2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 #include <linux/pseudo_fs.h>
47 #include <asm/kmap_types.h>
48 #include <linux/uaccess.h>
49 #include <linux/nospec.h>
55 #define AIO_RING_MAGIC 0xa10a10a1
56 #define AIO_RING_COMPAT_FEATURES 1
57 #define AIO_RING_INCOMPAT_FEATURES 0
59 unsigned id
; /* kernel internal index number */
60 unsigned nr
; /* number of io_events */
61 unsigned head
; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
66 unsigned compat_features
;
67 unsigned incompat_features
;
68 unsigned header_length
; /* size of aio_ring */
71 struct io_event io_events
[0];
72 }; /* 128 bytes + ring size */
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
78 #define AIO_PLUG_THRESHOLD 2
80 #define AIO_RING_PAGES 8
85 struct kioctx __rcu
*table
[];
89 unsigned reqs_available
;
93 struct completion comp
;
98 struct percpu_ref users
;
101 struct percpu_ref reqs
;
103 unsigned long user_id
;
105 struct __percpu kioctx_cpu
*cpu
;
108 * For percpu reqs_available, number of slots we move to/from global
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
116 * The real limit is nr_events - 1, which will be larger (see
121 /* Size of ringbuffer, in units of struct io_event */
124 unsigned long mmap_base
;
125 unsigned long mmap_size
;
127 struct page
**ring_pages
;
130 struct rcu_work free_rwork
; /* see free_ioctx() */
133 * signals when all in-flight requests are done
135 struct ctx_rq_wait
*rq_wait
;
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
144 * We batch accesses to it with a percpu version.
146 atomic_t reqs_available
;
147 } ____cacheline_aligned_in_smp
;
151 struct list_head active_reqs
; /* used for cancellation */
152 } ____cacheline_aligned_in_smp
;
155 struct mutex ring_lock
;
156 wait_queue_head_t wait
;
157 } ____cacheline_aligned_in_smp
;
161 unsigned completed_events
;
162 spinlock_t completion_lock
;
163 } ____cacheline_aligned_in_smp
;
165 struct page
*internal_pages
[AIO_RING_PAGES
];
166 struct file
*aio_ring_file
;
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
177 struct work_struct work
;
184 struct wait_queue_head
*head
;
188 struct wait_queue_entry wait
;
189 struct work_struct work
;
193 * NOTE! Each of the iocb union members has the file pointer
194 * as the first entry in their struct definition. So you can
195 * access the file pointer through any of the sub-structs,
196 * or directly as just 'ki_filp' in this struct.
200 struct file
*ki_filp
;
202 struct fsync_iocb fsync
;
203 struct poll_iocb poll
;
206 struct kioctx
*ki_ctx
;
207 kiocb_cancel_fn
*ki_cancel
;
209 struct io_event ki_res
;
211 struct list_head ki_list
; /* the aio core uses this
212 * for cancellation */
213 refcount_t ki_refcnt
;
216 * If the aio_resfd field of the userspace iocb is not zero,
217 * this is the underlying eventfd context to deliver events to.
219 struct eventfd_ctx
*ki_eventfd
;
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock
);
224 unsigned long aio_nr
; /* current system wide number of aio requests */
225 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
228 static struct kmem_cache
*kiocb_cachep
;
229 static struct kmem_cache
*kioctx_cachep
;
231 static struct vfsmount
*aio_mnt
;
233 static const struct file_operations aio_ring_fops
;
234 static const struct address_space_operations aio_ctx_aops
;
236 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
239 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
241 return ERR_CAST(inode
);
243 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
244 inode
->i_mapping
->private_data
= ctx
;
245 inode
->i_size
= PAGE_SIZE
* nr_pages
;
247 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
248 O_RDWR
, &aio_ring_fops
);
254 static int aio_init_fs_context(struct fs_context
*fc
)
256 if (!init_pseudo(fc
, AIO_RING_MAGIC
))
258 fc
->s_iflags
|= SB_I_NOEXEC
;
263 * Creates the slab caches used by the aio routines, panic on
264 * failure as this is done early during the boot sequence.
266 static int __init
aio_setup(void)
268 static struct file_system_type aio_fs
= {
270 .init_fs_context
= aio_init_fs_context
,
271 .kill_sb
= kill_anon_super
,
273 aio_mnt
= kern_mount(&aio_fs
);
275 panic("Failed to create aio fs mount.");
277 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
278 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
281 __initcall(aio_setup
);
283 static void put_aio_ring_file(struct kioctx
*ctx
)
285 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
286 struct address_space
*i_mapping
;
289 truncate_setsize(file_inode(aio_ring_file
), 0);
291 /* Prevent further access to the kioctx from migratepages */
292 i_mapping
= aio_ring_file
->f_mapping
;
293 spin_lock(&i_mapping
->private_lock
);
294 i_mapping
->private_data
= NULL
;
295 ctx
->aio_ring_file
= NULL
;
296 spin_unlock(&i_mapping
->private_lock
);
302 static void aio_free_ring(struct kioctx
*ctx
)
306 /* Disconnect the kiotx from the ring file. This prevents future
307 * accesses to the kioctx from page migration.
309 put_aio_ring_file(ctx
);
311 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
313 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
314 page_count(ctx
->ring_pages
[i
]));
315 page
= ctx
->ring_pages
[i
];
318 ctx
->ring_pages
[i
] = NULL
;
322 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
323 kfree(ctx
->ring_pages
);
324 ctx
->ring_pages
= NULL
;
328 static int aio_ring_mremap(struct vm_area_struct
*vma
)
330 struct file
*file
= vma
->vm_file
;
331 struct mm_struct
*mm
= vma
->vm_mm
;
332 struct kioctx_table
*table
;
333 int i
, res
= -EINVAL
;
335 spin_lock(&mm
->ioctx_lock
);
337 table
= rcu_dereference(mm
->ioctx_table
);
338 for (i
= 0; i
< table
->nr
; i
++) {
341 ctx
= rcu_dereference(table
->table
[i
]);
342 if (ctx
&& ctx
->aio_ring_file
== file
) {
343 if (!atomic_read(&ctx
->dead
)) {
344 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
352 spin_unlock(&mm
->ioctx_lock
);
356 static const struct vm_operations_struct aio_ring_vm_ops
= {
357 .mremap
= aio_ring_mremap
,
358 #if IS_ENABLED(CONFIG_MMU)
359 .fault
= filemap_fault
,
360 .map_pages
= filemap_map_pages
,
361 .page_mkwrite
= filemap_page_mkwrite
,
365 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
367 vma
->vm_flags
|= VM_DONTEXPAND
;
368 vma
->vm_ops
= &aio_ring_vm_ops
;
372 static const struct file_operations aio_ring_fops
= {
373 .mmap
= aio_ring_mmap
,
376 #if IS_ENABLED(CONFIG_MIGRATION)
377 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
378 struct page
*old
, enum migrate_mode mode
)
386 * We cannot support the _NO_COPY case here, because copy needs to
387 * happen under the ctx->completion_lock. That does not work with the
388 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 if (mode
== MIGRATE_SYNC_NO_COPY
)
395 /* mapping->private_lock here protects against the kioctx teardown. */
396 spin_lock(&mapping
->private_lock
);
397 ctx
= mapping
->private_data
;
403 /* The ring_lock mutex. The prevents aio_read_events() from writing
404 * to the ring's head, and prevents page migration from mucking in
405 * a partially initialized kiotx.
