rcu: Semicolon inside RCU_TRACE() for tree.c
[linux/fpc-iii.git] / mm / page-writeback.c
blobd8ac2a7fb9e7b6db9de3755ab7898095f70f8383
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
43 #include "internal.h"
46 * Sleep at most 200ms at a time in balance_dirty_pages().
48 #define MAX_PAUSE max(HZ/5, 1)
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
57 * Estimate write bandwidth at 200ms intervals.
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61 #define RATELIMIT_CALC_SHIFT 10
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
67 static long ratelimit_pages = 32;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 int dirty_background_ratio = 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 unsigned long dirty_background_bytes;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 int vm_highmem_is_dirtyable;
89 * The generator of dirty data starts writeback at this percentage
91 int vm_dirty_ratio = 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 unsigned long vm_dirty_bytes;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
107 * The longest time for which data is allowed to remain dirty
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
112 * Flag that makes the machine dump writes/reads and block dirtyings.
114 int block_dump;
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
120 int laptop_mode;
122 EXPORT_SYMBOL(laptop_mode);
124 /* End of sysctl-exported parameters */
126 struct wb_domain global_wb_domain;
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
133 #endif
134 struct bdi_writeback *wb;
135 struct fprop_local_percpu *wb_completions;
137 unsigned long avail; /* dirtyable */
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
144 unsigned long wb_bg_thresh;
146 unsigned long pos_ratio;
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
156 #ifdef CONFIG_CGROUP_WRITEBACK
158 #define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
171 return dtc->dom;
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
176 return dtc->dom;
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
181 return mdtc->gdtc;
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
186 return &wb->memcg_completions;
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 do_div(min, tot_bw);
206 if (max < 100) {
207 max *= this_bw;
208 do_div(max, tot_bw);
212 *minp = min;
213 *maxp = max;
216 #else /* CONFIG_CGROUP_WRITEBACK */
218 #define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
225 return false;
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
230 return &global_wb_domain;
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
235 return NULL;
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
240 return NULL;
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
250 #endif /* CONFIG_CGROUP_WRITEBACK */
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
279 unsigned long nr_pages = 0;
280 int z;
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
285 if (!populated_zone(zone))
286 continue;
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
301 return nr_pages;
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
306 #ifdef CONFIG_HIGHMEM
307 int node;
308 unsigned long x = 0;
309 int i;
311 for_each_node_state(node, N_HIGH_MEMORY) {
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
314 unsigned long nr_pages;
316 if (!is_highmem_idx(i))
317 continue;
319 z = &NODE_DATA(node)->node_zones[i];
320 if (!populated_zone(z))
321 continue;
323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 /* watch for underflows */
325 nr_pages -= min(nr_pages, high_wmark_pages(z));
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
341 if ((long)x < 0)
342 x = 0;
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
350 return min(x, total);
351 #else
352 return 0;
353 #endif
357 * global_dirtyable_memory - number of globally dirtyable pages
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
362 static unsigned long global_dirtyable_memory(void)
364 unsigned long x;
366 x = global_page_state(NR_FREE_PAGES);
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
372 x -= min(x, totalreserve_pages);
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
380 return x + 1; /* Ensure that we never return 0 */
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 * real-time tasks.
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 unsigned long thresh;
403 unsigned long bg_thresh;
404 struct task_struct *tsk;
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
417 if (bytes)
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
420 if (bg_bytes)
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
423 bytes = bg_bytes = 0;
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 else
429 thresh = (ratio * available_memory) / PAGE_SIZE;
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 else
434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
436 if (bg_thresh >= thresh)
437 bg_thresh = thresh / 2;
438 tsk = current;
439 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
443 dtc->thresh = thresh;
444 dtc->bg_thresh = bg_thresh;
446 /* we should eventually report the domain in the TP */
447 if (!gdtc)
448 trace_global_dirty_state(bg_thresh, thresh);
452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
453 * @pbackground: out parameter for bg_thresh
454 * @pdirty: out parameter for thresh
456 * Calculate bg_thresh and thresh for global_wb_domain. See
457 * domain_dirty_limits() for details.
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
461 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
463 gdtc.avail = global_dirtyable_memory();
464 domain_dirty_limits(&gdtc);
466 *pbackground = gdtc.bg_thresh;
467 *pdirty = gdtc.thresh;
471 * node_dirty_limit - maximum number of dirty pages allowed in a node
472 * @pgdat: the node
474 * Returns the maximum number of dirty pages allowed in a node, based
475 * on the node's dirtyable memory.
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
479 unsigned long node_memory = node_dirtyable_memory(pgdat);
480 struct task_struct *tsk = current;
481 unsigned long dirty;
483 if (vm_dirty_bytes)
484 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485 node_memory / global_dirtyable_memory();
486 else
487 dirty = vm_dirty_ratio * node_memory / 100;
489 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 dirty += dirty / 4;
492 return dirty;
496 * node_dirty_ok - tells whether a node is within its dirty limits
497 * @pgdat: the node to check
499 * Returns %true when the dirty pages in @pgdat are within the node's
500 * dirty limit, %false if the limit is exceeded.
502 bool node_dirty_ok(struct pglist_data *pgdat)
504 unsigned long limit = node_dirty_limit(pgdat);
505 unsigned long nr_pages = 0;
507 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
511 return nr_pages <= limit;
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515 void __user *buffer, size_t *lenp,
516 loff_t *ppos)
518 int ret;
520 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 if (ret == 0 && write)
522 dirty_background_bytes = 0;
523 return ret;
526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 void __user *buffer, size_t *lenp,
528 loff_t *ppos)
530 int ret;
532 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533 if (ret == 0 && write)
534 dirty_background_ratio = 0;
535 return ret;
538 int dirty_ratio_handler(struct ctl_table *table, int write,
539 void __user *buffer, size_t *lenp,
540 loff_t *ppos)
542 int old_ratio = vm_dirty_ratio;
543 int ret;
545 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
546 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547 writeback_set_ratelimit();
548 vm_dirty_bytes = 0;
550 return ret;
553 int dirty_bytes_handler(struct ctl_table *table, int write,
554 void __user *buffer, size_t *lenp,
555 loff_t *ppos)
557 unsigned long old_bytes = vm_dirty_bytes;
558 int ret;
560 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562 writeback_set_ratelimit();
563 vm_dirty_ratio = 0;
565 return ret;
568 static unsigned long wp_next_time(unsigned long cur_time)
570 cur_time += VM_COMPLETIONS_PERIOD_LEN;
571 /* 0 has a special meaning... */
572 if (!cur_time)
573 return 1;
574 return cur_time;
577 static void wb_domain_writeout_inc(struct wb_domain *dom,
578 struct fprop_local_percpu *completions,
579 unsigned int max_prop_frac)
581 __fprop_inc_percpu_max(&dom->completions, completions,
582 max_prop_frac);
583 /* First event after period switching was turned off? */
584 if (unlikely(!dom->period_time)) {
586 * We can race with other __bdi_writeout_inc calls here but
587 * it does not cause any harm since the resulting time when
588 * timer will fire and what is in writeout_period_time will be
589 * roughly the same.
591 dom->period_time = wp_next_time(jiffies);
592 mod_timer(&dom->period_timer, dom->period_time);
597 * Increment @wb's writeout completion count and the global writeout
598 * completion count. Called from test_clear_page_writeback().
600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
602 struct wb_domain *cgdom;
604 __inc_wb_stat(wb, WB_WRITTEN);
605 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606 wb->bdi->max_prop_frac);
608 cgdom = mem_cgroup_wb_domain(wb);
609 if (cgdom)
610 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611 wb->bdi->max_prop_frac);
614 void wb_writeout_inc(struct bdi_writeback *wb)
616 unsigned long flags;
618 local_irq_save(flags);
619 __wb_writeout_inc(wb);
620 local_irq_restore(flags);
622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
625 * On idle system, we can be called long after we scheduled because we use
626 * deferred timers so count with missed periods.
628 static void writeout_period(unsigned long t)
630 struct wb_domain *dom = (void *)t;
631 int miss_periods = (jiffies - dom->period_time) /
632 VM_COMPLETIONS_PERIOD_LEN;
634 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635 dom->period_time = wp_next_time(dom->period_time +
636 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
637 mod_timer(&dom->period_timer, dom->period_time);
638 } else {
640 * Aging has zeroed all fractions. Stop wasting CPU on period
641 * updates.
643 dom->period_time = 0;
647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
649 memset(dom, 0, sizeof(*dom));
651 spin_lock_init(&dom->lock);
653 init_timer_deferrable(&dom->period_timer);
654 dom->period_timer.function = writeout_period;
655 dom->period_timer.data = (unsigned long)dom;
657 dom->dirty_limit_tstamp = jiffies;
659 return fprop_global_init(&dom->completions, gfp);
662 #ifdef CONFIG_CGROUP_WRITEBACK
663 void wb_domain_exit(struct wb_domain *dom)
665 del_timer_sync(&dom->period_timer);
666 fprop_global_destroy(&dom->completions);
668 #endif
671 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
672 * registered backing devices, which, for obvious reasons, can not
673 * exceed 100%.
