2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
25 #include <linux/slab.h>
27 #include <linux/of_device.h>
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define OMAP24XX_DMA_GPMC 4
123 #define SECTOR_BYTES 512
124 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125 #define BCH4_BIT_PAD 4
127 /* GPMC ecc engine settings for read */
128 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
134 /* GPMC ecc engine settings for write */
135 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
139 #define BADBLOCK_MARKER_LENGTH 2
141 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
145 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
149 /* Shared among all NAND instances to synchronize access to the ECC Engine */
150 static struct nand_hw_control omap_gpmc_controller
= {
151 .lock
= __SPIN_LOCK_UNLOCKED(omap_gpmc_controller
.lock
),
152 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller
.wq
),
155 struct omap_nand_info
{
156 struct nand_chip nand
;
157 struct platform_device
*pdev
;
161 enum nand_io xfer_type
;
163 enum omap_ecc ecc_opt
;
164 struct device_node
*elm_of_node
;
166 unsigned long phys_base
;
167 struct completion comp
;
168 struct dma_chan
*dma
;
172 OMAP_NAND_IO_READ
= 0, /* read */
173 OMAP_NAND_IO_WRITE
, /* write */
177 /* Interface to GPMC */
178 struct gpmc_nand_regs reg
;
179 struct gpmc_nand_ops
*ops
;
181 /* fields specific for BCHx_HW ECC scheme */
182 struct device
*elm_dev
;
183 /* NAND ready gpio */
184 struct gpio_desc
*ready_gpiod
;
187 static inline struct omap_nand_info
*mtd_to_omap(struct mtd_info
*mtd
)
189 return container_of(mtd_to_nand(mtd
), struct omap_nand_info
, nand
);
193 * omap_prefetch_enable - configures and starts prefetch transfer
194 * @cs: cs (chip select) number
195 * @fifo_th: fifo threshold to be used for read/ write
196 * @dma_mode: dma mode enable (1) or disable (0)
197 * @u32_count: number of bytes to be transferred
198 * @is_write: prefetch read(0) or write post(1) mode
200 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
201 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
205 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
208 if (readl(info
->reg
.gpmc_prefetch_control
))
211 /* Set the amount of bytes to be prefetched */
212 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
214 /* Set dma/mpu mode, the prefetch read / post write and
215 * enable the engine. Set which cs is has requested for.
217 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
218 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
219 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (is_write
& 0x1));
220 writel(val
, info
->reg
.gpmc_prefetch_config1
);
222 /* Start the prefetch engine */
223 writel(0x1, info
->reg
.gpmc_prefetch_control
);
229 * omap_prefetch_reset - disables and stops the prefetch engine
231 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
235 /* check if the same module/cs is trying to reset */
236 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
237 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
240 /* Stop the PFPW engine */
241 writel(0x0, info
->reg
.gpmc_prefetch_control
);
243 /* Reset/disable the PFPW engine */
244 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
250 * omap_hwcontrol - hardware specific access to control-lines
251 * @mtd: MTD device structure
252 * @cmd: command to device
254 * NAND_NCE: bit 0 -> don't care
255 * NAND_CLE: bit 1 -> Command Latch
256 * NAND_ALE: bit 2 -> Address Latch
258 * NOTE: boards may use different bits for these!!
260 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
262 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
264 if (cmd
!= NAND_CMD_NONE
) {
266 writeb(cmd
, info
->reg
.gpmc_nand_command
);
268 else if (ctrl
& NAND_ALE
)
269 writeb(cmd
, info
->reg
.gpmc_nand_address
);
272 writeb(cmd
, info
->reg
.gpmc_nand_data
);
277 * omap_read_buf8 - read data from NAND controller into buffer
278 * @mtd: MTD device structure
279 * @buf: buffer to store date
280 * @len: number of bytes to read
282 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
284 struct nand_chip
*nand
= mtd_to_nand(mtd
);
286 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
290 * omap_write_buf8 - write buffer to NAND controller
291 * @mtd: MTD device structure
293 * @len: number of bytes to write
295 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
297 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
298 u_char
*p
= (u_char
*)buf
;
302 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
303 /* wait until buffer is available for write */
305 status
= info
->ops
->nand_writebuffer_empty();
311 * omap_read_buf16 - read data from NAND controller into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
316 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
318 struct nand_chip
*nand
= mtd_to_nand(mtd
);
320 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
324 * omap_write_buf16 - write buffer to NAND controller
325 * @mtd: MTD device structure
327 * @len: number of bytes to write
329 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
331 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
332 u16
*p
= (u16
*) buf
;
334 /* FIXME try bursts of writesw() or DMA ... */
338 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
339 /* wait until buffer is available for write */
341 status
= info
->ops
->nand_writebuffer_empty();
347 * omap_read_buf_pref - read data from NAND controller into buffer
348 * @mtd: MTD device structure
349 * @buf: buffer to store date
350 * @len: number of bytes to read
352 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
354 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
355 uint32_t r_count
= 0;
359 /* take care of subpage reads */
361 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
362 omap_read_buf16(mtd
, buf
, len
% 4);
364 omap_read_buf8(mtd
, buf
, len
% 4);
365 p
= (u32
*) (buf
+ len
% 4);
369 /* configure and start prefetch transfer */
370 ret
= omap_prefetch_enable(info
->gpmc_cs
,
371 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
373 /* PFPW engine is busy, use cpu copy method */
374 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
375 omap_read_buf16(mtd
, (u_char
*)p
, len
);
377 omap_read_buf8(mtd
, (u_char
*)p
, len
);
380 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
381 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
382 r_count
= r_count
>> 2;
383 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
387 /* disable and stop the PFPW engine */
388 omap_prefetch_reset(info
->gpmc_cs
, info
);
393 * omap_write_buf_pref - write buffer to NAND controller
394 * @mtd: MTD device structure
396 * @len: number of bytes to write
398 static void omap_write_buf_pref(struct mtd_info
*mtd
,
399 const u_char
*buf
, int len
)
401 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
402 uint32_t w_count
= 0;
405 unsigned long tim
, limit
;
408 /* take care of subpage writes */
410 writeb(*buf
, info
->nand
.IO_ADDR_W
);
411 p
= (u16
*)(buf
+ 1);
415 /* configure and start prefetch transfer */
416 ret
= omap_prefetch_enable(info
->gpmc_cs
,
417 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
419 /* PFPW engine is busy, use cpu copy method */
420 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
421 omap_write_buf16(mtd
, (u_char
*)p
, len
);
423 omap_write_buf8(mtd
, (u_char
*)p
, len
);
426 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
427 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
428 w_count
= w_count
>> 1;
429 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
430 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
432 /* wait for data to flushed-out before reset the prefetch */
434 limit
= (loops_per_jiffy
*
435 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