407 if (!mutex_trylock(&ctx
->ring_lock
)) {
413 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
414 /* Make sure the old page hasn't already been changed */
415 if (ctx
->ring_pages
[idx
] != old
)
423 /* Writeback must be complete */
424 BUG_ON(PageWriteback(old
));
427 rc
= migrate_page_move_mapping(mapping
, new, old
, 1);
428 if (rc
!= MIGRATEPAGE_SUCCESS
) {
433 /* Take completion_lock to prevent other writes to the ring buffer
434 * while the old page is copied to the new. This prevents new
435 * events from being lost.
437 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
438 migrate_page_copy(new, old
);
439 BUG_ON(ctx
->ring_pages
[idx
] != old
);
440 ctx
->ring_pages
[idx
] = new;
441 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
443 /* The old page is no longer accessible. */
447 mutex_unlock(&ctx
->ring_lock
);
449 spin_unlock(&mapping
->private_lock
);
454 static const struct address_space_operations aio_ctx_aops
= {
455 .set_page_dirty
= __set_page_dirty_no_writeback
,
456 #if IS_ENABLED(CONFIG_MIGRATION)
457 .migratepage
= aio_migratepage
,
461 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
463 struct aio_ring
*ring
;
464 struct mm_struct
*mm
= current
->mm
;
465 unsigned long size
, unused
;
470 /* Compensate for the ring buffer's head/tail overlap entry */
471 nr_events
+= 2; /* 1 is required, 2 for good luck */
473 size
= sizeof(struct aio_ring
);
474 size
+= sizeof(struct io_event
) * nr_events
;
476 nr_pages
= PFN_UP(size
);
480 file
= aio_private_file(ctx
, nr_pages
);
482 ctx
->aio_ring_file
= NULL
;
486 ctx
->aio_ring_file
= file
;
487 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
488 / sizeof(struct io_event
);
490 ctx
->ring_pages
= ctx
->internal_pages
;
491 if (nr_pages
> AIO_RING_PAGES
) {
492 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
494 if (!ctx
->ring_pages
) {
495 put_aio_ring_file(ctx
);
500 for (i
= 0; i
< nr_pages
; i
++) {
502 page
= find_or_create_page(file
->f_mapping
,
503 i
, GFP_HIGHUSER
| __GFP_ZERO
);
506 pr_debug("pid(%d) page[%d]->count=%d\n",
507 current
->pid
, i
, page_count(page
));
508 SetPageUptodate(page
);
511 ctx
->ring_pages
[i
] = page
;
515 if (unlikely(i
!= nr_pages
)) {
520 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
521 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
523 if (down_write_killable(&mm
->mmap_sem
)) {
529 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
530 PROT_READ
| PROT_WRITE
,
531 MAP_SHARED
, 0, &unused
, NULL
);
532 up_write(&mm
->mmap_sem
);
533 if (IS_ERR((void *)ctx
->mmap_base
)) {
539 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
541 ctx
->user_id
= ctx
->mmap_base
;
542 ctx
->nr_events
= nr_events
; /* trusted copy */
544 ring
= kmap_atomic(ctx
->ring_pages
[0]);
545 ring
->nr
= nr_events
; /* user copy */
547 ring
->head
= ring
->tail
= 0;
548 ring
->magic
= AIO_RING_MAGIC
;
549 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
550 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
551 ring
->header_length
= sizeof(struct aio_ring
);
553 flush_dcache_page(ctx
->ring_pages
[0]);
558 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
559 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
560 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
564 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
565 struct kioctx
*ctx
= req
->ki_ctx
;
568 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
571 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
572 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
573 req
->ki_cancel
= cancel
;
574 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
576 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
579 * free_ioctx() should be RCU delayed to synchronize against the RCU
580 * protected lookup_ioctx() and also needs process context to call
581 * aio_free_ring(). Use rcu_work.
583 static void free_ioctx(struct work_struct
*work
)
585 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
587 pr_debug("freeing %p\n", ctx
);
590 free_percpu(ctx
->cpu
);
591 percpu_ref_exit(&ctx
->reqs
);
592 percpu_ref_exit(&ctx
->users
);
593 kmem_cache_free(kioctx_cachep
, ctx
);
596 static void free_ioctx_reqs(struct percpu_ref
*ref
)
598 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
600 /* At this point we know that there are no any in-flight requests */
601 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
602 complete(&ctx
->rq_wait
->comp
);
604 /* Synchronize against RCU protected table->table[] dereferences */
605 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
606 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
610 * When this function runs, the kioctx has been removed from the "hash table"
611 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612 * now it's safe to cancel any that need to be.
614 static void free_ioctx_users(struct percpu_ref
*ref
)
616 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
617 struct aio_kiocb
*req
;
619 spin_lock_irq(&ctx
->ctx_lock
);
621 while (!list_empty(&ctx
->active_reqs
)) {
622 req
= list_first_entry(&ctx
->active_reqs
,
623 struct aio_kiocb
, ki_list
);
624 req
->ki_cancel(&req
->rw
);
625 list_del_init(&req
->ki_list
);
628 spin_unlock_irq(&ctx
->ctx_lock
);
630 percpu_ref_kill(&ctx
->reqs
);
631 percpu_ref_put(&ctx
->reqs
);
634 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
637 struct kioctx_table
*table
, *old
;
638 struct aio_ring
*ring
;
640 spin_lock(&mm
->ioctx_lock
);
641 table
= rcu_dereference_raw(mm
->ioctx_table
);
645 for (i
= 0; i
< table
->nr
; i
++)
646 if (!rcu_access_pointer(table
->table
[i
])) {
648 rcu_assign_pointer(table
->table
[i
], ctx
);
649 spin_unlock(&mm
->ioctx_lock
);
651 /* While kioctx setup is in progress,
652 * we are protected from page migration
653 * changes ring_pages by ->ring_lock.
