage
& chip
->pagemask
;
2595 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2597 /* Invalidate the page cache, when we write to the cached page */
2598 if (to
<= ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) &&
2599 ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2602 /* Don't allow multipage oob writes with offset */
2603 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2609 int bytes
= mtd
->writesize
;
2610 int cached
= writelen
> bytes
&& page
!= blockmask
;
2611 uint8_t *wbuf
= buf
;
2613 int part_pagewr
= (column
|| writelen
< (mtd
->writesize
- 1));
2617 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
2618 use_bufpoi
= !virt_addr_valid(buf
);
2622 /* Partial page write?, or need to use bounce buffer */
2624 pr_debug("%s: using write bounce buffer for buf@%p\n",
2628 bytes
= min_t(int, bytes
- column
, writelen
);
2630 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2631 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2632 wbuf
= chip
->buffers
->databuf
;
2635 if (unlikely(oob
)) {
2636 size_t len
= min(oobwritelen
, oobmaxlen
);
2637 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2640 /* We still need to erase leftover OOB data */
2641 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2643 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2644 oob_required
, page
, cached
,
2645 (ops
->mode
== MTD_OPS_RAW
));
2657 page
= realpage
& chip
->pagemask
;
2658 /* Check, if we cross a chip boundary */
2661 chip
->select_chip(mtd
, -1);
2662 chip
->select_chip(mtd
, chipnr
);
2666 ops
->retlen
= ops
->len
- writelen
;
2668 ops
->oobretlen
= ops
->ooblen
;
2671 chip
->select_chip(mtd
, -1);
2676 * panic_nand_write - [MTD Interface] NAND write with ECC
2677 * @mtd: MTD device structure
2678 * @to: offset to write to
2679 * @len: number of bytes to write
2680 * @retlen: pointer to variable to store the number of written bytes
2681 * @buf: the data to write
2683 * NAND write with ECC. Used when performing writes in interrupt context, this
2684 * may for example be called by mtdoops when writing an oops while in panic.
2686 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2687 size_t *retlen
, const uint8_t *buf
)
2689 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2690 struct mtd_oob_ops ops
;
2693 /* Wait for the device to get ready */
2694 panic_nand_wait(mtd
, chip
, 400);
2696 /* Grab the device */
2697 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2699 memset(&ops
, 0, sizeof(ops
));
2701 ops
.datbuf
= (uint8_t *)buf
;
2702 ops
.mode
= MTD_OPS_PLACE_OOB
;
2704 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2706 *retlen
= ops
.retlen
;
2711 * nand_write - [MTD Interface] NAND write with ECC
2712 * @mtd: MTD device structure
2713 * @to: offset to write to
2714 * @len: number of bytes to write
2715 * @retlen: pointer to variable to store the number of written bytes
2716 * @buf: the data to write
2718 * NAND write with ECC.
2720 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2721 size_t *retlen
, const uint8_t *buf
)
2723 struct mtd_oob_ops ops
;
2726 nand_get_device(mtd
, FL_WRITING
);
2727 memset(&ops
, 0, sizeof(ops
));
2729 ops
.datbuf
= (uint8_t *)buf
;
2730 ops
.mode
= MTD_OPS_PLACE_OOB
;
2731 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2732 *retlen
= ops
.retlen
;
2733 nand_release_device(mtd
);
2738 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2739 * @mtd: MTD device structure
2740 * @to: offset to write to
2741 * @ops: oob operation description structure
2743 * NAND write out-of-band.
2745 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2746 struct mtd_oob_ops
*ops
)
2748 int chipnr
, page
, status
, len
;
2749 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2751 pr_debug("%s: to = 0x%08x, len = %i\n",
2752 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2754 len
= mtd_oobavail(mtd
, ops
);
2756 /* Do not allow write past end of page */
2757 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2758 pr_debug("%s: attempt to write past end of page\n",
2763 if (unlikely(ops
->ooboffs
>= len
)) {
2764 pr_debug("%s: attempt to start write outside oob\n",
2769 /* Do not allow write past end of device */
2770 if (unlikely(to
>= mtd
->size
||
2771 ops
->ooboffs
+ ops
->ooblen
>
2772 ((mtd
->size
>> chip
->page_shift
) -
2773 (to
>> chip
->page_shift
)) * len
)) {
2774 pr_debug("%s: attempt to write beyond end of device\n",
2779 chipnr
= (int)(to
>> chip
->chip_shift
);
2780 chip
->select_chip(mtd
, chipnr
);
2782 /* Shift to get page */
2783 page
= (int)(to
>> chip
->page_shift
);
2786 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2787 * of my DiskOnChip 2000 test units) will clear the whole data page too
2788 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2789 * it in the doc2000 driver in August 1999. dwmw2.
2791 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2793 /* Check, if it is write protected */
2794 if (nand_check_wp(mtd
)) {
2795 chip
->select_chip(mtd
, -1);
2799 /* Invalidate the page cache, if we write to the cached page */
2800 if (page
== chip
->pagebuf
)
2803 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2805 if (ops
->mode
== MTD_OPS_RAW
)
2806 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2808 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2810 chip
->select_chip(mtd
, -1);
2815 ops
->oobretlen
= ops
->ooblen
;
2821 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2822 * @mtd: MTD device structure
2823 * @to: offset to write to
2824 * @ops: oob operation description structure
2826 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2827 struct mtd_oob_ops
*ops
)
2829 int ret
= -ENOTSUPP
;
2833 /* Do not allow writes past end of device */
2834 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2835 pr_debug("%s: attempt to write beyond end of device\n",
2840 nand_get_device(mtd
, FL_WRITING
);
2842 switch (ops
->mode
) {
2843 case MTD_OPS_PLACE_OOB
:
2844 case MTD_OPS_AUTO_OOB
:
2853 ret
= nand_do_write_oob(mtd
, to
, ops
);
2855 ret
= nand_do_write_ops(mtd
, to
, ops
);
2858 nand_release_device(mtd
);
2863 * single_erase - [GENERIC] NAND standard block erase command function
2864 * @mtd: MTD device structure
2865 * @page: the page address of the block which will be erased
2867 * Standard erase command for NAND chips. Returns NAND status.