438 val
= readl(info
->reg
.gpmc_prefetch_status
);
439 val
= PREFETCH_STATUS_COUNT(val
);
440 } while (val
&& (tim
++ < limit
));
442 /* disable and stop the PFPW engine */
443 omap_prefetch_reset(info
->gpmc_cs
, info
);
448 * omap_nand_dma_callback: callback on the completion of dma transfer
449 * @data: pointer to completion data structure
451 static void omap_nand_dma_callback(void *data
)
453 complete((struct completion
*) data
);
457 * omap_nand_dma_transfer: configure and start dma transfer
458 * @mtd: MTD device structure
459 * @addr: virtual address in RAM of source/destination
460 * @len: number of data bytes to be transferred
461 * @is_write: flag for read/write operation
463 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
464 unsigned int len
, int is_write
)
466 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
467 struct dma_async_tx_descriptor
*tx
;
468 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
470 struct scatterlist sg
;
471 unsigned long tim
, limit
;
476 if (!virt_addr_valid(addr
))
479 sg_init_one(&sg
, addr
, len
);
480 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
482 dev_err(&info
->pdev
->dev
,
483 "Couldn't DMA map a %d byte buffer\n", len
);
487 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
488 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
489 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
493 tx
->callback
= omap_nand_dma_callback
;
494 tx
->callback_param
= &info
->comp
;
495 dmaengine_submit(tx
);
497 init_completion(&info
->comp
);
499 /* setup and start DMA using dma_addr */
500 dma_async_issue_pending(info
->dma
);
502 /* configure and start prefetch transfer */
503 ret
= omap_prefetch_enable(info
->gpmc_cs
,
504 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
506 /* PFPW engine is busy, use cpu copy method */
509 wait_for_completion(&info
->comp
);
511 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
515 val
= readl(info
->reg
.gpmc_prefetch_status
);
516 val
= PREFETCH_STATUS_COUNT(val
);
517 } while (val
&& (tim
++ < limit
));
519 /* disable and stop the PFPW engine */
520 omap_prefetch_reset(info
->gpmc_cs
, info
);
522 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
526 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
528 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
529 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
530 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
532 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
533 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
538 * omap_read_buf_dma_pref - read data from NAND controller into buffer
539 * @mtd: MTD device structure
540 * @buf: buffer to store date
541 * @len: number of bytes to read
543 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
545 if (len
<= mtd
->oobsize
)
546 omap_read_buf_pref(mtd
, buf
, len
);
548 /* start transfer in DMA mode */
549 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
553 * omap_write_buf_dma_pref - write buffer to NAND controller
554 * @mtd: MTD device structure
556 * @len: number of bytes to write
558 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
559 const u_char
*buf
, int len
)
561 if (len
<= mtd
->oobsize
)
562 omap_write_buf_pref(mtd
, buf
, len
);
564 /* start transfer in DMA mode */
565 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
569 * omap_nand_irq - GPMC irq handler
570 * @this_irq: gpmc irq number
571 * @dev: omap_nand_info structure pointer is passed here
573 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
575 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
578 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
579 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
580 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
581 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
582 if (this_irq
== info
->gpmc_irq_count
)
585 if (info
->buf_len
&& (info
->buf_len
< bytes
))
586 bytes
= info
->buf_len
;
587 else if (!info
->buf_len
)
589 iowrite32_rep(info
->nand
.IO_ADDR_W
,
590 (u32
*)info
->buf
, bytes
>> 2);
591 info
->buf
= info
->buf
+ bytes
;
592 info
->buf_len
-= bytes
;
595 ioread32_rep(info
->nand
.IO_ADDR_R
,
596 (u32
*)info
->buf
, bytes
>> 2);
597 info
->buf
= info
->buf
+ bytes
;
599 if (this_irq
== info
->gpmc_irq_count
)
606 complete(&info
->comp
);
608 disable_irq_nosync(info
->gpmc_irq_fifo
);
609 disable_irq_nosync(info
->gpmc_irq_count
);
615 * omap_read_buf_irq_pref - read data from NAND controller into buffer
616 * @mtd: MTD device structure
617 * @buf: buffer to store date
618 * @len: number of bytes to read
620 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
622 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
625 if (len
<= mtd
->oobsize
) {
626 omap_read_buf_pref(mtd
, buf
, len
);
630 info
->iomode
= OMAP_NAND_IO_READ
;
632 init_completion(&info
->comp
);
634 /* configure and start prefetch transfer */
635 ret
= omap_prefetch_enable(info
->gpmc_cs
,
636 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
638 /* PFPW engine is busy, use cpu copy method */
643 enable_irq(info
->gpmc_irq_count
);
644 enable_irq(info
->gpmc_irq_fifo
);
646 /* waiting for read to complete */
647 wait_for_completion(&info
->comp
);
649 /* disable and stop the PFPW engine */
650 omap_prefetch_reset(info
->gpmc_cs
, info
);
654 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
655 omap_read_buf16(mtd
, buf
, len
);
657 omap_read_buf8(mtd
, buf
, len
);
661 * omap_write_buf_irq_pref - write buffer to NAND controller
662 * @mtd: MTD device structure
664 * @len: number of bytes to write
666 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
667 const u_char
*buf
, int len
)
669 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
671 unsigned long tim
, limit
;
674 if (len
<= mtd
->oobsize
) {
675 omap_write_buf_pref(mtd
, buf
, len
);
679 info
->iomode
= OMAP_NAND_IO_WRITE
;
680 info
->buf
= (u_char
*) buf
;
681 init_completion(&info
->comp
);
683 /* configure and start prefetch transfer : size=24 */
684 ret
= omap_prefetch_enable(info
->gpmc_cs
,
685 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
687 /* PFPW engine is busy, use cpu copy method */
692 enable_irq(info
->gpmc_irq_count
);
693 enable_irq(info
->gpmc_irq_fifo
);
695 /* waiting for write to complete */
696 wait_for_completion(&info
->comp
);
698 /* wait for data to flushed-out before reset the prefetch */
700 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
702 val
= readl(info
->reg
.gpmc_prefetch_status
);
703 val
= PREFETCH_STATUS_COUNT(val
);
705 } while (val
&& (tim
++ < limit
));
707 /* disable and stop the PFPW engine */
708 omap_prefetch_reset(info
->gpmc_cs
, info
);
712 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
713 omap_write_buf16(mtd
, buf
, len
);
715 omap_write_buf8(mtd
, buf
, len
);
719 * gen_true_ecc - This function will generate true ECC value
720 * @ecc_buf: buffer to store ecc code
722 * This generated true ECC value can be used when correcting
723 * data read from NAND flash memory core
725 static void gen_true_ecc(u8
*ecc_buf
)
727 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
728 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
730 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
731 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
732 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
733 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
734 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
735 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
739 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
740 * @ecc_data1: ecc code from nand spare area
741 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
742 * @page_data: page data
744 * This function compares two ECC's and indicates if there is an error.
