tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / mips / kernel / unaligned.c
blobce446eed62d28eb969fd217624ccab9cc6ae068d
1 /*
2 * Handle unaligned accesses by emulation.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
33 * #include <sys/sysmips.h>
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
41 * Below a little program to play around with this feature.
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
46 * struct foo {
47 * unsigned char bar[8];
48 * };
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
59 * printf("*p = %08lx\n", *p);
61 * *p = 0xdeadface;
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
76 #include <linux/context_tracking.h>
77 #include <linux/mm.h>
78 #include <linux/signal.h>
79 #include <linux/smp.h>
80 #include <linux/sched.h>
81 #include <linux/debugfs.h>
82 #include <linux/perf_event.h>
84 #include <asm/asm.h>
85 #include <asm/branch.h>
86 #include <asm/byteorder.h>
87 #include <asm/cop2.h>
88 #include <asm/debug.h>
89 #include <asm/fpu.h>
90 #include <asm/fpu_emulator.h>
91 #include <asm/inst.h>
92 #include <linux/uaccess.h>
94 #define STR(x) __STR(x)
95 #define __STR(x) #x
97 enum {
98 UNALIGNED_ACTION_QUIET,
99 UNALIGNED_ACTION_SIGNAL,
100 UNALIGNED_ACTION_SHOW,
102 #ifdef CONFIG_DEBUG_FS
103 static u32 unaligned_instructions;
104 static u32 unaligned_action;
105 #else
106 #define unaligned_action UNALIGNED_ACTION_QUIET
107 #endif
108 extern void show_registers(struct pt_regs *regs);
110 #ifdef __BIG_ENDIAN
111 #define _LoadHW(addr, value, res, type) \
112 do { \
113 __asm__ __volatile__ (".set\tnoat\n" \
114 "1:\t"type##_lb("%0", "0(%2)")"\n" \
115 "2:\t"type##_lbu("$1", "1(%2)")"\n\t"\
116 "sll\t%0, 0x8\n\t" \
117 "or\t%0, $1\n\t" \
118 "li\t%1, 0\n" \
119 "3:\t.set\tat\n\t" \
120 ".insn\n\t" \
121 ".section\t.fixup,\"ax\"\n\t" \
122 "4:\tli\t%1, %3\n\t" \
123 "j\t3b\n\t" \
124 ".previous\n\t" \
125 ".section\t__ex_table,\"a\"\n\t" \
126 STR(PTR)"\t1b, 4b\n\t" \
127 STR(PTR)"\t2b, 4b\n\t" \
128 ".previous" \
129 : "=&r" (value), "=r" (res) \
130 : "r" (addr), "i" (-EFAULT)); \
131 } while(0)
133 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
134 #define _LoadW(addr, value, res, type) \
135 do { \
136 __asm__ __volatile__ ( \
137 "1:\t"type##_lwl("%0", "(%2)")"\n" \
138 "2:\t"type##_lwr("%0", "3(%2)")"\n\t"\
139 "li\t%1, 0\n" \
140 "3:\n\t" \
141 ".insn\n\t" \
142 ".section\t.fixup,\"ax\"\n\t" \
143 "4:\tli\t%1, %3\n\t" \
144 "j\t3b\n\t" \
145 ".previous\n\t" \
146 ".section\t__ex_table,\"a\"\n\t" \
147 STR(PTR)"\t1b, 4b\n\t" \
148 STR(PTR)"\t2b, 4b\n\t" \
149 ".previous" \
150 : "=&r" (value), "=r" (res) \
151 : "r" (addr), "i" (-EFAULT)); \
152 } while(0)
154 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
155 /* For CPUs without lwl instruction */
156 #define _LoadW(addr, value, res, type) \
157 do { \
158 __asm__ __volatile__ ( \
159 ".set\tpush\n" \
160 ".set\tnoat\n\t" \
161 "1:"type##_lb("%0", "0(%2)")"\n\t" \
162 "2:"type##_lbu("$1", "1(%2)")"\n\t" \
163 "sll\t%0, 0x8\n\t" \
164 "or\t%0, $1\n\t" \
165 "3:"type##_lbu("$1", "2(%2)")"\n\t" \
166 "sll\t%0, 0x8\n\t" \
167 "or\t%0, $1\n\t" \
168 "4:"type##_lbu("$1", "3(%2)")"\n\t" \
169 "sll\t%0, 0x8\n\t" \
170 "or\t%0, $1\n\t" \
171 "li\t%1, 0\n" \
172 ".set\tpop\n" \
173 "10:\n\t" \
174 ".insn\n\t" \
175 ".section\t.fixup,\"ax\"\n\t" \
176 "11:\tli\t%1, %3\n\t" \
177 "j\t10b\n\t" \
178 ".previous\n\t" \
179 ".section\t__ex_table,\"a\"\n\t" \
180 STR(PTR)"\t1b, 11b\n\t" \
181 STR(PTR)"\t2b, 11b\n\t" \
182 STR(PTR)"\t3b, 11b\n\t" \
183 STR(PTR)"\t4b, 11b\n\t" \
184 ".previous" \
185 : "=&r" (value), "=r" (res) \
186 : "r" (addr), "i" (-EFAULT)); \
187 } while(0)
189 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
191 #define _LoadHWU(addr, value, res, type) \
192 do { \
193 __asm__ __volatile__ ( \
194 ".set\tnoat\n" \
195 "1:\t"type##_lbu("%0", "0(%2)")"\n" \
196 "2:\t"type##_lbu("$1", "1(%2)")"\n\t"\
197 "sll\t%0, 0x8\n\t" \
198 "or\t%0, $1\n\t" \
199 "li\t%1, 0\n" \
200 "3:\n\t" \
201 ".insn\n\t" \
202 ".set\tat\n\t" \
203 ".section\t.fixup,\"ax\"\n\t" \
204 "4:\tli\t%1, %3\n\t" \
205 "j\t3b\n\t" \
206 ".previous\n\t" \
207 ".section\t__ex_table,\"a\"\n\t" \
208 STR(PTR)"\t1b, 4b\n\t" \
209 STR(PTR)"\t2b, 4b\n\t" \
210 ".previous" \
211 : "=&r" (value), "=r" (res) \
212 : "r" (addr), "i" (-EFAULT)); \
213 } while(0)
215 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
216 #define _LoadWU(addr, value, res, type) \
217 do { \
218 __asm__ __volatile__ ( \
219 "1:\t"type##_lwl("%0", "(%2)")"\n" \
220 "2:\t"type##_lwr("%0", "3(%2)")"\n\t"\
221 "dsll\t%0, %0, 32\n\t" \
222 "dsrl\t%0, %0, 32\n\t" \
223 "li\t%1, 0\n" \
224 "3:\n\t" \
225 ".insn\n\t" \
226 "\t.section\t.fixup,\"ax\"\n\t" \
227 "4:\tli\t%1, %3\n\t" \
228 "j\t3b\n\t" \
229 ".previous\n\t" \
230 ".section\t__ex_table,\"a\"\n\t" \
231 STR(PTR)"\t1b, 4b\n\t" \
232 STR(PTR)"\t2b, 4b\n\t" \
233 ".previous" \
234 : "=&r" (value), "=r" (res) \
235 : "r" (addr), "i" (-EFAULT)); \
236 } while(0)
238 #define _LoadDW(addr, value, res) \
239 do { \
240 __asm__ __volatile__ ( \
241 "1:\tldl\t%0, (%2)\n" \
242 "2:\tldr\t%0, 7(%2)\n\t" \
243 "li\t%1, 0\n" \
244 "3:\n\t" \
245 ".insn\n\t" \
246 "\t.section\t.fixup,\"ax\"\n\t" \
247 "4:\tli\t%1, %3\n\t" \
248 "j\t3b\n\t" \
249 ".previous\n\t" \
250 ".section\t__ex_table,\"a\"\n\t" \
251 STR(PTR)"\t1b, 4b\n\t" \
252 STR(PTR)"\t2b, 4b\n\t" \
253 ".previous" \
254 : "=&r" (value), "=r" (res) \
255 : "r" (addr), "i" (-EFAULT)); \
256 } while(0)
258 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
259 /* For CPUs without lwl and ldl instructions */
260 #define _LoadWU(addr, value, res, type) \
261 do { \
262 __asm__ __volatile__ ( \
263 ".set\tpush\n\t" \
264 ".set\tnoat\n\t" \
265 "1:"type##_lbu("%0", "0(%2)")"\n\t" \
266 "2:"type##_lbu("$1", "1(%2)")"\n\t" \
267 "sll\t%0, 0x8\n\t" \
268 "or\t%0, $1\n\t" \
269 "3:"type##_lbu("$1", "2(%2)")"\n\t" \
270 "sll\t%0, 0x8\n\t" \
271 "or\t%0, $1\n\t" \
272 "4:"type##_lbu("$1", "3(%2)")"\n\t" \
273 "sll\t%0, 0x8\n\t" \
274 "or\t%0, $1\n\t" \
275 "li\t%1, 0\n" \
276 ".set\tpop\n" \
277 "10:\n\t" \
278 ".insn\n\t" \
279 ".section\t.fixup,\"ax\"\n\t" \
280 "11:\tli\t%1, %3\n\t" \
281 "j\t10b\n\t" \
282 ".previous\n\t" \