655 ring
= kmap_atomic(ctx
->ring_pages
[0]);
661 new_nr
= (table
? table
->nr
: 1) * 4;
662 spin_unlock(&mm
->ioctx_lock
);
664 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
671 spin_lock(&mm
->ioctx_lock
);
672 old
= rcu_dereference_raw(mm
->ioctx_table
);
675 rcu_assign_pointer(mm
->ioctx_table
, table
);
676 } else if (table
->nr
> old
->nr
) {
677 memcpy(table
->table
, old
->table
,
678 old
->nr
* sizeof(struct kioctx
*));
680 rcu_assign_pointer(mm
->ioctx_table
, table
);
689 static void aio_nr_sub(unsigned nr
)
691 spin_lock(&aio_nr_lock
);
692 if (WARN_ON(aio_nr
- nr
> aio_nr
))
696 spin_unlock(&aio_nr_lock
);
700 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
702 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
704 struct mm_struct
*mm
= current
->mm
;
709 * Store the original nr_events -- what userspace passed to io_setup(),
710 * for counting against the global limit -- before it changes.
712 unsigned int max_reqs
= nr_events
;
715 * We keep track of the number of available ringbuffer slots, to prevent
716 * overflow (reqs_available), and we also use percpu counters for this.
718 * So since up to half the slots might be on other cpu's percpu counters
719 * and unavailable, double nr_events so userspace sees what they
720 * expected: additionally, we move req_batch slots to/from percpu
721 * counters at a time, so make sure that isn't 0:
723 nr_events
= max(nr_events
, num_possible_cpus() * 4);
726 /* Prevent overflows */
727 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
728 pr_debug("ENOMEM: nr_events too high\n");
729 return ERR_PTR(-EINVAL
);
732 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
733 return ERR_PTR(-EAGAIN
);
735 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
737 return ERR_PTR(-ENOMEM
);
739 ctx
->max_reqs
= max_reqs
;
741 spin_lock_init(&ctx
->ctx_lock
);
742 spin_lock_init(&ctx
->completion_lock
);
743 mutex_init(&ctx
->ring_lock
);
744 /* Protect against page migration throughout kiotx setup by keeping
745 * the ring_lock mutex held until setup is complete. */
746 mutex_lock(&ctx
->ring_lock
);
747 init_waitqueue_head(&ctx
->wait
);
749 INIT_LIST_HEAD(&ctx
->active_reqs
);
751 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
754 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
757 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
761 err
= aio_setup_ring(ctx
, nr_events
);
765 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
766 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
767 if (ctx
->req_batch
< 1)
770 /* limit the number of system wide aios */
771 spin_lock(&aio_nr_lock
);
772 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
773 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
774 spin_unlock(&aio_nr_lock
);
778 aio_nr
+= ctx
->max_reqs
;
779 spin_unlock(&aio_nr_lock
);
781 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
782 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
784 err
= ioctx_add_table(ctx
, mm
);
788 /* Release the ring_lock mutex now that all setup is complete. */
789 mutex_unlock(&ctx
->ring_lock
);
791 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
792 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
796 aio_nr_sub(ctx
->max_reqs
);
798 atomic_set(&ctx
->dead
, 1);
800 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
803 mutex_unlock(&ctx
->ring_lock
);
804 free_percpu(ctx
->cpu
);
805 percpu_ref_exit(&ctx
->reqs
);
806 percpu_ref_exit(&ctx
->users
);
807 kmem_cache_free(kioctx_cachep
, ctx
);
808 pr_debug("error allocating ioctx %d\n", err
);
813 * Cancels all outstanding aio requests on an aio context. Used
814 * when the processes owning a context have all exited to encourage
815 * the rapid destruction of the kioctx.
817 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
818 struct ctx_rq_wait
*wait
)
820 struct kioctx_table
*table
;
822 spin_lock(&mm
->ioctx_lock
);
823 if (atomic_xchg(&ctx
->dead
, 1)) {
824 spin_unlock(&mm
->ioctx_lock
);
828 table
= rcu_dereference_raw(mm
->ioctx_table
);
829 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
830 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
831 spin_unlock(&mm
->ioctx_lock
);
833 /* free_ioctx_reqs() will do the necessary RCU synchronization */
834 wake_up_all(&ctx
->wait
);
837 * It'd be more correct to do this in free_ioctx(), after all
838 * the outstanding kiocbs have finished - but by then io_destroy
839 * has already returned, so io_setup() could potentially return
840 * -EAGAIN with no ioctxs actually in use (as far as userspace
843 aio_nr_sub(ctx
->max_reqs
);
846 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
849 percpu_ref_kill(&ctx
->users
);
854 * exit_aio: called when the last user of mm goes away. At this point, there is
855 * no way for any new requests to be submited or any of the io_* syscalls to be
856 * called on the context.
858 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
861 void exit_aio(struct mm_struct
*mm
)
863 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
864 struct ctx_rq_wait wait
;
870 atomic_set(&wait
.count
, table
->nr
);
871 init_completion(&wait
.comp
);
874 for (i
= 0; i
< table
->nr
; ++i
) {
876 rcu_dereference_protected(table
->table
[i
], true);
884 * We don't need to bother with munmap() here - exit_mmap(mm)
885 * is coming and it'll unmap everything. And we simply can't,
886 * this is not necessarily our ->mm.
887 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
888 * that it needs to unmap the area, just set it to 0.