745 * If the error can be corrected it will be corrected to the buffer.
746 * If there is no error, %0 is returned. If there is an error but it
747 * was corrected, %1 is returned. Otherwise, %-1 is returned.
749 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
750 u8
*ecc_data2
, /* read from register */
754 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
755 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
762 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
764 gen_true_ecc(ecc_data1
);
765 gen_true_ecc(ecc_data2
);
767 for (i
= 0; i
<= 2; i
++) {
768 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
769 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
772 for (i
= 0; i
< 8; i
++) {
773 tmp0_bit
[i
] = *ecc_data1
% 2;
774 *ecc_data1
= *ecc_data1
/ 2;
777 for (i
= 0; i
< 8; i
++) {
778 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
779 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
782 for (i
= 0; i
< 8; i
++) {
783 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
784 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
787 for (i
= 0; i
< 8; i
++) {
788 comp0_bit
[i
] = *ecc_data2
% 2;
789 *ecc_data2
= *ecc_data2
/ 2;
792 for (i
= 0; i
< 8; i
++) {
793 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
794 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
797 for (i
= 0; i
< 8; i
++) {
798 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
799 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
802 for (i
= 0; i
< 6; i
++)
803 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
805 for (i
= 0; i
< 8; i
++)
806 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
808 for (i
= 0; i
< 8; i
++)
809 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
811 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
812 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
814 for (i
= 0; i
< 24; i
++)
815 ecc_sum
+= ecc_bit
[i
];
819 /* Not reached because this function is not called if
820 * ECC values are equal
825 /* Uncorrectable error */
826 pr_debug("ECC UNCORRECTED_ERROR 1\n");
830 /* UN-Correctable error */
831 pr_debug("ECC UNCORRECTED_ERROR B\n");
835 /* Correctable error */
836 find_byte
= (ecc_bit
[23] << 8) +
846 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
848 pr_debug("Correcting single bit ECC error at offset: "
849 "%d, bit: %d\n", find_byte
, find_bit
);
851 page_data
[find_byte
] ^= (1 << find_bit
);
856 if (ecc_data2
[0] == 0 &&
861 pr_debug("UNCORRECTED_ERROR default\n");
867 * omap_correct_data - Compares the ECC read with HW generated ECC
868 * @mtd: MTD device structure
870 * @read_ecc: ecc read from nand flash
871 * @calc_ecc: ecc read from HW ECC registers
873 * Compares the ecc read from nand spare area with ECC registers values
874 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
875 * detection and correction. If there are no errors, %0 is returned. If
876 * there were errors and all of the errors were corrected, the number of
877 * corrected errors is returned. If uncorrectable errors exist, %-1 is
880 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
881 u_char
*read_ecc
, u_char
*calc_ecc
)
883 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
884 int blockCnt
= 0, i
= 0, ret
= 0;
887 /* Ex NAND_ECC_HW12_2048 */
888 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
889 (info
->nand
.ecc
.size
== 2048))
894 for (i
= 0; i
< blockCnt
; i
++) {
895 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
896 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
899 /* keep track of the number of corrected errors */
910 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
911 * @mtd: MTD device structure
912 * @dat: The pointer to data on which ecc is computed
913 * @ecc_code: The ecc_code buffer
915 * Using noninverted ECC can be considered ugly since writing a blank
916 * page ie. padding will clear the ECC bytes. This is no problem as long
917 * nobody is trying to write data on the seemingly unused page. Reading
918 * an erased page will produce an ECC mismatch between generated and read
919 * ECC bytes that has to be dealt with separately.
921 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
924 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
927 val
= readl(info
->reg
.gpmc_ecc_config
);
928 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
931 /* read ecc result */
932 val
= readl(info
->reg
.gpmc_ecc1_result
);
933 *ecc_code
++ = val
; /* P128e, ..., P1e */
934 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
935 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
936 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
942 * omap_enable_hwecc - This function enables the hardware ecc functionality
943 * @mtd: MTD device structure
944 * @mode: Read/Write mode
946 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
948 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
949 struct nand_chip
*chip
= mtd_to_nand(mtd
);
950 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
953 /* clear ecc and enable bits */
954 val
= ECCCLEAR
| ECC1
;
955 writel(val
, info
->reg
.gpmc_ecc_control
);
957 /* program ecc and result sizes */
958 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
960 writel(val
, info
->reg
.gpmc_ecc_size_config
);
965 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
967 case NAND_ECC_READSYN
:
968 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
971 dev_info(&info
->pdev
->dev
,
972 "error: unrecognized Mode[%d]!\n", mode
);
976 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
977 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
978 writel(val
, info
->reg
.gpmc_ecc_config
);
982 * omap_wait - wait until the command is done
983 * @mtd: MTD device structure
984 * @chip: NAND Chip structure
986 * Wait function is called during Program and erase operations and
987 * the way it is called from MTD layer, we should wait till the NAND
988 * chip is ready after the programming/erase operation has completed.
990 * Erase can take up to 400ms and program up to 20ms according to
991 * general NAND and SmartMedia specs
993 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
995 struct nand_chip
*this = mtd_to_nand(mtd
);
996 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
997 unsigned long timeo
= jiffies
;
998 int status
, state
= this->state
;
1000 if (state
== FL_ERASING
)
1001 timeo
+= msecs_to_jiffies(400);
1003 timeo
+= msecs_to_jiffies(20);
1005 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1006 while (time_before(jiffies
, timeo
)) {
1007 status
= readb(info
->reg
.gpmc_nand_data
);
1008 if (status
& NAND_STATUS_READY
)
1013 status
= readb(info
->reg
.gpmc_nand_data
);
1018 * omap_dev_ready - checks the NAND Ready GPIO line
1019 * @mtd: MTD device structure
1021 * Returns true if ready and false if busy.
