tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / mips / kernel / elf.c
blob731325a61a7840a40a3fa0b217b7729d23f834fa
1 /*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@mips.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
11 #include <linux/binfmts.h>
12 #include <linux/elf.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
16 #include <asm/cpu-features.h>
17 #include <asm/cpu-info.h>
19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */
20 bool mips_use_nan_legacy;
21 bool mips_use_nan_2008;
23 /* FPU modes */
24 enum {
25 FP_FRE,
26 FP_FR0,
27 FP_FR1,
30 /**
31 * struct mode_req - ABI FPU mode requirements
32 * @single: The program being loaded needs an FPU but it will only issue
33 * single precision instructions meaning that it can execute in
34 * either FR0 or FR1.
35 * @soft: The soft(-float) requirement means that the program being
36 * loaded needs has no FPU dependency at all (i.e. it has no
37 * FPU instructions).
38 * @fr1: The program being loaded depends on FPU being in FR=1 mode.
39 * @frdefault: The program being loaded depends on the default FPU mode.
40 * That is FR0 for O32 and FR1 for N32/N64.
41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is
42 * a bridge which uses FR=1 whilst still being able to maintain
43 * full compatibility with pre-existing code using the O32 FP32
44 * ABI.
46 * More information about the FP ABIs can be found here:
48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
52 struct mode_req {
53 bool single;
54 bool soft;
55 bool fr1;
56 bool frdefault;
57 bool fre;
60 static const struct mode_req fpu_reqs[] = {
61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true },
62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true },
63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false },
64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false },
65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
66 [MIPS_ABI_FP_XX] = { false, false, true, true, true },
67 [MIPS_ABI_FP_64] = { false, false, true, false, false },
68 [MIPS_ABI_FP_64A] = { false, false, true, false, true }
72 * Mode requirements when .MIPS.abiflags is not present in the ELF.
73 * Not present means that everything is acceptable except FR1.
75 static struct mode_req none_req = { true, true, false, true, true };
77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
78 bool is_interp, struct arch_elf_state *state)
80 union {
81 struct elf32_hdr e32;
82 struct elf64_hdr e64;
83 } *ehdr = _ehdr;
84 struct elf32_phdr *phdr32 = _phdr;
85 struct elf64_phdr *phdr64 = _phdr;
86 struct mips_elf_abiflags_v0 abiflags;
87 bool elf32;
88 u32 flags;
89 int ret;
90 loff_t pos;
92 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
93 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
95 /* Let's see if this is an O32 ELF */
96 if (elf32) {
97 if (flags & EF_MIPS_FP64) {
99 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
100 * later if needed
102 if (is_interp)
103 state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
104 else
105 state->fp_abi = MIPS_ABI_FP_OLD_64;
107 if (phdr32->p_type != PT_MIPS_ABIFLAGS)
108 return 0;
110 if (phdr32->p_filesz < sizeof(abiflags))
111 return -EINVAL;
112 pos = phdr32->p_offset;
113 } else {
114 if (phdr64->p_type != PT_MIPS_ABIFLAGS)
115 return 0;
116 if (phdr64->p_filesz < sizeof(abiflags))
117 return -EINVAL;
118 pos = phdr64->p_offset;
121 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
122 if (ret < 0)
123 return ret;
124 if (ret != sizeof(abiflags))
125 return -EIO;
127 /* Record the required FP ABIs for use by mips_check_elf */
128 if (is_interp)
129 state->interp_fp_abi = abiflags.fp_abi;
130 else
131 state->fp_abi = abiflags.fp_abi;
133 return 0;
136 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
137 struct arch_elf_state *state)
139 union {
140 struct elf32_hdr e32;
141 struct elf64_hdr e64;
142 } *ehdr = _ehdr;
143 union {
144 struct elf32_hdr e32;
145 struct elf64_hdr e64;
146 } *iehdr = _interp_ehdr;
147 struct mode_req prog_req, interp_req;
148 int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
149 bool elf32;
150 u32 flags;
152 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
153 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
156 * Determine the NaN personality, reject the binary if not allowed.
157 * Also ensure that any interpreter matches the executable.