283 ".section\t__ex_table,\"a\"\n\t" \
284 STR(PTR)"\t1b, 11b\n\t" \
285 STR(PTR)"\t2b, 11b\n\t" \
286 STR(PTR)"\t3b, 11b\n\t" \
287 STR(PTR)"\t4b, 11b\n\t" \
288 ".previous" \
289 : "=&r" (value), "=r" (res) \
290 : "r" (addr), "i" (-EFAULT)); \
291 } while(0)
293 #define _LoadDW(addr, value, res) \
294 do { \
295 __asm__ __volatile__ ( \
296 ".set\tpush\n\t" \
297 ".set\tnoat\n\t" \
298 "1:lb\t%0, 0(%2)\n\t" \
299 "2:lbu\t $1, 1(%2)\n\t" \
300 "dsll\t%0, 0x8\n\t" \
301 "or\t%0, $1\n\t" \
302 "3:lbu\t$1, 2(%2)\n\t" \
303 "dsll\t%0, 0x8\n\t" \
304 "or\t%0, $1\n\t" \
305 "4:lbu\t$1, 3(%2)\n\t" \
306 "dsll\t%0, 0x8\n\t" \
307 "or\t%0, $1\n\t" \
308 "5:lbu\t$1, 4(%2)\n\t" \
309 "dsll\t%0, 0x8\n\t" \
310 "or\t%0, $1\n\t" \
311 "6:lbu\t$1, 5(%2)\n\t" \
312 "dsll\t%0, 0x8\n\t" \
313 "or\t%0, $1\n\t" \
314 "7:lbu\t$1, 6(%2)\n\t" \
315 "dsll\t%0, 0x8\n\t" \
316 "or\t%0, $1\n\t" \
317 "8:lbu\t$1, 7(%2)\n\t" \
318 "dsll\t%0, 0x8\n\t" \
319 "or\t%0, $1\n\t" \
320 "li\t%1, 0\n" \
321 ".set\tpop\n\t" \
322 "10:\n\t" \
323 ".insn\n\t" \
324 ".section\t.fixup,\"ax\"\n\t" \
325 "11:\tli\t%1, %3\n\t" \
326 "j\t10b\n\t" \
327 ".previous\n\t" \
328 ".section\t__ex_table,\"a\"\n\t" \
329 STR(PTR)"\t1b, 11b\n\t" \
330 STR(PTR)"\t2b, 11b\n\t" \
331 STR(PTR)"\t3b, 11b\n\t" \
332 STR(PTR)"\t4b, 11b\n\t" \
333 STR(PTR)"\t5b, 11b\n\t" \
334 STR(PTR)"\t6b, 11b\n\t" \
335 STR(PTR)"\t7b, 11b\n\t" \
336 STR(PTR)"\t8b, 11b\n\t" \
337 ".previous" \
338 : "=&r" (value), "=r" (res) \
339 : "r" (addr), "i" (-EFAULT)); \
340 } while(0)
342 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
345 #define _StoreHW(addr, value, res, type) \
346 do { \
347 __asm__ __volatile__ ( \
348 ".set\tnoat\n" \
349 "1:\t"type##_sb("%1", "1(%2)")"\n" \
350 "srl\t$1, %1, 0x8\n" \
351 "2:\t"type##_sb("$1", "0(%2)")"\n" \
352 ".set\tat\n\t" \
353 "li\t%0, 0\n" \
354 "3:\n\t" \
355 ".insn\n\t" \
356 ".section\t.fixup,\"ax\"\n\t" \
357 "4:\tli\t%0, %3\n\t" \
358 "j\t3b\n\t" \
359 ".previous\n\t" \
360 ".section\t__ex_table,\"a\"\n\t" \
361 STR(PTR)"\t1b, 4b\n\t" \
362 STR(PTR)"\t2b, 4b\n\t" \
363 ".previous" \
364 : "=r" (res) \
365 : "r" (value), "r" (addr), "i" (-EFAULT));\
366 } while(0)
368 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
369 #define _StoreW(addr, value, res, type) \
370 do { \
371 __asm__ __volatile__ ( \
372 "1:\t"type##_swl("%1", "(%2)")"\n" \
373 "2:\t"type##_swr("%1", "3(%2)")"\n\t"\
374 "li\t%0, 0\n" \
375 "3:\n\t" \
376 ".insn\n\t" \
377 ".section\t.fixup,\"ax\"\n\t" \
378 "4:\tli\t%0, %3\n\t" \
379 "j\t3b\n\t" \
380 ".previous\n\t" \
381 ".section\t__ex_table,\"a\"\n\t" \
382 STR(PTR)"\t1b, 4b\n\t" \
383 STR(PTR)"\t2b, 4b\n\t" \
384 ".previous" \
385 : "=r" (res) \
386 : "r" (value), "r" (addr), "i" (-EFAULT)); \
387 } while(0)
389 #define _StoreDW(addr, value, res) \
390 do { \
391 __asm__ __volatile__ ( \
392 "1:\tsdl\t%1,(%2)\n" \
393 "2:\tsdr\t%1, 7(%2)\n\t" \
394 "li\t%0, 0\n" \
395 "3:\n\t" \
396 ".insn\n\t" \
397 ".section\t.fixup,\"ax\"\n\t" \
398 "4:\tli\t%0, %3\n\t" \
399 "j\t3b\n\t" \
400 ".previous\n\t" \
401 ".section\t__ex_table,\"a\"\n\t" \
402 STR(PTR)"\t1b, 4b\n\t" \
403 STR(PTR)"\t2b, 4b\n\t" \
404 ".previous" \
405 : "=r" (res) \
406 : "r" (value), "r" (addr), "i" (-EFAULT)); \
407 } while(0)
409 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
410 #define _StoreW(addr, value, res, type) \
411 do { \
412 __asm__ __volatile__ ( \
413 ".set\tpush\n\t" \
414 ".set\tnoat\n\t" \
415 "1:"type##_sb("%1", "3(%2)")"\n\t" \
416 "srl\t$1, %1, 0x8\n\t" \
417 "2:"type##_sb("$1", "2(%2)")"\n\t" \
418 "srl\t$1, $1, 0x8\n\t" \
419 "3:"type##_sb("$1", "1(%2)")"\n\t" \
420 "srl\t$1, $1, 0x8\n\t" \
421 "4:"type##_sb("$1", "0(%2)")"\n\t" \
422 ".set\tpop\n\t" \
423 "li\t%0, 0\n" \
424 "10:\n\t" \
425 ".insn\n\t" \
426 ".section\t.fixup,\"ax\"\n\t" \
427 "11:\tli\t%0, %3\n\t" \
428 "j\t10b\n\t" \
429 ".previous\n\t" \
430 ".section\t__ex_table,\"a\"\n\t" \
431 STR(PTR)"\t1b, 11b\n\t" \
432 STR(PTR)"\t2b, 11b\n\t" \
433 STR(PTR)"\t3b, 11b\n\t" \
434 STR(PTR)"\t4b, 11b\n\t" \
435 ".previous" \
436 : "=&r" (res) \
437 : "r" (value), "r" (addr), "i" (-EFAULT) \
438 : "memory"); \
439 } while(0)
441 #define _StoreDW(addr, value, res) \
442 do { \
443 __asm__ __volatile__ ( \
444 ".set\tpush\n\t" \
445 ".set\tnoat\n\t" \
446 "1:sb\t%1, 7(%2)\n\t" \
447 "dsrl\t$1, %1, 0x8\n\t" \
448 "2:sb\t$1, 6(%2)\n\t" \
449 "dsrl\t$1, $1, 0x8\n\t" \
450 "3:sb\t$1, 5(%2)\n\t" \
451 "dsrl\t$1, $1, 0x8\n\t" \
452 "4:sb\t$1, 4(%2)\n\t" \
453 "dsrl\t$1, $1, 0x8\n\t" \
454 "5:sb\t$1, 3(%2)\n\t" \
455 "dsrl\t$1, $1, 0x8\n\t" \
456 "6:sb\t$1, 2(%2)\n\t" \
457 "dsrl\t$1, $1, 0x8\n\t" \
458 "7:sb\t$1, 1(%2)\n\t" \
459 "dsrl\t$1, $1, 0x8\n\t" \
460 "8:sb\t$1, 0(%2)\n\t" \
461 "dsrl\t$1, $1, 0x8\n\t" \
462 ".set\tpop\n\t" \
463 "li\t%0, 0\n" \
464 "10:\n\t" \
465 ".insn\n\t" \
466 ".section\t.fixup,\"ax\"\n\t" \
467 "11:\tli\t%0, %3\n\t" \
468 "j\t10b\n\t" \
469 ".previous\n\t" \
470 ".section\t__ex_table,\"a\"\n\t" \
471 STR(PTR)"\t1b, 11b\n\t" \
472 STR(PTR)"\t2b, 11b\n\t" \
473 STR(PTR)"\t3b, 11b\n\t" \
474 STR(PTR)"\t4b, 11b\n\t" \
475 STR(PTR)"\t5b, 11b\n\t" \
476 STR(PTR)"\t6b, 11b\n\t" \
477 STR(PTR)"\t7b, 11b\n\t" \
478 STR(PTR)"\t8b, 11b\n\t" \
479 ".previous" \
480 : "=&r" (res) \
481 : "r" (value), "r" (addr), "i" (-EFAULT) \
482 : "memory"); \
483 } while(0)
485 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
487 #else /* __BIG_ENDIAN */
489 #define _LoadHW(addr, value, res, type) \
490 do { \
491 __asm__ __volatile__ (".set\tnoat\n" \
492 "1:\t"type##_lb("%0", "1(%2)")"\n" \
493 "2:\t"type##_lbu("$1", "0(%2)")"\n\t"\
494 "sll\t%0, 0x8\n\t" \
495 "or\t%0, $1\n\t" \
496 "li\t%1, 0\n" \
497 "3:\t.set\tat\n\t" \
498 ".insn\n\t" \
499 ".section\t.fixup,\"ax\"\n\t" \
500 "4:\tli\t%1, %3\n\t" \
501 "j\t3b\n\t" \
502 ".previous\n\t" \
503 ".section\t__ex_table,\"a\"\n\t" \
504 STR(PTR)"\t1b, 4b\n\t" \
505 STR(PTR)"\t2b, 4b\n\t" \
506 ".previous" \
507 : "=&r" (value), "=r" (res) \
508 : "r" (addr), "i" (-EFAULT)); \
509 } while(0)
511 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
512 #define _LoadW(addr, value, res, type) \
513 do { \
514 __asm__ __volatile__ ( \
515 "1:\t"type##_lwl("%0", "3(%2)")"\n" \
516 "2:\t"type##_lwr("%0", "(%2)")"\n\t"\