891 kill_ioctx(mm
, ctx
, &wait
);
894 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
895 /* Wait until all IO for the context are done. */
896 wait_for_completion(&wait
.comp
);
899 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
903 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
905 struct kioctx_cpu
*kcpu
;
908 local_irq_save(flags
);
909 kcpu
= this_cpu_ptr(ctx
->cpu
);
910 kcpu
->reqs_available
+= nr
;
912 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
913 kcpu
->reqs_available
-= ctx
->req_batch
;
914 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
917 local_irq_restore(flags
);
920 static bool __get_reqs_available(struct kioctx
*ctx
)
922 struct kioctx_cpu
*kcpu
;
926 local_irq_save(flags
);
927 kcpu
= this_cpu_ptr(ctx
->cpu
);
928 if (!kcpu
->reqs_available
) {
929 int old
, avail
= atomic_read(&ctx
->reqs_available
);
932 if (avail
< ctx
->req_batch
)
936 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
937 avail
, avail
- ctx
->req_batch
);
938 } while (avail
!= old
);
940 kcpu
->reqs_available
+= ctx
->req_batch
;
944 kcpu
->reqs_available
--;
946 local_irq_restore(flags
);
950 /* refill_reqs_available
951 * Updates the reqs_available reference counts used for tracking the
952 * number of free slots in the completion ring. This can be called
953 * from aio_complete() (to optimistically update reqs_available) or
954 * from aio_get_req() (the we're out of events case). It must be
955 * called holding ctx->completion_lock.
957 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
960 unsigned events_in_ring
, completed
;
962 /* Clamp head since userland can write to it. */
963 head
%= ctx
->nr_events
;
965 events_in_ring
= tail
- head
;
967 events_in_ring
= ctx
->nr_events
- (head
- tail
);
969 completed
= ctx
->completed_events
;
970 if (events_in_ring
< completed
)
971 completed
-= events_in_ring
;
978 ctx
->completed_events
-= completed
;
979 put_reqs_available(ctx
, completed
);
982 /* user_refill_reqs_available
983 * Called to refill reqs_available when aio_get_req() encounters an
984 * out of space in the completion ring.
986 static void user_refill_reqs_available(struct kioctx
*ctx
)
988 spin_lock_irq(&ctx
->completion_lock
);
989 if (ctx
->completed_events
) {
990 struct aio_ring
*ring
;
993 /* Access of ring->head may race with aio_read_events_ring()
994 * here, but that's okay since whether we read the old version
995 * or the new version, and either will be valid. The important
996 * part is that head cannot pass tail since we prevent
997 * aio_complete() from updating tail by holding
998 * ctx->completion_lock. Even if head is invalid, the check
999 * against ctx->completed_events below will make sure we do the
1002 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1004 kunmap_atomic(ring
);
1006 refill_reqs_available(ctx
, head
, ctx
->tail
);
1009 spin_unlock_irq(&ctx
->completion_lock
);
1012 static bool get_reqs_available(struct kioctx
*ctx
)
1014 if (__get_reqs_available(ctx
))
1016 user_refill_reqs_available(ctx
);
1017 return __get_reqs_available(ctx
);
1021 * Allocate a slot for an aio request.
1022 * Returns NULL if no requests are free.
1024 * The refcount is initialized to 2 - one for the async op completion,
1025 * one for the synchronous code that does this.
1027 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1029 struct aio_kiocb
*req
;
1031 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1035 if (unlikely(!get_reqs_available(ctx
))) {
1036 kmem_cache_free(kiocb_cachep
, req
);
1040 percpu_ref_get(&ctx
->reqs
);
1042 INIT_LIST_HEAD(&req
->ki_list
);
1043 refcount_set(&req
->ki_refcnt
, 2);
1044 req
->ki_eventfd
= NULL
;
1048 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1050 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1051 struct mm_struct
*mm
= current
->mm
;
1052 struct kioctx
*ctx
, *ret
= NULL
;
1053 struct kioctx_table
*table
;
1056 if (get_user(id
, &ring
->id
))
1060 table
= rcu_dereference(mm
->ioctx_table
);
1062 if (!table
|| id
>= table
->nr
)
1065 id
= array_index_nospec(id
, table
->nr
);
1066 ctx
= rcu_dereference(table
->table
[id
]);
1067 if (ctx
&& ctx
->user_id
== ctx_id
) {
1068 if (percpu_ref_tryget_live(&ctx
->users
))
1076 static inline void iocb_destroy(struct aio_kiocb
*iocb
)
1078 if (iocb
->ki_eventfd
)
1079 eventfd_ctx_put(iocb
->ki_eventfd
);
1081 fput(iocb
->ki_filp
);
1082 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1083 kmem_cache_free(kiocb_cachep
, iocb
);
1087 * Called when the io request on the given iocb is complete.
1089 static void aio_complete(struct aio_kiocb
*iocb
)
1091 struct kioctx
*ctx
= iocb
->ki_ctx
;
1092 struct aio_ring
*ring
;
1093 struct io_event
*ev_page
, *event
;
1094 unsigned tail
, pos
, head
;
1095 unsigned long flags
;
1098 * Add a completion event to the ring buffer. Must be done holding
1099 * ctx->completion_lock to prevent other code from messing with the tail
1100 * pointer since we might be called from irq context.
1102 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1105 pos
= tail
+ AIO_EVENTS_OFFSET
;
1107 if (++tail
>= ctx
->nr_events
)
1110 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1111 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1113 *event
= iocb
->ki_res
;
1115 kunmap_atomic(ev_page
);
1116 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1118 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx
, tail
, iocb
,
1119 (void __user
*)(unsigned long)iocb
->ki_res
.obj
,
1120 iocb
->ki_res
.data
, iocb
->ki_res
.res
, iocb
->ki_res
.res2
);
1122 /* after flagging the request as done, we
1123 * must never even look at it again
1125 smp_wmb(); /* make event visible before updating tail */
1129 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1132 kunmap_atomic(ring
);
1133 flush_dcache_page(ctx
->ring_pages
[0]);
1135 ctx
->completed_events
++;
1136 if (ctx
->completed_events
> 1)
1137 refill_reqs_available(ctx
, head
, tail
);
1138 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1140 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1143 * Check if the user asked us to deliver the result through an
1144 * eventfd. The eventfd_signal() function is safe to be called
1147 if (iocb
->ki_eventfd
)
1148 eventfd_signal(iocb
->ki_eventfd
, 1);
1151 * We have to order our ring_info tail store above and test
1152 * of the wait list below outside the wait lock. This is
1153 * like in wake_up_bit() where clearing a bit has to be
1154 * ordered with the unlocked test.