1023 static int omap_dev_ready(struct mtd_info
*mtd
)
1025 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1027 return gpiod_get_value(info
->ready_gpiod
);
1031 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1032 * @mtd: MTD device structure
1033 * @mode: Read/Write mode
1035 * When using BCH with SW correction (i.e. no ELM), sector size is set
1036 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1037 * for both reading and writing with:
1038 * eccsize0 = 0 (no additional protected byte in spare area)
1039 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1041 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1043 unsigned int bch_type
;
1044 unsigned int dev_width
, nsectors
;
1045 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1046 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1047 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1049 unsigned int ecc_size1
, ecc_size0
;
1051 /* GPMC configurations for calculating ECC */
1053 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1056 wr_mode
= BCH_WRAPMODE_6
;
1057 ecc_size0
= BCH_ECC_SIZE0
;
1058 ecc_size1
= BCH_ECC_SIZE1
;
1060 case OMAP_ECC_BCH4_CODE_HW
:
1062 nsectors
= chip
->ecc
.steps
;
1063 if (mode
== NAND_ECC_READ
) {
1064 wr_mode
= BCH_WRAPMODE_1
;
1065 ecc_size0
= BCH4R_ECC_SIZE0
;
1066 ecc_size1
= BCH4R_ECC_SIZE1
;
1068 wr_mode
= BCH_WRAPMODE_6
;
1069 ecc_size0
= BCH_ECC_SIZE0
;
1070 ecc_size1
= BCH_ECC_SIZE1
;
1073 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1076 wr_mode
= BCH_WRAPMODE_6
;
1077 ecc_size0
= BCH_ECC_SIZE0
;
1078 ecc_size1
= BCH_ECC_SIZE1
;
1080 case OMAP_ECC_BCH8_CODE_HW
:
1082 nsectors
= chip
->ecc
.steps
;
1083 if (mode
== NAND_ECC_READ
) {
1084 wr_mode
= BCH_WRAPMODE_1
;
1085 ecc_size0
= BCH8R_ECC_SIZE0
;
1086 ecc_size1
= BCH8R_ECC_SIZE1
;
1088 wr_mode
= BCH_WRAPMODE_6
;
1089 ecc_size0
= BCH_ECC_SIZE0
;
1090 ecc_size1
= BCH_ECC_SIZE1
;
1093 case OMAP_ECC_BCH16_CODE_HW
:
1095 nsectors
= chip
->ecc
.steps
;
1096 if (mode
== NAND_ECC_READ
) {
1098 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1099 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1102 ecc_size0
= 0; /* extra bits in nibbles per sector */
1103 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1110 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1112 /* Configure ecc size for BCH */
1113 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1114 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1116 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1118 /* BCH configuration */
1119 val
= ((1 << 16) | /* enable BCH */
1120 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1121 (wr_mode
<< 8) | /* wrap mode */
1122 (dev_width
<< 7) | /* bus width */
1123 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1124 (info
->gpmc_cs
<< 1) | /* ECC CS */
1125 (0x1)); /* enable ECC */
1127 writel(val
, info
->reg
.gpmc_ecc_config
);
1129 /* Clear ecc and enable bits */
1130 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1133 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1134 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1135 0x97, 0x79, 0xe5, 0x24, 0xb5};
1138 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1139 * @mtd: MTD device structure
1140 * @dat: The pointer to data on which ecc is computed
1141 * @ecc_code: The ecc_code buffer
1143 * Support calculating of BCH4/8 ecc vectors for the page
1145 static int __maybe_unused
omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1146 const u_char
*dat
, u_char
*ecc_calc
)
1148 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1149 int eccbytes
= info
->nand
.ecc
.bytes
;
1150 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1152 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1156 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1157 for (i
= 0; i
< nsectors
; i
++) {
1158 ecc_code
= ecc_calc
;
1159 switch (info
->ecc_opt
) {
1160 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1161 case OMAP_ECC_BCH8_CODE_HW
:
1162 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1163 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1164 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1165 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1166 *ecc_code
++ = (bch_val4
& 0xFF);
1167 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1168 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1169 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1170 *ecc_code
++ = (bch_val3
& 0xFF);
1171 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1172 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1173 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1174 *ecc_code
++ = (bch_val2
& 0xFF);
1175 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1176 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1177 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1178 *ecc_code
++ = (bch_val1
& 0xFF);
1180 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1181 case OMAP_ECC_BCH4_CODE_HW
:
1182 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1183 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1184 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1185 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1186 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1187 ((bch_val1
>> 28) & 0xF);
1188 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1189 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1190 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1191 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1193 case OMAP_ECC_BCH16_CODE_HW
:
1194 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1195 ecc_code
[0] = ((val
>> 8) & 0xFF);
1196 ecc_code
[1] = ((val
>> 0) & 0xFF);
1197 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1198 ecc_code
[2] = ((val
>> 24) & 0xFF);
1199 ecc_code
[3] = ((val
>> 16) & 0xFF);
1200 ecc_code
[4] = ((val
>> 8) & 0xFF);
1201 ecc_code
[5] = ((val
>> 0) & 0xFF);
1202 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1203 ecc_code
[6] = ((val
>> 24) & 0xFF);
1204 ecc_code
[7] = ((val
>> 16) & 0xFF);
1205 ecc_code
[8] = ((val
>> 8) & 0xFF);
1206 ecc_code
[9] = ((val
>> 0) & 0xFF);
1207 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1208 ecc_code
[10] = ((val
>> 24) & 0xFF);
1209 ecc_code
[11] = ((val
>> 16) & 0xFF);
1210 ecc_code
[12] = ((val
>> 8) & 0xFF);
1211 ecc_code
[13] = ((val
>> 0) & 0xFF);
1212 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1213 ecc_code
[14] = ((val
>> 24) & 0xFF);
1214 ecc_code
[15] = ((val
>> 16) & 0xFF);
1215 ecc_code
[16] = ((val
>> 8) & 0xFF);
1216 ecc_code
[17] = ((val
>> 0) & 0xFF);
1217 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1218 ecc_code
[18] = ((val
>> 24) & 0xFF);
1219 ecc_code
[19] = ((val
>> 16) & 0xFF);
1220 ecc_code
[20] = ((val
>> 8) & 0xFF);
1221 ecc_code
[21] = ((val
>> 0) & 0xFF);
1222 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1223 ecc_code
[22] = ((val
>> 24) & 0xFF);
1224 ecc_code
[23] = ((val
>> 16) & 0xFF);
1225 ecc_code
[24] = ((val
>> 8) & 0xFF);
1226 ecc_code
[25] = ((val
>> 0) & 0xFF);
1232 /* ECC scheme specific syndrome customizations */
1233 switch (info
->ecc_opt
) {
1234 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1235 /* Add constant polynomial to remainder, so that
1236 * ECC of blank pages results in 0x0 on reading back */
1237 for (j
= 0; j
< eccbytes
; j
++)
1238 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1240 case OMAP_ECC_BCH4_CODE_HW
:
1241 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1242 ecc_calc
[eccbytes
- 1] = 0x0;
1244 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1245 /* Add constant polynomial to remainder, so that
1246 * ECC of blank pages results in 0x0 on reading back */
1247 for (j
= 0; j
< eccbytes
; j
++)
1248 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1250 case OMAP_ECC_BCH8_CODE_HW
:
1251 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252 ecc_calc
[eccbytes
- 1] = 0x0;
1254 case OMAP_ECC_BCH16_CODE_HW
:
1260 ecc_calc
+= eccbytes
;
1267 * erased_sector_bitflips - count bit flips
1268 * @data: data sector buffer
1270 * @info: omap_nand_info
1272 * Check the bit flips in erased page falls below correctable level.