2869 static int single_erase(struct mtd_info
*mtd
, int page
)
2871 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2872 /* Send commands to erase a block */
2873 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2874 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2876 return chip
->waitfunc(mtd
, chip
);
2880 * nand_erase - [MTD Interface] erase block(s)
2881 * @mtd: MTD device structure
2882 * @instr: erase instruction
2884 * Erase one ore more blocks.
2886 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2888 return nand_erase_nand(mtd
, instr
, 0);
2892 * nand_erase_nand - [INTERN] erase block(s)
2893 * @mtd: MTD device structure
2894 * @instr: erase instruction
2895 * @allowbbt: allow erasing the bbt area
2897 * Erase one ore more blocks.
2899 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2902 int page
, status
, pages_per_block
, ret
, chipnr
;
2903 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2906 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2907 __func__
, (unsigned long long)instr
->addr
,
2908 (unsigned long long)instr
->len
);
2910 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2913 /* Grab the lock and see if the device is available */
2914 nand_get_device(mtd
, FL_ERASING
);
2916 /* Shift to get first page */
2917 page
= (int)(instr
->addr
>> chip
->page_shift
);
2918 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2920 /* Calculate pages in each block */
2921 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2923 /* Select the NAND device */
2924 chip
->select_chip(mtd
, chipnr
);
2926 /* Check, if it is write protected */
2927 if (nand_check_wp(mtd
)) {
2928 pr_debug("%s: device is write protected!\n",
2930 instr
->state
= MTD_ERASE_FAILED
;
2934 /* Loop through the pages */
2937 instr
->state
= MTD_ERASING
;
2940 /* Check if we have a bad block, we do not erase bad blocks! */
2941 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2942 chip
->page_shift
, allowbbt
)) {
2943 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2945 instr
->state
= MTD_ERASE_FAILED
;
2950 * Invalidate the page cache, if we erase the block which
2951 * contains the current cached page.
2953 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2954 (page
+ pages_per_block
))
2957 status
= chip
->erase(mtd
, page
& chip
->pagemask
);
2960 * See if operation failed and additional status checks are
2963 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2964 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2967 /* See if block erase succeeded */
2968 if (status
& NAND_STATUS_FAIL
) {
2969 pr_debug("%s: failed erase, page 0x%08x\n",
2971 instr
->state
= MTD_ERASE_FAILED
;
2973 ((loff_t
)page
<< chip
->page_shift
);
2977 /* Increment page address and decrement length */
2978 len
-= (1ULL << chip
->phys_erase_shift
);
2979 page
+= pages_per_block
;
2981 /* Check, if we cross a chip boundary */
2982 if (len
&& !(page
& chip
->pagemask
)) {
2984 chip
->select_chip(mtd
, -1);
2985 chip
->select_chip(mtd
, chipnr
);
2988 instr
->state
= MTD_ERASE_DONE
;
2992 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2994 /* Deselect and wake up anyone waiting on the device */
2995 chip
->select_chip(mtd
, -1);
2996 nand_release_device(mtd
);
2998 /* Do call back function */
3000 mtd_erase_callback(instr
);
3002 /* Return more or less happy */
3007 * nand_sync - [MTD Interface] sync
3008 * @mtd: MTD device structure
3010 * Sync is actually a wait for chip ready function.
3012 static void nand_sync(struct mtd_info
*mtd
)
3014 pr_debug("%s: called\n", __func__
);
3016 /* Grab the lock and see if the device is available */
3017 nand_get_device(mtd
, FL_SYNCING
);
3018 /* Release it and go back */
3019 nand_release_device(mtd
);
3023 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3024 * @mtd: MTD device structure
3025 * @offs: offset relative to mtd start
3027 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
3029 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3030 int chipnr
= (int)(offs
>> chip
->chip_shift
);
3033 /* Select the NAND device */
3034 nand_get_device(mtd
, FL_READING
);
3035 chip
->select_chip(mtd
, chipnr
);
3037 ret
= nand_block_checkbad(mtd
, offs
, 0);
3039 chip
->select_chip(mtd
, -1);
3040 nand_release_device(mtd
);
3046 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3047 * @mtd: MTD device structure
3048 * @ofs: offset relative to mtd start
3050 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
3054 ret
= nand_block_isbad(mtd
, ofs
);
3056 /* If it was bad already, return success and do nothing */
3062 return nand_block_markbad_lowlevel(mtd
, ofs
);
3066 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3067 * @mtd: MTD device structure
3068 * @chip: nand chip info structure
3069 * @addr: feature address.
3070 * @subfeature_param: the subfeature parameters, a four bytes array.
3072 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3073 int addr
, uint8_t *subfeature_param
)
3078 if (!chip
->onfi_version
||
3079 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3080 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3083 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
3084 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3085 chip
->write_byte(mtd
, subfeature_param
[i
]);
3087 status
= chip
->waitfunc(mtd
, chip
);
3088 if (status
& NAND_STATUS_FAIL
)
3094 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3095 * @mtd: MTD device structure
3096 * @chip: nand chip info structure
3097 * @addr: feature address.
3098 * @subfeature_param: the subfeature parameters, a four bytes array.