1158 if (waitqueue_active(&ctx
->wait
))
1159 wake_up(&ctx
->wait
);
1162 static inline void iocb_put(struct aio_kiocb
*iocb
)
1164 if (refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1170 /* aio_read_events_ring
1171 * Pull an event off of the ioctx's event ring. Returns the number of
1174 static long aio_read_events_ring(struct kioctx
*ctx
,
1175 struct io_event __user
*event
, long nr
)
1177 struct aio_ring
*ring
;
1178 unsigned head
, tail
, pos
;
1183 * The mutex can block and wake us up and that will cause
1184 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1185 * and repeat. This should be rare enough that it doesn't cause
1186 * peformance issues. See the comment in read_events() for more detail.
1188 sched_annotate_sleep();
1189 mutex_lock(&ctx
->ring_lock
);
1191 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1192 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1195 kunmap_atomic(ring
);
1198 * Ensure that once we've read the current tail pointer, that
1199 * we also see the events that were stored up to the tail.
1203 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1208 head
%= ctx
->nr_events
;
1209 tail
%= ctx
->nr_events
;
1213 struct io_event
*ev
;
1216 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1220 pos
= head
+ AIO_EVENTS_OFFSET
;
1221 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1222 pos
%= AIO_EVENTS_PER_PAGE
;
1224 avail
= min(avail
, nr
- ret
);
1225 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1228 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1229 sizeof(*ev
) * avail
);
1232 if (unlikely(copy_ret
)) {
1239 head
%= ctx
->nr_events
;
1242 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1244 kunmap_atomic(ring
);
1245 flush_dcache_page(ctx
->ring_pages
[0]);
1247 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1249 mutex_unlock(&ctx
->ring_lock
);
1254 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1255 struct io_event __user
*event
, long *i
)
1257 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1262 if (unlikely(atomic_read(&ctx
->dead
)))
1268 return ret
< 0 || *i
>= min_nr
;
1271 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1272 struct io_event __user
*event
,
1278 * Note that aio_read_events() is being called as the conditional - i.e.
1279 * we're calling it after prepare_to_wait() has set task state to
1280 * TASK_INTERRUPTIBLE.
1282 * But aio_read_events() can block, and if it blocks it's going to flip
1283 * the task state back to TASK_RUNNING.
1285 * This should be ok, provided it doesn't flip the state back to
1286 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1287 * will only happen if the mutex_lock() call blocks, and we then find
1288 * the ringbuffer empty. So in practice we should be ok, but it's
1289 * something to be aware of when touching this code.
1292 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1294 wait_event_interruptible_hrtimeout(ctx
->wait
,
1295 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1301 * Create an aio_context capable of receiving at least nr_events.
1302 * ctxp must not point to an aio_context that already exists, and
1303 * must be initialized to 0 prior to the call. On successful
1304 * creation of the aio_context, *ctxp is filled in with the resulting
1305 * handle. May fail with -EINVAL if *ctxp is not initialized,
1306 * if the specified nr_events exceeds internal limits. May fail
1307 * with -EAGAIN if the specified nr_events exceeds the user's limit
1308 * of available events. May fail with -ENOMEM if insufficient kernel
1309 * resources are available. May fail with -EFAULT if an invalid
1310 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1313 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1315 struct kioctx
*ioctx
= NULL
;
1319 ret
= get_user(ctx
, ctxp
);
1324 if (unlikely(ctx
|| nr_events
== 0)) {
1325 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1330 ioctx
= ioctx_alloc(nr_events
);
1331 ret
= PTR_ERR(ioctx
);
1332 if (!IS_ERR(ioctx
)) {
1333 ret
= put_user(ioctx
->user_id
, ctxp
);
1335 kill_ioctx(current
->mm
, ioctx
, NULL
);
1336 percpu_ref_put(&ioctx
->users
);
1343 #ifdef CONFIG_COMPAT
1344 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1346 struct kioctx
*ioctx
= NULL
;
1350 ret
= get_user(ctx
, ctx32p
);
1355 if (unlikely(ctx
|| nr_events
== 0)) {
1356 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1361 ioctx
= ioctx_alloc(nr_events
);
1362 ret
= PTR_ERR(ioctx
);
1363 if (!IS_ERR(ioctx
)) {
1364 /* truncating is ok because it's a user address */
1365 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1367 kill_ioctx(current
->mm
, ioctx
, NULL
);
1368 percpu_ref_put(&ioctx
->users
);
1377 * Destroy the aio_context specified. May cancel any outstanding
1378 * AIOs and block on completion. Will fail with -ENOSYS if not
1379 * implemented. May fail with -EINVAL if the context pointed to
1382 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1384 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1385 if (likely(NULL
!= ioctx
)) {
1386 struct ctx_rq_wait wait
;
1389 init_completion(&wait
.comp
);
1390 atomic_set(&wait
.count
, 1);
1392 /* Pass requests_done to kill_ioctx() where it can be set
1393 * in a thread-safe way. If we try to set it here then we have
1394 * a race condition if two io_destroy() called simultaneously.
1396 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1397 percpu_ref_put(&ioctx
->users
);
1399 /* Wait until all IO for the context are done. Otherwise kernel
1400 * keep using user-space buffers even if user thinks the context
1404 wait_for_completion(&wait
.comp
);
1408 pr_debug("EINVAL: invalid context id\n");
1412 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1414 struct kioctx
*ctx
= iocb
->ki_ctx
;
1415 unsigned long flags
;
1417 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1418 list_del(&iocb
->ki_list
);
1419 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1422 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1424 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1426 if (!list_empty_careful(&iocb
->ki_list
))
1427 aio_remove_iocb(iocb
);
1429 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1430 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1433 * Tell lockdep we inherited freeze protection from submission
1436 if (S_ISREG(inode
->i_mode
))
1437 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1438 file_end_write(kiocb
->ki_filp
);
1441 iocb
->ki_res
.res
= res
;
1442 iocb
->ki_res
.res2
= res2
;
1446 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1450 req
->ki_complete
= aio_complete_rw
;
1451 req
->private = NULL
;
1452 req
->ki_pos
= iocb
->aio_offset
;
1453 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1454 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1455 req
->ki_flags
|= IOCB_EVENTFD
;
1456 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1457 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1459 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1460 * aio_reqprio is interpreted as an I/O scheduling
1461 * class and priority.