675 static unsigned int bdi_min_ratio;
677 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
679 int ret = 0;
681 spin_lock_bh(&bdi_lock);
682 if (min_ratio > bdi->max_ratio) {
683 ret = -EINVAL;
684 } else {
685 min_ratio -= bdi->min_ratio;
686 if (bdi_min_ratio + min_ratio < 100) {
687 bdi_min_ratio += min_ratio;
688 bdi->min_ratio += min_ratio;
689 } else {
690 ret = -EINVAL;
693 spin_unlock_bh(&bdi_lock);
695 return ret;
698 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
700 int ret = 0;
702 if (max_ratio > 100)
703 return -EINVAL;
705 spin_lock_bh(&bdi_lock);
706 if (bdi->min_ratio > max_ratio) {
707 ret = -EINVAL;
708 } else {
709 bdi->max_ratio = max_ratio;
710 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
712 spin_unlock_bh(&bdi_lock);
714 return ret;
716 EXPORT_SYMBOL(bdi_set_max_ratio);
718 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
719 unsigned long bg_thresh)
721 return (thresh + bg_thresh) / 2;
724 static unsigned long hard_dirty_limit(struct wb_domain *dom,
725 unsigned long thresh)
727 return max(thresh, dom->dirty_limit);
731 * Memory which can be further allocated to a memcg domain is capped by
732 * system-wide clean memory excluding the amount being used in the domain.
734 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
735 unsigned long filepages, unsigned long headroom)
737 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
738 unsigned long clean = filepages - min(filepages, mdtc->dirty);
739 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
740 unsigned long other_clean = global_clean - min(global_clean, clean);
742 mdtc->avail = filepages + min(headroom, other_clean);
746 * __wb_calc_thresh - @wb's share of dirty throttling threshold
747 * @dtc: dirty_throttle_context of interest
749 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
750 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
752 * Note that balance_dirty_pages() will only seriously take it as a hard limit
753 * when sleeping max_pause per page is not enough to keep the dirty pages under
754 * control. For example, when the device is completely stalled due to some error
755 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
756 * In the other normal situations, it acts more gently by throttling the tasks
757 * more (rather than completely block them) when the wb dirty pages go high.
759 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
760 * - starving fast devices
761 * - piling up dirty pages (that will take long time to sync) on slow devices
763 * The wb's share of dirty limit will be adapting to its throughput and
764 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
766 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
768 struct wb_domain *dom = dtc_dom(dtc);
769 unsigned long thresh = dtc->thresh;
770 u64 wb_thresh;
771 long numerator, denominator;
772 unsigned long wb_min_ratio, wb_max_ratio;
775 * Calculate this BDI's share of the thresh ratio.
777 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
778 &numerator, &denominator);
780 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
781 wb_thresh *= numerator;
782 do_div(wb_thresh, denominator);
784 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
786 wb_thresh += (thresh * wb_min_ratio) / 100;
787 if (wb_thresh > (thresh * wb_max_ratio) / 100)
788 wb_thresh = thresh * wb_max_ratio / 100;
790 return wb_thresh;
793 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
795 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
796 .thresh = thresh };
797 return __wb_calc_thresh(&gdtc);
801 * setpoint - dirty 3
802 * f(dirty) := 1.0 + (----------------)
803 * limit - setpoint
805 * it's a 3rd order polynomial that subjects to
807 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
808 * (2) f(setpoint) = 1.0 => the balance point
809 * (3) f(limit) = 0 => the hard limit
810 * (4) df/dx <= 0 => negative feedback control
811 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
812 * => fast response on large errors; small oscillation near setpoint
814 static long long pos_ratio_polynom(unsigned long setpoint,
815 unsigned long dirty,
816 unsigned long limit)
818 long long pos_ratio;
819 long x;
821 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
822 (limit - setpoint) | 1);
823 pos_ratio = x;
824 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
825 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
826 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
828 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
832 * Dirty position control.
834 * (o) global/bdi setpoints
836 * We want the dirty pages be balanced around the global/wb setpoints.
837 * When the number of dirty pages is higher/lower than the setpoint, the
838 * dirty position control ratio (and hence task dirty ratelimit) will be
839 * decreased/increased to bring the dirty pages back to the setpoint.
841 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
843 * if (dirty < setpoint) scale up pos_ratio
844 * if (dirty > setpoint) scale down pos_ratio
846 * if (wb_dirty < wb_setpoint) scale up pos_ratio
847 * if (wb_dirty > wb_setpoint) scale down pos_ratio
849 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
851 * (o) global control line
853 * ^ pos_ratio
855 * | |<===== global dirty control scope ======>|
856 * 2.0 .............*
857 * | .*
858 * | . *
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * 1.0 ................................*
864 * | . . *
865 * | . . *
866 * | . . *
867 * | . . *
868 * | . . *
869 * 0 +------------.------------------.----------------------*------------->
870 * freerun^ setpoint^ limit^ dirty pages
872 * (o) wb control line
874 * ^ pos_ratio
876 * | *
877 * | *
878 * | *
879 * | *
880 * | * |<=========== span ============>|
881 * 1.0 .......................*
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * 1/4 ...............................................* * * * * * * * * * * *
894 * | . .
895 * | . .
896 * | . .
897 * 0 +----------------------.-------------------------------.------------->
898 * wb_setpoint^ x_intercept^
900 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
901 * be smoothly throttled down to normal if it starts high in situations like
902 * - start writing to a slow SD card and a fast disk at the same time. The SD
903 * card's wb_dirty may rush to many times higher than wb_setpoint.
904 * - the wb dirty thresh drops quickly due to change of JBOD workload
906 static void wb_position_ratio(struct dirty_throttle_control *dtc)
908 struct bdi_writeback *wb = dtc->wb;
909 unsigned long write_bw = wb->avg_write_bandwidth;
910 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
911 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
912 unsigned long wb_thresh = dtc->wb_thresh;
913 unsigned long x_intercept;
914 unsigned long setpoint; /* dirty pages' target balance point */
915 unsigned long wb_setpoint;
916 unsigned long span;
917 long long pos_ratio; /* for scaling up/down the rate limit */
918 long x;
920 dtc->pos_ratio = 0;
922 if (unlikely(dtc->dirty >= limit))
923 return;
926 * global setpoint
928 * See comment for pos_ratio_polynom().
930 setpoint = (freerun + limit) / 2;
931 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
934 * The strictlimit feature is a tool preventing mistrusted filesystems
935 * from growing a large number of dirty pages before throttling. For
936 * such filesystems balance_dirty_pages always checks wb counters
937 * against wb limits. Even if global "nr_dirty" is under "freerun".
938 * This is especially important for fuse which sets bdi->max_ratio to
939 * 1% by default. Without strictlimit feature, fuse writeback may
940 * consume arbitrary amount of RAM because it is accounted in
941 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
943 * Here, in wb_position_ratio(), we calculate pos_ratio based on
944 * two values: wb_dirty and wb_thresh. Let's consider an example:
945 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
946 * limits are set by default to 10% and 20% (background and throttle).
947 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
948 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
949 * about ~6K pages (as the average of background and throttle wb
950 * limits). The 3rd order polynomial will provide positive feedback if
951 * wb_dirty is under wb_setpoint and vice versa.
953 * Note, that we cannot use global counters in these calculations
954 * because we want to throttle process writing to a strictlimit wb
955 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
956 * in the example above).
958 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
959 long long wb_pos_ratio;
961 if (dtc->wb_dirty < 8) {
962 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
963 2 << RATELIMIT_CALC_SHIFT);
964 return;
967 if (dtc->wb_dirty >= wb_thresh)
968 return;
970 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
971 dtc->wb_bg_thresh);
973 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
974 return;
976 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
977 wb_thresh);
980 * Typically, for strictlimit case, wb_setpoint << setpoint
981 * and pos_ratio >> wb_pos_ratio. In the other words global
982 * state ("dirty") is not limiting factor and we have to
983 * make decision based on wb counters. But there is an
984 * important case when global pos_ratio should get precedence:
985 * global limits are exceeded (e.g. due to activities on other
986 * wb's) while given strictlimit wb is below limit.
988 * "pos_ratio * wb_pos_ratio" would work for the case above,
989 * but it would look too non-natural for the case of all
990 * activity in the system coming from a single strictlimit wb
991 * with bdi->max_ratio == 100%.
993 * Note that min() below somewhat changes the dynamics of the
994 * control system. Normally, pos_ratio value can be well over 3
995 * (when globally we are at freerun and wb is well below wb
996 * setpoint). Now the maximum pos_ratio in the same situation
997 * is 2. We might want to tweak this if we observe the control
998 * system is too slow to adapt.
1000 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1001 return;
1005 * We have computed basic pos_ratio above based on global situation. If
1006 * the wb is over/under its share of dirty pages, we want to scale
1007 * pos_ratio further down/up. That is done by the following mechanism.