3100 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3101 int addr
, uint8_t *subfeature_param
)
3105 if (!chip
->onfi_version
||
3106 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3107 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3110 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
3111 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3112 *subfeature_param
++ = chip
->read_byte(mtd
);
3117 * nand_suspend - [MTD Interface] Suspend the NAND flash
3118 * @mtd: MTD device structure
3120 static int nand_suspend(struct mtd_info
*mtd
)
3122 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
3126 * nand_resume - [MTD Interface] Resume the NAND flash
3127 * @mtd: MTD device structure
3129 static void nand_resume(struct mtd_info
*mtd
)
3131 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3133 if (chip
->state
== FL_PM_SUSPENDED
)
3134 nand_release_device(mtd
);
3136 pr_err("%s called for a chip which is not in suspended state\n",
3141 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3142 * prevent further operations
3143 * @mtd: MTD device structure
3145 static void nand_shutdown(struct mtd_info
*mtd
)
3147 nand_get_device(mtd
, FL_PM_SUSPENDED
);
3150 /* Set default functions */
3151 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
3153 /* check for proper chip_delay setup, set 20us if not */
3154 if (!chip
->chip_delay
)
3155 chip
->chip_delay
= 20;
3157 /* check, if a user supplied command function given */
3158 if (chip
->cmdfunc
== NULL
)
3159 chip
->cmdfunc
= nand_command
;
3161 /* check, if a user supplied wait function given */
3162 if (chip
->waitfunc
== NULL
)
3163 chip
->waitfunc
= nand_wait
;
3165 if (!chip
->select_chip
)
3166 chip
->select_chip
= nand_select_chip
;
3168 /* set for ONFI nand */
3169 if (!chip
->onfi_set_features
)
3170 chip
->onfi_set_features
= nand_onfi_set_features
;
3171 if (!chip
->onfi_get_features
)
3172 chip
->onfi_get_features
= nand_onfi_get_features
;
3174 /* If called twice, pointers that depend on busw may need to be reset */
3175 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
3176 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
3177 if (!chip
->read_word
)
3178 chip
->read_word
= nand_read_word
;
3179 if (!chip
->block_bad
)
3180 chip
->block_bad
= nand_block_bad
;
3181 if (!chip
->block_markbad
)
3182 chip
->block_markbad
= nand_default_block_markbad
;
3183 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
3184 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
3185 if (!chip
->write_byte
|| chip
->write_byte
== nand_write_byte
)
3186 chip
->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
3187 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
3188 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
3189 if (!chip
->scan_bbt
)
3190 chip
->scan_bbt
= nand_default_bbt
;
3192 if (!chip
->controller
) {
3193 chip
->controller
= &chip
->hwcontrol
;
3194 spin_lock_init(&chip
->controller
->lock
);
3195 init_waitqueue_head(&chip
->controller
->wq
);
3200 /* Sanitize ONFI strings so we can safely print them */
3201 static void sanitize_string(uint8_t *s
, size_t len
)
3205 /* Null terminate */
3208 /* Remove non printable chars */
3209 for (i
= 0; i
< len
- 1; i
++) {
3210 if (s
[i
] < ' ' || s
[i
] > 127)
3214 /* Remove trailing spaces */
3218 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
3223 for (i
= 0; i
< 8; i
++)
3224 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
3230 /* Parse the Extended Parameter Page. */
3231 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
3232 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
3234 struct onfi_ext_param_page
*ep
;
3235 struct onfi_ext_section
*s
;
3236 struct onfi_ext_ecc_info
*ecc
;
3242 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
3243 ep
= kmalloc(len
, GFP_KERNEL
);
3247 /* Send our own NAND_CMD_PARAM. */
3248 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3250 /* Use the Change Read Column command to skip the ONFI param pages. */
3251 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
3252 sizeof(*p
) * p
->num_of_param_pages
, -1);
3254 /* Read out the Extended Parameter Page. */
3255 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
3256 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
3257 != le16_to_cpu(ep
->crc
))) {
3258 pr_debug("fail in the CRC.\n");
3263 * Check the signature.
3264 * Do not strictly follow the ONFI spec, maybe changed in future.
3266 if (strncmp(ep
->sig
, "EPPS", 4)) {
3267 pr_debug("The signature is invalid.\n");
3271 /* find the ECC section. */
3272 cursor
= (uint8_t *)(ep
+ 1);
3273 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
3274 s
= ep
->sections
+ i
;
3275 if (s
->type
== ONFI_SECTION_TYPE_2
)
3277 cursor
+= s
->length
* 16;
3279 if (i
== ONFI_EXT_SECTION_MAX
) {
3280 pr_debug("We can not find the ECC section.\n");
3284 /* get the info we want. */
3285 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
3287 if (!ecc
->codeword_size
) {
3288 pr_debug("Invalid codeword size\n");
3292 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3293 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3301 static int nand_setup_read_retry_micron(struct mtd_info
*mtd
, int retry_mode
)
3303 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3304 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
3306 return chip
->onfi_set_features(mtd
, chip
, ONFI_FEATURE_ADDR_READ_RETRY
,
3311 * Configure chip properties from Micron vendor-specific ONFI table
3313 static void nand_onfi_detect_micron(struct nand_chip
*chip
,
3314 struct nand_onfi_params
*p
)
3316 struct nand_onfi_vendor_micron
*micron
= (void *)p
->vendor
;
3318 if (le16_to_cpu(p
->vendor_revision
) < 1)
3321 chip
->read_retries
= micron
->read_retry_options
;
3322 chip
->setup_read_retry
= nand_setup_read_retry_micron
;
3326 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3328 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3331 struct nand_onfi_params
*p
= &chip
->onfi_params
;
3335 /* Try ONFI for unknown chip or LP */
3336 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
3337 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
3338 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
3341 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3342 for (i
= 0; i
< 3; i
++) {
3343 for (j
= 0; j
< sizeof(*p
); j
++)
3344 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3345 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
3346 le16_to_cpu(p
->crc
)) {
3352 pr_err("Could not find valid ONFI parameter page; aborting\n");
3357 val
= le16_to_cpu(p
->revision
);
3359 chip
->onfi_version
= 23;
3360 else if (val
& (1 << 4))
3361 chip
->onfi_version
= 22;
3362 else if (val
& (1 << 3))
3363 chip
->onfi_version
= 21;
3364 else if (val
& (1 << 2))
3365 chip
->onfi_version
= 20;
3366 else if (val
& (1 << 1))
3367 chip
->onfi_version
= 10;
3369 if (!chip
->onfi_version
) {
3370 pr_info("unsupported ONFI version: %d\n", val
);
3374 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3375 sanitize_string(p
->model
, sizeof(p
->model
));
3377 mtd
->name
= p
->model
;
3379 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3382 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3383 * (don't ask me who thought of this...). MTD assumes that these
3384 * dimensions will be power-of-2, so just truncate the remaining area.
3386 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3387 mtd
->erasesize
*= mtd
->writesize
;
3389 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3391 /* See erasesize comment */
3392 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3393 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3394 chip
->bits_per_cell
= p
->bits_per_cell
;
3396 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3397 *busw
= NAND_BUSWIDTH_16
;
3401 if (p
->ecc_bits
!= 0xff) {
3402 chip
->ecc_strength_ds
= p
->ecc_bits
;
3403 chip
->ecc_step_ds
= 512;
3404 } else if (chip
->onfi_version
>= 21 &&
3405 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3408 * The nand_flash_detect_ext_param_page() uses the
3409 * Change Read Column command which maybe not supported
3410 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3411 * now. We do not replace user supplied command function.