1463 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1465 pr_debug("aio ioprio check cap error: %d\n", ret
);
1469 req
->ki_ioprio
= iocb
->aio_reqprio
;
1471 req
->ki_ioprio
= get_current_ioprio();
1473 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1477 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1481 static ssize_t
aio_setup_rw(int rw
, const struct iocb
*iocb
,
1482 struct iovec
**iovec
, bool vectored
, bool compat
,
1483 struct iov_iter
*iter
)
1485 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1486 size_t len
= iocb
->aio_nbytes
;
1489 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1493 #ifdef CONFIG_COMPAT
1495 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1498 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1501 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1507 case -ERESTARTNOINTR
:
1508 case -ERESTARTNOHAND
:
1509 case -ERESTART_RESTARTBLOCK
:
1511 * There's no easy way to restart the syscall since other AIO's
1512 * may be already running. Just fail this IO with EINTR.
1517 req
->ki_complete(req
, ret
, 0);
1521 static int aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1522 bool vectored
, bool compat
)
1524 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1525 struct iov_iter iter
;
1529 ret
= aio_prep_rw(req
, iocb
);
1532 file
= req
->ki_filp
;
1533 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1536 if (unlikely(!file
->f_op
->read_iter
))
1539 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1542 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1544 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1549 static int aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1550 bool vectored
, bool compat
)
1552 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1553 struct iov_iter iter
;
1557 ret
= aio_prep_rw(req
, iocb
);
1560 file
= req
->ki_filp
;
1562 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1564 if (unlikely(!file
->f_op
->write_iter
))
1567 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1570 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1573 * Open-code file_start_write here to grab freeze protection,
1574 * which will be released by another thread in
1575 * aio_complete_rw(). Fool lockdep by telling it the lock got
1576 * released so that it doesn't complain about the held lock when
1577 * we return to userspace.
1579 if (S_ISREG(file_inode(file
)->i_mode
)) {
1580 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1581 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1583 req
->ki_flags
|= IOCB_WRITE
;
1584 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1590 static void aio_fsync_work(struct work_struct
*work
)
1592 struct aio_kiocb
*iocb
= container_of(work
, struct aio_kiocb
, fsync
.work
);
1593 const struct cred
*old_cred
= override_creds(iocb
->fsync
.creds
);
1595 iocb
->ki_res
.res
= vfs_fsync(iocb
->fsync
.file
, iocb
->fsync
.datasync
);
1596 revert_creds(old_cred
);
1597 put_cred(iocb
->fsync
.creds
);
1601 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1604 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1605 iocb
->aio_rw_flags
))
1608 if (unlikely(!req
->file
->f_op
->fsync
))
1611 req
->creds
= prepare_creds();
1615 req
->datasync
= datasync
;
1616 INIT_WORK(&req
->work
, aio_fsync_work
);
1617 schedule_work(&req
->work
);
1621 static void aio_poll_put_work(struct work_struct
*work
)
1623 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1624 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1629 static void aio_poll_complete_work(struct work_struct
*work
)
1631 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1632 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1633 struct poll_table_struct pt
= { ._key
= req
->events
};
1634 struct kioctx
*ctx
= iocb
->ki_ctx
;
1637 if (!READ_ONCE(req
->cancelled
))
1638 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1641 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1642 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1643 * synchronize with them. In the cancellation case the list_del_init
1644 * itself is not actually needed, but harmless so we keep it in to
1645 * avoid further branches in the fast path.
1647 spin_lock_irq(&ctx
->ctx_lock
);
1648 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1649 add_wait_queue(req
->head
, &req
->wait
);
1650 spin_unlock_irq(&ctx
->ctx_lock
);
1653 list_del_init(&iocb
->ki_list
);
1654 iocb
->ki_res
.res
= mangle_poll(mask
);
1656 spin_unlock_irq(&ctx
->ctx_lock
);
1661 /* assumes we are called with irqs disabled */
1662 static int aio_poll_cancel(struct kiocb
*iocb
)
1664 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1665 struct poll_iocb
*req
= &aiocb
->poll
;
1667 spin_lock(&req
->head
->lock
);
1668 WRITE_ONCE(req
->cancelled
, true);
1669 if (!list_empty(&req
->wait
.entry
)) {
1670 list_del_init(&req
->wait
.entry
);
1671 schedule_work(&aiocb
->poll
.work
);
1673 spin_unlock(&req
->head
->lock
);
1678 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1681 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1682 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1683 __poll_t mask
= key_to_poll(key
);
1684 unsigned long flags
;
1686 /* for instances that support it check for an event match first: */
1687 if (mask
&& !(mask
& req
->events
))
1690 list_del_init(&req
->wait
.entry
);
1692 if (mask
&& spin_trylock_irqsave(&iocb
->ki_ctx
->ctx_lock
, flags
)) {
1693 struct kioctx
*ctx
= iocb
->ki_ctx
;
1696 * Try to complete the iocb inline if we can. Use
1697 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1698 * call this function with IRQs disabled and because IRQs
1699 * have to be disabled before ctx_lock is obtained.