1011 * wb setpoint
1013 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1015 * x_intercept - wb_dirty
1016 * := --------------------------
1017 * x_intercept - wb_setpoint
1019 * The main wb control line is a linear function that subjects to
1021 * (1) f(wb_setpoint) = 1.0
1022 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1023 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1025 * For single wb case, the dirty pages are observed to fluctuate
1026 * regularly within range
1027 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1028 * for various filesystems, where (2) can yield in a reasonable 12.5%
1029 * fluctuation range for pos_ratio.
1031 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1032 * own size, so move the slope over accordingly and choose a slope that
1033 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1035 if (unlikely(wb_thresh > dtc->thresh))
1036 wb_thresh = dtc->thresh;
1038 * It's very possible that wb_thresh is close to 0 not because the
1039 * device is slow, but that it has remained inactive for long time.
1040 * Honour such devices a reasonable good (hopefully IO efficient)
1041 * threshold, so that the occasional writes won't be blocked and active
1042 * writes can rampup the threshold quickly.
1044 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1046 * scale global setpoint to wb's:
1047 * wb_setpoint = setpoint * wb_thresh / thresh
1049 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1050 wb_setpoint = setpoint * (u64)x >> 16;
1052 * Use span=(8*write_bw) in single wb case as indicated by
1053 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1055 * wb_thresh thresh - wb_thresh
1056 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1057 * thresh thresh
1059 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1060 x_intercept = wb_setpoint + span;
1062 if (dtc->wb_dirty < x_intercept - span / 4) {
1063 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1064 (x_intercept - wb_setpoint) | 1);
1065 } else
1066 pos_ratio /= 4;
1069 * wb reserve area, safeguard against dirty pool underrun and disk idle
1070 * It may push the desired control point of global dirty pages higher
1071 * than setpoint.
1073 x_intercept = wb_thresh / 2;
1074 if (dtc->wb_dirty < x_intercept) {
1075 if (dtc->wb_dirty > x_intercept / 8)
1076 pos_ratio = div_u64(pos_ratio * x_intercept,
1077 dtc->wb_dirty);
1078 else
1079 pos_ratio *= 8;
1082 dtc->pos_ratio = pos_ratio;
1085 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1086 unsigned long elapsed,
1087 unsigned long written)
1089 const unsigned long period = roundup_pow_of_two(3 * HZ);
1090 unsigned long avg = wb->avg_write_bandwidth;
1091 unsigned long old = wb->write_bandwidth;
1092 u64 bw;
1095 * bw = written * HZ / elapsed
1097 * bw * elapsed + write_bandwidth * (period - elapsed)
1098 * write_bandwidth = ---------------------------------------------------
1099 * period
1101 * @written may have decreased due to account_page_redirty().
1102 * Avoid underflowing @bw calculation.
1104 bw = written - min(written, wb->written_stamp);
1105 bw *= HZ;
1106 if (unlikely(elapsed > period)) {
1107 do_div(bw, elapsed);
1108 avg = bw;
1109 goto out;
1111 bw += (u64)wb->write_bandwidth * (period - elapsed);
1112 bw >>= ilog2(period);
1115 * one more level of smoothing, for filtering out sudden spikes
1117 if (avg > old && old >= (unsigned long)bw)
1118 avg -= (avg - old) >> 3;
1120 if (avg < old && old <= (unsigned long)bw)
1121 avg += (old - avg) >> 3;
1123 out:
1124 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1125 avg = max(avg, 1LU);
1126 if (wb_has_dirty_io(wb)) {
1127 long delta = avg - wb->avg_write_bandwidth;
1128 WARN_ON_ONCE(atomic_long_add_return(delta,
1129 &wb->bdi->tot_write_bandwidth) <= 0);
1131 wb->write_bandwidth = bw;
1132 wb->avg_write_bandwidth = avg;
1135 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1137 struct wb_domain *dom = dtc_dom(dtc);
1138 unsigned long thresh = dtc->thresh;
1139 unsigned long limit = dom->dirty_limit;
1142 * Follow up in one step.
1144 if (limit < thresh) {
1145 limit = thresh;
1146 goto update;
1150 * Follow down slowly. Use the higher one as the target, because thresh
1151 * may drop below dirty. This is exactly the reason to introduce
1152 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1154 thresh = max(thresh, dtc->dirty);
1155 if (limit > thresh) {
1156 limit -= (limit - thresh) >> 5;
1157 goto update;
1159 return;
1160 update:
1161 dom->dirty_limit = limit;
1164 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1165 unsigned long now)
1167 struct wb_domain *dom = dtc_dom(dtc);
1170 * check locklessly first to optimize away locking for the most time
1172 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1173 return;
1175 spin_lock(&dom->lock);
1176 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1177 update_dirty_limit(dtc);
1178 dom->dirty_limit_tstamp = now;
1180 spin_unlock(&dom->lock);
1184 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1186 * Normal wb tasks will be curbed at or below it in long term.
1187 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1189 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1190 unsigned long dirtied,
1191 unsigned long elapsed)
1193 struct bdi_writeback *wb = dtc->wb;
1194 unsigned long dirty = dtc->dirty;
1195 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1196 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1197 unsigned long setpoint = (freerun + limit) / 2;
1198 unsigned long write_bw = wb->avg_write_bandwidth;
1199 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1200 unsigned long dirty_rate;
1201 unsigned long task_ratelimit;
1202 unsigned long balanced_dirty_ratelimit;
1203 unsigned long step;
1204 unsigned long x;
1205 unsigned long shift;
1208 * The dirty rate will match the writeout rate in long term, except
1209 * when dirty pages are truncated by userspace or re-dirtied by FS.
1211 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1214 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1216 task_ratelimit = (u64)dirty_ratelimit *
1217 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1218 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1221 * A linear estimation of the "balanced" throttle rate. The theory is,
1222 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1223 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1224 * formula will yield the balanced rate limit (write_bw / N).
1226 * Note that the expanded form is not a pure rate feedback:
1227 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1228 * but also takes pos_ratio into account:
1229 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1231 * (1) is not realistic because pos_ratio also takes part in balancing
1232 * the dirty rate. Consider the state
1233 * pos_ratio = 0.5 (3)
1234 * rate = 2 * (write_bw / N) (4)
1235 * If (1) is used, it will stuck in that state! Because each dd will
1236 * be throttled at
1237 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1238 * yielding
1239 * dirty_rate = N * task_ratelimit = write_bw (6)
1240 * put (6) into (1) we get
1241 * rate_(i+1) = rate_(i) (7)
1243 * So we end up using (2) to always keep
1244 * rate_(i+1) ~= (write_bw / N) (8)
1245 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1246 * pos_ratio is able to drive itself to 1.0, which is not only where
1247 * the dirty count meet the setpoint, but also where the slope of
1248 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1250 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1251 dirty_rate | 1);
1253 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1255 if (unlikely(balanced_dirty_ratelimit > write_bw))
1256 balanced_dirty_ratelimit = write_bw;
1259 * We could safely do this and return immediately:
1261 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1263 * However to get a more stable dirty_ratelimit, the below elaborated
1264 * code makes use of task_ratelimit to filter out singular points and
1265 * limit the step size.
1267 * The below code essentially only uses the relative value of
1269 * task_ratelimit - dirty_ratelimit
1270 * = (pos_ratio - 1) * dirty_ratelimit
1272 * which reflects the direction and size of dirty position error.
1276 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1277 * task_ratelimit is on the same side of dirty_ratelimit, too.
1278 * For example, when
1279 * - dirty_ratelimit > balanced_dirty_ratelimit
1280 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1281 * lowering dirty_ratelimit will help meet both the position and rate
1282 * control targets. Otherwise, don't update dirty_ratelimit if it will
1283 * only help meet the rate target. After all, what the users ultimately
1284 * feel and care are stable dirty rate and small position error.
1286 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1287 * and filter out the singular points of balanced_dirty_ratelimit. Which
1288 * keeps jumping around randomly and can even leap far away at times
1289 * due to the small 200ms estimation period of dirty_rate (we want to
1290 * keep that period small to reduce time lags).
1292 step = 0;
1295 * For strictlimit case, calculations above were based on wb counters
1296 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1297 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1298 * Hence, to calculate "step" properly, we have to use wb_dirty as
1299 * "dirty" and wb_setpoint as "setpoint".
1301 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1302 * it's possible that wb_thresh is close to zero due to inactivity
1303 * of backing device.
1305 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1306 dirty = dtc->wb_dirty;
1307 if (dtc->wb_dirty < 8)
1308 setpoint = dtc->wb_dirty + 1;
1309 else
1310 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1313 if (dirty < setpoint) {
1314 x = min3(wb->balanced_dirty_ratelimit,
1315 balanced_dirty_ratelimit, task_ratelimit);
1316 if (dirty_ratelimit < x)
1317 step = x - dirty_ratelimit;
1318 } else {
1319 x = max3(wb->balanced_dirty_ratelimit,
1320 balanced_dirty_ratelimit, task_ratelimit);
1321 if (dirty_ratelimit > x)
1322 step = dirty_ratelimit - x;
1326 * Don't pursue 100% rate matching. It's impossible since the balanced
1327 * rate itself is constantly fluctuating. So decrease the track speed
1328 * when it gets close to the target. Helps eliminate pointless tremors.