3413 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3414 chip
->cmdfunc
= nand_command_lp
;
3416 /* The Extended Parameter Page is supported since ONFI 2.1. */
3417 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3418 pr_warn("Failed to detect ONFI extended param page\n");
3420 pr_warn("Could not retrieve ONFI ECC requirements\n");
3423 if (p
->jedec_id
== NAND_MFR_MICRON
)
3424 nand_onfi_detect_micron(chip
, p
);
3430 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3432 static int nand_flash_detect_jedec(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3435 struct nand_jedec_params
*p
= &chip
->jedec_params
;
3436 struct jedec_ecc_info
*ecc
;
3440 /* Try JEDEC for unknown chip or LP */
3441 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x40, -1);
3442 if (chip
->read_byte(mtd
) != 'J' || chip
->read_byte(mtd
) != 'E' ||
3443 chip
->read_byte(mtd
) != 'D' || chip
->read_byte(mtd
) != 'E' ||
3444 chip
->read_byte(mtd
) != 'C')
3447 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0x40, -1);
3448 for (i
= 0; i
< 3; i
++) {
3449 for (j
= 0; j
< sizeof(*p
); j
++)
3450 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3452 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 510) ==
3453 le16_to_cpu(p
->crc
))
3458 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3463 val
= le16_to_cpu(p
->revision
);
3465 chip
->jedec_version
= 10;
3466 else if (val
& (1 << 1))
3467 chip
->jedec_version
= 1; /* vendor specific version */
3469 if (!chip
->jedec_version
) {
3470 pr_info("unsupported JEDEC version: %d\n", val
);
3474 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3475 sanitize_string(p
->model
, sizeof(p
->model
));
3477 mtd
->name
= p
->model
;
3479 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3481 /* Please reference to the comment for nand_flash_detect_onfi. */
3482 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3483 mtd
->erasesize
*= mtd
->writesize
;
3485 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3487 /* Please reference to the comment for nand_flash_detect_onfi. */
3488 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3489 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3490 chip
->bits_per_cell
= p
->bits_per_cell
;
3492 if (jedec_feature(chip
) & JEDEC_FEATURE_16_BIT_BUS
)
3493 *busw
= NAND_BUSWIDTH_16
;
3498 ecc
= &p
->ecc_info
[0];
3500 if (ecc
->codeword_size
>= 9) {
3501 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3502 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3504 pr_warn("Invalid codeword size\n");
3511 * nand_id_has_period - Check if an ID string has a given wraparound period
3512 * @id_data: the ID string
3513 * @arrlen: the length of the @id_data array
3514 * @period: the period of repitition
3516 * Check if an ID string is repeated within a given sequence of bytes at
3517 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3518 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3519 * if the repetition has a period of @period; otherwise, returns zero.
3521 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3524 for (i
= 0; i
< period
; i
++)
3525 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3526 if (id_data
[i
] != id_data
[j
])
3532 * nand_id_len - Get the length of an ID string returned by CMD_READID
3533 * @id_data: the ID string
3534 * @arrlen: the length of the @id_data array
3536 * Returns the length of the ID string, according to known wraparound/trailing
3537 * zero patterns. If no pattern exists, returns the length of the array.
3539 static int nand_id_len(u8
*id_data
, int arrlen
)
3541 int last_nonzero
, period
;
3543 /* Find last non-zero byte */
3544 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3545 if (id_data
[last_nonzero
])
3549 if (last_nonzero
< 0)
3552 /* Calculate wraparound period */
3553 for (period
= 1; period
< arrlen
; period
++)
3554 if (nand_id_has_period(id_data
, arrlen
, period
))
3557 /* There's a repeated pattern */
3558 if (period
< arrlen
)
3561 /* There are trailing zeros */
3562 if (last_nonzero
< arrlen
- 1)
3563 return last_nonzero
+ 1;
3565 /* No pattern detected */
3569 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3570 static int nand_get_bits_per_cell(u8 cellinfo
)
3574 bits
= cellinfo
& NAND_CI_CELLTYPE_MSK
;
3575 bits
>>= NAND_CI_CELLTYPE_SHIFT
;
3580 * Many new NAND share similar device ID codes, which represent the size of the
3581 * chip. The rest of the parameters must be decoded according to generic or
3582 * manufacturer-specific "extended ID" decoding patterns.
3584 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3585 u8 id_data
[8], int *busw
)
3588 /* The 3rd id byte holds MLC / multichip data */
3589 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3590 /* The 4th id byte is the important one */
3593 id_len
= nand_id_len(id_data
, 8);
3596 * Field definitions are in the following datasheets:
3597 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3598 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3599 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3601 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3602 * ID to decide what to do.
3604 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3605 !nand_is_slc(chip
) && id_data
[5] != 0x00) {
3607 mtd
->writesize
= 2048 << (extid
& 0x03);
3610 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3630 default: /* Other cases are "reserved" (unknown) */
3631 mtd
->oobsize
= 1024;
3635 /* Calc blocksize */
3636 mtd
->erasesize
= (128 * 1024) <<
3637 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3639 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3640 !nand_is_slc(chip
)) {
3644 mtd
->writesize
= 2048 << (extid
& 0x03);
3647 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3671 /* Calc blocksize */
3672 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3674 mtd
->erasesize
= (128 * 1024) << tmp
;
3675 else if (tmp
== 0x03)
3676 mtd
->erasesize
= 768 * 1024;
3678 mtd
->erasesize
= (64 * 1024) << tmp
;
3682 mtd
->writesize
= 1024 << (extid
& 0x03);
3685 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3686 (mtd
->writesize
>> 9);
3688 /* Calc blocksize. Blocksize is multiples of 64KiB */
3689 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3691 /* Get buswidth information */
3692 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3695 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3696 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3698 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3700 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3702 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3703 nand_is_slc(chip
) &&
3704 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3705 !(id_data
[4] & 0x80) /* !BENAND */) {
3706 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3713 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3714 * decodes a matching ID table entry and assigns the MTD size parameters for
3717 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3718 struct nand_flash_dev
*type
, u8 id_data
[8],
3721 int maf_id
= id_data
[0];
3723 mtd
->erasesize
= type
->erasesize
;
3724 mtd
->writesize
= type
->pagesize
;
3725 mtd
->oobsize
= mtd
->writesize
/ 32;
3726 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3728 /* All legacy ID NAND are small-page, SLC */
3729 chip
->bits_per_cell
= 1;
3732 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3733 * some Spansion chips have erasesize that conflicts with size
3734 * listed in nand_ids table.