1273 * If falls below, report the page as erased with correctable bit
1274 * flip, else report as uncorrectable page.
1276 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1277 struct omap_nand_info
*info
)
1279 int flip_bits
= 0, i
;
1281 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1282 flip_bits
+= hweight8(~data
[i
]);
1283 if (flip_bits
> info
->nand
.ecc
.strength
)
1287 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1288 flip_bits
+= hweight8(~oob
[i
]);
1289 if (flip_bits
> info
->nand
.ecc
.strength
)
1294 * Bit flips falls in correctable level.
1295 * Fill data area with 0xFF
1298 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1299 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1306 * omap_elm_correct_data - corrects page data area in case error reported
1307 * @mtd: MTD device structure
1309 * @read_ecc: ecc read from nand flash
1310 * @calc_ecc: ecc read from HW ECC registers
1312 * Calculated ecc vector reported as zero in case of non-error pages.
1313 * In case of non-zero ecc vector, first filter out erased-pages, and
1314 * then process data via ELM to detect bit-flips.
1316 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1317 u_char
*read_ecc
, u_char
*calc_ecc
)
1319 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1320 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1321 int eccsteps
= info
->nand
.ecc
.steps
;
1322 int i
, j
, stat
= 0;
1323 int eccflag
, actual_eccbytes
;
1324 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1325 u_char
*ecc_vec
= calc_ecc
;
1326 u_char
*spare_ecc
= read_ecc
;
1327 u_char
*erased_ecc_vec
;
1330 bool is_error_reported
= false;
1331 u32 bit_pos
, byte_pos
, error_max
, pos
;
1334 switch (info
->ecc_opt
) {
1335 case OMAP_ECC_BCH4_CODE_HW
:
1336 /* omit 7th ECC byte reserved for ROM code compatibility */
1337 actual_eccbytes
= ecc
->bytes
- 1;
1338 erased_ecc_vec
= bch4_vector
;
1340 case OMAP_ECC_BCH8_CODE_HW
:
1341 /* omit 14th ECC byte reserved for ROM code compatibility */
1342 actual_eccbytes
= ecc
->bytes
- 1;
1343 erased_ecc_vec
= bch8_vector
;
1345 case OMAP_ECC_BCH16_CODE_HW
:
1346 actual_eccbytes
= ecc
->bytes
;
1347 erased_ecc_vec
= bch16_vector
;
1350 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1354 /* Initialize elm error vector to zero */
1355 memset(err_vec
, 0, sizeof(err_vec
));
1357 for (i
= 0; i
< eccsteps
; i
++) {
1358 eccflag
= 0; /* initialize eccflag */
1361 * Check any error reported,
1362 * In case of error, non zero ecc reported.
1364 for (j
= 0; j
< actual_eccbytes
; j
++) {
1365 if (calc_ecc
[j
] != 0) {
1366 eccflag
= 1; /* non zero ecc, error present */
1372 if (memcmp(calc_ecc
, erased_ecc_vec
,
1373 actual_eccbytes
) == 0) {
1375 * calc_ecc[] matches pattern for ECC(all 0xff)
1376 * so this is definitely an erased-page
1379 buf
= &data
[info
->nand
.ecc
.size
* i
];
1381 * count number of 0-bits in read_buf.
1382 * This check can be removed once a similar
1383 * check is introduced in generic NAND driver
1385 bitflip_count
= erased_sector_bitflips(
1386 buf
, read_ecc
, info
);
1387 if (bitflip_count
) {
1389 * number of 0-bits within ECC limits
1390 * So this may be an erased-page
1392 stat
+= bitflip_count
;
1395 * Too many 0-bits. It may be a
1396 * - programmed-page, OR
1397 * - erased-page with many bit-flips
1398 * So this page requires check by ELM
1400 err_vec
[i
].error_reported
= true;
1401 is_error_reported
= true;
1406 /* Update the ecc vector */
1407 calc_ecc
+= ecc
->bytes
;
1408 read_ecc
+= ecc
->bytes
;
1411 /* Check if any error reported */
1412 if (!is_error_reported
)
1415 /* Decode BCH error using ELM module */
1416 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1419 for (i
= 0; i
< eccsteps
; i
++) {
1420 if (err_vec
[i
].error_uncorrectable
) {
1421 dev_err(&info
->pdev
->dev
,
1422 "uncorrectable bit-flips found\n");
1424 } else if (err_vec
[i
].error_reported
) {
1425 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1426 switch (info
->ecc_opt
) {
1427 case OMAP_ECC_BCH4_CODE_HW
:
1428 /* Add 4 bits to take care of padding */
1429 pos
= err_vec
[i
].error_loc
[j
] +
1432 case OMAP_ECC_BCH8_CODE_HW
:
1433 case OMAP_ECC_BCH16_CODE_HW
:
1434 pos
= err_vec
[i
].error_loc
[j
];
1439 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1440 /* Calculate bit position of error */
1443 /* Calculate byte position of error */
1444 byte_pos
= (error_max
- pos
- 1) / 8;
1446 if (pos
< error_max
) {
1447 if (byte_pos
< 512) {
1448 pr_debug("bitflip@dat[%d]=%x\n",
1449 byte_pos
, data
[byte_pos
]);
1450 data
[byte_pos
] ^= 1 << bit_pos
;
1452 pr_debug("bitflip@oob[%d]=%x\n",
1454 spare_ecc
[byte_pos
- 512]);
1455 spare_ecc
[byte_pos
- 512] ^=
1459 dev_err(&info
->pdev
->dev
,
1460 "invalid bit-flip @ %d:%d\n",
1467 /* Update number of correctable errors */
1468 stat
+= err_vec
[i
].error_count
;
1470 /* Update page data with sector size */
1472 spare_ecc
+= ecc
->bytes
;
1475 return (err
) ? err
: stat
;
1479 * omap_write_page_bch - BCH ecc based write page function for entire page
1480 * @mtd: mtd info structure
1481 * @chip: nand chip info structure
1483 * @oob_required: must write chip->oob_poi to OOB
1486 * Custom write page method evolved to support multi sector writing in one shot
1488 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1489 const uint8_t *buf
, int oob_required
, int page
)
1492 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1494 /* Enable GPMC ecc engine */
1495 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1498 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1500 /* Update ecc vector from GPMC result registers */
1501 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1503 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1508 /* Write ecc vector to OOB area */
1509 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1514 * omap_read_page_bch - BCH ecc based page read function for entire page
1515 * @mtd: mtd info structure
1516 * @chip: nand chip info structure
1517 * @buf: buffer to store read data
1518 * @oob_required: caller requires OOB data read to chip->oob_poi
1519 * @page: page number to read
1521 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1522 * used for error correction.