1330 shift = dirty_ratelimit / (2 * step + 1);
1331 if (shift < BITS_PER_LONG)
1332 step = DIV_ROUND_UP(step >> shift, 8);
1333 else
1334 step = 0;
1336 if (dirty_ratelimit < balanced_dirty_ratelimit)
1337 dirty_ratelimit += step;
1338 else
1339 dirty_ratelimit -= step;
1341 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1342 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1344 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1347 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1348 struct dirty_throttle_control *mdtc,
1349 unsigned long start_time,
1350 bool update_ratelimit)
1352 struct bdi_writeback *wb = gdtc->wb;
1353 unsigned long now = jiffies;
1354 unsigned long elapsed = now - wb->bw_time_stamp;
1355 unsigned long dirtied;
1356 unsigned long written;
1358 lockdep_assert_held(&wb->list_lock);
1361 * rate-limit, only update once every 200ms.
1363 if (elapsed < BANDWIDTH_INTERVAL)
1364 return;
1366 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1367 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1370 * Skip quiet periods when disk bandwidth is under-utilized.
1371 * (at least 1s idle time between two flusher runs)
1373 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1374 goto snapshot;
1376 if (update_ratelimit) {
1377 domain_update_bandwidth(gdtc, now);
1378 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1381 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1382 * compiler has no way to figure that out. Help it.
1384 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1385 domain_update_bandwidth(mdtc, now);
1386 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1389 wb_update_write_bandwidth(wb, elapsed, written);
1391 snapshot:
1392 wb->dirtied_stamp = dirtied;
1393 wb->written_stamp = written;
1394 wb->bw_time_stamp = now;
1397 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1399 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1401 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1405 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1406 * will look to see if it needs to start dirty throttling.
1408 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1409 * global_page_state() too often. So scale it near-sqrt to the safety margin
1410 * (the number of pages we may dirty without exceeding the dirty limits).
1412 static unsigned long dirty_poll_interval(unsigned long dirty,
1413 unsigned long thresh)
1415 if (thresh > dirty)
1416 return 1UL << (ilog2(thresh - dirty) >> 1);
1418 return 1;
1421 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1422 unsigned long wb_dirty)
1424 unsigned long bw = wb->avg_write_bandwidth;
1425 unsigned long t;
1428 * Limit pause time for small memory systems. If sleeping for too long
1429 * time, a small pool of dirty/writeback pages may go empty and disk go
1430 * idle.
1432 * 8 serves as the safety ratio.
1434 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1435 t++;
1437 return min_t(unsigned long, t, MAX_PAUSE);
1440 static long wb_min_pause(struct bdi_writeback *wb,
1441 long max_pause,
1442 unsigned long task_ratelimit,
1443 unsigned long dirty_ratelimit,
1444 int *nr_dirtied_pause)
1446 long hi = ilog2(wb->avg_write_bandwidth);
1447 long lo = ilog2(wb->dirty_ratelimit);
1448 long t; /* target pause */
1449 long pause; /* estimated next pause */
1450 int pages; /* target nr_dirtied_pause */
1452 /* target for 10ms pause on 1-dd case */
1453 t = max(1, HZ / 100);
1456 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1457 * overheads.
1459 * (N * 10ms) on 2^N concurrent tasks.
1461 if (hi > lo)
1462 t += (hi - lo) * (10 * HZ) / 1024;
1465 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1466 * on the much more stable dirty_ratelimit. However the next pause time
1467 * will be computed based on task_ratelimit and the two rate limits may
1468 * depart considerably at some time. Especially if task_ratelimit goes
1469 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1470 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1471 * result task_ratelimit won't be executed faithfully, which could
1472 * eventually bring down dirty_ratelimit.
1474 * We apply two rules to fix it up:
1475 * 1) try to estimate the next pause time and if necessary, use a lower
1476 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1477 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1478 * 2) limit the target pause time to max_pause/2, so that the normal
1479 * small fluctuations of task_ratelimit won't trigger rule (1) and
1480 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1482 t = min(t, 1 + max_pause / 2);
1483 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1486 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1487 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1488 * When the 16 consecutive reads are often interrupted by some dirty
1489 * throttling pause during the async writes, cfq will go into idles
1490 * (deadline is fine). So push nr_dirtied_pause as high as possible
1491 * until reaches DIRTY_POLL_THRESH=32 pages.
1493 if (pages < DIRTY_POLL_THRESH) {
1494 t = max_pause;
1495 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1496 if (pages > DIRTY_POLL_THRESH) {
1497 pages = DIRTY_POLL_THRESH;
1498 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1502 pause = HZ * pages / (task_ratelimit + 1);
1503 if (pause > max_pause) {
1504 t = max_pause;
1505 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1508 *nr_dirtied_pause = pages;
1510 * The minimal pause time will normally be half the target pause time.
1512 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1515 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1517 struct bdi_writeback *wb = dtc->wb;
1518 unsigned long wb_reclaimable;
1521 * wb_thresh is not treated as some limiting factor as
1522 * dirty_thresh, due to reasons
1523 * - in JBOD setup, wb_thresh can fluctuate a lot
1524 * - in a system with HDD and USB key, the USB key may somehow
1525 * go into state (wb_dirty >> wb_thresh) either because
1526 * wb_dirty starts high, or because wb_thresh drops low.
1527 * In this case we don't want to hard throttle the USB key
1528 * dirtiers for 100 seconds until wb_dirty drops under
1529 * wb_thresh. Instead the auxiliary wb control line in
1530 * wb_position_ratio() will let the dirtier task progress
1531 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1533 dtc->wb_thresh = __wb_calc_thresh(dtc);
1534 dtc->wb_bg_thresh = dtc->thresh ?
1535 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1538 * In order to avoid the stacked BDI deadlock we need
1539 * to ensure we accurately count the 'dirty' pages when
1540 * the threshold is low.
1542 * Otherwise it would be possible to get thresh+n pages
1543 * reported dirty, even though there are thresh-m pages
1544 * actually dirty; with m+n sitting in the percpu
1545 * deltas.
1547 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1548 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1549 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1550 } else {
1551 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1552 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1557 * balance_dirty_pages() must be called by processes which are generating dirty
1558 * data. It looks at the number of dirty pages in the machine and will force
1559 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1560 * If we're over `background_thresh' then the writeback threads are woken to
1561 * perform some writeout.
1563 static void balance_dirty_pages(struct address_space *mapping,
1564 struct bdi_writeback *wb,
1565 unsigned long pages_dirtied)
1567 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1568 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1569 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1570 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1571 &mdtc_stor : NULL;
1572 struct dirty_throttle_control *sdtc;
1573 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1574 long period;
1575 long pause;
1576 long max_pause;
1577 long min_pause;
1578 int nr_dirtied_pause;
1579 bool dirty_exceeded = false;
1580 unsigned long task_ratelimit;
1581 unsigned long dirty_ratelimit;
1582 struct backing_dev_info *bdi = wb->bdi;
1583 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1584 unsigned long start_time = jiffies;
1586 for (;;) {
1587 unsigned long now = jiffies;
1588 unsigned long dirty, thresh, bg_thresh;
1589 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1590 unsigned long m_thresh = 0;
1591 unsigned long m_bg_thresh = 0;
1594 * Unstable writes are a feature of certain networked
1595 * filesystems (i.e. NFS) in which data may have been
1596 * written to the server's write cache, but has not yet
1597 * been flushed to permanent storage.
1599 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1600 global_node_page_state(NR_UNSTABLE_NFS);
1601 gdtc->avail = global_dirtyable_memory();
1602 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1604 domain_dirty_limits(gdtc);
1606 if (unlikely(strictlimit)) {
1607 wb_dirty_limits(gdtc);
1609 dirty = gdtc->wb_dirty;
1610 thresh = gdtc->wb_thresh;
1611 bg_thresh = gdtc->wb_bg_thresh;
1612 } else {
1613 dirty = gdtc->dirty;
1614 thresh = gdtc->thresh;
1615 bg_thresh = gdtc->bg_thresh;
1618 if (mdtc) {
1619 unsigned long filepages, headroom, writeback;
1622 * If @wb belongs to !root memcg, repeat the same
1623 * basic calculations for the memcg domain.