3735 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3737 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3738 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3739 && mtd
->writesize
== 512) {
3740 mtd
->erasesize
= 128 * 1024;
3741 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3746 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3747 * heuristic patterns using various detected parameters (e.g., manufacturer,
3748 * page size, cell-type information).
3750 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3751 struct nand_chip
*chip
, u8 id_data
[8])
3753 int maf_id
= id_data
[0];
3755 /* Set the bad block position */
3756 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3757 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3759 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3762 * Bad block marker is stored in the last page of each block on Samsung
3763 * and Hynix MLC devices; stored in first two pages of each block on
3764 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3765 * AMD/Spansion, and Macronix. All others scan only the first page.
3767 if (!nand_is_slc(chip
) &&
3768 (maf_id
== NAND_MFR_SAMSUNG
||
3769 maf_id
== NAND_MFR_HYNIX
))
3770 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3771 else if ((nand_is_slc(chip
) &&
3772 (maf_id
== NAND_MFR_SAMSUNG
||
3773 maf_id
== NAND_MFR_HYNIX
||
3774 maf_id
== NAND_MFR_TOSHIBA
||
3775 maf_id
== NAND_MFR_AMD
||
3776 maf_id
== NAND_MFR_MACRONIX
)) ||
3777 (mtd
->writesize
== 2048 &&
3778 maf_id
== NAND_MFR_MICRON
))
3779 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3782 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
3784 return type
->id_len
;
3787 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3788 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
3790 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
3791 mtd
->writesize
= type
->pagesize
;
3792 mtd
->erasesize
= type
->erasesize
;
3793 mtd
->oobsize
= type
->oobsize
;
3795 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3796 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3797 chip
->options
|= type
->options
;
3798 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
3799 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
3800 chip
->onfi_timing_mode_default
=
3801 type
->onfi_timing_mode_default
;
3803 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3806 mtd
->name
= type
->name
;
3814 * Get the flash and manufacturer id and lookup if the type is supported.
3816 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
3817 struct nand_chip
*chip
,
3818 int *maf_id
, int *dev_id
,
3819 struct nand_flash_dev
*type
)
3825 /* Select the device */
3826 chip
->select_chip(mtd
, 0);
3829 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3832 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3834 /* Send the command for reading device ID */
3835 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3837 /* Read manufacturer and device IDs */
3838 *maf_id
= chip
->read_byte(mtd
);
3839 *dev_id
= chip
->read_byte(mtd
);
3842 * Try again to make sure, as some systems the bus-hold or other
3843 * interface concerns can cause random data which looks like a
3844 * possibly credible NAND flash to appear. If the two results do
3845 * not match, ignore the device completely.
3848 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3850 /* Read entire ID string */
3851 for (i
= 0; i
< 8; i
++)
3852 id_data
[i
] = chip
->read_byte(mtd
);
3854 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
3855 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3856 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
3857 return ERR_PTR(-ENODEV
);
3861 type
= nand_flash_ids
;
3863 for (; type
->name
!= NULL
; type
++) {
3864 if (is_full_id_nand(type
)) {
3865 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
3867 } else if (*dev_id
== type
->dev_id
) {
3872 chip
->onfi_version
= 0;
3873 if (!type
->name
|| !type
->pagesize
) {
3874 /* Check if the chip is ONFI compliant */
3875 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
3878 /* Check if the chip is JEDEC compliant */
3879 if (nand_flash_detect_jedec(mtd
, chip
, &busw
))
3884 return ERR_PTR(-ENODEV
);
3887 mtd
->name
= type
->name
;
3889 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3891 if (!type
->pagesize
) {
3892 /* Decode parameters from extended ID */
3893 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
3895 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
3897 /* Get chip options */
3898 chip
->options
|= type
->options
;
3901 * Check if chip is not a Samsung device. Do not clear the
3902 * options for chips which do not have an extended id.
3904 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3905 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3908 /* Try to identify manufacturer */
3909 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3910 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3914 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
3915 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
3916 chip
->options
|= busw
;
3917 nand_set_defaults(chip
, busw
);
3918 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3920 * Check, if buswidth is correct. Hardware drivers should set
3923 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3925 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3926 pr_warn("bus width %d instead %d bit\n",
3927 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3929 return ERR_PTR(-EINVAL
);
3932 nand_decode_bbm_options(mtd
, chip
, id_data
);
3934 /* Calculate the address shift from the page size */
3935 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3936 /* Convert chipsize to number of pages per chip -1 */
3937 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3939 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3940 ffs(mtd
->erasesize
) - 1;
3941 if (chip
->chipsize
& 0xffffffff)
3942 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3944 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3945 chip
->chip_shift
+= 32 - 1;
3948 chip
->badblockbits
= 8;
3949 chip
->erase
= single_erase
;
3951 /* Do not replace user supplied command function! */
3952 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3953 chip
->cmdfunc
= nand_command_lp
;
3955 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3958 if (chip
->onfi_version
)
3959 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3960 chip
->onfi_params
.model
);
3961 else if (chip
->jedec_version
)
3962 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3963 chip
->jedec_params
.model
);
3965 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3968 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3969 (int)(chip
->chipsize
>> 20), nand_is_slc(chip
) ? "SLC" : "MLC",
3970 mtd
->erasesize
>> 10, mtd
->writesize
, mtd
->oobsize
);
3974 static const char * const nand_ecc_modes
[] = {
3975 [NAND_ECC_NONE
] = "none",
3976 [NAND_ECC_SOFT
] = "soft",
3977 [NAND_ECC_HW
] = "hw",
3978 [NAND_ECC_HW_SYNDROME
] = "hw_syndrome",
3979 [NAND_ECC_HW_OOB_FIRST
] = "hw_oob_first",
3982 static int of_get_nand_ecc_mode(struct device_node
*np
)
3987 err
= of_property_read_string(np
, "nand-ecc-mode", &pm
);
3991 for (i
= 0; i
< ARRAY_SIZE(nand_ecc_modes
); i
++)
3992 if (!strcasecmp(pm
, nand_ecc_modes
[i
]))
3996 * For backward compatibility we support few obsoleted values that don't
3997 * have their mappings into nand_ecc_modes_t anymore (they were merged
3998 * with other enums).