517 "li\t%1, 0\n" \
518 "3:\n\t" \
519 ".insn\n\t" \
520 ".section\t.fixup,\"ax\"\n\t" \
521 "4:\tli\t%1, %3\n\t" \
522 "j\t3b\n\t" \
523 ".previous\n\t" \
524 ".section\t__ex_table,\"a\"\n\t" \
525 STR(PTR)"\t1b, 4b\n\t" \
526 STR(PTR)"\t2b, 4b\n\t" \
527 ".previous" \
528 : "=&r" (value), "=r" (res) \
529 : "r" (addr), "i" (-EFAULT)); \
530 } while(0)
532 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
533 /* For CPUs without lwl instruction */
534 #define _LoadW(addr, value, res, type) \
535 do { \
536 __asm__ __volatile__ ( \
537 ".set\tpush\n" \
538 ".set\tnoat\n\t" \
539 "1:"type##_lb("%0", "3(%2)")"\n\t" \
540 "2:"type##_lbu("$1", "2(%2)")"\n\t" \
541 "sll\t%0, 0x8\n\t" \
542 "or\t%0, $1\n\t" \
543 "3:"type##_lbu("$1", "1(%2)")"\n\t" \
544 "sll\t%0, 0x8\n\t" \
545 "or\t%0, $1\n\t" \
546 "4:"type##_lbu("$1", "0(%2)")"\n\t" \
547 "sll\t%0, 0x8\n\t" \
548 "or\t%0, $1\n\t" \
549 "li\t%1, 0\n" \
550 ".set\tpop\n" \
551 "10:\n\t" \
552 ".insn\n\t" \
553 ".section\t.fixup,\"ax\"\n\t" \
554 "11:\tli\t%1, %3\n\t" \
555 "j\t10b\n\t" \
556 ".previous\n\t" \
557 ".section\t__ex_table,\"a\"\n\t" \
558 STR(PTR)"\t1b, 11b\n\t" \
559 STR(PTR)"\t2b, 11b\n\t" \
560 STR(PTR)"\t3b, 11b\n\t" \
561 STR(PTR)"\t4b, 11b\n\t" \
562 ".previous" \
563 : "=&r" (value), "=r" (res) \
564 : "r" (addr), "i" (-EFAULT)); \
565 } while(0)
567 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
570 #define _LoadHWU(addr, value, res, type) \
571 do { \
572 __asm__ __volatile__ ( \
573 ".set\tnoat\n" \
574 "1:\t"type##_lbu("%0", "1(%2)")"\n" \
575 "2:\t"type##_lbu("$1", "0(%2)")"\n\t"\
576 "sll\t%0, 0x8\n\t" \
577 "or\t%0, $1\n\t" \
578 "li\t%1, 0\n" \
579 "3:\n\t" \
580 ".insn\n\t" \
581 ".set\tat\n\t" \
582 ".section\t.fixup,\"ax\"\n\t" \
583 "4:\tli\t%1, %3\n\t" \
584 "j\t3b\n\t" \
585 ".previous\n\t" \
586 ".section\t__ex_table,\"a\"\n\t" \
587 STR(PTR)"\t1b, 4b\n\t" \
588 STR(PTR)"\t2b, 4b\n\t" \
589 ".previous" \
590 : "=&r" (value), "=r" (res) \
591 : "r" (addr), "i" (-EFAULT)); \
592 } while(0)
594 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
595 #define _LoadWU(addr, value, res, type) \
596 do { \
597 __asm__ __volatile__ ( \
598 "1:\t"type##_lwl("%0", "3(%2)")"\n" \
599 "2:\t"type##_lwr("%0", "(%2)")"\n\t"\
600 "dsll\t%0, %0, 32\n\t" \
601 "dsrl\t%0, %0, 32\n\t" \
602 "li\t%1, 0\n" \
603 "3:\n\t" \
604 ".insn\n\t" \
605 "\t.section\t.fixup,\"ax\"\n\t" \
606 "4:\tli\t%1, %3\n\t" \
607 "j\t3b\n\t" \
608 ".previous\n\t" \
609 ".section\t__ex_table,\"a\"\n\t" \
610 STR(PTR)"\t1b, 4b\n\t" \
611 STR(PTR)"\t2b, 4b\n\t" \
612 ".previous" \
613 : "=&r" (value), "=r" (res) \
614 : "r" (addr), "i" (-EFAULT)); \
615 } while(0)
617 #define _LoadDW(addr, value, res) \
618 do { \
619 __asm__ __volatile__ ( \
620 "1:\tldl\t%0, 7(%2)\n" \
621 "2:\tldr\t%0, (%2)\n\t" \
622 "li\t%1, 0\n" \
623 "3:\n\t" \
624 ".insn\n\t" \
625 "\t.section\t.fixup,\"ax\"\n\t" \
626 "4:\tli\t%1, %3\n\t" \
627 "j\t3b\n\t" \
628 ".previous\n\t" \
629 ".section\t__ex_table,\"a\"\n\t" \
630 STR(PTR)"\t1b, 4b\n\t" \
631 STR(PTR)"\t2b, 4b\n\t" \
632 ".previous" \
633 : "=&r" (value), "=r" (res) \
634 : "r" (addr), "i" (-EFAULT)); \
635 } while(0)
637 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
638 /* For CPUs without lwl and ldl instructions */
639 #define _LoadWU(addr, value, res, type) \
640 do { \
641 __asm__ __volatile__ ( \
642 ".set\tpush\n\t" \
643 ".set\tnoat\n\t" \
644 "1:"type##_lbu("%0", "3(%2)")"\n\t" \
645 "2:"type##_lbu("$1", "2(%2)")"\n\t" \
646 "sll\t%0, 0x8\n\t" \
647 "or\t%0, $1\n\t" \
648 "3:"type##_lbu("$1", "1(%2)")"\n\t" \
649 "sll\t%0, 0x8\n\t" \
650 "or\t%0, $1\n\t" \
651 "4:"type##_lbu("$1", "0(%2)")"\n\t" \
652 "sll\t%0, 0x8\n\t" \
653 "or\t%0, $1\n\t" \
654 "li\t%1, 0\n" \
655 ".set\tpop\n" \
656 "10:\n\t" \
657 ".insn\n\t" \
658 ".section\t.fixup,\"ax\"\n\t" \
659 "11:\tli\t%1, %3\n\t" \
660 "j\t10b\n\t" \
661 ".previous\n\t" \
662 ".section\t__ex_table,\"a\"\n\t" \
663 STR(PTR)"\t1b, 11b\n\t" \
664 STR(PTR)"\t2b, 11b\n\t" \
665 STR(PTR)"\t3b, 11b\n\t" \
666 STR(PTR)"\t4b, 11b\n\t" \
667 ".previous" \
668 : "=&r" (value), "=r" (res) \
669 : "r" (addr), "i" (-EFAULT)); \
670 } while(0)
672 #define _LoadDW(addr, value, res) \
673 do { \
674 __asm__ __volatile__ ( \
675 ".set\tpush\n\t" \
676 ".set\tnoat\n\t" \
677 "1:lb\t%0, 7(%2)\n\t" \
678 "2:lbu\t$1, 6(%2)\n\t" \
679 "dsll\t%0, 0x8\n\t" \
680 "or\t%0, $1\n\t" \
681 "3:lbu\t$1, 5(%2)\n\t" \
682 "dsll\t%0, 0x8\n\t" \
683 "or\t%0, $1\n\t" \
684 "4:lbu\t$1, 4(%2)\n\t" \
685 "dsll\t%0, 0x8\n\t" \
686 "or\t%0, $1\n\t" \
687 "5:lbu\t$1, 3(%2)\n\t" \
688 "dsll\t%0, 0x8\n\t" \
689 "or\t%0, $1\n\t" \
690 "6:lbu\t$1, 2(%2)\n\t" \
691 "dsll\t%0, 0x8\n\t" \
692 "or\t%0, $1\n\t" \
693 "7:lbu\t$1, 1(%2)\n\t" \
694 "dsll\t%0, 0x8\n\t" \
695 "or\t%0, $1\n\t" \
696 "8:lbu\t$1, 0(%2)\n\t" \
697 "dsll\t%0, 0x8\n\t" \
698 "or\t%0, $1\n\t" \
699 "li\t%1, 0\n" \
700 ".set\tpop\n\t" \
701 "10:\n\t" \
702 ".insn\n\t" \
703 ".section\t.fixup,\"ax\"\n\t" \
704 "11:\tli\t%1, %3\n\t" \
705 "j\t10b\n\t" \
706 ".previous\n\t" \
707 ".section\t__ex_table,\"a\"\n\t" \
708 STR(PTR)"\t1b, 11b\n\t" \
709 STR(PTR)"\t2b, 11b\n\t" \
710 STR(PTR)"\t3b, 11b\n\t" \
711 STR(PTR)"\t4b, 11b\n\t" \
712 STR(PTR)"\t5b, 11b\n\t" \
713 STR(PTR)"\t6b, 11b\n\t" \
714 STR(PTR)"\t7b, 11b\n\t" \
715 STR(PTR)"\t8b, 11b\n\t" \
716 ".previous" \
717 : "=&r" (value), "=r" (res) \
718 : "r" (addr), "i" (-EFAULT)); \
719 } while(0)
720 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
722 #define _StoreHW(addr, value, res, type) \
723 do { \
724 __asm__ __volatile__ ( \
725 ".set\tnoat\n" \
726 "1:\t"type##_sb("%1", "0(%2)")"\n" \
727 "srl\t$1,%1, 0x8\n" \
728 "2:\t"type##_sb("$1", "1(%2)")"\n" \
729 ".set\tat\n\t" \
730 "li\t%0, 0\n" \
731 "3:\n\t" \
732 ".insn\n\t" \
733 ".section\t.fixup,\"ax\"\n\t" \
734 "4:\tli\t%0, %3\n\t" \
735 "j\t3b\n\t" \
736 ".previous\n\t" \
737 ".section\t__ex_table,\"a\"\n\t" \
738 STR(PTR)"\t1b, 4b\n\t" \
739 STR(PTR)"\t2b, 4b\n\t" \
740 ".previous" \
741 : "=r" (res) \
742 : "r" (value), "r" (addr), "i" (-EFAULT));\
743 } while(0)
745 #ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
746 #define _StoreW(addr, value, res, type) \
747 do { \
748 __asm__ __volatile__ ( \