1625 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1626 &mdtc->dirty, &writeback);
1627 mdtc->dirty += writeback;
1628 mdtc_calc_avail(mdtc, filepages, headroom);
1630 domain_dirty_limits(mdtc);
1632 if (unlikely(strictlimit)) {
1633 wb_dirty_limits(mdtc);
1634 m_dirty = mdtc->wb_dirty;
1635 m_thresh = mdtc->wb_thresh;
1636 m_bg_thresh = mdtc->wb_bg_thresh;
1637 } else {
1638 m_dirty = mdtc->dirty;
1639 m_thresh = mdtc->thresh;
1640 m_bg_thresh = mdtc->bg_thresh;
1645 * Throttle it only when the background writeback cannot
1646 * catch-up. This avoids (excessively) small writeouts
1647 * when the wb limits are ramping up in case of !strictlimit.
1649 * In strictlimit case make decision based on the wb counters
1650 * and limits. Small writeouts when the wb limits are ramping
1651 * up are the price we consciously pay for strictlimit-ing.
1653 * If memcg domain is in effect, @dirty should be under
1654 * both global and memcg freerun ceilings.
1656 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657 (!mdtc ||
1658 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659 unsigned long intv = dirty_poll_interval(dirty, thresh);
1660 unsigned long m_intv = ULONG_MAX;
1662 current->dirty_paused_when = now;
1663 current->nr_dirtied = 0;
1664 if (mdtc)
1665 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1666 current->nr_dirtied_pause = min(intv, m_intv);
1667 break;
1670 if (unlikely(!writeback_in_progress(wb)))
1671 wb_start_background_writeback(wb);
1674 * Calculate global domain's pos_ratio and select the
1675 * global dtc by default.
1677 if (!strictlimit)
1678 wb_dirty_limits(gdtc);
1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1683 wb_position_ratio(gdtc);
1684 sdtc = gdtc;
1686 if (mdtc) {
1688 * If memcg domain is in effect, calculate its
1689 * pos_ratio. @wb should satisfy constraints from
1690 * both global and memcg domains. Choose the one
1691 * w/ lower pos_ratio.
1693 if (!strictlimit)
1694 wb_dirty_limits(mdtc);
1696 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1697 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1699 wb_position_ratio(mdtc);
1700 if (mdtc->pos_ratio < gdtc->pos_ratio)
1701 sdtc = mdtc;
1704 if (dirty_exceeded && !wb->dirty_exceeded)
1705 wb->dirty_exceeded = 1;
1707 if (time_is_before_jiffies(wb->bw_time_stamp +
1708 BANDWIDTH_INTERVAL)) {
1709 spin_lock(&wb->list_lock);
1710 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1711 spin_unlock(&wb->list_lock);
1714 /* throttle according to the chosen dtc */
1715 dirty_ratelimit = wb->dirty_ratelimit;
1716 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1717 RATELIMIT_CALC_SHIFT;
1718 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1719 min_pause = wb_min_pause(wb, max_pause,
1720 task_ratelimit, dirty_ratelimit,
1721 &nr_dirtied_pause);
1723 if (unlikely(task_ratelimit == 0)) {
1724 period = max_pause;
1725 pause = max_pause;
1726 goto pause;
1728 period = HZ * pages_dirtied / task_ratelimit;
1729 pause = period;
1730 if (current->dirty_paused_when)
1731 pause -= now - current->dirty_paused_when;
1733 * For less than 1s think time (ext3/4 may block the dirtier
1734 * for up to 800ms from time to time on 1-HDD; so does xfs,
1735 * however at much less frequency), try to compensate it in
1736 * future periods by updating the virtual time; otherwise just
1737 * do a reset, as it may be a light dirtier.
1739 if (pause < min_pause) {
1740 trace_balance_dirty_pages(wb,
1741 sdtc->thresh,
1742 sdtc->bg_thresh,
1743 sdtc->dirty,
1744 sdtc->wb_thresh,
1745 sdtc->wb_dirty,
1746 dirty_ratelimit,
1747 task_ratelimit,
1748 pages_dirtied,
1749 period,
1750 min(pause, 0L),
1751 start_time);
1752 if (pause < -HZ) {
1753 current->dirty_paused_when = now;
1754 current->nr_dirtied = 0;
1755 } else if (period) {
1756 current->dirty_paused_when += period;
1757 current->nr_dirtied = 0;
1758 } else if (current->nr_dirtied_pause <= pages_dirtied)
1759 current->nr_dirtied_pause += pages_dirtied;
1760 break;
1762 if (unlikely(pause > max_pause)) {
1763 /* for occasional dropped task_ratelimit */
1764 now += min(pause - max_pause, max_pause);
1765 pause = max_pause;
1768 pause:
1769 trace_balance_dirty_pages(wb,
1770 sdtc->thresh,
1771 sdtc->bg_thresh,
1772 sdtc->dirty,
1773 sdtc->wb_thresh,
1774 sdtc->wb_dirty,
1775 dirty_ratelimit,
1776 task_ratelimit,
1777 pages_dirtied,
1778 period,
1779 pause,
1780 start_time);
1781 __set_current_state(TASK_KILLABLE);
1782 wb->dirty_sleep = now;
1783 io_schedule_timeout(pause);
1785 current->dirty_paused_when = now + pause;
1786 current->nr_dirtied = 0;
1787 current->nr_dirtied_pause = nr_dirtied_pause;
1790 * This is typically equal to (dirty < thresh) and can also
1791 * keep "1000+ dd on a slow USB stick" under control.
1793 if (task_ratelimit)
1794 break;
1797 * In the case of an unresponding NFS server and the NFS dirty
1798 * pages exceeds dirty_thresh, give the other good wb's a pipe
1799 * to go through, so that tasks on them still remain responsive.
1801 * In theory 1 page is enough to keep the consumer-producer
1802 * pipe going: the flusher cleans 1 page => the task dirties 1
1803 * more page. However wb_dirty has accounting errors. So use
1804 * the larger and more IO friendly wb_stat_error.
1806 if (sdtc->wb_dirty <= wb_stat_error(wb))
1807 break;
1809 if (fatal_signal_pending(current))
1810 break;
1813 if (!dirty_exceeded && wb->dirty_exceeded)
1814 wb->dirty_exceeded = 0;
1816 if (writeback_in_progress(wb))
1817 return;
1820 * In laptop mode, we wait until hitting the higher threshold before
1821 * starting background writeout, and then write out all the way down
1822 * to the lower threshold. So slow writers cause minimal disk activity.
1824 * In normal mode, we start background writeout at the lower
1825 * background_thresh, to keep the amount of dirty memory low.
1827 if (laptop_mode)
1828 return;
1830 if (nr_reclaimable > gdtc->bg_thresh)
1831 wb_start_background_writeback(wb);
1834 static DEFINE_PER_CPU(int, bdp_ratelimits);
1837 * Normal tasks are throttled by
1838 * loop {
1839 * dirty tsk->nr_dirtied_pause pages;
1840 * take a snap in balance_dirty_pages();
1842 * However there is a worst case. If every task exit immediately when dirtied
1843 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1844 * called to throttle the page dirties. The solution is to save the not yet
1845 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1846 * randomly into the running tasks. This works well for the above worst case,
1847 * as the new task will pick up and accumulate the old task's leaked dirty
1848 * count and eventually get throttled.
1850 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1853 * balance_dirty_pages_ratelimited - balance dirty memory state
1854 * @mapping: address_space which was dirtied
1856 * Processes which are dirtying memory should call in here once for each page
1857 * which was newly dirtied. The function will periodically check the system's
1858 * dirty state and will initiate writeback if needed.
1860 * On really big machines, get_writeback_state is expensive, so try to avoid
1861 * calling it too often (ratelimiting). But once we're over the dirty memory
1862 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1863 * from overshooting the limit by (ratelimit_pages) each.
1865 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1867 struct inode *inode = mapping->host;
1868 struct backing_dev_info *bdi = inode_to_bdi(inode);
1869 struct bdi_writeback *wb = NULL;
1870 int ratelimit;
1871 int *p;
1873 if (!bdi_cap_account_dirty(bdi))
1874 return;
1876 if (inode_cgwb_enabled(inode))
1877 wb = wb_get_create_current(bdi, GFP_KERNEL);
1878 if (!wb)
1879 wb = &bdi->wb;
1881 ratelimit = current->nr_dirtied_pause;
1882 if (wb->dirty_exceeded)
1883 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1885 preempt_disable();
1887 * This prevents one CPU to accumulate too many dirtied pages without
1888 * calling into balance_dirty_pages(), which can happen when there are
1889 * 1000+ tasks, all of them start dirtying pages at exactly the same
1890 * time, hence all honoured too large initial task->nr_dirtied_pause.
1892 p = this_cpu_ptr(&bdp_ratelimits);
1893 if (unlikely(current->nr_dirtied >= ratelimit))
1894 *p = 0;
1895 else if (unlikely(*p >= ratelimit_pages)) {
1896 *p = 0;
1897 ratelimit = 0;
1900 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1901 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1902 * the dirty throttling and livelock other long-run dirtiers.