4000 if (!strcasecmp(pm
, "soft_bch"))
4001 return NAND_ECC_SOFT
;
4006 static const char * const nand_ecc_algos
[] = {
4007 [NAND_ECC_HAMMING
] = "hamming",
4008 [NAND_ECC_BCH
] = "bch",
4011 static int of_get_nand_ecc_algo(struct device_node
*np
)
4016 err
= of_property_read_string(np
, "nand-ecc-algo", &pm
);
4018 for (i
= NAND_ECC_HAMMING
; i
< ARRAY_SIZE(nand_ecc_algos
); i
++)
4019 if (!strcasecmp(pm
, nand_ecc_algos
[i
]))
4025 * For backward compatibility we also read "nand-ecc-mode" checking
4026 * for some obsoleted values that were specifying ECC algorithm.
4028 err
= of_property_read_string(np
, "nand-ecc-mode", &pm
);
4032 if (!strcasecmp(pm
, "soft"))
4033 return NAND_ECC_HAMMING
;
4034 else if (!strcasecmp(pm
, "soft_bch"))
4035 return NAND_ECC_BCH
;
4040 static int of_get_nand_ecc_step_size(struct device_node
*np
)
4045 ret
= of_property_read_u32(np
, "nand-ecc-step-size", &val
);
4046 return ret
? ret
: val
;
4049 static int of_get_nand_ecc_strength(struct device_node
*np
)
4054 ret
= of_property_read_u32(np
, "nand-ecc-strength", &val
);
4055 return ret
? ret
: val
;
4058 static int of_get_nand_bus_width(struct device_node
*np
)
4062 if (of_property_read_u32(np
, "nand-bus-width", &val
))
4074 static bool of_get_nand_on_flash_bbt(struct device_node
*np
)
4076 return of_property_read_bool(np
, "nand-on-flash-bbt");
4079 static int nand_dt_init(struct nand_chip
*chip
)
4081 struct device_node
*dn
= nand_get_flash_node(chip
);
4082 int ecc_mode
, ecc_algo
, ecc_strength
, ecc_step
;
4087 if (of_get_nand_bus_width(dn
) == 16)
4088 chip
->options
|= NAND_BUSWIDTH_16
;
4090 if (of_get_nand_on_flash_bbt(dn
))
4091 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
4093 ecc_mode
= of_get_nand_ecc_mode(dn
);
4094 ecc_algo
= of_get_nand_ecc_algo(dn
);
4095 ecc_strength
= of_get_nand_ecc_strength(dn
);
4096 ecc_step
= of_get_nand_ecc_step_size(dn
);
4098 if ((ecc_step
>= 0 && !(ecc_strength
>= 0)) ||
4099 (!(ecc_step
>= 0) && ecc_strength
>= 0)) {
4100 pr_err("must set both strength and step size in DT\n");
4105 chip
->ecc
.mode
= ecc_mode
;
4108 chip
->ecc
.algo
= ecc_algo
;
4110 if (ecc_strength
>= 0)
4111 chip
->ecc
.strength
= ecc_strength
;
4114 chip
->ecc
.size
= ecc_step
;
4120 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4121 * @mtd: MTD device structure
4122 * @maxchips: number of chips to scan for
4123 * @table: alternative NAND ID table
4125 * This is the first phase of the normal nand_scan() function. It reads the
4126 * flash ID and sets up MTD fields accordingly.
4129 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
4130 struct nand_flash_dev
*table
)
4132 int i
, nand_maf_id
, nand_dev_id
;
4133 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4134 struct nand_flash_dev
*type
;
4137 ret
= nand_dt_init(chip
);
4141 if (!mtd
->name
&& mtd
->dev
.parent
)
4142 mtd
->name
= dev_name(mtd
->dev
.parent
);
4144 /* Set the default functions */
4145 nand_set_defaults(chip
, chip
->options
& NAND_BUSWIDTH_16
);
4147 /* Read the flash type */
4148 type
= nand_get_flash_type(mtd
, chip
, &nand_maf_id
,
4149 &nand_dev_id
, table
);
4152 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
4153 pr_warn("No NAND device found\n");
4154 chip
->select_chip(mtd
, -1);
4155 return PTR_ERR(type
);
4158 chip
->select_chip(mtd
, -1);
4160 /* Check for a chip array */
4161 for (i
= 1; i
< maxchips
; i
++) {
4162 chip
->select_chip(mtd
, i
);
4163 /* See comment in nand_get_flash_type for reset */
4164 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
4165 /* Send the command for reading device ID */
4166 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
4167 /* Read manufacturer and device IDs */
4168 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
4169 nand_dev_id
!= chip
->read_byte(mtd
)) {
4170 chip
->select_chip(mtd
, -1);
4173 chip
->select_chip(mtd
, -1);
4176 pr_info("%d chips detected\n", i
);
4178 /* Store the number of chips and calc total size for mtd */
4180 mtd
->size
= i
* chip
->chipsize
;
4184 EXPORT_SYMBOL(nand_scan_ident
);
4186 static int nand_set_ecc_soft_ops(struct mtd_info
*mtd
)
4188 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4189 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4191 if (WARN_ON(ecc
->mode
!= NAND_ECC_SOFT
))
4194 switch (ecc
->algo
) {
4195 case NAND_ECC_HAMMING
:
4196 ecc
->calculate
= nand_calculate_ecc
;
4197 ecc
->correct
= nand_correct_data
;
4198 ecc
->read_page
= nand_read_page_swecc
;
4199 ecc
->read_subpage
= nand_read_subpage
;
4200 ecc
->write_page
= nand_write_page_swecc
;
4201 ecc
->read_page_raw
= nand_read_page_raw
;
4202 ecc
->write_page_raw
= nand_write_page_raw
;
4203 ecc
->read_oob
= nand_read_oob_std
;
4204 ecc
->write_oob
= nand_write_oob_std
;
4211 if (!mtd_nand_has_bch()) {
4212 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4215 ecc
->calculate
= nand_bch_calculate_ecc
;
4216 ecc
->correct
= nand_bch_correct_data
;
4217 ecc
->read_page
= nand_read_page_swecc
;
4218 ecc
->read_subpage
= nand_read_subpage
;
4219 ecc
->write_page
= nand_write_page_swecc
;
4220 ecc
->read_page_raw
= nand_read_page_raw
;
4221 ecc
->write_page_raw
= nand_write_page_raw
;
4222 ecc
->read_oob
= nand_read_oob_std
;
4223 ecc
->write_oob
= nand_write_oob_std
;
4225 * Board driver should supply ecc.size and ecc.strength
4226 * values to select how many bits are correctable.