749 "1:\t"type##_swl("%1", "3(%2)")"\n" \
750 "2:\t"type##_swr("%1", "(%2)")"\n\t"\
751 "li\t%0, 0\n" \
752 "3:\n\t" \
753 ".insn\n\t" \
754 ".section\t.fixup,\"ax\"\n\t" \
755 "4:\tli\t%0, %3\n\t" \
756 "j\t3b\n\t" \
757 ".previous\n\t" \
758 ".section\t__ex_table,\"a\"\n\t" \
759 STR(PTR)"\t1b, 4b\n\t" \
760 STR(PTR)"\t2b, 4b\n\t" \
761 ".previous" \
762 : "=r" (res) \
763 : "r" (value), "r" (addr), "i" (-EFAULT)); \
764 } while(0)
766 #define _StoreDW(addr, value, res) \
767 do { \
768 __asm__ __volatile__ ( \
769 "1:\tsdl\t%1, 7(%2)\n" \
770 "2:\tsdr\t%1, (%2)\n\t" \
771 "li\t%0, 0\n" \
772 "3:\n\t" \
773 ".insn\n\t" \
774 ".section\t.fixup,\"ax\"\n\t" \
775 "4:\tli\t%0, %3\n\t" \
776 "j\t3b\n\t" \
777 ".previous\n\t" \
778 ".section\t__ex_table,\"a\"\n\t" \
779 STR(PTR)"\t1b, 4b\n\t" \
780 STR(PTR)"\t2b, 4b\n\t" \
781 ".previous" \
782 : "=r" (res) \
783 : "r" (value), "r" (addr), "i" (-EFAULT)); \
784 } while(0)
786 #else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
787 /* For CPUs without swl and sdl instructions */
788 #define _StoreW(addr, value, res, type) \
789 do { \
790 __asm__ __volatile__ ( \
791 ".set\tpush\n\t" \
792 ".set\tnoat\n\t" \
793 "1:"type##_sb("%1", "0(%2)")"\n\t" \
794 "srl\t$1, %1, 0x8\n\t" \
795 "2:"type##_sb("$1", "1(%2)")"\n\t" \
796 "srl\t$1, $1, 0x8\n\t" \
797 "3:"type##_sb("$1", "2(%2)")"\n\t" \
798 "srl\t$1, $1, 0x8\n\t" \
799 "4:"type##_sb("$1", "3(%2)")"\n\t" \
800 ".set\tpop\n\t" \
801 "li\t%0, 0\n" \
802 "10:\n\t" \
803 ".insn\n\t" \
804 ".section\t.fixup,\"ax\"\n\t" \
805 "11:\tli\t%0, %3\n\t" \
806 "j\t10b\n\t" \
807 ".previous\n\t" \
808 ".section\t__ex_table,\"a\"\n\t" \
809 STR(PTR)"\t1b, 11b\n\t" \
810 STR(PTR)"\t2b, 11b\n\t" \
811 STR(PTR)"\t3b, 11b\n\t" \
812 STR(PTR)"\t4b, 11b\n\t" \
813 ".previous" \
814 : "=&r" (res) \
815 : "r" (value), "r" (addr), "i" (-EFAULT) \
816 : "memory"); \
817 } while(0)
819 #define _StoreDW(addr, value, res) \
820 do { \
821 __asm__ __volatile__ ( \
822 ".set\tpush\n\t" \
823 ".set\tnoat\n\t" \
824 "1:sb\t%1, 0(%2)\n\t" \
825 "dsrl\t$1, %1, 0x8\n\t" \
826 "2:sb\t$1, 1(%2)\n\t" \
827 "dsrl\t$1, $1, 0x8\n\t" \
828 "3:sb\t$1, 2(%2)\n\t" \
829 "dsrl\t$1, $1, 0x8\n\t" \
830 "4:sb\t$1, 3(%2)\n\t" \
831 "dsrl\t$1, $1, 0x8\n\t" \
832 "5:sb\t$1, 4(%2)\n\t" \
833 "dsrl\t$1, $1, 0x8\n\t" \
834 "6:sb\t$1, 5(%2)\n\t" \
835 "dsrl\t$1, $1, 0x8\n\t" \
836 "7:sb\t$1, 6(%2)\n\t" \
837 "dsrl\t$1, $1, 0x8\n\t" \
838 "8:sb\t$1, 7(%2)\n\t" \
839 "dsrl\t$1, $1, 0x8\n\t" \
840 ".set\tpop\n\t" \
841 "li\t%0, 0\n" \
842 "10:\n\t" \
843 ".insn\n\t" \
844 ".section\t.fixup,\"ax\"\n\t" \
845 "11:\tli\t%0, %3\n\t" \
846 "j\t10b\n\t" \
847 ".previous\n\t" \
848 ".section\t__ex_table,\"a\"\n\t" \
849 STR(PTR)"\t1b, 11b\n\t" \
850 STR(PTR)"\t2b, 11b\n\t" \
851 STR(PTR)"\t3b, 11b\n\t" \
852 STR(PTR)"\t4b, 11b\n\t" \
853 STR(PTR)"\t5b, 11b\n\t" \
854 STR(PTR)"\t6b, 11b\n\t" \
855 STR(PTR)"\t7b, 11b\n\t" \
856 STR(PTR)"\t8b, 11b\n\t" \
857 ".previous" \
858 : "=&r" (res) \
859 : "r" (value), "r" (addr), "i" (-EFAULT) \
860 : "memory"); \
861 } while(0)
863 #endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
864 #endif
866 #define LoadHWU(addr, value, res) _LoadHWU(addr, value, res, kernel)
867 #define LoadHWUE(addr, value, res) _LoadHWU(addr, value, res, user)
868 #define LoadWU(addr, value, res) _LoadWU(addr, value, res, kernel)
869 #define LoadWUE(addr, value, res) _LoadWU(addr, value, res, user)
870 #define LoadHW(addr, value, res) _LoadHW(addr, value, res, kernel)
871 #define LoadHWE(addr, value, res) _LoadHW(addr, value, res, user)
872 #define LoadW(addr, value, res) _LoadW(addr, value, res, kernel)
873 #define LoadWE(addr, value, res) _LoadW(addr, value, res, user)
874 #define LoadDW(addr, value, res) _LoadDW(addr, value, res)
876 #define StoreHW(addr, value, res) _StoreHW(addr, value, res, kernel)
877 #define StoreHWE(addr, value, res) _StoreHW(addr, value, res, user)
878 #define StoreW(addr, value, res) _StoreW(addr, value, res, kernel)
879 #define StoreWE(addr, value, res) _StoreW(addr, value, res, user)
880 #define StoreDW(addr, value, res) _StoreDW(addr, value, res)
882 static void emulate_load_store_insn(struct pt_regs *regs,
883 void __user *addr, unsigned int __user *pc)
885 union mips_instruction insn;
886 unsigned long value;
887 unsigned int res, preempted;
888 unsigned long origpc;
889 unsigned long orig31;
890 void __user *fault_addr = NULL;
891 #ifdef CONFIG_EVA
892 mm_segment_t seg;
893 #endif
894 union fpureg *fpr;
895 enum msa_2b_fmt df;
896 unsigned int wd;
897 origpc = (unsigned long)pc;
898 orig31 = regs->regs[31];
900 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
903 * This load never faults.
905 __get_user(insn.word, pc);
907 switch (insn.i_format.opcode) {
909 * These are instructions that a compiler doesn't generate. We
910 * can assume therefore that the code is MIPS-aware and
911 * really buggy. Emulating these instructions would break the
912 * semantics anyway.
914 case ll_op:
915 case lld_op:
916 case sc_op:
917 case scd_op:
920 * For these instructions the only way to create an address
921 * error is an attempted access to kernel/supervisor address
922 * space.
924 case ldl_op:
925 case ldr_op:
926 case lwl_op:
927 case lwr_op:
928 case sdl_op:
929 case sdr_op:
930 case swl_op:
931 case swr_op:
932 case lb_op:
933 case lbu_op:
934 case sb_op:
935 goto sigbus;
938 * The remaining opcodes are the ones that are really of
939 * interest.
941 case spec3_op:
942 if (insn.dsp_format.func == lx_op) {
943 switch (insn.dsp_format.op) {
944 case lwx_op:
945 if (!access_ok(VERIFY_READ, addr, 4))
946 goto sigbus;
947 LoadW(addr, value, res);
948 if (res)
949 goto fault;
950 compute_return_epc(regs);
951 regs->regs[insn.dsp_format.rd] = value;
952 break;
953 case lhx_op:
954 if (!access_ok(VERIFY_READ, addr, 2))
955 goto sigbus;
956 LoadHW(addr, value, res);
957 if (res)
958 goto fault;
959 compute_return_epc(regs);
960 regs->regs[insn.dsp_format.rd] = value;
961 break;
962 default:
963 goto sigill;
966 #ifdef CONFIG_EVA
967 else {
969 * we can land here only from kernel accessing user
970 * memory, so we need to "switch" the address limit to
971 * user space, so that address check can work properly.