1904 p = this_cpu_ptr(&dirty_throttle_leaks);
1905 if (*p > 0 && current->nr_dirtied < ratelimit) {
1906 unsigned long nr_pages_dirtied;
1907 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1908 *p -= nr_pages_dirtied;
1909 current->nr_dirtied += nr_pages_dirtied;
1911 preempt_enable();
1913 if (unlikely(current->nr_dirtied >= ratelimit))
1914 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1916 wb_put(wb);
1918 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1921 * wb_over_bg_thresh - does @wb need to be written back?
1922 * @wb: bdi_writeback of interest
1924 * Determines whether background writeback should keep writing @wb or it's
1925 * clean enough. Returns %true if writeback should continue.
1927 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1930 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1931 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1932 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1933 &mdtc_stor : NULL;
1936 * Similar to balance_dirty_pages() but ignores pages being written
1937 * as we're trying to decide whether to put more under writeback.
1939 gdtc->avail = global_dirtyable_memory();
1940 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1941 global_node_page_state(NR_UNSTABLE_NFS);
1942 domain_dirty_limits(gdtc);
1944 if (gdtc->dirty > gdtc->bg_thresh)
1945 return true;
1947 if (wb_stat(wb, WB_RECLAIMABLE) >
1948 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1949 return true;
1951 if (mdtc) {
1952 unsigned long filepages, headroom, writeback;
1954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1955 &writeback);
1956 mdtc_calc_avail(mdtc, filepages, headroom);
1957 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1959 if (mdtc->dirty > mdtc->bg_thresh)
1960 return true;
1962 if (wb_stat(wb, WB_RECLAIMABLE) >
1963 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1964 return true;
1967 return false;
1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974 void __user *buffer, size_t *length, loff_t *ppos)
1976 proc_dointvec(table, write, buffer, length, ppos);
1977 return 0;
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1983 struct request_queue *q = (struct request_queue *)data;
1984 int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1985 global_node_page_state(NR_UNSTABLE_NFS);
1986 struct bdi_writeback *wb;
1989 * We want to write everything out, not just down to the dirty
1990 * threshold
1992 if (!bdi_has_dirty_io(q->backing_dev_info))
1993 return;
1995 rcu_read_lock();
1996 list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
1997 if (wb_has_dirty_io(wb))
1998 wb_start_writeback(wb, nr_pages, true,
1999 WB_REASON_LAPTOP_TIMER);
2000 rcu_read_unlock();
2004 * We've spun up the disk and we're in laptop mode: schedule writeback
2005 * of all dirty data a few seconds from now. If the flush is already scheduled
2006 * then push it back - the user is still using the disk.
2008 void laptop_io_completion(struct backing_dev_info *info)
2010 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2014 * We're in laptop mode and we've just synced. The sync's writes will have
2015 * caused another writeback to be scheduled by laptop_io_completion.
2016 * Nothing needs to be written back anymore, so we unschedule the writeback.
2018 void laptop_sync_completion(void)
2020 struct backing_dev_info *bdi;
2022 rcu_read_lock();
2024 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025 del_timer(&bdi->laptop_mode_wb_timer);
2027 rcu_read_unlock();
2029 #endif
2032 * If ratelimit_pages is too high then we can get into dirty-data overload
2033 * if a large number of processes all perform writes at the same time.
2034 * If it is too low then SMP machines will call the (expensive)
2035 * get_writeback_state too often.
2037 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039 * thresholds.
2042 void writeback_set_ratelimit(void)
2044 struct wb_domain *dom = &global_wb_domain;
2045 unsigned long background_thresh;
2046 unsigned long dirty_thresh;
2048 global_dirty_limits(&background_thresh, &dirty_thresh);
2049 dom->dirty_limit = dirty_thresh;
2050 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051 if (ratelimit_pages < 16)
2052 ratelimit_pages = 16;
2055 static int page_writeback_cpu_online(unsigned int cpu)
2057 writeback_set_ratelimit();
2058 return 0;
2062 * Called early on to tune the page writeback dirty limits.
2064 * We used to scale dirty pages according to how total memory
2065 * related to pages that could be allocated for buffers (by
2066 * comparing nr_free_buffer_pages() to vm_total_pages.
2068 * However, that was when we used "dirty_ratio" to scale with
2069 * all memory, and we don't do that any more. "dirty_ratio"
2070 * is now applied to total non-HIGHPAGE memory (by subtracting
2071 * totalhigh_pages from vm_total_pages), and as such we can't
2072 * get into the old insane situation any more where we had
2073 * large amounts of dirty pages compared to a small amount of
2074 * non-HIGHMEM memory.
2076 * But we might still want to scale the dirty_ratio by how
2077 * much memory the box has..
2079 void __init page_writeback_init(void)
2081 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2083 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2084 page_writeback_cpu_online, NULL);
2085 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2086 page_writeback_cpu_online);
2090 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091 * @mapping: address space structure to write
2092 * @start: starting page index
2093 * @end: ending page index (inclusive)
2095 * This function scans the page range from @start to @end (inclusive) and tags
2096 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097 * that write_cache_pages (or whoever calls this function) will then use
2098 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2099 * used to avoid livelocking of writeback by a process steadily creating new
2100 * dirty pages in the file (thus it is important for this function to be quick
2101 * so that it can tag pages faster than a dirtying process can create them).
2104 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106 void tag_pages_for_writeback(struct address_space *mapping,
2107 pgoff_t start, pgoff_t end)
2109 #define WRITEBACK_TAG_BATCH 4096
2110 unsigned long tagged = 0;
2111 struct radix_tree_iter iter;
2112 void **slot;
2114 spin_lock_irq(&mapping->tree_lock);
2115 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2116 PAGECACHE_TAG_DIRTY) {
2117 if (iter.index > end)
2118 break;
2119 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2120 PAGECACHE_TAG_TOWRITE);
2121 tagged++;
2122 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2123 continue;
2124 slot = radix_tree_iter_resume(slot, &iter);
2125 spin_unlock_irq(&mapping->tree_lock);
2126 cond_resched();
2127 spin_lock_irq(&mapping->tree_lock);
2129 spin_unlock_irq(&mapping->tree_lock);
2131 EXPORT_SYMBOL(tag_pages_for_writeback);
2134 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 * @mapping: address space structure to write
2136 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 * @writepage: function called for each page
2138 * @data: data passed to writepage function
2140 * If a page is already under I/O, write_cache_pages() skips it, even
2141 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2142 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2143 * and msync() need to guarantee that all the data which was dirty at the time
2144 * the call was made get new I/O started against them. If wbc->sync_mode is
2145 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146 * existing IO to complete.
2148 * To avoid livelocks (when other process dirties new pages), we first tag
2149 * pages which should be written back with TOWRITE tag and only then start
2150 * writing them. For data-integrity sync we have to be careful so that we do
2151 * not miss some pages (e.g., because some other process has cleared TOWRITE
2152 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153 * by the process clearing the DIRTY tag (and submitting the page for IO).
2155 int write_cache_pages(struct address_space *mapping,
2156 struct writeback_control *wbc, writepage_t writepage,
2157 void *data)
2159 int ret = 0;
2160 int done = 0;
2161 struct pagevec pvec;
2162 int nr_pages;
2163 pgoff_t uninitialized_var(writeback_index);
2164 pgoff_t index;
2165 pgoff_t end; /* Inclusive */
2166 pgoff_t done_index;
2167 int cycled;
2168 int range_whole = 0;
2169 int tag;
2171 pagevec_init(&pvec, 0);
2172 if (wbc->range_cyclic) {
2173 writeback_index = mapping->writeback_index; /* prev offset */
2174 index = writeback_index;
2175 if (index == 0)
2176 cycled = 1;
2177 else
2178 cycled = 0;
2179 end = -1;
2180 } else {
2181 index = wbc->range_start >> PAGE_SHIFT;
2182 end = wbc->range_end >> PAGE_SHIFT;
2183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184 range_whole = 1;
2185 cycled = 1; /* ignore range_cyclic tests */
2187 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 tag = PAGECACHE_TAG_TOWRITE;
2189 else
2190 tag = PAGECACHE_TAG_DIRTY;
2191 retry:
2192 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193 tag_pages_for_writeback(mapping, index, end);
2194 done_index = index;
2195 while (!done && (index <= end)) {
2196 int i;
2198 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200 if (nr_pages == 0)
2201 break;
2203 for (i = 0; i < nr_pages; i++) {
2204 struct page *page = pvec.pages[i];
2207 * At this point, the page may be truncated or
2208 * invalidated (changing page->mapping to NULL), or
2209 * even swizzled back from swapper_space to tmpfs file
2210 * mapping. However, page->index will not change
2211 * because we have a reference on the page.
2213 if (page->index > end) {
2215 * can't be range_cyclic (1st pass) because
2216 * end == -1 in that case.
2218 done = 1;
2219 break;
2222 done_index = page->index;
2224 lock_page(page);
2227 * Page truncated or invalidated. We can freely skip it
2228 * then, even for data integrity operations: the page
2229 * has disappeared concurrently, so there could be no
2230 * real expectation of this data interity operation
2231 * even if there is now a new, dirty page at the same
2232 * pagecache address.