4227 * Otherwise, default to 4 bits for large page devices.
4229 if (!ecc
->size
&& (mtd
->oobsize
>= 64)) {
4235 * if no ecc placement scheme was provided pickup the default
4238 if (!mtd
->ooblayout
) {
4239 /* handle large page devices only */
4240 if (mtd
->oobsize
< 64) {
4241 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4245 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_ops
);
4248 /* See nand_bch_init() for details. */
4250 ecc
->priv
= nand_bch_init(mtd
);
4252 WARN(1, "BCH ECC initialization failed!\n");
4257 WARN(1, "Unsupported ECC algorithm!\n");
4263 * Check if the chip configuration meet the datasheet requirements.
4265 * If our configuration corrects A bits per B bytes and the minimum
4266 * required correction level is X bits per Y bytes, then we must ensure
4267 * both of the following are true:
4269 * (1) A / B >= X / Y
4272 * Requirement (1) ensures we can correct for the required bitflip density.
4273 * Requirement (2) ensures we can correct even when all bitflips are clumped
4274 * in the same sector.
4276 static bool nand_ecc_strength_good(struct mtd_info
*mtd
)
4278 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4279 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4282 if (ecc
->size
== 0 || chip
->ecc_step_ds
== 0)
4283 /* Not enough information */
4287 * We get the number of corrected bits per page to compare
4288 * the correction density.
4290 corr
= (mtd
->writesize
* ecc
->strength
) / ecc
->size
;
4291 ds_corr
= (mtd
->writesize
* chip
->ecc_strength_ds
) / chip
->ecc_step_ds
;
4293 return corr
>= ds_corr
&& ecc
->strength
>= chip
->ecc_strength_ds
;
4297 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4298 * @mtd: MTD device structure
4300 * This is the second phase of the normal nand_scan() function. It fills out
4301 * all the uninitialized function pointers with the defaults and scans for a
4302 * bad block table if appropriate.
4304 int nand_scan_tail(struct mtd_info
*mtd
)
4306 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4307 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4308 struct nand_buffers
*nbuf
;
4311 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4312 if (WARN_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
4313 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
)))
4316 if (!(chip
->options
& NAND_OWN_BUFFERS
)) {
4317 nbuf
= kzalloc(sizeof(*nbuf
) + mtd
->writesize
4318 + mtd
->oobsize
* 3, GFP_KERNEL
);
4321 nbuf
->ecccalc
= (uint8_t *)(nbuf
+ 1);
4322 nbuf
->ecccode
= nbuf
->ecccalc
+ mtd
->oobsize
;
4323 nbuf
->databuf
= nbuf
->ecccode
+ mtd
->oobsize
;
4325 chip
->buffers
= nbuf
;
4331 /* Set the internal oob buffer location, just after the page data */
4332 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
4335 * If no default placement scheme is given, select an appropriate one.
4337 if (!mtd
->ooblayout
&&
4338 !(ecc
->mode
== NAND_ECC_SOFT
&& ecc
->algo
== NAND_ECC_BCH
)) {
4339 switch (mtd
->oobsize
) {
4342 mtd_set_ooblayout(mtd
, &nand_ooblayout_sp_ops
);
4346 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_ops
);
4349 WARN(1, "No oob scheme defined for oobsize %d\n",
4356 if (!chip
->write_page
)
4357 chip
->write_page
= nand_write_page
;
4360 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4361 * selected and we have 256 byte pagesize fallback to software ECC
4364 switch (ecc
->mode
) {
4365 case NAND_ECC_HW_OOB_FIRST
:
4366 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4367 if (!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) {
4368 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4372 if (!ecc
->read_page
)
4373 ecc
->read_page
= nand_read_page_hwecc_oob_first
;
4376 /* Use standard hwecc read page function? */
4377 if (!ecc
->read_page
)
4378 ecc
->read_page
= nand_read_page_hwecc
;
4379 if (!ecc
->write_page
)
4380 ecc
->write_page
= nand_write_page_hwecc
;
4381 if (!ecc
->read_page_raw
)
4382 ecc
->read_page_raw
= nand_read_page_raw
;
4383 if (!ecc
->write_page_raw
)
4384 ecc
->write_page_raw
= nand_write_page_raw
;
4386 ecc
->read_oob
= nand_read_oob_std
;
4387 if (!ecc
->write_oob
)
4388 ecc
->write_oob
= nand_write_oob_std
;
4389 if (!ecc
->read_subpage
)
4390 ecc
->read_subpage
= nand_read_subpage
;
4391 if (!ecc
->write_subpage
&& ecc
->hwctl
&& ecc
->calculate
)
4392 ecc
->write_subpage
= nand_write_subpage_hwecc
;
4394 case NAND_ECC_HW_SYNDROME
:
4395 if ((!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) &&
4397 ecc
->read_page
== nand_read_page_hwecc
||
4399 ecc
->write_page
== nand_write_page_hwecc
)) {
4400 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4404 /* Use standard syndrome read/write page function? */
4405 if (!ecc
->read_page
)
4406 ecc
->read_page
= nand_read_page_syndrome
;
4407 if (!ecc
->write_page
)
4408 ecc
->write_page
= nand_write_page_syndrome
;
4409 if (!ecc
->read_page_raw
)
4410 ecc
->read_page_raw
= nand_read_page_raw_syndrome
;
4411 if (!ecc
->write_page_raw
)
4412 ecc
->write_page_raw
= nand_write_page_raw_syndrome
;
4414 ecc
->read_oob
= nand_read_oob_syndrome
;
4415 if (!ecc
->write_oob
)
4416 ecc
->write_oob
= nand_write_oob_syndrome
;
4418 if (mtd
->writesize
>= ecc
->size
) {
4419 if (!ecc
->strength
) {