973 seg = get_fs();
974 set_fs(USER_DS);
975 switch (insn.spec3_format.func) {
976 case lhe_op:
977 if (!access_ok(VERIFY_READ, addr, 2)) {
978 set_fs(seg);
979 goto sigbus;
981 LoadHWE(addr, value, res);
982 if (res) {
983 set_fs(seg);
984 goto fault;
986 compute_return_epc(regs);
987 regs->regs[insn.spec3_format.rt] = value;
988 break;
989 case lwe_op:
990 if (!access_ok(VERIFY_READ, addr, 4)) {
991 set_fs(seg);
992 goto sigbus;
994 LoadWE(addr, value, res);
995 if (res) {
996 set_fs(seg);
997 goto fault;
999 compute_return_epc(regs);
1000 regs->regs[insn.spec3_format.rt] = value;
1001 break;
1002 case lhue_op:
1003 if (!access_ok(VERIFY_READ, addr, 2)) {
1004 set_fs(seg);
1005 goto sigbus;
1007 LoadHWUE(addr, value, res);
1008 if (res) {
1009 set_fs(seg);
1010 goto fault;
1012 compute_return_epc(regs);
1013 regs->regs[insn.spec3_format.rt] = value;
1014 break;
1015 case she_op:
1016 if (!access_ok(VERIFY_WRITE, addr, 2)) {
1017 set_fs(seg);
1018 goto sigbus;
1020 compute_return_epc(regs);
1021 value = regs->regs[insn.spec3_format.rt];
1022 StoreHWE(addr, value, res);
1023 if (res) {
1024 set_fs(seg);
1025 goto fault;
1027 break;
1028 case swe_op:
1029 if (!access_ok(VERIFY_WRITE, addr, 4)) {
1030 set_fs(seg);
1031 goto sigbus;
1033 compute_return_epc(regs);
1034 value = regs->regs[insn.spec3_format.rt];
1035 StoreWE(addr, value, res);
1036 if (res) {
1037 set_fs(seg);
1038 goto fault;
1040 break;
1041 default:
1042 set_fs(seg);
1043 goto sigill;
1045 set_fs(seg);
1047 #endif
1048 break;
1049 case lh_op:
1050 if (!access_ok(VERIFY_READ, addr, 2))
1051 goto sigbus;
1053 if (IS_ENABLED(CONFIG_EVA)) {
1054 if (uaccess_kernel())
1055 LoadHW(addr, value, res);
1056 else
1057 LoadHWE(addr, value, res);
1058 } else {
1059 LoadHW(addr, value, res);
1062 if (res)
1063 goto fault;
1064 compute_return_epc(regs);
1065 regs->regs[insn.i_format.rt] = value;
1066 break;
1068 case lw_op:
1069 if (!access_ok(VERIFY_READ, addr, 4))
1070 goto sigbus;
1072 if (IS_ENABLED(CONFIG_EVA)) {
1073 if (uaccess_kernel())
1074 LoadW(addr, value, res);
1075 else
1076 LoadWE(addr, value, res);
1077 } else {
1078 LoadW(addr, value, res);
1081 if (res)
1082 goto fault;
1083 compute_return_epc(regs);
1084 regs->regs[insn.i_format.rt] = value;
1085 break;
1087 case lhu_op:
1088 if (!access_ok(VERIFY_READ, addr, 2))
1089 goto sigbus;
1091 if (IS_ENABLED(CONFIG_EVA)) {
1092 if (uaccess_kernel())
1093 LoadHWU(addr, value, res);
1094 else
1095 LoadHWUE(addr, value, res);
1096 } else {
1097 LoadHWU(addr, value, res);
1100 if (res)
1101 goto fault;
1102 compute_return_epc(regs);
1103 regs->regs[insn.i_format.rt] = value;
1104 break;
1106 case lwu_op:
1107 #ifdef CONFIG_64BIT
1109 * A 32-bit kernel might be running on a 64-bit processor. But
1110 * if we're on a 32-bit processor and an i-cache incoherency
1111 * or race makes us see a 64-bit instruction here the sdl/sdr
1112 * would blow up, so for now we don't handle unaligned 64-bit
1113 * instructions on 32-bit kernels.
1115 if (!access_ok(VERIFY_READ, addr, 4))
1116 goto sigbus;
1118 LoadWU(addr, value, res);
1119 if (res)
1120 goto fault;
1121 compute_return_epc(regs);
1122 regs->regs[insn.i_format.rt] = value;
1123 break;
1124 #endif /* CONFIG_64BIT */
1126 /* Cannot handle 64-bit instructions in 32-bit kernel */
1127 goto sigill;
1129 case ld_op:
1130 #ifdef CONFIG_64BIT
1132 * A 32-bit kernel might be running on a 64-bit processor. But
1133 * if we're on a 32-bit processor and an i-cache incoherency
1134 * or race makes us see a 64-bit instruction here the sdl/sdr
1135 * would blow up, so for now we don't handle unaligned 64-bit
1136 * instructions on 32-bit kernels.
1138 if (!access_ok(VERIFY_READ, addr, 8))
1139 goto sigbus;
1141 LoadDW(addr, value, res);
1142 if (res)
1143 goto fault;
1144 compute_return_epc(regs);
1145 regs->regs[insn.i_format.rt] = value;
1146 break;
1147 #endif /* CONFIG_64BIT */
1149 /* Cannot handle 64-bit instructions in 32-bit kernel */
1150 goto sigill;
1152 case sh_op:
1153 if (!access_ok(VERIFY_WRITE, addr, 2))
1154 goto sigbus;
1156 compute_return_epc(regs);
1157 value = regs->regs[insn.i_format.rt];
1159 if (IS_ENABLED(CONFIG_EVA)) {
1160 if (uaccess_kernel())
1161 StoreHW(addr, value, res);
1162 else
1163 StoreHWE(addr, value, res);
1164 } else {
1165 StoreHW(addr, value, res);
1168 if (res)
1169 goto fault;
1170 break;
1172 case sw_op:
1173 if (!access_ok(VERIFY_WRITE, addr, 4))
1174 goto sigbus;
1176 compute_return_epc(regs);
1177 value = regs->regs[insn.i_format.rt];
1179 if (IS_ENABLED(CONFIG_EVA)) {
1180 if (uaccess_kernel())
1181 StoreW(addr, value, res);
1182 else
1183 StoreWE(addr, value, res);
1184 } else {
1185 StoreW(addr, value, res);
1188 if (res)
1189 goto fault;
1190 break;
1192 case sd_op:
1193 #ifdef CONFIG_64BIT
1195 * A 32-bit kernel might be running on a 64-bit processor. But
1196 * if we're on a 32-bit processor and an i-cache incoherency
1197 * or race makes us see a 64-bit instruction here the sdl/sdr
1198 * would blow up, so for now we don't handle unaligned 64-bit
1199 * instructions on 32-bit kernels.
1201 if (!access_ok(VERIFY_WRITE, addr, 8))
1202 goto sigbus;
1204 compute_return_epc(regs);
1205 value = regs->regs[insn.i_format.rt];
1206 StoreDW(addr, value, res);
1207 if (res)
1208 goto fault;
1209 break;
1210 #endif /* CONFIG_64BIT */
1212 /* Cannot handle 64-bit instructions in 32-bit kernel */
1213 goto sigill;
1215 case lwc1_op:
1216 case ldc1_op:
1217 case swc1_op:
1218 case sdc1_op:
1219 case cop1x_op:
1220 die_if_kernel("Unaligned FP access in kernel code", regs);
1221 BUG_ON(!used_math());
1223 lose_fpu(1); /* Save FPU state for the emulator. */
1224 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1225 &fault_addr);
1226 own_fpu(1); /* Restore FPU state. */
1228 /* Signal if something went wrong. */
1229 process_fpemu_return(res, fault_addr, 0);
1231 if (res == 0)
1232 break;
1233 return;
1235 case msa_op:
1236 if (!cpu_has_msa)
1237 goto sigill;
1240 * If we've reached this point then userland should have taken
1241 * the MSA disabled exception & initialised vector context at
1242 * some point in the past.
1244 BUG_ON(!thread_msa_context_live());
1246 df = insn.msa_mi10_format.df;
1247 wd = insn.msa_mi10_format.wd;
1248 fpr = &current->thread.fpu.fpr[wd];
1250 switch (insn.msa_mi10_format.func) {
1251 case msa_ld_op:
1252 if (!access_ok(VERIFY_READ, addr, sizeof(*fpr)))
1253 goto sigbus;
1255 do {
1257 * If we have live MSA context keep track of
1258 * whether we get preempted in order to avoid
1259 * the register context we load being clobbered
1260 * by the live context as it's saved during
1261 * preemption. If we don't have live context
1262 * then it can't be saved to clobber the value
1263 * we load.
1265 preempted = test_thread_flag(TIF_USEDMSA);
1267 res = __copy_from_user_inatomic(fpr, addr,
1268 sizeof(*fpr));
1269 if (res)
1270 goto fault;
1273 * Update the hardware register if it is in use
1274 * by the task in this quantum, in order to
1275 * avoid having to save & restore the whole
1276 * vector context.
1278 preempt_disable();
1279 if (test_thread_flag(TIF_USEDMSA)) {
1280 write_msa_wr(wd, fpr, df);
1281 preempted = 0;
1283 preempt_enable();
1284 } while (preempted);
1285 break;
1287 case msa_st_op:
1288 if (!access_ok(VERIFY_WRITE, addr, sizeof(*fpr)))
1289 goto sigbus;
1292 * Update from the hardware register if it is in use by
1293 * the task in this quantum, in order to avoid having to
1294 * save & restore the whole vector context.
1296 preempt_disable();
1297 if (test_thread_flag(TIF_USEDMSA))
1298 read_msa_wr(wd, fpr, df);
1299 preempt_enable();
1301 res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
1302 if (res)
1303 goto fault;
1304 break;
1306 default:
1307 goto sigbus;
1310 compute_return_epc(regs);
1311 break;
1313 #ifndef CONFIG_CPU_MIPSR6
1315 * COP2 is available to implementor for application specific use.
1316 * It's up to applications to register a notifier chain and do
1317 * whatever they have to do, including possible sending of signals.
1319 * This instruction has been reallocated in Release 6
1321 case lwc2_op:
1322 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
1323 break;
1325 case ldc2_op:
1326 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
1327 break;
1329 case swc2_op:
1330 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
1331 break;
1333 case sdc2_op:
1334 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
1335 break;
1336 #endif
1337 default:
1339 * Pheeee... We encountered an yet unknown instruction or
1340 * cache coherence problem. Die sucker, die ...
