rcu: Semicolon inside RCU_TRACE() for tree.c
[linux/fpc-iii.git] / mm / slab.h
blob65e7c3fcac72790acece0ac140d864151f95f166
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
30 #endif /* CONFIG_SLOB */
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
48 * State of the slab allocator.
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
55 enum slab_state {
56 DOWN, /* No slab functionality yet */
57 PARTIAL, /* SLUB: kmem_cache_node available */
58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
59 UP, /* Slab caches usable but not all extras yet */
60 FULL /* Everything is working */
63 extern enum slab_state slab_state;
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
74 /* A table of kmalloc cache names and sizes */
75 extern const struct kmalloc_info_struct {
76 const char *name;
77 unsigned long size;
78 } kmalloc_info[];
80 unsigned long calculate_alignment(unsigned long flags,
81 unsigned long align, unsigned long size);
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(unsigned long);
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
93 /* Functions provided by the slab allocators */
94 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
96 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
97 unsigned long flags);
98 extern void create_boot_cache(struct kmem_cache *, const char *name,
99 size_t size, unsigned long flags);
101 int slab_unmergeable(struct kmem_cache *s);
102 struct kmem_cache *find_mergeable(size_t size, size_t align,
103 unsigned long flags, const char *name, void (*ctor)(void *));
104 #ifndef CONFIG_SLOB
105 struct kmem_cache *
106 __kmem_cache_alias(const char *name, size_t size, size_t align,
107 unsigned long flags, void (*ctor)(void *));
109 unsigned long kmem_cache_flags(unsigned long object_size,
110 unsigned long flags, const char *name,
111 void (*ctor)(void *));
112 #else
113 static inline struct kmem_cache *
114 __kmem_cache_alias(const char *name, size_t size, size_t align,
115 unsigned long flags, void (*ctor)(void *))
116 { return NULL; }
118 static inline unsigned long kmem_cache_flags(unsigned long object_size,
119 unsigned long flags, const char *name,
120 void (*ctor)(void *))
122 return flags;
124 #endif
127 /* Legal flag mask for kmem_cache_create(), for various configurations */
128 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
129 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
131 #if defined(CONFIG_DEBUG_SLAB)
132 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
133 #elif defined(CONFIG_SLUB_DEBUG)
134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
135 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
136 #else
137 #define SLAB_DEBUG_FLAGS (0)
138 #endif
140 #if defined(CONFIG_SLAB)
141 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
142 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
143 SLAB_NOTRACK | SLAB_ACCOUNT)
144 #elif defined(CONFIG_SLUB)
145 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
147 #else
148 #define SLAB_CACHE_FLAGS (0)
149 #endif
151 /* Common flags available with current configuration */
152 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
154 /* Common flags permitted for kmem_cache_create */
155 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
156 SLAB_RED_ZONE | \
157 SLAB_POISON | \
158 SLAB_STORE_USER | \
159 SLAB_TRACE | \
160 SLAB_CONSISTENCY_CHECKS | \
161 SLAB_MEM_SPREAD | \
162 SLAB_NOLEAKTRACE | \
163 SLAB_RECLAIM_ACCOUNT | \
164 SLAB_TEMPORARY | \
165 SLAB_NOTRACK | \
166 SLAB_ACCOUNT)
168 int __kmem_cache_shutdown(struct kmem_cache *);
169 void __kmem_cache_release(struct kmem_cache *);
170 int __kmem_cache_shrink(struct kmem_cache *);
171 void __kmemcg_cache_deactivate(struct kmem_cache *s);
172 void slab_kmem_cache_release(struct kmem_cache *);
174 struct seq_file;
175 struct file;
177 struct slabinfo {
178 unsigned long active_objs;
179 unsigned long num_objs;
180 unsigned long active_slabs;
181 unsigned long num_slabs;
182 unsigned long shared_avail;
183 unsigned int limit;
184 unsigned int batchcount;
185 unsigned int shared;
186 unsigned int objects_per_slab;
187 unsigned int cache_order;
190 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
191 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
192 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
193 size_t count, loff_t *ppos);
196 * Generic implementation of bulk operations
197 * These are useful for situations in which the allocator cannot
198 * perform optimizations. In that case segments of the object listed
199 * may be allocated or freed using these operations.
