2 * Kernel Probes (KProbes)
3 * arch/mips/kernel/kprobes.c
5 * Copyright 2006 Sony Corp.
6 * Copyright 2010 Cavium Networks
8 * Some portions copied from the powerpc version.
10 * Copyright (C) IBM Corporation, 2002, 2004
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
36 #include "probes-common.h"
38 static const union mips_instruction breakpoint_insn
= {
41 .code
= BRK_KPROBE_BP
,
46 static const union mips_instruction breakpoint2_insn
= {
49 .code
= BRK_KPROBE_SSTEPBP
,
54 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
55 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
57 static int __kprobes
insn_has_delayslot(union mips_instruction insn
)
59 return __insn_has_delay_slot(insn
);
63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
65 * so we need to prevent it and refuse kprobes insertion for such
66 * instructions; cannot do much about breakpoint in the middle of
67 * ll/sc pair; it is upto user to avoid those places
69 static int __kprobes
insn_has_ll_or_sc(union mips_instruction insn
)
73 switch (insn
.i_format
.opcode
) {
86 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
88 union mips_instruction insn
;
89 union mips_instruction prev_insn
;
94 if (insn_has_ll_or_sc(insn
)) {
95 pr_notice("Kprobes for ll and sc instructions are not"
101 if ((probe_kernel_read(&prev_insn
, p
->addr
- 1,
102 sizeof(mips_instruction
)) == 0) &&
103 insn_has_delayslot(prev_insn
)) {
104 pr_notice("Kprobes for branch delayslot are not supported\n");
109 if (__insn_is_compact_branch(insn
)) {
110 pr_notice("Kprobes for compact branches are not supported\n");
115 /* insn: must be on special executable page on mips. */
116 p
->ainsn
.insn
= get_insn_slot();
117 if (!p
->ainsn
.insn
) {
123 * In the kprobe->ainsn.insn[] array we store the original
124 * instruction at index zero and a break trap instruction at
127 * On MIPS arch if the instruction at probed address is a
128 * branch instruction, we need to execute the instruction at
129 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130 * doesn't have single stepping support, the BD instruction can
131 * not be executed in-line and it would be executed on SSOL slot
132 * using a normal breakpoint instruction in the next slot.
133 * So, read the instruction and save it for later execution.
135 if (insn_has_delayslot(insn
))
136 memcpy(&p
->ainsn
.insn
[0], p
->addr
+ 1, sizeof(kprobe_opcode_t
));
138 memcpy(&p
->ainsn
.insn
[0], p
->addr
, sizeof(kprobe_opcode_t
));
140 p
->ainsn
.insn
[1] = breakpoint2_insn
;
141 p
->opcode
= *p
->addr
;
147 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
149 *p
->addr
= breakpoint_insn
;
153 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
155 *p
->addr
= p
->opcode
;
159 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
162 free_insn_slot(p
->ainsn
.insn
, 0);
163 p
->ainsn
.insn
= NULL
;
167 static void save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
169 kcb
->prev_kprobe
.kp
= kprobe_running();
170 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
171 kcb
->prev_kprobe
.old_SR
= kcb
->kprobe_old_SR
;
172 kcb
->prev_kprobe
.saved_SR
= kcb
->kprobe_saved_SR
;
173 kcb
->prev_kprobe
.saved_epc
= kcb
->kprobe_saved_epc
;
176 static void restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
178 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
179 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
180 kcb
->kprobe_old_SR
= kcb
->prev_kprobe
.old_SR
;
181 kcb
->kprobe_saved_SR
= kcb
->prev_kprobe
.saved_SR
;
182 kcb
->kprobe_saved_epc
= kcb
->prev_kprobe
.saved_epc
;
185 static void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
186 struct kprobe_ctlblk