1342 goto sigill;
1345 #ifdef CONFIG_DEBUG_FS
1346 unaligned_instructions++;
1347 #endif
1349 return;
1351 fault:
1352 /* roll back jump/branch */
1353 regs->cp0_epc = origpc;
1354 regs->regs[31] = orig31;
1355 /* Did we have an exception handler installed? */
1356 if (fixup_exception(regs))
1357 return;
1359 die_if_kernel("Unhandled kernel unaligned access", regs);
1360 force_sig(SIGSEGV, current);
1362 return;
1364 sigbus:
1365 die_if_kernel("Unhandled kernel unaligned access", regs);
1366 force_sig(SIGBUS, current);
1368 return;
1370 sigill:
1371 die_if_kernel
1372 ("Unhandled kernel unaligned access or invalid instruction", regs);
1373 force_sig(SIGILL, current);
1376 /* Recode table from 16-bit register notation to 32-bit GPR. */
1377 const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
1379 /* Recode table from 16-bit STORE register notation to 32-bit GPR. */
1380 static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
1382 static void emulate_load_store_microMIPS(struct pt_regs *regs,
1383 void __user *addr)
1385 unsigned long value;
1386 unsigned int res;
1387 int i;
1388 unsigned int reg = 0, rvar;
1389 unsigned long orig31;
1390 u16 __user *pc16;
1391 u16 halfword;
1392 unsigned int word;
1393 unsigned long origpc, contpc;
1394 union mips_instruction insn;
1395 struct mm_decoded_insn mminsn;
1396 void __user *fault_addr = NULL;
1398 origpc = regs->cp0_epc;
1399 orig31 = regs->regs[31];
1401 mminsn.micro_mips_mode = 1;
1404 * This load never faults.
1406 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
1407 __get_user(halfword, pc16);
1408 pc16++;
1409 contpc = regs->cp0_epc + 2;
1410 word = ((unsigned int)halfword << 16);
1411 mminsn.pc_inc = 2;
1413 if (!mm_insn_16bit(halfword)) {
1414 __get_user(halfword, pc16);
1415 pc16++;
1416 contpc = regs->cp0_epc + 4;
1417 mminsn.pc_inc = 4;
1418 word |= halfword;
1420 mminsn.insn = word;
1422 if (get_user(halfword, pc16))
1423 goto fault;
1424 mminsn.next_pc_inc = 2;
1425 word = ((unsigned int)halfword << 16);
1427 if (!mm_insn_16bit(halfword)) {
1428 pc16++;
1429 if (get_user(halfword, pc16))
1430 goto fault;
1431 mminsn.next_pc_inc = 4;
1432 word |= halfword;
1434 mminsn.next_insn = word;
1436 insn = (union mips_instruction)(mminsn.insn);
1437 if (mm_isBranchInstr(regs, mminsn, &contpc))
1438 insn = (union mips_instruction)(mminsn.next_insn);
1440 /* Parse instruction to find what to do */
1442 switch (insn.mm_i_format.opcode) {
1444 case mm_pool32a_op:
1445 switch (insn.mm_x_format.func) {
1446 case mm_lwxs_op:
1447 reg = insn.mm_x_format.rd;
1448 goto loadW;
1451 goto sigbus;
1453 case mm_pool32b_op:
1454 switch (insn.mm_m_format.func) {
1455 case mm_lwp_func:
1456 reg = insn.mm_m_format.rd;
1457 if (reg == 31)
1458 goto sigbus;
1460 if (!access_ok(VERIFY_READ, addr, 8))
1461 goto sigbus;
1463 LoadW(addr, value, res);
1464 if (res)
1465 goto fault;
1466 regs->regs[reg] = value;
1467 addr += 4;
1468 LoadW(addr, value, res);
1469 if (res)
1470 goto fault;
1471 regs->regs[reg + 1] = value;
1472 goto success;
1474 case mm_swp_func:
1475 reg = insn.mm_m_format.rd;
1476 if (reg == 31)
1477 goto sigbus;
1479 if (!access_ok(VERIFY_WRITE, addr, 8))
1480 goto sigbus;
1482 value = regs->regs[reg];
1483 StoreW(addr, value, res);
1484 if (res)
1485 goto fault;
1486 addr += 4;
1487 value = regs->regs[reg + 1];
1488 StoreW(addr, value, res);
1489 if (res)
1490 goto fault;
1491 goto success;
1493 case mm_ldp_func:
1494 #ifdef CONFIG_64BIT
1495 reg = insn.mm_m_format.rd;
1496 if (reg == 31)
1497 goto sigbus;
1499 if (!access_ok(VERIFY_READ, addr, 16))
1500 goto sigbus;
1502 LoadDW(addr, value, res);
1503 if (res)
1504 goto fault;
1505 regs->regs[reg] = value;
1506 addr += 8;
1507 LoadDW(addr, value, res);
1508 if (res)
1509 goto fault;
1510 regs->regs[reg + 1] = value;
1511 goto success;
1512 #endif /* CONFIG_64BIT */
1514 goto sigill;
1516 case mm_sdp_func:
1517 #ifdef CONFIG_64BIT
1518 reg = insn.mm_m_format.rd;
1519 if (reg == 31)
1520 goto sigbus;
1522 if (!access_ok(VERIFY_WRITE, addr, 16))
1523 goto sigbus;
1525 value = regs->regs[reg];
1526 StoreDW(addr, value, res);
1527 if (res)
1528 goto fault;
1529 addr += 8;
1530 value = regs->regs[reg + 1];
1531 StoreDW(addr, value, res);
1532 if (res)
1533 goto fault;
1534 goto success;
1535 #endif /* CONFIG_64BIT */
1537 goto sigill;
1539 case mm_lwm32_func:
1540 reg = insn.mm_m_format.rd;
1541 rvar = reg & 0xf;
1542 if ((rvar > 9) || !reg)
1543 goto sigill;
1544 if (reg & 0x10) {
1545 if (!access_ok
1546 (VERIFY_READ, addr, 4 * (rvar + 1)))
1547 goto sigbus;
1548 } else {
1549 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1550 goto sigbus;
1552 if (rvar == 9)
1553 rvar = 8;
1554 for (i = 16; rvar; rvar--, i++) {
1555 LoadW(addr, value, res);
1556 if (res)
1557 goto fault;
1558 addr += 4;
1559 regs->regs[i] = value;
1561 if ((reg & 0xf) == 9) {
1562 LoadW(addr, value, res);
1563 if (res)
1564 goto fault;
1565 addr += 4;
1566 regs->regs[30] = value;
1568 if (reg & 0x10) {
1569 LoadW(addr, value, res);
1570 if (res)
1571 goto fault;
1572 regs->regs[31] = value;
1574 goto success;
1576 case mm_swm32_func:
1577 reg = insn.mm_m_format.rd;
1578 rvar = reg & 0xf;
1579 if ((rvar > 9) || !reg)
1580 goto sigill;
1581 if (reg & 0x10) {
1582 if (!access_ok
1583 (VERIFY_WRITE, addr, 4 * (rvar + 1)))
1584 goto sigbus;
1585 } else {
1586 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1587 goto sigbus;
1589 if (rvar == 9)
1590 rvar = 8;
1591 for (i = 16; rvar; rvar--, i++) {
1592 value = regs->regs[i];
1593 StoreW(addr, value, res);
1594 if (res)
1595 goto fault;
1596 addr += 4;
1598 if ((reg & 0xf) == 9) {
1599 value = regs->regs[30];
1600 StoreW(addr, value, res);
1601 if (res)
1602 goto fault;
1603 addr += 4;
1605 if (reg & 0x10) {
1606 value = regs->regs[31];
1607 StoreW(addr, value, res);
1608 if (res)
1609 goto fault;
1611 goto success;
1613 case mm_ldm_func:
1614 #ifdef CONFIG_64BIT
1615 reg = insn.mm_m_format.rd;
1616 rvar = reg & 0xf;
1617 if ((rvar > 9) || !reg)
1618 goto sigill;
1619 if (reg & 0x10) {
1620 if (!access_ok
1621 (VERIFY_READ, addr, 8 * (rvar + 1)))
1622 goto sigbus;
1623 } else {
1624 if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1625 goto sigbus;
1627 if (rvar == 9)
1628 rvar = 8;
1630 for (i = 16; rvar; rvar--, i++) {
1631 LoadDW(addr, value, res);
1632 if (res)
1633 goto fault;
1634 addr += 4;
1635 regs->regs[i] = value;
1637 if ((reg & 0xf) == 9) {
1638 LoadDW(addr, value, res);
1639 if (res)
1640 goto fault;
1641 addr += 8;
1642 regs->regs[30] = value;
1644 if (reg & 0x10) {
1645 LoadDW(addr, value, res);
1646 if (res)
1647 goto fault;
1648 regs->regs[31] = value;
1650 goto success;
1651 #endif /* CONFIG_64BIT */
1653 goto sigill;
1655 case mm_sdm_func:
1656 #ifdef CONFIG_64BIT
1657 reg = insn.mm_m_format.rd;
1658 rvar = reg & 0xf;
1659 if ((rvar > 9) || !reg)
1660 goto sigill;
1661 if (reg & 0x10) {
1662 if (!access_ok
1663 (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1664 goto sigbus;
1665 } else {
1666 if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1667 goto sigbus;
1669 if (rvar == 9)
1670 rvar = 8;
1672 for (i = 16; rvar; rvar--, i++) {
1673 value = regs->regs[i];
1674 StoreDW(addr, value, res);
1675 if (res)
1676 goto fault;
1677 addr += 8;
1679 if ((reg & 0xf) == 9) {
1680 value = regs->regs[30];
1681 StoreDW(addr, value, res);
1682 if (res)