201 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
202 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
206 /* List of all root caches. */
207 extern struct list_head slab_root_caches;
208 #define root_caches_node memcg_params.__root_caches_node
211 * Iterate over all memcg caches of the given root cache. The caller must hold
212 * slab_mutex.
214 #define for_each_memcg_cache(iter, root) \
215 list_for_each_entry(iter, &(root)->memcg_params.children, \
216 memcg_params.children_node)
218 static inline bool is_root_cache(struct kmem_cache *s)
220 return !s->memcg_params.root_cache;
223 static inline bool slab_equal_or_root(struct kmem_cache *s,
224 struct kmem_cache *p)
226 return p == s || p == s->memcg_params.root_cache;
230 * We use suffixes to the name in memcg because we can't have caches
231 * created in the system with the same name. But when we print them
232 * locally, better refer to them with the base name
234 static inline const char *cache_name(struct kmem_cache *s)
236 if (!is_root_cache(s))
237 s = s->memcg_params.root_cache;
238 return s->name;
242 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
243 * That said the caller must assure the memcg's cache won't go away by either
244 * taking a css reference to the owner cgroup, or holding the slab_mutex.
246 static inline struct kmem_cache *
247 cache_from_memcg_idx(struct kmem_cache *s, int idx)
249 struct kmem_cache *cachep;
250 struct memcg_cache_array *arr;
252 rcu_read_lock();
253 arr = rcu_dereference(s->memcg_params.memcg_caches);
256 * Make sure we will access the up-to-date value. The code updating
257 * memcg_caches issues a write barrier to match this (see
258 * memcg_create_kmem_cache()).
260 cachep = lockless_dereference(arr->entries[idx]);
261 rcu_read_unlock();
263 return cachep;
266 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
268 if (is_root_cache(s))
269 return s;
270 return s->memcg_params.root_cache;
273 static __always_inline int memcg_charge_slab(struct page *page,
274 gfp_t gfp, int order,
275 struct kmem_cache *s)
277 int ret;
279 if (!memcg_kmem_enabled())
280 return 0;
281 if (is_root_cache(s))
282 return 0;
284 ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
285 if (ret)
286 return ret;
288 memcg_kmem_update_page_stat(page,
289 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
290 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
291 1 << order);
292 return 0;
295 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
296 struct kmem_cache *s)
298 if (!memcg_kmem_enabled())
299 return;
301 memcg_kmem_update_page_stat(page,
302 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
303 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
304 -(1 << order));
305 memcg_kmem_uncharge(page, order);
308 extern void slab_init_memcg_params(struct kmem_cache *);
309 extern void memcg_link_cache(struct kmem_cache *s);
310 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
311 void (*deact_fn)(struct kmem_cache *));
313 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
315 /* If !memcg, all caches are root. */
316 #define slab_root_caches slab_caches
317 #define root_caches_node list
319 #define for_each_memcg_cache(iter, root) \
320 for ((void)(iter), (void)(root); 0; )
322 static inline bool is_root_cache(struct kmem_cache *s)
324 return true;
327 static inline bool slab_equal_or_root(struct kmem_cache *s,
328 struct kmem_cache *p)
330 return true;
333 static inline const char *cache_name(struct kmem_cache *s)
335 return s->name;
338 static inline struct kmem_cache *
339 cache_from_memcg_idx(struct kmem_cache *s, int idx)
341 return NULL;
344 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
346 return s;
349 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
350 struct kmem_cache *s)
352 return 0;
355 static inline void memcg_uncharge_slab(struct page *page, int order,
356 struct kmem_cache *s)
360 static inline void slab_init_memcg_params(struct kmem_cache *s)
364 static inline void memcg_link_cache(struct kmem_cache *s)
368 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
370 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
372 struct kmem_cache *cachep;
373 struct page *page;
376 * When kmemcg is not being used, both assignments should return the
377 * same value. but we don't want to pay the assignment price in that
378 * case. If it is not compiled in, the compiler should be smart enough
379 * to not do even the assignment. In that case, slab_equal_or_root
380 * will also be a constant.