2234 if (unlikely(page->mapping != mapping)) {
2235 continue_unlock:
2236 unlock_page(page);
2237 continue;
2240 if (!PageDirty(page)) {
2241 /* someone wrote it for us */
2242 goto continue_unlock;
2245 if (PageWriteback(page)) {
2246 if (wbc->sync_mode != WB_SYNC_NONE)
2247 wait_on_page_writeback(page);
2248 else
2249 goto continue_unlock;
2252 BUG_ON(PageWriteback(page));
2253 if (!clear_page_dirty_for_io(page))
2254 goto continue_unlock;
2256 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257 ret = (*writepage)(page, wbc, data);
2258 if (unlikely(ret)) {
2259 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260 unlock_page(page);
2261 ret = 0;
2262 } else {
2264 * done_index is set past this page,
2265 * so media errors will not choke
2266 * background writeout for the entire
2267 * file. This has consequences for
2268 * range_cyclic semantics (ie. it may
2269 * not be suitable for data integrity
2270 * writeout).
2272 done_index = page->index + 1;
2273 done = 1;
2274 break;
2279 * We stop writing back only if we are not doing
2280 * integrity sync. In case of integrity sync we have to
2281 * keep going until we have written all the pages
2282 * we tagged for writeback prior to entering this loop.
2284 if (--wbc->nr_to_write <= 0 &&
2285 wbc->sync_mode == WB_SYNC_NONE) {
2286 done = 1;
2287 break;
2290 pagevec_release(&pvec);
2291 cond_resched();
2293 if (!cycled && !done) {
2295 * range_cyclic:
2296 * We hit the last page and there is more work to be done: wrap
2297 * back to the start of the file
2299 cycled = 1;
2300 index = 0;
2301 end = writeback_index - 1;
2302 goto retry;
2304 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305 mapping->writeback_index = done_index;
2307 return ret;
2309 EXPORT_SYMBOL(write_cache_pages);
2312 * Function used by generic_writepages to call the real writepage
2313 * function and set the mapping flags on error
2315 static int __writepage(struct page *page, struct writeback_control *wbc,
2316 void *data)
2318 struct address_space *mapping = data;
2319 int ret = mapping->a_ops->writepage(page, wbc);
2320 mapping_set_error(mapping, ret);
2321 return ret;
2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326 * @mapping: address space structure to write
2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2329 * This is a library function, which implements the writepages()
2330 * address_space_operation.
2332 int generic_writepages(struct address_space *mapping,
2333 struct writeback_control *wbc)
2335 struct blk_plug plug;
2336 int ret;
2338 /* deal with chardevs and other special file */
2339 if (!mapping->a_ops->writepage)
2340 return 0;
2342 blk_start_plug(&plug);
2343 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344 blk_finish_plug(&plug);
2345 return ret;
2348 EXPORT_SYMBOL(generic_writepages);
2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2352 int ret;
2354 if (wbc->nr_to_write <= 0)
2355 return 0;
2356 if (mapping->a_ops->writepages)
2357 ret = mapping->a_ops->writepages(mapping, wbc);
2358 else
2359 ret = generic_writepages(mapping, wbc);
2360 return ret;
2364 * write_one_page - write out a single page and optionally wait on I/O
2365 * @page: the page to write
2366 * @wait: if true, wait on writeout
2368 * The page must be locked by the caller and will be unlocked upon return.
2370 * write_one_page() returns a negative error code if I/O failed.
2372 int write_one_page(struct page *page, int wait)
2374 struct address_space *mapping = page->mapping;
2375 int ret = 0;
2376 struct writeback_control wbc = {
2377 .sync_mode = WB_SYNC_ALL,
2378 .nr_to_write = 1,
2381 BUG_ON(!PageLocked(page));
2383 if (wait)
2384 wait_on_page_writeback(page);
2386 if (clear_page_dirty_for_io(page)) {
2387 get_page(page);
2388 ret = mapping->a_ops->writepage(page, &wbc);
2389 if (ret == 0 && wait) {
2390 wait_on_page_writeback(page);
2391 if (PageError(page))
2392 ret = -EIO;
2394 put_page(page);
2395 } else {
2396 unlock_page(page);
2398 return ret;
2400 EXPORT_SYMBOL(write_one_page);
2403 * For address_spaces which do not use buffers nor write back.
2405 int __set_page_dirty_no_writeback(struct page *page)
2407 if (!PageDirty(page))
2408 return !TestSetPageDirty(page);
2409 return 0;
2413 * Helper function for set_page_dirty family.
2415 * Caller must hold lock_page_memcg().
2417 * NOTE: This relies on being atomic wrt interrupts.
2419 void account_page_dirtied(struct page *page, struct address_space *mapping)
2421 struct inode *inode = mapping->host;
2423 trace_writeback_dirty_page(page, mapping);
2425 if (mapping_cap_account_dirty(mapping)) {
2426 struct bdi_writeback *wb;
2428 inode_attach_wb(inode, page);
2429 wb = inode_to_wb(inode);
2431 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432 __inc_node_page_state(page, NR_FILE_DIRTY);
2433 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434 __inc_node_page_state(page, NR_DIRTIED);
2435 __inc_wb_stat(wb, WB_RECLAIMABLE);
2436 __inc_wb_stat(wb, WB_DIRTIED);
2437 task_io_account_write(PAGE_SIZE);
2438 current->nr_dirtied++;
2439 this_cpu_inc(bdp_ratelimits);
2442 EXPORT_SYMBOL(account_page_dirtied);
2445 * Helper function for deaccounting dirty page without writeback.
2447 * Caller must hold lock_page_memcg().
2449 void account_page_cleaned(struct page *page, struct address_space *mapping,
2450 struct bdi_writeback *wb)
2452 if (mapping_cap_account_dirty(mapping)) {
2453 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2454 dec_node_page_state(page, NR_FILE_DIRTY);
2455 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456 dec_wb_stat(wb, WB_RECLAIMABLE);
2457 task_io_account_cancelled_write(PAGE_SIZE);
2462 * For address_spaces which do not use buffers. Just tag the page as dirty in
2463 * its radix tree.
2465 * This is also used when a single buffer is being dirtied: we want to set the
2466 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2467 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2469 * The caller must ensure this doesn't race with truncation. Most will simply
2470 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471 * the pte lock held, which also locks out truncation.
2473 int __set_page_dirty_nobuffers(struct page *page)
2475 lock_page_memcg(page);
2476 if (!TestSetPageDirty(page)) {
2477 struct address_space *mapping = page_mapping(page);
2478 unsigned long flags;
2480 if (!mapping) {
2481 unlock_page_memcg(page);
2482 return 1;
2485 spin_lock_irqsave(&mapping->tree_lock, flags);
2486 BUG_ON(page_mapping(page) != mapping);
2487 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488 account_page_dirtied(page, mapping);
2489 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2490 PAGECACHE_TAG_DIRTY);
2491 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2492 unlock_page_memcg(page);
2494 if (mapping->host) {
2495 /* !PageAnon && !swapper_space */
2496 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2498 return 1;
2500 unlock_page_memcg(page);
2501 return 0;
2503 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2506 * Call this whenever redirtying a page, to de-account the dirty counters
2507 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2508 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2509 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510 * control.
2512 void account_page_redirty(struct page *page)
2514 struct address_space *mapping = page->mapping;
2516 if (mapping && mapping_cap_account_dirty(mapping)) {
2517 struct inode *inode = mapping->host;
2518 struct bdi_writeback *wb;
2519 bool locked;
2521 wb = unlocked_inode_to_wb_begin(inode, &locked);
2522 current->nr_dirtied--;
2523 dec_node_page_state(page, NR_DIRTIED);
2524 dec_wb_stat(wb, WB_DIRTIED);
2525 unlocked_inode_to_wb_end(inode, locked);
2528 EXPORT_SYMBOL(account_page_redirty);
2531 * When a writepage implementation decides that it doesn't want to write this
2532 * page for some reason, it should redirty the locked page via
2533 * redirty_page_for_writepage() and it should then unlock the page and return 0
2535 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2537 int ret;
2539 wbc->pages_skipped++;
2540 ret = __set_page_dirty_nobuffers(page);
2541 account_page_redirty(page);
2542 return ret;
2544 EXPORT_SYMBOL(redirty_page_for_writepage);
2547 * Dirty a page.
2549 * For pages with a mapping this should be done under the page lock
2550 * for the benefit of asynchronous memory errors who prefer a consistent
2551 * dirty state. This rule can be broken in some special cases,
2552 * but should be better not to.
2554 * If the mapping doesn't provide a set_page_dirty a_op, then
2555 * just fall through and assume that it wants buffer_heads.
2557 int set_page_dirty(struct page *page)
2559 struct address_space *mapping = page_mapping(page);
2561 page = compound_head(page);
2562 if (likely(mapping)) {
2563 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2565 * readahead/lru_deactivate_page could remain
2566 * PG_readahead/PG_reclaim due to race with end_page_writeback
2567 * About readahead, if the page is written, the flags would be
2568 * reset. So no problem.