1701 list_del(&iocb
->ki_list
);
1702 iocb
->ki_res
.res
= mangle_poll(mask
);
1704 if (iocb
->ki_eventfd
&& eventfd_signal_count()) {
1706 INIT_WORK(&req
->work
, aio_poll_put_work
);
1707 schedule_work(&req
->work
);
1709 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1713 schedule_work(&req
->work
);
1718 struct aio_poll_table
{
1719 struct poll_table_struct pt
;
1720 struct aio_kiocb
*iocb
;
1725 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1726 struct poll_table_struct
*p
)
1728 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1730 /* multiple wait queues per file are not supported */
1731 if (unlikely(pt
->iocb
->poll
.head
)) {
1732 pt
->error
= -EINVAL
;
1737 pt
->iocb
->poll
.head
= head
;
1738 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1741 static int aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1743 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1744 struct poll_iocb
*req
= &aiocb
->poll
;
1745 struct aio_poll_table apt
;
1746 bool cancel
= false;
1749 /* reject any unknown events outside the normal event mask. */
1750 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1752 /* reject fields that are not defined for poll */
1753 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1756 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1757 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1761 req
->cancelled
= false;
1763 apt
.pt
._qproc
= aio_poll_queue_proc
;
1764 apt
.pt
._key
= req
->events
;
1766 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1768 /* initialized the list so that we can do list_empty checks */
1769 INIT_LIST_HEAD(&req
->wait
.entry
);
1770 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1772 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1773 spin_lock_irq(&ctx
->ctx_lock
);
1774 if (likely(req
->head
)) {
1775 spin_lock(&req
->head
->lock
);
1776 if (unlikely(list_empty(&req
->wait
.entry
))) {
1782 if (mask
|| apt
.error
) {
1783 list_del_init(&req
->wait
.entry
);
1784 } else if (cancel
) {
1785 WRITE_ONCE(req
->cancelled
, true);
1786 } else if (!req
->done
) { /* actually waiting for an event */
1787 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1788 aiocb
->ki_cancel
= aio_poll_cancel
;
1790 spin_unlock(&req
->head
->lock
);
1792 if (mask
) { /* no async, we'd stolen it */
1793 aiocb
->ki_res
.res
= mangle_poll(mask
);
1796 spin_unlock_irq(&ctx
->ctx_lock
);
1802 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1803 struct iocb __user
*user_iocb
, struct aio_kiocb
*req
,
1806 req
->ki_filp
= fget(iocb
->aio_fildes
);
1807 if (unlikely(!req
->ki_filp
))
1810 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1811 struct eventfd_ctx
*eventfd
;
1813 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1814 * instance of the file* now. The file descriptor must be
1815 * an eventfd() fd, and will be signaled for each completed
1816 * event using the eventfd_signal() function.
1818 eventfd
= eventfd_ctx_fdget(iocb
->aio_resfd
);
1819 if (IS_ERR(eventfd
))
1820 return PTR_ERR(eventfd
);
1822 req
->ki_eventfd
= eventfd
;
1825 if (unlikely(put_user(KIOCB_KEY
, &user_iocb
->aio_key
))) {
1826 pr_debug("EFAULT: aio_key\n");
1830 req
->ki_res
.obj
= (u64
)(unsigned long)user_iocb
;
1831 req
->ki_res
.data
= iocb
->aio_data
;
1832 req
->ki_res
.res
= 0;
1833 req
->ki_res
.res2
= 0;
1835 switch (iocb
->aio_lio_opcode
) {
1836 case IOCB_CMD_PREAD
:
1837 return aio_read(&req
->rw
, iocb
, false, compat
);
1838 case IOCB_CMD_PWRITE
:
1839 return aio_write(&req
->rw
, iocb
, false, compat
);
1840 case IOCB_CMD_PREADV
:
1841 return aio_read(&req
->rw
, iocb
, true, compat
);
1842 case IOCB_CMD_PWRITEV
:
1843 return aio_write(&req
->rw
, iocb
, true, compat
);
1844 case IOCB_CMD_FSYNC
:
1845 return aio_fsync(&req
->fsync
, iocb
, false);
1846 case IOCB_CMD_FDSYNC
:
1847 return aio_fsync(&req
->fsync
, iocb
, true);
1849 return aio_poll(req
, iocb
);
1851 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1856 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1859 struct aio_kiocb
*req
;
1863 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1866 /* enforce forwards compatibility on users */
1867 if (unlikely(iocb
.aio_reserved2
)) {
1868 pr_debug("EINVAL: reserve field set\n");
1872 /* prevent overflows */
1874 (iocb
.aio_buf
!= (unsigned long)iocb
.aio_buf
) ||
1875 (iocb
.aio_nbytes
!= (size_t)iocb
.aio_nbytes
) ||
1876 ((ssize_t
)iocb
.aio_nbytes
< 0)
1878 pr_debug("EINVAL: overflow check\n");
1882 req
= aio_get_req(ctx
);
1886 err
= __io_submit_one(ctx
, &iocb
, user_iocb
, req
, compat
);
1888 /* Done with the synchronous reference */
1892 * If err is 0, we'd either done aio_complete() ourselves or have
1893 * arranged for that to be done asynchronously. Anything non-zero
1894 * means that we need to destroy req ourselves.
1896 if (unlikely(err
)) {
1898 put_reqs_available(ctx
, 1);
1904 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1905 * the number of iocbs queued. May return -EINVAL if the aio_context
1906 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1907 * *iocbpp[0] is not properly initialized, if the operation specified
1908 * is invalid for the file descriptor in the iocb. May fail with
1909 * -EFAULT if any of the data structures point to invalid data. May
1910 * fail with -EBADF if the file descriptor specified in the first
1911 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1912 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1913 * fail with -ENOSYS if not implemented.
1915 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1916 struct iocb __user
* __user
*, iocbpp
)
1921 struct blk_plug plug
;
1923 if (unlikely(nr
< 0))
1926 ctx
= lookup_ioctx(ctx_id
);
1927 if (unlikely(!ctx
)) {
1928 pr_debug("EINVAL: invalid context id\n");
1932 if (nr
> ctx
->nr_events
)
1933 nr
= ctx
->nr_events
;
1935 if (nr
> AIO_PLUG_THRESHOLD
)
1936 blk_start_plug(&plug
);
1937 for (i
= 0; i
< nr
; i
++) {
1938 struct iocb __user
*user_iocb
;
1940 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1945 ret
= io_submit_one(ctx
, user_iocb
, false);
1949 if (nr
> AIO_PLUG_THRESHOLD
)
1950 blk_finish_plug(&plug
);
1952 percpu_ref_put(&ctx
->users
);
1956 #ifdef CONFIG_COMPAT
1957 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1958 int, nr
, compat_uptr_t __user
*, iocbpp
)
1963 struct blk_plug plug
;
1965 if (unlikely(nr
< 0))
1968 ctx
= lookup_ioctx(ctx_id
);
1969 if (unlikely(!ctx
)) {
1970 pr_debug("EINVAL: invalid context id\n");
1974 if (nr
> ctx
->nr_events
)
1975 nr
= ctx
->nr_events
;
1977 if (nr
> AIO_PLUG_THRESHOLD
)
1978 blk_start_plug(&plug
);
1979 for (i
= 0; i
< nr
; i
++) {
1980 compat_uptr_t user_iocb
;
1982 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1987 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1991 if (nr
> AIO_PLUG_THRESHOLD
)
1992 blk_finish_plug(&plug
);
1994 percpu_ref_put(&ctx
->users
);
2000 * Attempts to cancel an iocb previously passed to io_submit. If
2001 * the operation is successfully cancelled, the resulting event is
2002 * copied into the memory pointed to by result without being placed
2003 * into the completion queue and 0 is returned. May fail with
2004 * -EFAULT if any of the data structures pointed to are invalid.