382 if (!memcg_kmem_enabled() &&
383 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
384 return s;
386 page = virt_to_head_page(x);
387 cachep = page->slab_cache;
388 if (slab_equal_or_root(cachep, s))
389 return cachep;
391 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
392 __func__, s->name, cachep->name);
393 WARN_ON_ONCE(1);
394 return s;
397 static inline size_t slab_ksize(const struct kmem_cache *s)
399 #ifndef CONFIG_SLUB
400 return s->object_size;
402 #else /* CONFIG_SLUB */
403 # ifdef CONFIG_SLUB_DEBUG
405 * Debugging requires use of the padding between object
406 * and whatever may come after it.
408 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
409 return s->object_size;
410 # endif
411 if (s->flags & SLAB_KASAN)
412 return s->object_size;
414 * If we have the need to store the freelist pointer
415 * back there or track user information then we can
416 * only use the space before that information.
418 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
419 return s->inuse;
421 * Else we can use all the padding etc for the allocation
423 return s->size;
424 #endif
427 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
428 gfp_t flags)
430 flags &= gfp_allowed_mask;
431 lockdep_trace_alloc(flags);
432 might_sleep_if(gfpflags_allow_blocking(flags));
434 if (should_failslab(s, flags))
435 return NULL;
437 if (memcg_kmem_enabled() &&
438 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
439 return memcg_kmem_get_cache(s);
441 return s;
444 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
445 size_t size, void **p)
447 size_t i;
449 flags &= gfp_allowed_mask;
450 for (i = 0; i < size; i++) {
451 void *object = p[i];
453 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
454 kmemleak_alloc_recursive(object, s->object_size, 1,
455 s->flags, flags);
456 kasan_slab_alloc(s, object, flags);
459 if (memcg_kmem_enabled())
460 memcg_kmem_put_cache(s);
463 #ifndef CONFIG_SLOB
465 * The slab lists for all objects.
467 struct kmem_cache_node {
468 spinlock_t list_lock;
470 #ifdef CONFIG_SLAB
471 struct list_head slabs_partial; /* partial list first, better asm code */
472 struct list_head slabs_full;
473 struct list_head slabs_free;
474 unsigned long total_slabs; /* length of all slab lists */
475 unsigned long free_slabs; /* length of free slab list only */
476 unsigned long free_objects;
477 unsigned int free_limit;
478 unsigned int colour_next; /* Per-node cache coloring */
479 struct array_cache *shared; /* shared per node */
480 struct alien_cache **alien; /* on other nodes */
481 unsigned long next_reap; /* updated without locking */
482 int free_touched; /* updated without locking */
483 #endif
485 #ifdef CONFIG_SLUB
486 unsigned long nr_partial;
487 struct list_head partial;
488 #ifdef CONFIG_SLUB_DEBUG
489 atomic_long_t nr_slabs;
490 atomic_long_t total_objects;
491 struct list_head full;
492 #endif
493 #endif
497 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
499 return s->node[node];
503 * Iterator over all nodes. The body will be executed for each node that has
504 * a kmem_cache_node structure allocated (which is true for all online nodes)
506 #define for_each_kmem_cache_node(__s, __node, __n) \
507 for (__node = 0; __node < nr_node_ids; __node++) \
508 if ((__n = get_node(__s, __node)))
510 #endif
512 void *slab_start(struct seq_file *m, loff_t *pos);
513 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
514 void slab_stop(struct seq_file *m, void *p);
515 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
516 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
517 void memcg_slab_stop(struct seq_file *m, void *p);
518 int memcg_slab_show(struct seq_file *m, void *p);
520 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
522 #ifdef CONFIG_SLAB_FREELIST_RANDOM
523 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
524 gfp_t gfp);
525 void cache_random_seq_destroy(struct kmem_cache *cachep);
526 #else
527 static inline int cache_random_seq_create(struct kmem_cache *cachep,
528 unsigned int count, gfp_t gfp)
530 return 0;
532 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
533 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
535 #endif /* MM_SLAB_H */