1523 * Custom method evolved to support ELM error correction & multi sector
1524 * reading. On reading page data area is read along with OOB data with
1525 * ecc engine enabled. ecc vector updated after read of OOB data.
1526 * For non error pages ecc vector reported as zero.
1528 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1529 uint8_t *buf
, int oob_required
, int page
)
1531 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1532 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1534 unsigned int max_bitflips
= 0;
1536 /* Enable GPMC ecc engine */
1537 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1540 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1542 /* Read oob bytes */
1543 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1544 mtd
->writesize
+ BADBLOCK_MARKER_LENGTH
, -1);
1545 chip
->read_buf(mtd
, chip
->oob_poi
+ BADBLOCK_MARKER_LENGTH
,
1548 /* Calculate ecc bytes */
1549 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1551 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1556 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1559 mtd
->ecc_stats
.failed
++;
1561 mtd
->ecc_stats
.corrected
+= stat
;
1562 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1565 return max_bitflips
;
1569 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1570 * @omap_nand_info: NAND device structure containing platform data
1572 static bool is_elm_present(struct omap_nand_info
*info
,
1573 struct device_node
*elm_node
)
1575 struct platform_device
*pdev
;
1577 /* check whether elm-id is passed via DT */
1579 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1582 pdev
= of_find_device_by_node(elm_node
);
1583 /* check whether ELM device is registered */
1585 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1588 /* ELM module available, now configure it */
1589 info
->elm_dev
= &pdev
->dev
;
1593 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
,
1594 struct omap_nand_platform_data
*pdata
)
1596 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1598 switch (info
->ecc_opt
) {
1599 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1600 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1601 ecc_needs_omap_bch
= false;
1602 ecc_needs_bch
= true;
1603 ecc_needs_elm
= false;
1605 case OMAP_ECC_BCH4_CODE_HW
:
1606 case OMAP_ECC_BCH8_CODE_HW
:
1607 case OMAP_ECC_BCH16_CODE_HW
:
1608 ecc_needs_omap_bch
= true;
1609 ecc_needs_bch
= false;
1610 ecc_needs_elm
= true;
1613 ecc_needs_omap_bch
= false;
1614 ecc_needs_bch
= false;
1615 ecc_needs_elm
= false;
1619 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH
)) {
1620 dev_err(&info
->pdev
->dev
,
1621 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1624 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1625 dev_err(&info
->pdev
->dev
,
1626 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1629 if (ecc_needs_elm
&& !is_elm_present(info
, info
->elm_of_node
)) {
1630 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1637 static const char * const nand_xfer_types
[] = {
1638 [NAND_OMAP_PREFETCH_POLLED
] = "prefetch-polled",
1639 [NAND_OMAP_POLLED
] = "polled",
1640 [NAND_OMAP_PREFETCH_DMA
] = "prefetch-dma",
1641 [NAND_OMAP_PREFETCH_IRQ
] = "prefetch-irq",
1644 static int omap_get_dt_info(struct device
*dev
, struct omap_nand_info
*info
)
1646 struct device_node
*child
= dev
->of_node
;
1651 if (of_property_read_u32(child
, "reg", &cs
) < 0) {
1652 dev_err(dev
, "reg not found in DT\n");
1658 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1659 info
->elm_of_node
= of_parse_phandle(child
, "ti,elm-id", 0);
1660 if (!info
->elm_of_node
)
1661 dev_dbg(dev
, "ti,elm-id not in DT\n");
1663 /* select ecc-scheme for NAND */
1664 if (of_property_read_string(child
, "ti,nand-ecc-opt", &s
)) {
1665 dev_err(dev
, "ti,nand-ecc-opt not found\n");
1669 if (!strcmp(s
, "sw")) {
1670 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_SW
;
1671 } else if (!strcmp(s
, "ham1") ||
1672 !strcmp(s
, "hw") || !strcmp(s
, "hw-romcode")) {
1673 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_HW
;
1674 } else if (!strcmp(s
, "bch4")) {
1675 if (info
->elm_of_node
)
1676 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW
;
1678 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
;
1679 } else if (!strcmp(s
, "bch8")) {
1680 if (info
->elm_of_node
)
1681 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW
;
1683 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
;
1684 } else if (!strcmp(s
, "bch16")) {
1685 info
->ecc_opt
= OMAP_ECC_BCH16_CODE_HW
;
1687 dev_err(dev
, "unrecognized value for ti,nand-ecc-opt\n");
1691 /* select data transfer mode */
1692 if (!of_property_read_string(child
, "ti,nand-xfer-type", &s
)) {
1693 for (i
= 0; i
< ARRAY_SIZE(nand_xfer_types
); i
++) {
1694 if (!strcasecmp(s
, nand_xfer_types
[i
])) {
1695 info
->xfer_type
= i
;
1700 dev_err(dev
, "unrecognized value for ti,nand-xfer-type\n");
1707 static int omap_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1708 struct mtd_oob_region
*oobregion
)
1710 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1711 struct nand_chip
*chip
= &info
->nand
;
1712 int off
= BADBLOCK_MARKER_LENGTH
;
1714 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1715 !(chip
->options
& NAND_BUSWIDTH_16
))
1721 oobregion
->offset
= off
;
1722 oobregion
->length
= chip
->ecc
.total
;
1727 static int omap_ooblayout_free(struct mtd_info
*mtd
, int section
,
1728 struct mtd_oob_region
*oobregion
)
1730 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1731 struct nand_chip
*chip
= &info
->nand
;
1732 int off
= BADBLOCK_MARKER_LENGTH
;
1734 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1735 !(chip
->options
& NAND_BUSWIDTH_16
))
1741 off
+= chip
->ecc
.total
;
1742 if (off
>= mtd
->oobsize
)
1745 oobregion
->offset
= off
;
1746 oobregion
->length
= mtd
->oobsize
- off
;
1751 static const struct mtd_ooblayout_ops omap_ooblayout_ops
= {
1752 .ecc
= omap_ooblayout_ecc
,
1753 .free
= omap_ooblayout_free
,
1756 static int omap_sw_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1757 struct mtd_oob_region
*oobregion
)
1759 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1760 int off
= BADBLOCK_MARKER_LENGTH
;
1762 if (section
>= chip
->ecc
.steps
)
1766 * When SW correction is employed, one OMAP specific marker byte is
1767 * reserved after each ECC step.