2005 * May fail with -EINVAL if aio_context specified by ctx_id is
2006 * invalid. May fail with -EAGAIN if the iocb specified was not
2007 * cancelled. Will fail with -ENOSYS if not implemented.
2009 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
2010 struct io_event __user
*, result
)
2013 struct aio_kiocb
*kiocb
;
2016 u64 obj
= (u64
)(unsigned long)iocb
;
2018 if (unlikely(get_user(key
, &iocb
->aio_key
)))
2020 if (unlikely(key
!= KIOCB_KEY
))
2023 ctx
= lookup_ioctx(ctx_id
);
2027 spin_lock_irq(&ctx
->ctx_lock
);
2028 /* TODO: use a hash or array, this sucks. */
2029 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2030 if (kiocb
->ki_res
.obj
== obj
) {
2031 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2032 list_del_init(&kiocb
->ki_list
);
2036 spin_unlock_irq(&ctx
->ctx_lock
);
2040 * The result argument is no longer used - the io_event is
2041 * always delivered via the ring buffer. -EINPROGRESS indicates
2042 * cancellation is progress:
2047 percpu_ref_put(&ctx
->users
);
2052 static long do_io_getevents(aio_context_t ctx_id
,
2055 struct io_event __user
*events
,
2056 struct timespec64
*ts
)
2058 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2059 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2062 if (likely(ioctx
)) {
2063 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2064 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2065 percpu_ref_put(&ioctx
->users
);
2072 * Attempts to read at least min_nr events and up to nr events from
2073 * the completion queue for the aio_context specified by ctx_id. If
2074 * it succeeds, the number of read events is returned. May fail with
2075 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2076 * out of range, if timeout is out of range. May fail with -EFAULT
2077 * if any of the memory specified is invalid. May return 0 or
2078 * < min_nr if the timeout specified by timeout has elapsed
2079 * before sufficient events are available, where timeout == NULL
2080 * specifies an infinite timeout. Note that the timeout pointed to by
2081 * timeout is relative. Will fail with -ENOSYS if not implemented.
2083 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2085 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2088 struct io_event __user
*, events
,
2089 struct __kernel_timespec __user
*, timeout
)
2091 struct timespec64 ts
;
2094 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2097 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2098 if (!ret
&& signal_pending(current
))
2105 struct __aio_sigset
{
2106 const sigset_t __user
*sigmask
;
2110 SYSCALL_DEFINE6(io_pgetevents
,
2111 aio_context_t
, ctx_id
,
2114 struct io_event __user
*, events
,
2115 struct __kernel_timespec __user
*, timeout
,
2116 const struct __aio_sigset __user
*, usig
)
2118 struct __aio_sigset ksig
= { NULL
, };
2119 struct timespec64 ts
;
2123 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2126 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2129 ret
= set_user_sigmask(ksig
.sigmask
, ksig
.sigsetsize
);
2133 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2135 interrupted
= signal_pending(current
);
2136 restore_saved_sigmask_unless(interrupted
);
2137 if (interrupted
&& !ret
)
2138 ret
= -ERESTARTNOHAND
;
2143 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2145 SYSCALL_DEFINE6(io_pgetevents_time32
,
2146 aio_context_t
, ctx_id
,
2149 struct io_event __user
*, events
,
2150 struct old_timespec32 __user
*, timeout
,
2151 const struct __aio_sigset __user
*, usig
)
2153 struct __aio_sigset ksig
= { NULL
, };
2154 struct timespec64 ts
;
2158 if (timeout
&& unlikely(get_old_timespec32(&ts
, timeout
)))
2161 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2165 ret
= set_user_sigmask(ksig
.sigmask
, ksig
.sigsetsize
);
2169 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2171 interrupted
= signal_pending(current
);
2172 restore_saved_sigmask_unless(interrupted
);
2173 if (interrupted
&& !ret
)
2174 ret
= -ERESTARTNOHAND
;
2181 #if defined(CONFIG_COMPAT_32BIT_TIME)
2183 SYSCALL_DEFINE5(io_getevents_time32
, __u32
, ctx_id
,
2186 struct io_event __user
*, events
,
2187 struct old_timespec32 __user
*, timeout
)
2189 struct timespec64 t
;
2192 if (timeout
&& get_old_timespec32(&t
, timeout
))
2195 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2196 if (!ret
&& signal_pending(current
))
2203 #ifdef CONFIG_COMPAT
2205 struct __compat_aio_sigset
{
2206 compat_uptr_t sigmask
;
2207 compat_size_t sigsetsize
;
2210 #if defined(CONFIG_COMPAT_32BIT_TIME)
2212 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2213 compat_aio_context_t
, ctx_id
,
2214 compat_long_t
, min_nr
,
2216 struct io_event __user
*, events
,
2217 struct old_timespec32 __user
*, timeout
,
2218 const struct __compat_aio_sigset __user
*, usig
)
2220 struct __compat_aio_sigset ksig
= { 0, };
2221 struct timespec64 t
;
2225 if (timeout
&& get_old_timespec32(&t
, timeout
))
2228 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2231 ret
= set_compat_user_sigmask(compat_ptr(ksig
.sigmask
), ksig
.sigsetsize
);
2235 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2237 interrupted
= signal_pending(current
);
2238 restore_saved_sigmask_unless(interrupted
);
2239 if (interrupted
&& !ret
)
2240 ret
= -ERESTARTNOHAND
;
2247 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64
,
2248 compat_aio_context_t
, ctx_id
,
2249 compat_long_t
, min_nr
,
2251 struct io_event __user
*, events
,
2252 struct __kernel_timespec __user
*, timeout
,
2253 const struct __compat_aio_sigset __user
*, usig
)
2255 struct __compat_aio_sigset ksig
= { 0, };
2256 struct timespec64 t
;
2260 if (timeout
&& get_timespec64(&t
, timeout
))
2263 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2266 ret
= set_compat_user_sigmask(compat_ptr(ksig
.sigmask
), ksig
.sigsetsize
);
2270 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2272 interrupted
= signal_pending(current
);
2273 restore_saved_sigmask_unless(interrupted
);
2274 if (interrupted
&& !ret
)
2275 ret
= -ERESTARTNOHAND
;