1683 goto fault;
1684 addr += 8;
1686 if (reg & 0x10) {
1687 value = regs->regs[31];
1688 StoreDW(addr, value, res);
1689 if (res)
1690 goto fault;
1692 goto success;
1693 #endif /* CONFIG_64BIT */
1695 goto sigill;
1697 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1700 goto sigbus;
1702 case mm_pool32c_op:
1703 switch (insn.mm_m_format.func) {
1704 case mm_lwu_func:
1705 reg = insn.mm_m_format.rd;
1706 goto loadWU;
1709 /* LL,SC,LLD,SCD are not serviced */
1710 goto sigbus;
1712 case mm_pool32f_op:
1713 switch (insn.mm_x_format.func) {
1714 case mm_lwxc1_func:
1715 case mm_swxc1_func:
1716 case mm_ldxc1_func:
1717 case mm_sdxc1_func:
1718 goto fpu_emul;
1721 goto sigbus;
1723 case mm_ldc132_op:
1724 case mm_sdc132_op:
1725 case mm_lwc132_op:
1726 case mm_swc132_op:
1727 fpu_emul:
1728 /* roll back jump/branch */
1729 regs->cp0_epc = origpc;
1730 regs->regs[31] = orig31;
1732 die_if_kernel("Unaligned FP access in kernel code", regs);
1733 BUG_ON(!used_math());
1734 BUG_ON(!is_fpu_owner());
1736 lose_fpu(1); /* save the FPU state for the emulator */
1737 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1738 &fault_addr);
1739 own_fpu(1); /* restore FPU state */
1741 /* If something went wrong, signal */
1742 process_fpemu_return(res, fault_addr, 0);
1744 if (res == 0)
1745 goto success;
1746 return;
1748 case mm_lh32_op:
1749 reg = insn.mm_i_format.rt;
1750 goto loadHW;
1752 case mm_lhu32_op:
1753 reg = insn.mm_i_format.rt;
1754 goto loadHWU;
1756 case mm_lw32_op:
1757 reg = insn.mm_i_format.rt;
1758 goto loadW;
1760 case mm_sh32_op:
1761 reg = insn.mm_i_format.rt;
1762 goto storeHW;
1764 case mm_sw32_op:
1765 reg = insn.mm_i_format.rt;
1766 goto storeW;
1768 case mm_ld32_op:
1769 reg = insn.mm_i_format.rt;
1770 goto loadDW;
1772 case mm_sd32_op:
1773 reg = insn.mm_i_format.rt;
1774 goto storeDW;
1776 case mm_pool16c_op:
1777 switch (insn.mm16_m_format.func) {
1778 case mm_lwm16_op:
1779 reg = insn.mm16_m_format.rlist;
1780 rvar = reg + 1;
1781 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1782 goto sigbus;
1784 for (i = 16; rvar; rvar--, i++) {
1785 LoadW(addr, value, res);
1786 if (res)
1787 goto fault;
1788 addr += 4;
1789 regs->regs[i] = value;
1791 LoadW(addr, value, res);
1792 if (res)
1793 goto fault;
1794 regs->regs[31] = value;
1796 goto success;
1798 case mm_swm16_op:
1799 reg = insn.mm16_m_format.rlist;
1800 rvar = reg + 1;
1801 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1802 goto sigbus;
1804 for (i = 16; rvar; rvar--, i++) {
1805 value = regs->regs[i];
1806 StoreW(addr, value, res);
1807 if (res)
1808 goto fault;
1809 addr += 4;
1811 value = regs->regs[31];
1812 StoreW(addr, value, res);
1813 if (res)
1814 goto fault;
1816 goto success;
1820 goto sigbus;
1822 case mm_lhu16_op:
1823 reg = reg16to32[insn.mm16_rb_format.rt];
1824 goto loadHWU;
1826 case mm_lw16_op:
1827 reg = reg16to32[insn.mm16_rb_format.rt];
1828 goto loadW;
1830 case mm_sh16_op:
1831 reg = reg16to32st[insn.mm16_rb_format.rt];
1832 goto storeHW;
1834 case mm_sw16_op:
1835 reg = reg16to32st[insn.mm16_rb_format.rt];
1836 goto storeW;
1838 case mm_lwsp16_op:
1839 reg = insn.mm16_r5_format.rt;
1840 goto loadW;
1842 case mm_swsp16_op:
1843 reg = insn.mm16_r5_format.rt;
1844 goto storeW;
1846 case mm_lwgp16_op:
1847 reg = reg16to32[insn.mm16_r3_format.rt];
1848 goto loadW;
1850 default:
1851 goto sigill;
1854 loadHW:
1855 if (!access_ok(VERIFY_READ, addr, 2))
1856 goto sigbus;
1858 LoadHW(addr, value, res);
1859 if (res)
1860 goto fault;
1861 regs->regs[reg] = value;
1862 goto success;
1864 loadHWU:
1865 if (!access_ok(VERIFY_READ, addr, 2))
1866 goto sigbus;
1868 LoadHWU(addr, value, res);
1869 if (res)
1870 goto fault;
1871 regs->regs[reg] = value;
1872 goto success;
1874 loadW:
1875 if (!access_ok(VERIFY_READ, addr, 4))
1876 goto sigbus;
1878 LoadW(addr, value, res);
1879 if (res)
1880 goto fault;
1881 regs->regs[reg] = value;
1882 goto success;
1884 loadWU:
1885 #ifdef CONFIG_64BIT
1887 * A 32-bit kernel might be running on a 64-bit processor. But
1888 * if we're on a 32-bit processor and an i-cache incoherency
1889 * or race makes us see a 64-bit instruction here the sdl/sdr
1890 * would blow up, so for now we don't handle unaligned 64-bit
1891 * instructions on 32-bit kernels.
1893 if (!access_ok(VERIFY_READ, addr, 4))
1894 goto sigbus;
1896 LoadWU(addr, value, res);
1897 if (res)
1898 goto fault;
1899 regs->regs[reg] = value;
1900 goto success;
1901 #endif /* CONFIG_64BIT */
1903 /* Cannot handle 64-bit instructions in 32-bit kernel */
1904 goto sigill;
1906 loadDW:
1907 #ifdef CONFIG_64BIT
1909 * A 32-bit kernel might be running on a 64-bit processor. But
1910 * if we're on a 32-bit processor and an i-cache incoherency
1911 * or race makes us see a 64-bit instruction here the sdl/sdr
1912 * would blow up, so for now we don't handle unaligned 64-bit
1913 * instructions on 32-bit kernels.
1915 if (!access_ok(VERIFY_READ, addr, 8))
1916 goto sigbus;
1918 LoadDW(addr, value, res);
1919 if (res)
1920 goto fault;
1921 regs->regs[reg] = value;
1922 goto success;
1923 #endif /* CONFIG_64BIT */
1925 /* Cannot handle 64-bit instructions in 32-bit kernel */
1926 goto sigill;
1928 storeHW:
1929 if (!access_ok(VERIFY_WRITE, addr, 2))
1930 goto sigbus;
1932 value = regs->regs[reg];
1933 StoreHW(addr, value, res);
1934 if (res)
1935 goto fault;
1936 goto success;
1938 storeW:
1939 if (!access_ok(VERIFY_WRITE, addr, 4))
1940 goto sigbus;
1942 value = regs->regs[reg];
1943 StoreW(addr, value, res);
1944 if (res)
1945 goto fault;
1946 goto success;
1948 storeDW:
1949 #ifdef CONFIG_64BIT
1951 * A 32-bit kernel might be running on a 64-bit processor. But
1952 * if we're on a 32-bit processor and an i-cache incoherency
1953 * or race makes us see a 64-bit instruction here the sdl/sdr
1954 * would blow up, so for now we don't handle unaligned 64-bit
1955 * instructions on 32-bit kernels.
1957 if (!access_ok(VERIFY_WRITE, addr, 8))
1958 goto sigbus;
1960 value = regs->regs[reg];
1961 StoreDW(addr, value, res);
1962 if (res)
1963 goto fault;
1964 goto success;
1965 #endif /* CONFIG_64BIT */
1967 /* Cannot handle 64-bit instructions in 32-bit kernel */
1968 goto sigill;
1970 success:
1971 regs->cp0_epc = contpc; /* advance or branch */
1973 #ifdef CONFIG_DEBUG_FS
1974 unaligned_instructions++;
1975 #endif
1976 return;
1978 fault:
1979 /* roll back jump/branch */
1980 regs->cp0_epc = origpc;
1981 regs->regs[31] = orig31;
1982 /* Did we have an exception handler installed? */
1983 if (fixup_exception(regs))
1984 return;
1986 die_if_kernel("Unhandled kernel unaligned access", regs);
1987 force_sig(SIGSEGV, current);
1989 return;
1991 sigbus:
1992 die_if_kernel("Unhandled kernel unaligned access", regs);
1993 force_sig(SIGBUS, current);
1995 return;
1997 sigill:
1998 die_if_kernel
1999 ("Unhandled kernel unaligned access or invalid instruction", regs);
2000 force_sig(SIGILL, current);
2003 static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
2005 unsigned long value;
2006 unsigned int res;
2007 int reg;
2008 unsigned long orig31;
2009 u16 __user *pc16;
2010 unsigned long origpc;
2011 union mips16e_instruction mips16inst, oldinst;
2012 unsigned int opcode;
2013 int extended = 0;
2015 origpc = regs->cp0_epc;
2016 orig31 = regs->regs[31];
2017 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
2019 * This load never faults.