2569 * About lru_deactivate_page, if the page is redirty, the flag
2570 * will be reset. So no problem. but if the page is used by readahead
2571 * it will confuse readahead and make it restart the size rampup
2572 * process. But it's a trivial problem.
2574 if (PageReclaim(page))
2575 ClearPageReclaim(page);
2576 #ifdef CONFIG_BLOCK
2577 if (!spd)
2578 spd = __set_page_dirty_buffers;
2579 #endif
2580 return (*spd)(page);
2582 if (!PageDirty(page)) {
2583 if (!TestSetPageDirty(page))
2584 return 1;
2586 return 0;
2588 EXPORT_SYMBOL(set_page_dirty);
2591 * set_page_dirty() is racy if the caller has no reference against
2592 * page->mapping->host, and if the page is unlocked. This is because another
2593 * CPU could truncate the page off the mapping and then free the mapping.
2595 * Usually, the page _is_ locked, or the caller is a user-space process which
2596 * holds a reference on the inode by having an open file.
2598 * In other cases, the page should be locked before running set_page_dirty().
2600 int set_page_dirty_lock(struct page *page)
2602 int ret;
2604 lock_page(page);
2605 ret = set_page_dirty(page);
2606 unlock_page(page);
2607 return ret;
2609 EXPORT_SYMBOL(set_page_dirty_lock);
2612 * This cancels just the dirty bit on the kernel page itself, it does NOT
2613 * actually remove dirty bits on any mmap's that may be around. It also
2614 * leaves the page tagged dirty, so any sync activity will still find it on
2615 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616 * look at the dirty bits in the VM.
2618 * Doing this should *normally* only ever be done when a page is truncated,
2619 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620 * this when it notices that somebody has cleaned out all the buffers on a
2621 * page without actually doing it through the VM. Can you say "ext3 is
2622 * horribly ugly"? Thought you could.
2624 void cancel_dirty_page(struct page *page)
2626 struct address_space *mapping = page_mapping(page);
2628 if (mapping_cap_account_dirty(mapping)) {
2629 struct inode *inode = mapping->host;
2630 struct bdi_writeback *wb;
2631 bool locked;
2633 lock_page_memcg(page);
2634 wb = unlocked_inode_to_wb_begin(inode, &locked);
2636 if (TestClearPageDirty(page))
2637 account_page_cleaned(page, mapping, wb);
2639 unlocked_inode_to_wb_end(inode, locked);
2640 unlock_page_memcg(page);
2641 } else {
2642 ClearPageDirty(page);
2645 EXPORT_SYMBOL(cancel_dirty_page);
2648 * Clear a page's dirty flag, while caring for dirty memory accounting.
2649 * Returns true if the page was previously dirty.
2651 * This is for preparing to put the page under writeout. We leave the page
2652 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2653 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2654 * implementation will run either set_page_writeback() or set_page_dirty(),
2655 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2656 * back into sync.
2658 * This incoherency between the page's dirty flag and radix-tree tag is
2659 * unfortunate, but it only exists while the page is locked.
2661 int clear_page_dirty_for_io(struct page *page)
2663 struct address_space *mapping = page_mapping(page);
2664 int ret = 0;
2666 BUG_ON(!PageLocked(page));
2668 if (mapping && mapping_cap_account_dirty(mapping)) {
2669 struct inode *inode = mapping->host;
2670 struct bdi_writeback *wb;
2671 bool locked;
2674 * Yes, Virginia, this is indeed insane.
2676 * We use this sequence to make sure that
2677 * (a) we account for dirty stats properly
2678 * (b) we tell the low-level filesystem to
2679 * mark the whole page dirty if it was
2680 * dirty in a pagetable. Only to then
2681 * (c) clean the page again and return 1 to
2682 * cause the writeback.
2684 * This way we avoid all nasty races with the
2685 * dirty bit in multiple places and clearing
2686 * them concurrently from different threads.
2688 * Note! Normally the "set_page_dirty(page)"
2689 * has no effect on the actual dirty bit - since
2690 * that will already usually be set. But we
2691 * need the side effects, and it can help us
2692 * avoid races.
2694 * We basically use the page "master dirty bit"
2695 * as a serialization point for all the different
2696 * threads doing their things.
2698 if (page_mkclean(page))
2699 set_page_dirty(page);
2701 * We carefully synchronise fault handlers against
2702 * installing a dirty pte and marking the page dirty
2703 * at this point. We do this by having them hold the
2704 * page lock while dirtying the page, and pages are
2705 * always locked coming in here, so we get the desired
2706 * exclusion.
2708 wb = unlocked_inode_to_wb_begin(inode, &locked);
2709 if (TestClearPageDirty(page)) {
2710 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2711 dec_node_page_state(page, NR_FILE_DIRTY);
2712 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2713 dec_wb_stat(wb, WB_RECLAIMABLE);
2714 ret = 1;
2716 unlocked_inode_to_wb_end(inode, locked);
2717 return ret;
2719 return TestClearPageDirty(page);
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2723 int test_clear_page_writeback(struct page *page)
2725 struct address_space *mapping = page_mapping(page);
2726 int ret;
2728 lock_page_memcg(page);
2729 if (mapping && mapping_use_writeback_tags(mapping)) {
2730 struct inode *inode = mapping->host;
2731 struct backing_dev_info *bdi = inode_to_bdi(inode);
2732 unsigned long flags;
2734 spin_lock_irqsave(&mapping->tree_lock, flags);
2735 ret = TestClearPageWriteback(page);
2736 if (ret) {
2737 radix_tree_tag_clear(&mapping->page_tree,
2738 page_index(page),
2739 PAGECACHE_TAG_WRITEBACK);
2740 if (bdi_cap_account_writeback(bdi)) {
2741 struct bdi_writeback *wb = inode_to_wb(inode);
2743 __dec_wb_stat(wb, WB_WRITEBACK);
2744 __wb_writeout_inc(wb);
2748 if (mapping->host && !mapping_tagged(mapping,
2749 PAGECACHE_TAG_WRITEBACK))
2750 sb_clear_inode_writeback(mapping->host);
2752 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2753 } else {
2754 ret = TestClearPageWriteback(page);
2756 if (ret) {
2757 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2758 dec_node_page_state(page, NR_WRITEBACK);
2759 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2760 inc_node_page_state(page, NR_WRITTEN);
2762 unlock_page_memcg(page);
2763 return ret;
2766 int __test_set_page_writeback(struct page *page, bool keep_write)
2768 struct address_space *mapping = page_mapping(page);
2769 int ret;
2771 lock_page_memcg(page);
2772 if (mapping && mapping_use_writeback_tags(mapping)) {
2773 struct inode *inode = mapping->host;
2774 struct backing_dev_info *bdi = inode_to_bdi(inode);
2775 unsigned long flags;
2777 spin_lock_irqsave(&mapping->tree_lock, flags);
2778 ret = TestSetPageWriteback(page);
2779 if (!ret) {
2780 bool on_wblist;
2782 on_wblist = mapping_tagged(mapping,
2783 PAGECACHE_TAG_WRITEBACK);
2785 radix_tree_tag_set(&mapping->page_tree,
2786 page_index(page),
2787 PAGECACHE_TAG_WRITEBACK);
2788 if (bdi_cap_account_writeback(bdi))
2789 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2792 * We can come through here when swapping anonymous
2793 * pages, so we don't necessarily have an inode to track
2794 * for sync.
2796 if (mapping->host && !on_wblist)
2797 sb_mark_inode_writeback(mapping->host);
2799 if (!PageDirty(page))
2800 radix_tree_tag_clear(&mapping->page_tree,
2801 page_index(page),
2802 PAGECACHE_TAG_DIRTY);
2803 if (!keep_write)
2804 radix_tree_tag_clear(&mapping->page_tree,
2805 page_index(page),
2806 PAGECACHE_TAG_TOWRITE);
2807 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2808 } else {
2809 ret = TestSetPageWriteback(page);
2811 if (!ret) {
2812 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2813 inc_node_page_state(page, NR_WRITEBACK);
2814 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2816 unlock_page_memcg(page);
2817 return ret;
2820 EXPORT_SYMBOL(__test_set_page_writeback);
2823 * Return true if any of the pages in the mapping are marked with the
2824 * passed tag.
2826 int mapping_tagged(struct address_space *mapping, int tag)
2828 return radix_tree_tagged(&mapping->page_tree, tag);
2830 EXPORT_SYMBOL(mapping_tagged);
2833 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2834 * @page: The page to wait on.
2836 * This function determines if the given page is related to a backing device
2837 * that requires page contents to be held stable during writeback. If so, then
2838 * it will wait for any pending writeback to complete.
2840 void wait_for_stable_page(struct page *page)
2842 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2843 wait_on_page_writeback(page);
2845 EXPORT_SYMBOL_GPL(wait_for_stable_page);