4420 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4426 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4427 ecc
->size
, mtd
->writesize
);
4428 ecc
->mode
= NAND_ECC_SOFT
;
4429 ecc
->algo
= NAND_ECC_HAMMING
;
4432 ret
= nand_set_ecc_soft_ops(mtd
);
4440 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4441 ecc
->read_page
= nand_read_page_raw
;
4442 ecc
->write_page
= nand_write_page_raw
;
4443 ecc
->read_oob
= nand_read_oob_std
;
4444 ecc
->read_page_raw
= nand_read_page_raw
;
4445 ecc
->write_page_raw
= nand_write_page_raw
;
4446 ecc
->write_oob
= nand_write_oob_std
;
4447 ecc
->size
= mtd
->writesize
;
4453 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc
->mode
);
4458 /* For many systems, the standard OOB write also works for raw */
4459 if (!ecc
->read_oob_raw
)
4460 ecc
->read_oob_raw
= ecc
->read_oob
;
4461 if (!ecc
->write_oob_raw
)
4462 ecc
->write_oob_raw
= ecc
->write_oob
;
4464 /* propagate ecc info to mtd_info */
4465 mtd
->ecc_strength
= ecc
->strength
;
4466 mtd
->ecc_step_size
= ecc
->size
;
4469 * Set the number of read / write steps for one page depending on ECC
4472 ecc
->steps
= mtd
->writesize
/ ecc
->size
;
4473 if (ecc
->steps
* ecc
->size
!= mtd
->writesize
) {
4474 WARN(1, "Invalid ECC parameters\n");
4478 ecc
->total
= ecc
->steps
* ecc
->bytes
;
4481 * The number of bytes available for a client to place data into
4482 * the out of band area.
4484 ret
= mtd_ooblayout_count_freebytes(mtd
);
4488 mtd
->oobavail
= ret
;
4490 /* ECC sanity check: warn if it's too weak */
4491 if (!nand_ecc_strength_good(mtd
))
4492 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4495 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4496 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) && nand_is_slc(chip
)) {
4497 switch (ecc
->steps
) {
4499 mtd
->subpage_sft
= 1;
4504 mtd
->subpage_sft
= 2;
4508 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
4510 /* Initialize state */
4511 chip
->state
= FL_READY
;
4513 /* Invalidate the pagebuffer reference */
4516 /* Large page NAND with SOFT_ECC should support subpage reads */
4517 switch (ecc
->mode
) {
4519 if (chip
->page_shift
> 9)
4520 chip
->options
|= NAND_SUBPAGE_READ
;
4527 /* Fill in remaining MTD driver data */
4528 mtd
->type
= nand_is_slc(chip
) ? MTD_NANDFLASH
: MTD_MLCNANDFLASH
;
4529 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
4531 mtd
->_erase
= nand_erase
;
4533 mtd
->_unpoint
= NULL
;
4534 mtd
->_read
= nand_read
;
4535 mtd
->_write
= nand_write
;
4536 mtd
->_panic_write
= panic_nand_write
;
4537 mtd
->_read_oob
= nand_read_oob
;
4538 mtd
->_write_oob
= nand_write_oob
;
4539 mtd
->_sync
= nand_sync
;
4541 mtd
->_unlock
= NULL
;
4542 mtd
->_suspend
= nand_suspend
;
4543 mtd
->_resume
= nand_resume
;
4544 mtd
->_reboot
= nand_shutdown
;
4545 mtd
->_block_isreserved
= nand_block_isreserved
;
4546 mtd
->_block_isbad
= nand_block_isbad
;
4547 mtd
->_block_markbad
= nand_block_markbad
;
4548 mtd
->writebufsize
= mtd
->writesize
;
4551 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4552 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4555 if (!mtd
->bitflip_threshold
)
4556 mtd
->bitflip_threshold
= DIV_ROUND_UP(mtd
->ecc_strength
* 3, 4);
4558 /* Check, if we should skip the bad block table scan */
4559 if (chip
->options
& NAND_SKIP_BBTSCAN
)
4562 /* Build bad block table */
4563 return chip
->scan_bbt(mtd
);
4565 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4566 kfree(chip
->buffers
);
4569 EXPORT_SYMBOL(nand_scan_tail
);
4572 * is_module_text_address() isn't exported, and it's mostly a pointless
4573 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4574 * to call us from in-kernel code if the core NAND support is modular.
4577 #define caller_is_module() (1)
4579 #define caller_is_module() \
4580 is_module_text_address((unsigned long)__builtin_return_address(0))
4584 * nand_scan - [NAND Interface] Scan for the NAND device
4585 * @mtd: MTD device structure
4586 * @maxchips: number of chips to scan for
4588 * This fills out all the uninitialized function pointers with the defaults.
4589 * The flash ID is read and the mtd/chip structures are filled with the
4590 * appropriate values.
4592 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
4596 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
4598 ret
= nand_scan_tail(mtd
);
4601 EXPORT_SYMBOL(nand_scan
);
4604 * nand_release - [NAND Interface] Free resources held by the NAND device
4605 * @mtd: MTD device structure
4607 void nand_release(struct mtd_info
*mtd
)
4609 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4611 if (chip
->ecc
.mode
== NAND_ECC_SOFT
&&
4612 chip
->ecc
.algo
== NAND_ECC_BCH
)
4613 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
4615 mtd_device_unregister(mtd
);
4617 /* Free bad block table memory */
4619 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4620 kfree(chip
->buffers
);
4622 /* Free bad block descriptor memory */
4623 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
4624 & NAND_BBT_DYNAMICSTRUCT
)
4625 kfree(chip
->badblock_pattern
);
4627 EXPORT_SYMBOL_GPL(nand_release
);
4629 MODULE_LICENSE("GPL");
4630 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4631 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4632 MODULE_DESCRIPTION("Generic NAND flash driver code");