1769 oobregion
->offset
= off
+ (section
* (chip
->ecc
.bytes
+ 1));
1770 oobregion
->length
= chip
->ecc
.bytes
;
1775 static int omap_sw_ooblayout_free(struct mtd_info
*mtd
, int section
,
1776 struct mtd_oob_region
*oobregion
)
1778 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1779 int off
= BADBLOCK_MARKER_LENGTH
;
1785 * When SW correction is employed, one OMAP specific marker byte is
1786 * reserved after each ECC step.
1788 off
+= ((chip
->ecc
.bytes
+ 1) * chip
->ecc
.steps
);
1789 if (off
>= mtd
->oobsize
)
1792 oobregion
->offset
= off
;
1793 oobregion
->length
= mtd
->oobsize
- off
;
1798 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops
= {
1799 .ecc
= omap_sw_ooblayout_ecc
,
1800 .free
= omap_sw_ooblayout_free
,
1803 static int omap_nand_probe(struct platform_device
*pdev
)
1805 struct omap_nand_info
*info
;
1806 struct omap_nand_platform_data
*pdata
= NULL
;
1807 struct mtd_info
*mtd
;
1808 struct nand_chip
*nand_chip
;
1810 dma_cap_mask_t mask
;
1812 struct resource
*res
;
1813 struct device
*dev
= &pdev
->dev
;
1814 int min_oobbytes
= BADBLOCK_MARKER_LENGTH
;
1815 int oobbytes_per_step
;
1817 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1825 if (omap_get_dt_info(dev
, info
))
1828 pdata
= dev_get_platdata(&pdev
->dev
);
1830 dev_err(&pdev
->dev
, "platform data missing\n");
1834 info
->gpmc_cs
= pdata
->cs
;
1835 info
->reg
= pdata
->reg
;
1836 info
->ecc_opt
= pdata
->ecc_opt
;
1837 if (pdata
->dev_ready
)
1838 dev_info(&pdev
->dev
, "pdata->dev_ready is deprecated\n");
1840 info
->xfer_type
= pdata
->xfer_type
;
1841 info
->devsize
= pdata
->devsize
;
1842 info
->elm_of_node
= pdata
->elm_of_node
;
1843 info
->flash_bbt
= pdata
->flash_bbt
;
1846 platform_set_drvdata(pdev
, info
);
1847 info
->ops
= gpmc_omap_get_nand_ops(&info
->reg
, info
->gpmc_cs
);
1849 dev_err(&pdev
->dev
, "Failed to get GPMC->NAND interface\n");
1853 nand_chip
= &info
->nand
;
1854 mtd
= nand_to_mtd(nand_chip
);
1855 mtd
->dev
.parent
= &pdev
->dev
;
1856 nand_chip
->ecc
.priv
= NULL
;
1857 nand_set_flash_node(nand_chip
, dev
->of_node
);
1859 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1860 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1861 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1862 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1864 info
->phys_base
= res
->start
;
1866 nand_chip
->controller
= &omap_gpmc_controller
;
1868 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1869 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1871 info
->ready_gpiod
= devm_gpiod_get_optional(&pdev
->dev
, "rb",
1873 if (IS_ERR(info
->ready_gpiod
)) {
1874 dev_err(dev
, "failed to get ready gpio\n");
1875 return PTR_ERR(info
->ready_gpiod
);
1879 * If RDY/BSY line is connected to OMAP then use the omap ready
1880 * function and the generic nand_wait function which reads the status
1881 * register after monitoring the RDY/BSY line. Otherwise use a standard
1882 * chip delay which is slightly more than tR (AC Timing) of the NAND
1883 * device and read status register until you get a failure or success
1885 if (info
->ready_gpiod
) {
1886 nand_chip
->dev_ready
= omap_dev_ready
;
1887 nand_chip
->chip_delay
= 0;
1889 nand_chip
->waitfunc
= omap_wait
;
1890 nand_chip
->chip_delay
= 50;
1893 if (info
->flash_bbt
)
1894 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
1896 /* scan NAND device connected to chip controller */
1897 nand_chip
->options
|= info
->devsize
& NAND_BUSWIDTH_16
;
1898 if (nand_scan_ident(mtd
, 1, NULL
)) {
1899 dev_err(&info
->pdev
->dev
,
1900 "scan failed, may be bus-width mismatch\n");
1905 if (nand_chip
->bbt_options
& NAND_BBT_USE_FLASH
)
1906 nand_chip
->bbt_options
|= NAND_BBT_NO_OOB
;
1908 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
1910 /* re-populate low-level callbacks based on xfer modes */
1911 switch (info
->xfer_type
) {
1912 case NAND_OMAP_PREFETCH_POLLED
:
1913 nand_chip
->read_buf
= omap_read_buf_pref
;
1914 nand_chip
->write_buf
= omap_write_buf_pref
;
1917 case NAND_OMAP_POLLED
:
1918 /* Use nand_base defaults for {read,write}_buf */
1921 case NAND_OMAP_PREFETCH_DMA
:
1923 dma_cap_set(DMA_SLAVE
, mask
);
1924 sig
= OMAP24XX_DMA_GPMC
;
1925 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1927 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1931 struct dma_slave_config cfg
;
1933 memset(&cfg
, 0, sizeof(cfg
));
1934 cfg
.src_addr
= info
->phys_base
;
1935 cfg
.dst_addr
= info
->phys_base
;
1936 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1937 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1938 cfg
.src_maxburst
= 16;
1939 cfg
.dst_maxburst
= 16;
1940 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1942 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1946 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
1947 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
1951 case NAND_OMAP_PREFETCH_IRQ
:
1952 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1953 if (info
->gpmc_irq_fifo
<= 0) {
1954 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1958 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
1959 omap_nand_irq
, IRQF_SHARED
,
1960 "gpmc-nand-fifo", info
);
1962 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1963 info
->gpmc_irq_fifo
, err
);
1964 info
->gpmc_irq_fifo
= 0;
1968 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1969 if (info
->gpmc_irq_count
<= 0) {
1970 dev_err(&pdev
->dev
, "error getting count irq\n");
1974 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
1975 omap_nand_irq
, IRQF_SHARED
,
1976 "gpmc-nand-count", info
);
1978 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1979 info
->gpmc_irq_count
, err
);
1980 info
->gpmc_irq_count
= 0;
1984 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
1985 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
1991 "xfer_type(%d) not supported!\n", info
->xfer_type
);
1996 if (!omap2_nand_ecc_check(info
, pdata
)) {
2002 * Bail out earlier to let NAND_ECC_SOFT code create its own
2003 * ooblayout instead of using ours.