*kcb
)
188 __this_cpu_write(current_kprobe
, p
);
189 kcb
->kprobe_saved_SR
= kcb
->kprobe_old_SR
= (regs
->cp0_status
& ST0_IE
);
190 kcb
->kprobe_saved_epc
= regs
->cp0_epc
;
194 * evaluate_branch_instrucion -
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
206 static int evaluate_branch_instruction(struct kprobe
*p
, struct pt_regs
*regs
,
207 struct kprobe_ctlblk
*kcb
)
209 union mips_instruction insn
= p
->opcode
;
217 if (p
->ainsn
.insn
->word
== 0)
218 kcb
->flags
|= SKIP_DELAYSLOT
;
220 kcb
->flags
&= ~SKIP_DELAYSLOT
;
222 ret
= __compute_return_epc_for_insn(regs
, insn
);
226 if (ret
== BRANCH_LIKELY_TAKEN
)
227 kcb
->flags
|= SKIP_DELAYSLOT
;
229 kcb
->target_epc
= regs
->cp0_epc
;
234 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current
->comm
);
235 force_sig(SIGBUS
, current
);
240 static void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
241 struct kprobe_ctlblk
*kcb
)
245 regs
->cp0_status
&= ~ST0_IE
;
247 /* single step inline if the instruction is a break */
248 if (p
->opcode
.word
== breakpoint_insn
.word
||
249 p
->opcode
.word
== breakpoint2_insn
.word
)
250 regs
->cp0_epc
= (unsigned long)p
->addr
;
251 else if (insn_has_delayslot(p
->opcode
)) {
252 ret
= evaluate_branch_instruction(p
, regs
, kcb
);
254 pr_notice("Kprobes: Error in evaluating branch\n");
258 regs
->cp0_epc
= (unsigned long)&p
->ainsn
.insn
[0];
262 * Called after single-stepping. p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction. To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction. The address of this
267 * copy is p->ainsn.insn.
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
273 static void __kprobes
resume_execution(struct kprobe
*p
,
274 struct pt_regs
*regs
,
275 struct kprobe_ctlblk
*kcb
)
277 if (insn_has_delayslot(p
->opcode
))
278 regs
->cp0_epc
= kcb
->target_epc
;
280 unsigned long orig_epc
= kcb
->kprobe_saved_epc
;
281 regs
->cp0_epc
= orig_epc
+ 4;
285 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
289 kprobe_opcode_t
*addr
;
290 struct kprobe_ctlblk
*kcb
;
292 addr
= (kprobe_opcode_t
*) regs
->cp0_epc
;
295 * We don't want to be preempted for the entire
296 * duration of kprobe processing
299 kcb
= get_kprobe_ctlblk();
301 /* Check we're not actually recursing */
302 if (kprobe_running()) {
303 p
= get_kprobe(addr
);
305 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
306 p
->ainsn
.insn
->word
== breakpoint_insn
.word
) {
307 regs
->cp0_status
&= ~ST0_IE
;
308 regs
->cp0_status
|= kcb
->kprobe_saved_SR
;
312 * We have reentered the kprobe_handler(), since
313 * another probe was hit while within the handler.
314 * We here save the original kprobes variables and
315 * just single step on the instruction of the new probe
316 * without calling any user handlers.
318 save_previous_kprobe(kcb
);
319 set_current_kprobe(p
, regs
, kcb
);
320 kprobes_inc_nmissed_count(p
);
321 prepare_singlestep(p
, regs
, kcb
);
322 kcb
->kprobe_status
= KPROBE_REENTER
;
323 if (kcb
->flags
& SKIP_DELAYSLOT
) {
324 resume_execution(p
, regs
, kcb
);
325 restore_previous_kprobe(kcb
);
326 preempt_enable_no_resched();
329 } else if (addr
->word
!= breakpoint_insn
.word
) {
331 * The breakpoint instruction was removed by
332 * another cpu right after we hit, no further
333 * handling of this interrupt is appropriate
340 p
= get_kprobe(addr
);
342 if (addr
->word
!= breakpoint_insn
.word
) {
344 * The breakpoint instruction was removed right
345 * after we hit it. Another cpu has removed
346 * either a probepoint or a debugger breakpoint
347 * at this address. In either case, no further
348 * handling of this interrupt is appropriate.