2021 __get_user(mips16inst.full, pc16);
2022 oldinst = mips16inst;
2024 /* skip EXTEND instruction */
2025 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
2026 extended = 1;
2027 pc16++;
2028 __get_user(mips16inst.full, pc16);
2029 } else if (delay_slot(regs)) {
2030 /* skip jump instructions */
2031 /* JAL/JALX are 32 bits but have OPCODE in first short int */
2032 if (mips16inst.ri.opcode == MIPS16e_jal_op)
2033 pc16++;
2034 pc16++;
2035 if (get_user(mips16inst.full, pc16))
2036 goto sigbus;
2039 opcode = mips16inst.ri.opcode;
2040 switch (opcode) {
2041 case MIPS16e_i64_op: /* I64 or RI64 instruction */
2042 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
2043 case MIPS16e_ldpc_func:
2044 case MIPS16e_ldsp_func:
2045 reg = reg16to32[mips16inst.ri64.ry];
2046 goto loadDW;
2048 case MIPS16e_sdsp_func:
2049 reg = reg16to32[mips16inst.ri64.ry];
2050 goto writeDW;
2052 case MIPS16e_sdrasp_func:
2053 reg = 29; /* GPRSP */
2054 goto writeDW;
2057 goto sigbus;
2059 case MIPS16e_swsp_op:
2060 reg = reg16to32[mips16inst.ri.rx];
2061 if (extended && cpu_has_mips16e2)
2062 switch (mips16inst.ri.imm >> 5) {
2063 case 0: /* SWSP */
2064 case 1: /* SWGP */
2065 break;
2066 case 2: /* SHGP */
2067 opcode = MIPS16e_sh_op;
2068 break;
2069 default:
2070 goto sigbus;
2072 break;
2074 case MIPS16e_lwpc_op:
2075 reg = reg16to32[mips16inst.ri.rx];
2076 break;
2078 case MIPS16e_lwsp_op:
2079 reg = reg16to32[mips16inst.ri.rx];
2080 if (extended && cpu_has_mips16e2)
2081 switch (mips16inst.ri.imm >> 5) {
2082 case 0: /* LWSP */
2083 case 1: /* LWGP */
2084 break;
2085 case 2: /* LHGP */
2086 opcode = MIPS16e_lh_op;
2087 break;
2088 case 4: /* LHUGP */
2089 opcode = MIPS16e_lhu_op;
2090 break;
2091 default:
2092 goto sigbus;
2094 break;
2096 case MIPS16e_i8_op:
2097 if (mips16inst.i8.func != MIPS16e_swrasp_func)
2098 goto sigbus;
2099 reg = 29; /* GPRSP */
2100 break;
2102 default:
2103 reg = reg16to32[mips16inst.rri.ry];
2104 break;
2107 switch (opcode) {
2109 case MIPS16e_lb_op:
2110 case MIPS16e_lbu_op:
2111 case MIPS16e_sb_op:
2112 goto sigbus;
2114 case MIPS16e_lh_op:
2115 if (!access_ok(VERIFY_READ, addr, 2))
2116 goto sigbus;
2118 LoadHW(addr, value, res);
2119 if (res)
2120 goto fault;
2121 MIPS16e_compute_return_epc(regs, &oldinst);
2122 regs->regs[reg] = value;
2123 break;
2125 case MIPS16e_lhu_op:
2126 if (!access_ok(VERIFY_READ, addr, 2))
2127 goto sigbus;
2129 LoadHWU(addr, value, res);
2130 if (res)
2131 goto fault;
2132 MIPS16e_compute_return_epc(regs, &oldinst);
2133 regs->regs[reg] = value;
2134 break;
2136 case MIPS16e_lw_op:
2137 case MIPS16e_lwpc_op:
2138 case MIPS16e_lwsp_op:
2139 if (!access_ok(VERIFY_READ, addr, 4))
2140 goto sigbus;
2142 LoadW(addr, value, res);
2143 if (res)
2144 goto fault;
2145 MIPS16e_compute_return_epc(regs, &oldinst);
2146 regs->regs[reg] = value;
2147 break;
2149 case MIPS16e_lwu_op:
2150 #ifdef CONFIG_64BIT
2152 * A 32-bit kernel might be running on a 64-bit processor. But
2153 * if we're on a 32-bit processor and an i-cache incoherency
2154 * or race makes us see a 64-bit instruction here the sdl/sdr
2155 * would blow up, so for now we don't handle unaligned 64-bit
2156 * instructions on 32-bit kernels.
2158 if (!access_ok(VERIFY_READ, addr, 4))
2159 goto sigbus;
2161 LoadWU(addr, value, res);
2162 if (res)
2163 goto fault;
2164 MIPS16e_compute_return_epc(regs, &oldinst);
2165 regs->regs[reg] = value;
2166 break;
2167 #endif /* CONFIG_64BIT */
2169 /* Cannot handle 64-bit instructions in 32-bit kernel */
2170 goto sigill;
2172 case MIPS16e_ld_op:
2173 loadDW:
2174 #ifdef CONFIG_64BIT
2176 * A 32-bit kernel might be running on a 64-bit processor. But
2177 * if we're on a 32-bit processor and an i-cache incoherency
2178 * or race makes us see a 64-bit instruction here the sdl/sdr
2179 * would blow up, so for now we don't handle unaligned 64-bit
2180 * instructions on 32-bit kernels.
2182 if (!access_ok(VERIFY_READ, addr, 8))
2183 goto sigbus;
2185 LoadDW(addr, value, res);
2186 if (res)
2187 goto fault;
2188 MIPS16e_compute_return_epc(regs, &oldinst);
2189 regs->regs[reg] = value;
2190 break;
2191 #endif /* CONFIG_64BIT */
2193 /* Cannot handle 64-bit instructions in 32-bit kernel */
2194 goto sigill;
2196 case MIPS16e_sh_op:
2197 if (!access_ok(VERIFY_WRITE, addr, 2))
2198 goto sigbus;
2200 MIPS16e_compute_return_epc(regs, &oldinst);
2201 value = regs->regs[reg];
2202 StoreHW(addr, value, res);
2203 if (res)
2204 goto fault;
2205 break;
2207 case MIPS16e_sw_op:
2208 case MIPS16e_swsp_op:
2209 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
2210 if (!access_ok(VERIFY_WRITE, addr, 4))
2211 goto sigbus;
2213 MIPS16e_compute_return_epc(regs, &oldinst);
2214 value = regs->regs[reg];
2215 StoreW(addr, value, res);
2216 if (res)
2217 goto fault;
2218 break;
2220 case MIPS16e_sd_op:
2221 writeDW:
2222 #ifdef CONFIG_64BIT
2224 * A 32-bit kernel might be running on a 64-bit processor. But
2225 * if we're on a 32-bit processor and an i-cache incoherency
2226 * or race makes us see a 64-bit instruction here the sdl/sdr
2227 * would blow up, so for now we don't handle unaligned 64-bit
2228 * instructions on 32-bit kernels.
2230 if (!access_ok(VERIFY_WRITE, addr, 8))
2231 goto sigbus;
2233 MIPS16e_compute_return_epc(regs, &oldinst);
2234 value = regs->regs[reg];
2235 StoreDW(addr, value, res);
2236 if (res)
2237 goto fault;
2238 break;
2239 #endif /* CONFIG_64BIT */
2241 /* Cannot handle 64-bit instructions in 32-bit kernel */
2242 goto sigill;
2244 default:
2246 * Pheeee... We encountered an yet unknown instruction or
2247 * cache coherence problem. Die sucker, die ...
2249 goto sigill;
2252 #ifdef CONFIG_DEBUG_FS
2253 unaligned_instructions++;
2254 #endif
2256 return;
2258 fault:
2259 /* roll back jump/branch */
2260 regs->cp0_epc = origpc;
2261 regs->regs[31] = orig31;
2262 /* Did we have an exception handler installed? */
2263 if (fixup_exception(regs))
2264 return;
2266 die_if_kernel("Unhandled kernel unaligned access", regs);
2267 force_sig(SIGSEGV, current);
2269 return;
2271 sigbus:
2272 die_if_kernel("Unhandled kernel unaligned access", regs);
2273 force_sig(SIGBUS, current);
2275 return;
2277 sigill:
2278 die_if_kernel
2279 ("Unhandled kernel unaligned access or invalid instruction", regs);
2280 force_sig(SIGILL, current);
2283 asmlinkage void do_ade(struct pt_regs *regs)
2285 enum ctx_state prev_state;
2286 unsigned int __user *pc;
2287 mm_segment_t seg;
2289 prev_state = exception_enter();
2290 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
2291 1, regs, regs->cp0_badvaddr);
2293 * Did we catch a fault trying to load an instruction?
2295 if (regs->cp0_badvaddr == regs->cp0_epc)
2296 goto sigbus;
2298 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
2299 goto sigbus;
2300 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
2301 goto sigbus;
2304 * Do branch emulation only if we didn't forward the exception.
2305 * This is all so but ugly ...
2309 * Are we running in microMIPS mode?
2311 if (get_isa16_mode(regs->cp0_epc)) {
2313 * Did we catch a fault trying to load an instruction in
2314 * 16-bit mode?
2316 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
2317 goto sigbus;
2318 if (unaligned_action == UNALIGNED_ACTION_SHOW)
2319 show_registers(regs);
2321 if (cpu_has_mmips) {
2322 seg = get_fs();
2323 if (!user_mode(regs))
2324 set_fs(KERNEL_DS);
2325 emulate_load_store_microMIPS(regs,
2326 (void __user *)regs->cp0_badvaddr);
2327 set_fs(seg);
2329 return;
2332 if (cpu_has_mips16) {
2333 seg = get_fs();
2334 if (!user_mode(regs))
2335 set_fs(KERNEL_DS);
2336 emulate_load_store_MIPS16e(regs,
2337 (void __user *)regs->cp0_badvaddr);
2338 set_fs(seg);
2340 return;
2343 goto sigbus;
2346 if (unaligned_action == UNALIGNED_ACTION_SHOW)
2347 show_registers(regs);
2348 pc = (unsigned int __user *)exception_epc(regs);
2350 seg = get_fs();
2351 if (!user_mode(regs))
2352 set_fs(KERNEL_DS);
2353 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
2354 set_fs(seg);
2356 return;
2358 sigbus:
2359 die_if_kernel("Kernel unaligned instruction access", regs);
2360 force_sig(SIGBUS, current);
2363 * XXX On return from the signal handler we should advance the epc
2365 exception_exit(prev_state);
2368 #ifdef CONFIG_DEBUG_FS
2369 static int __init debugfs_unaligned(void)
2371 struct dentry *d;
2373 if (!mips_debugfs_dir)
2374 return -ENODEV;
2375 d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
2376 mips_debugfs_dir, &unaligned_instructions);
2377 if (!d)
2378 return -ENOMEM;
2379 d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
2380 mips_debugfs_dir, &unaligned_action);
2381 if (!d)
2382 return -ENOMEM;
2383 return 0;
2385 arch_initcall(debugfs_unaligned);
2386 #endif