2005 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
) {
2006 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
2007 nand_chip
->ecc
.algo
= NAND_ECC_HAMMING
;
2011 /* populate MTD interface based on ECC scheme */
2012 switch (info
->ecc_opt
) {
2013 case OMAP_ECC_HAM1_CODE_HW
:
2014 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2015 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2016 nand_chip
->ecc
.bytes
= 3;
2017 nand_chip
->ecc
.size
= 512;
2018 nand_chip
->ecc
.strength
= 1;
2019 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
2020 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
2021 nand_chip
->ecc
.correct
= omap_correct_data
;
2022 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2023 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2025 if (!(nand_chip
->options
& NAND_BUSWIDTH_16
))
2030 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
2031 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2032 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2033 nand_chip
->ecc
.size
= 512;
2034 nand_chip
->ecc
.bytes
= 7;
2035 nand_chip
->ecc
.strength
= 4;
2036 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2037 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
2038 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
2039 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2040 /* Reserve one byte for the OMAP marker */
2041 oobbytes_per_step
= nand_chip
->ecc
.bytes
+ 1;
2042 /* software bch library is used for locating errors */
2043 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
2044 if (!nand_chip
->ecc
.priv
) {
2045 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
2051 case OMAP_ECC_BCH4_CODE_HW
:
2052 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2053 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2054 nand_chip
->ecc
.size
= 512;
2055 /* 14th bit is kept reserved for ROM-code compatibility */
2056 nand_chip
->ecc
.bytes
= 7 + 1;
2057 nand_chip
->ecc
.strength
= 4;
2058 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2059 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2060 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
2061 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2062 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2063 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2064 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2066 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
2067 mtd
->writesize
/ nand_chip
->ecc
.size
,
2068 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2073 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
2074 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2075 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2076 nand_chip
->ecc
.size
= 512;
2077 nand_chip
->ecc
.bytes
= 13;
2078 nand_chip
->ecc
.strength
= 8;
2079 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2080 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
2081 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
2082 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2083 /* Reserve one byte for the OMAP marker */
2084 oobbytes_per_step
= nand_chip
->ecc
.bytes
+ 1;
2085 /* software bch library is used for locating errors */
2086 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
2087 if (!nand_chip
->ecc
.priv
) {
2088 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
2094 case OMAP_ECC_BCH8_CODE_HW
:
2095 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2096 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2097 nand_chip
->ecc
.size
= 512;
2098 /* 14th bit is kept reserved for ROM-code compatibility */
2099 nand_chip
->ecc
.bytes
= 13 + 1;
2100 nand_chip
->ecc
.strength
= 8;
2101 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2102 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2103 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
2104 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2105 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2106 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2107 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2109 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
2110 mtd
->writesize
/ nand_chip
->ecc
.size
,
2111 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2117 case OMAP_ECC_BCH16_CODE_HW
:
2118 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2119 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2120 nand_chip
->ecc
.size
= 512;
2121 nand_chip
->ecc
.bytes
= 26;
2122 nand_chip
->ecc
.strength
= 16;
2123 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2124 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2125 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
2126 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2127 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2128 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2129 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2131 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
2132 mtd
->writesize
/ nand_chip
->ecc
.size
,
2133 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2139 dev_err(&info
->pdev
->dev
, "invalid or unsupported ECC scheme\n");
2144 /* check if NAND device's OOB is enough to store ECC signatures */
2145 min_oobbytes
+= (oobbytes_per_step
*
2146 (mtd
->writesize
/ nand_chip
->ecc
.size
));
2147 if (mtd
->oobsize
< min_oobbytes
) {
2148 dev_err(&info
->pdev
->dev
,
2149 "not enough OOB bytes required = %d, available=%d\n",
2150 min_oobbytes
, mtd
->oobsize
);
2156 /* second phase scan */
2157 if (nand_scan_tail(mtd
)) {
2163 mtd_device_register(mtd
, NULL
, 0);
2165 mtd_device_register(mtd
, pdata
->parts
, pdata
->nr_parts
);
2167 platform_set_drvdata(pdev
, mtd
);
2173 dma_release_channel(info
->dma
);
2174 if (nand_chip
->ecc
.priv
) {
2175 nand_bch_free(nand_chip
->ecc
.priv
);
2176 nand_chip
->ecc
.priv
= NULL
;
2181 static int omap_nand_remove(struct platform_device
*pdev
)
2183 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2184 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
2185 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
2186 if (nand_chip
->ecc
.priv
) {
2187 nand_bch_free(nand_chip
->ecc
.priv
);
2188 nand_chip
->ecc
.priv
= NULL
;
2191 dma_release_channel(info
->dma
);
2196 static const struct of_device_id omap_nand_ids
[] = {
2197 { .compatible
= "ti,omap2-nand", },
2201 static struct platform_driver omap_nand_driver
= {
2202 .probe
= omap_nand_probe
,
2203 .remove
= omap_nand_remove
,
2205 .name
= DRIVER_NAME
,
2206 .of_match_table
= of_match_ptr(omap_nand_ids
),
2210 module_platform_driver(omap_nand_driver
);
2212 MODULE_ALIAS("platform:" DRIVER_NAME
);
2213 MODULE_LICENSE("GPL");
2214 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");