352 /* Not one of ours: let kernel handle it */
356 set_current_kprobe(p
, regs
, kcb
);
357 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
359 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
360 /* handler has already set things up, so skip ss setup */
361 reset_current_kprobe();
362 preempt_enable_no_resched();
366 prepare_singlestep(p
, regs
, kcb
);
367 if (kcb
->flags
& SKIP_DELAYSLOT
) {
368 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
370 p
->post_handler(p
, regs
, 0);
371 resume_execution(p
, regs
, kcb
);
372 preempt_enable_no_resched();
374 kcb
->kprobe_status
= KPROBE_HIT_SS
;
379 preempt_enable_no_resched();
384 static inline int post_kprobe_handler(struct pt_regs
*regs
)
386 struct kprobe
*cur
= kprobe_running();
387 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
392 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
393 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
394 cur
->post_handler(cur
, regs
, 0);
397 resume_execution(cur
, regs
, kcb
);
399 regs
->cp0_status
|= kcb
->kprobe_saved_SR
;
401 /* Restore back the original saved kprobes variables and continue. */
402 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
403 restore_previous_kprobe(kcb
);
406 reset_current_kprobe();
408 preempt_enable_no_resched();
413 static inline int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
415 struct kprobe
*cur
= kprobe_running();
416 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
418 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
421 if (kcb
->kprobe_status
& KPROBE_HIT_SS
) {
422 resume_execution(cur
, regs
, kcb
);
423 regs
->cp0_status
|= kcb
->kprobe_old_SR
;
425 reset_current_kprobe();
426 preempt_enable_no_resched();
432 * Wrapper routine for handling exceptions.
434 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
435 unsigned long val
, void *data
)
438 struct die_args
*args
= (struct die_args
*)data
;
439 int ret
= NOTIFY_DONE
;
443 if (kprobe_handler(args
->regs
))
447 if (post_kprobe_handler(args
->regs
))
452 /* kprobe_running() needs smp_processor_id() */
456 && kprobe_fault_handler(args
->regs
, args
->trapnr
))
467 * Function return probe trampoline:
468 * - init_kprobes() establishes a probepoint here
469 * - When the probed function returns, this probe causes the
472 static void __used
kretprobe_trampoline_holder(void)
476 /* Keep the assembler from reordering and placing JR here. */
479 ".global kretprobe_trampoline\n"
480 "kretprobe_trampoline:\n\t"
486 void kretprobe_trampoline(void);
488 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
489 struct pt_regs
*regs
)
491 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->regs
[31];
493 /* Replace the return addr with trampoline addr */
494 regs
->regs
[31] = (unsigned long)kretprobe_trampoline
;
498 * Called when the probe at kretprobe trampoline is hit
500 static int __kprobes
trampoline_probe_handler(struct kprobe
*p
,
501 struct pt_regs
*regs
)
503 struct kretprobe_instance
*ri
= NULL
;
504 struct hlist_head
*head
, empty_rp
;
505 struct hlist_node
*tmp
;
506 unsigned long flags
, orig_ret_address
= 0;
507 unsigned long trampoline_address
= (unsigned long)kretprobe_trampoline
;
509 INIT_HLIST_HEAD(&empty_rp
);
510 kretprobe_hash_lock(current
, &head
, &flags
);
513 * It is possible to have multiple instances associated with a given
514 * task either because an multiple functions in the call path
515 * have a return probe installed on them, and/or more than one return
516 * return probe was registered for a target function.
518 * We can handle this because:
519 * - instances are always inserted at the head of the list
520 * - when multiple return probes are registered for the same
521 * function, the first instance's ret_addr will point to the
522 * real return address, and all the rest will point to
523 * kretprobe_trampoline
525 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
526 if (ri
->task
!= current
)
527 /* another task is sharing our hash bucket */
530 if (ri
->rp
&& ri
->rp
->handler
)
531 ri
->rp
->handler(ri
, regs
);
533 orig_ret_address
= (unsigned long)ri
->ret_addr
;
534 recycle_rp_inst(ri
, &empty_rp
);
536 if (orig_ret_address
!= trampoline_address
)
538 * This is the real return address. Any other
539 * instances associated with this task are for
540 * other calls deeper on the call stack
545 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
546 instruction_pointer(regs
) = orig_ret_address
;
548 kretprobe_hash_unlock(current
, &flags
);
550 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
551 hlist_del(&ri
->hlist
);
555 * By returning a non-zero value, we are telling
556 * kprobe_handler() that we don't want the post_handler
557 * to run (and have re-enabled preemption)
562 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
564 if (p
->addr
== (kprobe_opcode_t
*)kretprobe_trampoline
)
570 static struct kprobe trampoline_p
= {
571 .addr
= (kprobe_opcode_t
*)kretprobe_trampoline
,
572 .pre_handler
= trampoline_probe_handler
575 int __init
arch_init_kprobes(void)
577 return register_kprobe(&trampoline_p
);