159 if (flags & EF_MIPS_NAN2008) {
160 if (mips_use_nan_2008)
161 state->nan_2008 = 1;
162 else
163 return -ENOEXEC;
164 } else {
165 if (mips_use_nan_legacy)
166 state->nan_2008 = 0;
167 else
168 return -ENOEXEC;
170 if (has_interpreter) {
171 bool ielf32;
172 u32 iflags;
174 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
175 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
177 if ((flags ^ iflags) & EF_MIPS_NAN2008)
178 return -ELIBBAD;
181 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
182 return 0;
184 fp_abi = state->fp_abi;
186 if (has_interpreter) {
187 interp_fp_abi = state->interp_fp_abi;
189 abi0 = min(fp_abi, interp_fp_abi);
190 abi1 = max(fp_abi, interp_fp_abi);
191 } else {
192 abi0 = abi1 = fp_abi;
195 if (elf32 && !(flags & EF_MIPS_ABI2)) {
196 /* Default to a mode capable of running code expecting FR=0 */
197 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
199 /* Allow all ABIs we know about */
200 max_abi = MIPS_ABI_FP_64A;
201 } else {
202 /* MIPS64 code always uses FR=1, thus the default is easy */
203 state->overall_fp_mode = FP_FR1;
205 /* Disallow access to the various FPXX & FP64 ABIs */
206 max_abi = MIPS_ABI_FP_SOFT;
209 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
210 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
211 return -ELIBBAD;
213 /* It's time to determine the FPU mode requirements */
214 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
215 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
218 * Check whether the program's and interp's ABIs have a matching FPU
219 * mode requirement.
221 prog_req.single = interp_req.single && prog_req.single;
222 prog_req.soft = interp_req.soft && prog_req.soft;
223 prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
224 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
225 prog_req.fre = interp_req.fre && prog_req.fre;
228 * Determine the desired FPU mode
230 * Decision making:
232 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
233 * means that we have a combination of program and interpreter
234 * that inherently require the hybrid FP mode.
235 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
236 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
237 * instructions so we don't care about the mode. We will simply use
238 * the one preferred by the hardware. In fpxx case, that ABI can
239 * handle both FR=1 and FR=0, so, again, we simply choose the one
240 * preferred by the hardware. Next, if we only use single-precision
241 * FPU instructions, and the default ABI FPU mode is not good
242 * (ie single + any ABI combination), we set again the FPU mode to the
243 * one is preferred by the hardware. Next, if we know that the code
244 * will only use single-precision instructions, shown by single being
245 * true but frdefault being false, then we again set the FPU mode to
246 * the one that is preferred by the hardware.
247 * - We want FP_FR1 if that's the only matching mode and the default one
248 * is not good.
249 * - Return with -ELIBADD if we can't find a matching FPU mode.
251 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
252 state->overall_fp_mode = FP_FRE;
253 else if ((prog_req.fr1 && prog_req.frdefault) ||
254 (prog_req.single && !prog_req.frdefault))
255 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
256 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
257 cpu_has_mips_r2_r6) ?
258 FP_FR1 : FP_FR0;
259 else if (prog_req.fr1)
260 state->overall_fp_mode = FP_FR1;
261 else if (!prog_req.fre && !prog_req.frdefault &&
262 !prog_req.fr1 && !prog_req.single && !prog_req.soft)
263 return -ELIBBAD;
265 return 0;
268 static inline void set_thread_fp_mode(int hybrid, int regs32)
270 if (hybrid)
271 set_thread_flag(TIF_HYBRID_FPREGS);
272 else
273 clear_thread_flag(TIF_HYBRID_FPREGS);
274 if (regs32)
275 set_thread_flag(TIF_32BIT_FPREGS);
276 else
277 clear_thread_flag(TIF_32BIT_FPREGS);
280 void mips_set_personality_fp(struct arch_elf_state *state)
283 * This function is only ever called for O32 ELFs so we should
284 * not be worried about N32/N64 binaries.
287 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
288 return;
290 switch (state->overall_fp_mode) {
291 case FP_FRE:
292 set_thread_fp_mode(1, 0);
293 break;
294 case FP_FR0:
295 set_thread_fp_mode(0, 1);
296 break;
297 case FP_FR1:
298 set_thread_fp_mode(0, 0);
299 break;
300 default:
301 BUG();
306 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
307 * in FCSR according to the ELF NaN personality.
309 void mips_set_personality_nan(struct arch_elf_state *state)
311 struct cpuinfo_mips *c = &boot_cpu_data;
312 struct task_struct *t = current;
314 t->thread.fpu.fcr31 = c->fpu_csr31;
315 switch (state->nan_2008) {
316 case 0:
317 break;
318 case 1:
319 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
320 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
321 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
322 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
323 break;
324 default:
325 BUG();
329 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
331 if (exstack != EXSTACK_DISABLE_X) {
332 /* The binary doesn't request a non-executable stack */
333 return 1;
336 if (!cpu_has_rixi) {
337 /* The CPU doesn't support non-executable memory */
338 return 1;
341 return 0;
343 EXPORT_SYMBOL(mips_elf_read_implies_exec);